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Abstract 

Heart failure represents a major cause of morbidity and mortality worldwide. Single cell 
transcriptomics have revolutionized our understanding of cell composition and associated gene 
expression across human tissues. Through integrated analysis of single cell and single nucleus 
RNA sequencing data generated from 45 individuals, we define the cell composition of the 
healthy and failing human heart. We identify cell specific transcriptional signatures of heart 
failure and reveal the emergence of disease associated cell states. Intriguingly, cardiomyocytes 
converge towards a common disease associated cell state, while fibroblasts and myeloid cells 
undergo dramatic diversification. Endothelial cells and pericytes display global transcriptional 
shifts without changes in cell complexity. Collectively, our findings provide a comprehensive 
analysis of the cellular and transcriptomic landscape of human heart failure, identify cell type 
specific transcriptional programs and states associated with disease, and establish a valuable 
resource for the investigation of human heart failure.  
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Introduction 

Single cell and single nucleus RNA sequencing (scRNAseq, snRNAseq) represent powerful 
new tools to identify cell types and their respective transcriptional signatures that reside within 
healthy and diseased tissues. Prior to the development of these technologies, our 
understanding of the cells that comprise human tissues and organs was restricted to routine 
histology and immunostaining analyses performed many decades ago. The rapid deployment of 
single cell sequencing has revolutionized the field and resulted in the identification of previously 
unrecognized cell populations including disease specific cell states across a wide range of 
structures including brain, lung, liver, kidney, and various malignancies.1–5 

Recently, scRNAseq and snRNAseq was performed on healthy human heart tissue6,7. These 
studies yielded new information pertaining to common and rare cell populations within the 
healthy heart. Cardiomyocytes, fibroblasts, endothelial cells, pericytes, smooth muscles cells, 
myeloid cells, lymphoid cells, adipocytes, and neuronal cells were readily identified and 
analyzed across anatomical sites. Distinct transcriptional states of atrial and ventricular 
cardiomyocytes were identified and validated using RNA in situ hybridization. Surprising 
diversity was also observed amongst perivascular and immune cell types including 
transcriptional signatures specific to different regions of heart. At present, little is understood 
regarding the functional relevance of cell diversity within major cardiac cell populations. 
Furthermore, the impact of cardiac disease on cell composition remains to be rigorously 
investigated.  

Heart failure represents a major cause of morbidity and mortality worldwide and imparts large 
costs on health care systems.8,9 While bulk RNA sequencing has yielded important insights into 
disease mechanisms that contribute to heart failure pathogenesis10, cell specific information is 
lost and much remains to be learned regarding the roles of individual cell types. Identification of 
disease associated cell specific programs may provide the insights and opportunities necessary 
to develop new therapies for heart failure. 

Herein, we performed snRNAseq and scRNAseq on a large cohort of heart specimens obtained 
from healthy subjects and chronic heart failure patients. We identified 15 major cardiac cell 
types from 45 individuals and explored the extent of cell diversity within each of these 
populations. Unsupervised clustering, differential gene expression, and trajectory analyses 
revealed cell type specific transcriptional programs and emergence of disease associated cell 
states in the context of heart failure. We observed only subtle differences related to age and sex 
among non-diseased donor samples. Our data provide a comprehensive analysis of the cellular 
and transcriptomic landscape of the healthy and failing human heart and will serve as a valuable 
resource to the scientific community.  
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Results 

Single nucleus and single cell RNA sequencing reveals the cellular landscape of the 
human heart. 

To define the cellular and transcriptional landscape of the healthy and failing human heart, we 
obtained left ventricular (LV) cardiac tissue specimens from 28 non-diseased donors and 17 
subjects with dilated (nonischemic) cardiomyopathy (DCM). Non-diseased tissues were 
acquired from prospective donor hearts with normal LV function that were not used for 
transplantation due to the lack of a suitable recipient. DCM tissue was obtained from subjects 
undergoing implantation of a left ventricular assist device or explanted hearts collected at the 
time of transplantation. Transmural myocardial samples from the apical and anterior segments 
of the LV were processed for either single nucleus RNA sequencing (snRNAseq, n=38) or 
single cell RNA sequencing (scRNAseq, n=7) using the 10x Genomics 5’ Single Cell platform 
(Tables S1-S3, Fig. 1A). 

Single nucleus and single cell libraries were sequenced, aligned to the human reference 
genome, filtered for quality control, and unsupervised clustering, integration, and expression 
analysis performed using Seurat (Fig. 1B, Fig. S1, Fig. S2). Following QC, nuclei samples had 
average gene and feature counts per cell of 2849 and 1496 respectively, while those counts for 
cells were 4893 and 1966, respectively. The final integrated dataset consisted of 220,752 nuclei 
and 49,723 cells representative of 15 major cell types (Fig. 1C). Cell identities were validated by 
expression of cell specific marker genes (Fig. 1D, Fig. S3) and transcriptional signatures (Fig. 
S4-6). Cell types identified in both snRNAseq and scRNAseq datasets included fibroblasts, 
endothelial cells, myeloid cells, pericytes, smooth muscle cells, T- and NK-cells, neurons/glia, 
and B-cells. A notable benefit of snRNAseq is the ability to obtain reads from additional cell 
types that are not efficiently recovered from enzymatically digested tissue including 
cardiomyocytes, adipocytes, endocardial cells, lymphatics, epicardial cells, and mast cells (Fig. 
1E). Quantification of major cell type distribution revealed that the percentages of fibroblasts, 
myeloid cells, and NK- and T-cells were increased in DCM compared to non-diseased tissues 
(Fig. S7).  

The analyzed dataset was powered to investigate the influence of age, sex, and disease state 
on gene expression. Differential expression analysis using pseudobulk and single cell 
approaches demonstrated that disease state had the most powerful influence on differential 
gene expression across cell types (Fig. 2A). Substantially fewer differentially expressed genes 
were detected comparing non-diseased males and females, the majority of which were located 
on the X and Y chromosomes including XIST, TSIX, and TTTY genes (Fig. 2B). Moreover, 
comparison of non-diseased young and old subjects did not reveal clear differences (Fig. 2C). 
With respect to disease state, cardiomyocytes, myeloid cells, fibroblasts, endothelial cells, and 
endocardial cells displayed the greatest differences in gene expression in both snRNAseq and 
scRNAseq datasets (Fig. 2A). Pseudobulk and Seurat differential expression also demonstrate 
substantial overlap in the genes found to be differentially expressed, with pseudobulk identifying 
a larger number of differentially expressed genes (Fig. S8). As such, we focused our 
downstream analysis on these cell types. 

Cardiomyocytes phenotypically converge in dilated cardiomyopathy. 

Principal component analysis of pseudobulk data indicated that disease state and sex 
influenced gene expression profiles of cardiomyocytes. Overlaying age distribution onto the 
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PCA plot did not suggest a strong relationship with age across all cardiomyocytes although 
differential expression analysis identified a small number of genes differentially expressed 
between older vs. younger individuals (Fig. 3A, Fig. S9). Pseudobulk differential expression 
analysis between male and female subjects indicated robust differences in genes encoded on 
the X and Y chromosome, possibly accounting for separation observed by PCA (Fig. S9). 
Differential expression analysis by pseudobulk and single cell approaches across disease state 
revealed a large number of genes significantly upregulated (NPPA, RYR1, EGR2) and 
downregulated (EDNRB, MYH6, CKM) in DCM samples compared to non-diseased donors 
(Fig. 3B, Fig. S9). Pathway analysis identified multiple differentially regulated pathways 
including VEGFA signaling, metabolism, and proteasome degradation. Comparison of enriched 
pathways between clusters identified distinct pathways associated with individual cell states. 
(Fig. S10). Transcription factor enrichment analysis was also performed on select states of 
cardiomyocytes associated with DCM. The ADGRL3 cell state was found to have enrichment for 
targets of specific transcription factors including STAT3, CEBPD, and SMARCD1, while targets 
of ZNF217, WT1, and AR, among others were identified in analysis of the NPPA/NPPB cell 
state (Fig. S10). 

Unsupervised clustering identified 7 cardiomyocyte states with differing gene expression 
signatures (Fig. 3C-D, Fig. S10). Cardiomyocytes from donor samples existed in all 7 states 
marked by MYH6, MYL7, GRIK2, NPPA/NPPB, ADGRL3, and ACTA1 expression. Intriguingly, 
cardiomyocytes from DCM samples displayed a striking bias towards clusters marked by 
NPPA/NPPB and ADGRL3 expression. There was a marked reduction in the MYH6 
cardiomyocyte clusters (Fig. 3C,E). In addition to changes in cell distribution, we also observed 
a decrease in MYH6 expression and increases in ANKRD1, NPPA, and ADGRL3 expression in 
DCM (Fig. 3F). To validate shifts in cardiomyocyte state and gene expression in DCM at the 
tissue level, we performed RNA in situ hybridization. Compared to donor controls, we observed 
significant increases in NPPA, NPPB, and ANKRD1 expressing cells and significant reduction in 
MYH6 expressing cells in DCM (Fig. 3G-H).  

To explore the temporal relationship between cardiomyocyte states, we performed pseudotime 
trajectory analysis using Palantir.11  We calculated pseudotime and entropy values for each 
cardiomyocyte cluster to predict putative states of cell differentiation (Fig. 3I, Fig. S10). We 
plotted entropy versus pseudotime values for each cell and superimposed cluster designations. 
Donor cardiomyocytes were predicted to contain two highly differentiated cell states marked by 
MYL7 and ACTA1 expression. In contrast, DCM samples displayed two distinct highly 
differentiated cell states marked by ARGRL3 and NPPA/NPPB expression (Fig. 3I). Collectively, 
these observations suggest a convergence towards disease associated cardiomyocyte 
phenotypes in DCM. 

Expansion of monocytes and shift in macrophages toward diverse inflammatory states 

Macrophages, monocytes, and dendritic cells are increasingly studied in mouse models of 
cardiac injury and heart failure.12–16 We identified large populations of macrophages, monocytes, 
and dendritic cells in donors and DCM subjects (Fig. 1C,E). Principal component analysis of 
pseudobulk data indicated that disease state and sex had the greatest effect differential gene 
expression. We did not identify an obvious relationship with age (Fig. 4A, Fig. S9). Differential 
expression analysis by pseudobulk and single cell approaches across disease state revealed a 
large number of genes significantly upregulated (CCL3, CD1C, NLRP3) and downregulated 
(VSIG4, FCGBP, MCM2) in DCM samples compared to non-diseased donors (Fig. 4B).  Similar 
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to cardiomyocytes, pseudobulk differential expression analysis between male and female 
subjects indicated robust differences in a small number of genes encoded on the X and Y 
chromosomes, including XIST, JPX, and TTTY10 (Fig. S9). Pathway analysis identified 
upregulation of multiple pathways in DCM samples including IL-18, PI3K-AKT-mTOR, IL-3, and 
MAPK signaling, while cell cycle and metabolism pathways were found to be downregulated in 
DCM (Fig. S11). 

Unsupervised clustering of the integrated reference dataset revealed the presence of large 
numbers of macrophages, and smaller populations of monocytes, dendritic, and proliferating 
cells. We identified two populations of macrophages including a subset that expressed tissue 
resident markers (MRC1, SIGLEC1, CD163, LYVE1, F13A1).17–19  Compared to donor controls, 
we observed a reduction in resident and proliferating macrophages and expansion of 
monocytes, dendritic cells, and other macrophages in DCM subjects (Fig. 4C-E, Fig. S11). We 
also observed a reduction in the tissue resident macrophage signature in DCM (Fig. 4F-G). 
RNA in situ hybridization confirmed reduction in CD163+ cells DCM samples and compared to 
donor controls (Fig. 4H). 

Visualization of snRNA-seq and scRNA-seq data within the integrated object indicated a bias in 
recovered cell populations. While each dataset contained all of the identified cell types, the 
scRNAseq dataset displayed a bias towards monocytes, dendritic cells, and non-resident 
macrophages. The snRNAseq dataset contained a substantially larger number of resident 
macrophages (Fig. S11). To evaluate the diversity of monocytes, dendritic cells, and non-
resident macrophages, we chose to focus on the scRNAseq data. Unsupervised clustering 
revealed the presence of discrete monocyte (CD14+, CD16+, intermediate), macrophages 
(CCL3, TREM2, KLF2, LYVE1) and dendritic cell populations (Fig. 4I-J). We observed shifts in 
monocyte, macrophage, and dendritic cell composition between donor and DCM groups. Donor 
samples contained classical (CD14+) and non-classical (CD16+) monocytes as well as 2 
populations of LYVE1+ resident macrophages that differed based on the expression of FOLR2, 
MRC1, SIGLEC1, and HSPH1. Compared to donors, DCM samples displayed reduced numbers 
of resident macrophages and a greater number of intermediate monocytes, dendritic cells, and 
three additional macrophage populations characterized by the expression of CCL3, TREM2, 
and KLF2 (Fig. S11). Classical and intermediate monocytes and macrophages marked by 
CCL3, TREM2, and KLF2 expressed robust levels of inflammatory mediators including IL1A, 
IL1B, TNF, AREG, EREG, and multiple chemokines (Fig. 4J-K). Comparison of enriched 
pathways across cell states identified enrichment of unique pathways in individual states 
including enrichment of inflammatory IL10 and IFNγ signaling in the CCL3 state, and enrichment 
of IFN α,β, and γ in the intermediate monocyte state. Transcription factor analysis identified 
enrichment of targets of transcription factors including CLOCK, RELA, MYB, and IRF8 in the 
inflammatory macrophage states (CCL3, KLF2, and TREM2) (Fig. S12). 

To infer the differentiation state of monocyte, dendritic cell and macrophage populations, we 
utilized Palantir. Calculation of pseudotime and entropy values demonstrated that CD14+ 
monocytes represented the most progenitor-like state. CD16+ monocytes, dendritic cells, and 
resident macrophages represented the most differentiated cells, each with distinct trajectories.  
Compared to donors, we observed an accumulation of cells with intermediate differentiation 
states along the macrophage trajectory in DCM samples. Superimposing cluster identities 
revealed that these cells belonged to the intermediate monocyte, TREM2, CCL3, and KLF2 
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clusters suggesting that they are monocyte-derived (Fig. 4L). These data provide a link 
between CD14+ monocytes, monocyte-derived macrophage diversity and inflammation in DCM.  

Fibroblasts diversify in dilated cardiomyopathy. 

We identified a large population of cardiac fibroblasts that displayed a dramatic shift in gene 
expression in DCM as compared to donor controls (Fig. 1C). Principal component analysis 
demonstrated that variability across samples was driven by disease state and sex with less 
influence of age. (Fig. 5A, Fig. S9). Differential expression analysis by pseudobulk identified 
subtle differences in gene expression by age (Fig. S9). Pseudobulk and single cell differential 
expression analysis identified a large number of genes significantly upregulated (LEF1, 
NFATC2, PTCH2) and downregulated (GPX3, FGF10, FGF7) in DCM samples compared to 
non-diseased donors. Pathway analysis identified upregulation (MAPK, EGF, WNT, BDNF 
signaling) and downregulation (metabolism, biosynthesis) of multiple pathways in DCM (Fig. 
S13). Similar to cardiomyocytes and macrophages, pseudobulk differential expression analysis 
between male and female subjects indicated robust differences in a small number of genes 
encoded on the X and Y chromosomes including XIST, JPX, and ZFYAS1 (Fig. S9).  

Unsupervised clustering of the integrated reference dataset revealed multiple distinct 
populations of fibroblasts (Fig. 5C). The majority of fibroblasts in both donor and DCM hearts 
displayed a conserved gene expression signature characteristic of fibroblasts. We identified two 
fibroblast subpopulations primarily present in donor controls that expressed PLA2G2A and 
GPX3, respectively. In the context of DCM, we observed expansion of additional fibroblast 
subpopulations characterized by the expression of PCOLCE2, THBS4, CCL2, and ELN/GPC6. 
Interestingly, the THBS4 cluster contained two signatures marked by POSTN and TNC 
expression with POSTN selectively found in DCM samples (Fig. 5C-E, Fig. S13). Fibroblasts in 
DCM hearts displayed a robust activation signature that included FAP, CTGF, LUM, ACTB, 
COL1A1, BGN, and MGP expression. Donor fibroblasts selectively expressed GPX3, PID1, 
TGFBR3, ACSM3, and APOD (Fig. 5F). Palantir identified fibroblasts marked by THBS4, CCL2, 
and ELN expression as the most differentiated cell states based on low entropy and high 
pseudotime values. All other fibroblasts appeared to exist in a state of high entropy suggesting 
significant plasticity within these populations (Fig. S13). Additional pathway analysis comparing 
populations identified distinct enrichment of pathways in individual cell states, including 
pathways involved in protein translation and transport in the CCL2, GPX3, and THBS4 
populations and enrichment of striated muscle contraction associated pathways in the 
unactivated population (Fig. S13). Transcription factor analysis on select populations associated 
with DCM identified enrichment of targets of specific transcription factors including CREM, 
NELFA, EGR1, and TCF7 in the CCL2 population and TRIM28, RUNX1, BRD4, CJUN, and 
MYC in the THBS4 population (Fig. S14). 

We validated shifts in fibroblast composition between donor controls and DCM hearts using 
RNA in situ hybridization. The overall numbers of fibroblasts (marked by DCN expression) 
remained similar between donor control and DCM hearts. Interesting, we observed that 
fibroblast subpopulations were located either within the interstitial space between 
cardiomyocytes (PCOLCE2, CCL2, POSTN), adjacent to distal vasculature (PLA2G2A), or 
surrounding epicardial coronary arteries (ELN). The number of POSTN fibroblasts was 
significantly increased in DCM samples. We also identified strong trends for reduced PLA2G2A 
fibroblasts (p=0.06) and increased CCL2 fibroblasts (p=0.08) in DCM. (Fig. 5G-H, Fig. S13).   
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Unsupervised clustering of the integrated reference dataset subtle changes in pericytes and 
smooth muscle cells. Principal component analysis demonstrated that variability across samples 
was driven by disease state and sex with little influence of age. Pseudobulk and single cell 
differential expression and pathway analyses identified genes and pathways enriched in DCM 
pericytes and smooth muscles cells compared to non-diseased donors. We did not observe 
distinct subpopulations of pericytes or smooth muscles in any examined condition (Fig. S15).  

Endothelial cell populations display shifts in global gene expression. 

Endothelial cells within the heart include arterial, venous, capillary, lymphatic, and endocardial 
cells. Principal component analysis of artery, vein, and capillary pseudobulk data identified 
disease state and sex as distinguishing features with less impact from age (Fig. 6A, Fig. S9). 
Differences between male and female subjects were driven by a small number of genes 
encoded on the X and Y chromosomes (Fig. S9). Pseudobulk bulk and single cell differential 
expression analysis in vascular endothelial cells identified a large number of genes significantly 
upregulated (EGR1, PLXNA4, NOX4, PDE4) and downregulated (SIPR3, TBX3, FABP5) in 
DCM samples compared to non-diseased donors (Fig. 6B).  

Within the integrated reference object, the snRNAseq dataset contained all major endothelial 
cell populations whereas the scRNAseq dataset displayed a bias towards arterial, venous, and 
capillary endothelial cells. Few endocardial or lymphatic cells were recovered from scRNAseq 
data. Utilizing RNA in situ hybridization, we visualized expression of arterial (CLIC3), venous 
(ACKR1), capillary (BTNL9), and lymphatic (CCL21) markers identified from Seurat differential 
expression analysis (Fig. S16). To examine whether DCM is associated with changes in 
endothelial cell diversity, we performed unsupervised clustering of the snRNAseq and 
scRNAseq datasets. This analysis did not reveal further diversification of arterial, venous, 
capillary, lymphatic, or endocardial cells. Instead, we observed global shifts in gene expression 
across both datasets (Fig. 6C-D, Fig. S16). 

Pseudobulk and single cell differential gene expression analysis of snRNAseq data 
demonstrated that capillaries, veins, and endocardial cells displayed the greatest number of 
differentially expressed genes comparing donor control and DCM conditions (Fig. 6E). Vascular 
endothelial cells and endocardial cells displayed distinct transcriptional signatures and pathways 
enriched in DCM samples. Capillaries and venous endothelial cells exhibited distinct signatures 
in DCM samples as compared to non-diseased donors. Upregulation of CREB5, SLC9C1, and 
SASH1 was observed in capillaries of DCM samples while FOS and DUSP1 was upregulated in 
both venous and capillaries in DCM samples. Donor capillaries exhibited upregulation of FABP5 
and IFITM3 and donor venous cells exhibited strong enrichment of CALCRL and IGFBP5. 
Pathway analysis identified downregulation of metabolic pathways in both venous and capillary 
endothelial cells in DCM samples. We also identified enrichment of TGF-beta, CRH, and Kit 
signaling and the hallmark pathway of cardiovascular disease in venous endothelial cells in 
DCM. In capillaries, we identified enrichment of VEGFA, CRH, TGF-beta, and gastrin signaling 
in DCM as compared to donors (Fig 6F-G, Fig. S16).  

Within endocardial cells, we observed a large number of genes to be significantly upregulated 
(BMP4, NRG1, NRP2) and downregulated (IGFBP6, CD55, ITGA6) in DCM samples compared 
to non-diseased donors (Fig. S17). Endocardial cells displayed a striking shift in gene 
expression between donor controls and DCM resulting in independent clustering of endocardial 
cells across disease state (Fig. 6H). Donor endocardial cells expressed NRG3. Endocardial 
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cells from DCM samples display strong upregulation of NRG1 and reduced NRG3 expression 
(Fig. 6I-J). Pathway analysis identified enrichment of PI3K-AKT, MAPK, EGF, hedgehog, and 
TGF-beta signaling as well as hallmarks of heart development in DCM samples while VEGFA 
signaling, and metabolic pathways were enriched in donor endocardial cells (Fig. S17). 
Additional pathway analysis comparing NRG3 to NRG1 populations identified enrichment of 
muscle contraction pathways in the NRG3 population that are absent in the NRG1 population as 
well as enrichment of FGFR1 signaling in the NRG1 population. Transcription factor analysis 
identified enrichment of targets of transcription factors including FOXA2, STAT3, TCF4, GATA2, 
and FOXM1 in the NRG1 population as well as TBX20, RELA, SOX9, and SCL/TAL1 in the 
NRG3 population (Fig. S17). 
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Discussion 

Single cell technologies offer powerful new tools to dissect cell types that reside within healthy 
and diseased tissues. Recently, these approaches were leveraged to provide a deeper 
understanding of the cellular composition of the healthy human heart.6,7 While considerable 
interest exists, only limited data is available to decipher how the cellular and transcriptional 
landscape of the heart is impacted by disease.20,21  

This study represents the largest-scale single cell analysis of the healthy and failing human 
heart to date. Using an approach that integrated snRNAseq and scRNAseq data from 45 
individuals encompassing 220,752 nuclei and 49,723 cells, we identified 15 major cardiac cell 
types, uncovered cell type specific transcriptional programs, and revealed the emergence of cell 
states associated with heart failure. We did not detect significant differences in cellular 
composition related to age or sex. However, this does not exclude the possibility that aging 
and/or sex may have impacts that were not readily identified by single cell analysis. We 
observed considerable variation in how different cardiac cell populations responded to heart 
failure. Cardiomyocytes converged towards a common disease associated cell state, while 
fibroblasts and myeloid cells underwent dramatic diversification including the acquisition of 
disease specific phenotypes. In contrast, endothelial cells, endocardial cells and pericytes 
displayed global transcriptional shifts without changes in cell complexity.  

Previous studies examining differences across cardiac chambers have identified evidence of 
cardiomyocyte heterogeneity in the healthy heart.6,7 We identified multiple transcriptionally 
distinct cardiomyocyte states within the LV of non-diseased donors and DCM patients. Donor 
hearts contained 7 cardiomyocyte states marked by MYH6, MYL7, GRIK2, NPPA/NPPB, 
ADGRL3, and ACTA1 expression. DCM cardiomyocytes uniformly expressed high levels of 
ARKD1, contained few MYH6 or GRIK2 expressing cardiomyocytes, and instead, were enriched 
for states identified by NPPA/NPPB and ADGRL3 expression. Interesting, ANKRD1 expression 
was recently found to be enriched in cardiomyocytes from patients with adolescent versus 
pediatric DCM.20 Pseudotime trajectory analysis identified three highly differentiated 
cardiomyocyte states (MYL7, ACTA1, NPPA/NPPB) in donor hearts. Surprisingly, we observed 
a two highly differentiated cardiomyocyte state in DCM marked by ADGRL3 and NPPA/NPPB 
expression. These observations suggest that cardiomyocytes converge towards a common 
disease associated states in DCM. Further understanding of the instructive cues and parental 
cardiomyocyte populations that give rise to ADGRL3 and NPPA/NPPB expressing 
cardiomyocytes may provide new insights and opportunities to intervene in the pathogenesis of 
human heart failure. 

We observed striking transcriptionally changes in non-cardiomyocyte populations (fibroblasts, 
macrophages, endothelial cells, endocardial cells) between healthy controls and DCM samples. 
Prior snRNAseq studies have reported astounding diversity amongst fibroblasts in the healthy 
human heart.6,7,22,23 Fibroblasts are known to expand in heart failure and acquire an activated 
phenotype characterized by the expression of fibroblast activated protein (FAP) and periostin 
(POSTN).24–30 While previous single cell studies have identified cardiac fibroblast subsets in the 
healthy human heart, little is known regarding how these populations are influenced by disease. 
We identify multiple distinct fibroblast populations in both healthy and diseased samples with 
differing transcriptional signatures and spatial distribution including elastin (ELN) expressing 
macrophages located within the media of coronary arteries. Fibroblasts marked by POSTN, 
CCL2, and PCOLCE2 were enriched in DCM, while GPX3 and PLA2G2A macrophages were 
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enriched in donor controls. In addition, we identified an activation signature that included FAP, 
CTGF, LUM, ACTB, COL1A1, BGN, and MGP that was selectively expressed in fibroblasts from 
DCM hearts. These findings provide further evidence that phenotypic shifts in fibroblasts are a 
hallmark of heart failure.  

Heterogeneity of myeloid populations including macrophages is increasingly appreciated to 
contribute to the variety of cardiac pathologies including heart failure.31–36 The majority of these 
studies have focused on mouse models with only targeted validation in human 
specimens.14,15,37,38 Consistent with small animal models, we observe a variety of monocyte, 
macrophage, and dendritic cell populations within the human heart. The abundance of 
macrophages expressing a tissue resident signature is reduced in DCM. We also observed an 
emergence of monocyte and macrophage populations expressing inflammatory mediators in the 
failing heart. Cell trajectory analysis predicted that many of these inflammatory populations 
represented intermediate states derived from CD14+ monocytes. The number of proliferating 
macrophages was reduced in DCM, consistent with the concept that self-replication maybe a 
trait of tissue resident macrophages.  

While scRNAseq and snRNAseq provided sufficient resolution to identify major perivascular 
populations (arteries, veins, capillaries, pericytes, smooth muscle cells, lymphatics, endocardial 
cells), we did not observe additional diversity within these populations. However, we did uncover 
global shifts in gene expression within each of these populations between control and DCM 
specimens. Previous studies have identified similar shifts in global endothelial cell expression 
but were unable to parse contributions from each major endothelial cell type. Endocardial cells 
displayed robust numbers of differentially expressed genes between control and DCM 
specimens. NRG1 and NRG3 were exclusively expressed in DCM and control endocardial cells, 
respectively. Interestingly, mouse studies identified that cardiomyocyte specific loss of NRG3 
receptors (ErbB2, ErbB4) results in spontaneous heart failure suggesting a potential role for 
NRG3 in regulating cardiac homeostasis.  

snRNAseq captured cell types that are difficult to recover from enzymatically digested tissue 
including cardiomyocytes, adipocytes, mast cells, epicardium, endocardium, and lymphatics. 
Using data integration and reference mapping, we were able to effectively combine snRNAseq 
and scRNAseq data and identify at least 15 major cardiac cell populations. Current scRNAseq 
datasets exploring human heart failure are small and lack the sample size necessary to 
elucidate the impact of disease on common and rare cardiac cell types.20,21 scRNAseq data 
provided greater depth at the expense of biased cell recovery. For example, within myeloid 
cells, scRNAseq data was biased towards monocytes and intermediate macrophage 
populations with fewer resident macrophages recovered. These datasets were leveraged to 
provide additional granularity into monocytes and inflammatory macrophage populations. 

This study is not without limitations. We categorized DCM patients into a single cohort based on 
the lack of underlying coronary artery disease. It is likely that the exact etiology of DCM 
contributes to shifts in cell diversity and transcriptional state. Our data set only includes 
transcriptomic information. Addition of cell surface protein expression and chromatin 
accessibility information may offer additional resolution. In conclusion, this study represents the 
largest analysis of the cellular and transcriptomic landscape of the healthy and failing human 
heart to date. We provide valuable insights into how cardiac cell populations change during 
heart failure including the emergence of disease specific cell states. These data provide a 
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valuable resource that will open up new areas of investigation and opportunities for therapeutic 
development and innovation. 
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Methods 

Sample Preparation for Single Cell RNA Sequencing 

Fresh cardiac tissues from LVAD cores or identical regions from the apex of explanted donors 
were minced with a razor blade and transferred into a 15ml conical tube containing DMEM with 
Collagenase I (450U/ml), DNAse I (60U/ml), and Hyaluronidase (60U/ml) and incubated at 37°C 
for 1 hour with agitation. Digestion was then stopped by addition of HBB buffer (2% FBS, 0.2% 
BSA in HBSS) and filtered through a 40um filter into 50 mL conical, transferred to a clean 15ml 
conical and centrifuged at 350 x G for 5 minutes at 4°C. Supernatant was then removed and 
pellet resuspended in 1mL ACK lysing buffer (Gibco A10492) and incubated at room 
temperature for 5 minutes followed by the addition of 9mL DMEM. Suspension was then 
centrifuged at above conditions, followed by removal of supernatant, and resuspension in 5mL 
FACS buffer (2% FBS, 2mM EDTA in calcium/magnesium free PBS). Centrifugation was 
repeated at above conditions, supernatant removed, and pellet resuspended in 300uL cell 
resuspension buffer (0.04% BSA in 1X PBS) and 1uL each of DRAQ5 (Thermo Scientific 
62251) and DAPI (BD Biosciences 564907) and allowed to incubate 5 minutes before sorting. 
DRAQ5+/DAPI- cells were collected in cell resuspension buffer. Collected cells were then 
recentrifuged according to above parameters and resuspended in cell resuspension buffer to a 
target concentration of 1000 cells/μL. Nuclei were counted on a hemocytometer and 
concentration adjusted as necessary. 

Sample Preparation for Single Nuclei RNA Sequencing  

Frozen cardiac tissues from LVAD cores or identical region from the apex of explanted donors 
were minced with a razor blade and transferred into a small (5 mL) Dounce homogenizer 
containing 1-2mL of chilled lysis buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% 
NP-40 in nuclease free water). Homogenized gently using 5 passes without rotation, then 
incubated on ice for 15 minutes. Lysate was then gently filtered through a 40um filter into 50mL 
conical, followed by rinsing the filter once with 1 mL lysis buffer, and transfer of lysate to a new 
15ml conical tube.  Nuclei were then centrifuged at 500 x g for 5 min at 4°C Followed by 
resuspension in 1mL Nuclei Wash Buffer (2% BSA, 0.2U/μL RNAse inhibitor in 1x PBS) and 
filtered through a 20 um pluristrainer into a fresh 15mL conical. Centrifugation was repeated 
according to above parameters, Supernatant was then removed and nuclei resuspended in 
300uL Nuclei Wash Buffer and transferred to 5 mL tube for flow sorting. 1uL DRAQ5 (5 mM 
solution, Thermo Cat #62251) was added, mixed gently, and allowed to incubate 5 minutes 
before sorting. DRAQ5+ nuclei were sorted into Nuclei Wash Buffer on BD FACS Melody (BD 
Biosciences, San Jose, CA) using a 100 µM nozzle. Recovered nuclei were centrifuged again at 
the above parameters and were gently resuspended in Nuclei Wash Buffer to a target 
concentration of 1000 nuclei/uL. Nuclei were counted on a hemocytometer and concentration 
adjusted as necessary.  

Single Cell/Nuclei RNA Sequencing Analysis 

Cells and Nuclei were processed using the Chromium Single Cell 5’ Reagent V1.1 Kit from 10X 
Genomics. 10,000 cells or nuclei per sample were loaded into a Chip G for GEM generation. 
Reverse transcription, barcoding, cDNA amplification, and purification for library preparation 
were performed according to the Chromium 5’ V1.1 protocol. Sequencing was performed on a 
NovaSeq 6000 platform (Illumina) targeting 100,000 reads/cell or nucleus. Cells were aligned to 
the human GRCh38 transcriptome while nuclei were aligned to the whole genome pre-MRNA 
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reference generated from the GRCh38 transcriptome using the CellRanger V3 software (10X 
Genomics) according to the 10X Genomics instructions. Filtering, unsupervised clustering, 
differential expression, and additional analysis were completed using R and Python, including 
Seurat V3 and V4 and clusterProfiler packages for R and Palantir Python package.11,39–41 

QC, Filtering, and Clustering 

For independent cell and nuclei analyses, individual sample matrices were imported into the 
Seurat v3.2.3 R package and combined into a Seurat object. Cells were filtered for 
mitochondrial reads <10%, and 2000<nCount_RNA<10000. Nuclei were filtered for 
mitochondrial reads <5%, and 1000<nCount_RNA<10000. No filtering was applied based on 
nFeature_RNA. The objects were then saved for easy import after manual doublet removal. For 
each object, transformation and normalization was performed using SCTransform to fit a 
negative binomial distribution and regress out mitochondrial read percentage. Principle 
components were then calculated (60 PCs for cells and 80 PCs for nuclei) and an elbow plot 
generated to select the cutoff for significant PCs to use for downstream analysis. UMAP 
dimensional reduction was then computed using the selected significant PCs (40 for cells and 
80 for nuclei). Unsupervised clustering was then performed using the FindNeighbors and 
FindClusters function, again using the selected significant PC level as above, calculating 
clustering at a range of resolutions between 0.01-1. Differential gene expression was performed 
using the FindAllMarkers command using default parameters at high clustering resolution to aid 
in manual doublet discovery.  

Doublets were visually identified on UMAP feature plots for nCount_RNA as well as feature 
plots for genes and gene z-scores enriched in each cluster. Clusters were considered to be 
doublets when nCount_RNA values were extraordinarily higher than other clusters and overlap 
of genes and z-scores for multiple independent populations. Small clusters that appeared 
between larger groups of clusters were especially scrutinized as these are more likely to exhibit 
doublets of cells from the clusters they exist between. After identification, these cells were 
removed, and the list of remaining cells saved. Raw objects from above were then loaded, 
subset to include cells that remained after doublet removal, and clustering repeated starting with 
transformation and normalization. This doublet removal process was repeated twice for the cell 
object and three times for the nuclei object until no doublet clusters were apparent. Final 
resolutions used for analysis were selected following detection of differentially expressed genes 
at multiple resolutions and identifying the highest resolution at which significantly enriched 
genes were still present in each cluster (final resolution used was 0.6 for cell object and 0.5 for 
nuclei object). Metadata for condition, age, sex, and cell type name were also added to the final 
objects. 

Integration of Single Cell and Single Nuclei Datasets 

Integration of single cell and single nuclei datasets was performed using reference mapping in 
Seurat v4.0.1. A filtered and SCTransformed object from the single cell dataset but without 
calculation of PCs or clustering was loaded along with the final clustered single nuclei dataset 
object. Reference anchors between the reference nuclei and query cell datasets were identified 
using the SCT normalization and PCA reduction with 80 PCs from the nuclei object using the 
FindTransferAnchors command. The single cell object was then mapped to the single nuclei 
object using the MapQuery command using PCA and UMAP reference reduction. Mapping was 
performed at two levels (individual Seurat cluster and cell type) in order to visualize predictions 
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scores at high and low granularity. The single cells and nuclei objects were then merged and a 
new UMAP reduction computed. Reclustering was then performed by utilizing the 
FindNeighbors and FindClusters command at multiple resolutions between 0.1-1. No doublet 
exclusion or filtering was necessary as mapping and integration was performed on already 
filtered objects. The final resolution was selected to be 0.6 as this resolution captured the 
distinct clusters found in both single cell and single nuclei analysis. Metadata for condition, age, 
sex, and cell type name were also added to the final object. 

Detection of Differentially Expressed Genes (DEGs) 

Detection of differentially expressed genes between clusters was performed using the 
FindAllMarkers command, specifying return of only upregulated genes with a Log2FC cutoff of 
0.1. For downstream analysis, DEGs were further filtered by Log2FC and p-value as described 
for that analysis. For individual cell types, differential expression comparing only 2 groups by 
condition, sex, or age was performed using the FindMarkers function specifying no minimum 
percentage of cells expressing an individual gene, return of both positive and negatively 
changed genes, and no cutoffs for Log2FC or p-value in order to obtain even non-significant 
changes in expression for every gene present in the analysis. Filtering of this DEG table was 
performed by Log2FC and p-value for further analysis as described in the manuscript. For all 
DEG calculations the default ‘SCT’ assay and ‘data’ slot were used and performed using the 
default Wilcoxan Rank Sum method 

Calculation of Population Z-Scores 

Z-score values were calculated using R v3.6.2 and v4.0.1. For each population where z-scores 
were calculated, genesets used were selected based on high enrichment in a population based 
on DEG analysis described above. The expression matrix used to calculate Z-scores was 
extracted from a Seurat object using the GetAssayData function from the Seurat package from 
the default ‘SCT’ assay and ‘data’ slot. Z-scores were then calculated for each geneset for each 
individual cell or nuclei in the dataset by scaling gene expression within the matrix, setting NA 
values to 0 and using the following formula:  

(# of cells in dataset + sum of expression of genes in geneset)/# of genes in genset 

These calculated z-scores were appended to a table to be saved as well as each z-score added 
as metadata to the Seurat object for use in making feature plots. 

Pseudobulk RNA-seq 

Pseduobulk RNA-seq analysis was performed using the DESeq2 package for R. A gene 
expression matrix was extracted from the Seurat object using the GetAssayData Seurat function 
specifying the ‘RNA’ assay and ‘counts’ slot to extract raw sequencing counts for each gene and 
cell. Counts in this matrix were then summed per gene for each sample into a new matrix. The 
resulting matrix was then normalized using DESeq2 by estimating size factors and performing 
normalization with the counts function resulting in a new matrix with normalized counts for each 
gene and sample similar to the output of a traditional bulk sequencing experiment. The DESeq 
function was then utilized to calculate differential gene expression based on negative binomial 
distribution. Pairwise comparisons were then completed by condition of interest (disease state, 
sex, age group) using the Wald test and an alpha value of 0.5 for independent filtering and 
adding Log2FC using the lfcShrink function with ‘ashr’ adaptive shrinking. We specified no 
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cutoffs for Log2FC or p-value in order to obtain even non-significant changes in expression. 
Filtering of this DEG table was performed by LogFC and p-value for further analysis as 
described in the manuscript. 

Pathway Analysis 

Pathway analysis was completed using the ClusterProfiler R package. A list of genes present in 
both the Seurat and Pseudobulk differential expression analyses by disease state with 
Log2FC>0.1 and adjusted p-value<0.05 was utilized in the pathway analysis. Genes with 
negative and positive Log2FC values were separated in order to identify enrichment in either the 
non-diseased or diseased condition, respectively. The enrichWP function was used to return a 
table with pathway enrichments from the WikiPathways database. 

For comparison of enriched pathways between multiple populations/states, the compareCluster 
function was utilized on a matrix from the output Seurat differential expression analysis filtered 
for Log2FC>0.1 and adjusted p-value<0.05 that contained the column specifying in which 
population/state the gene was upregulated. This analysis utilized the enrichPathway database 
from ClusterProfiler to return a table of enriched pathways in each population/state. 

Transcription Factor Analysis 

Transcription factor analysis was performed using the Enrichr web utility 
(https://maayanlab.cloud/Enrichr/enrich). Genes upregulated in a population/state based on 
Seurat differential expression analysis filtered for Log2FC>0.1 and adjusted p-value<0.05 were 
entered into the Enrichr and results from enrichment in the ChEA 2016 ChIP-seq database were 
downloaded and loaded as a matrix in R v4.0.1 for generation of dot plots. 

Trajectory Analysis 

Trajectory analysis was performed using the Palantir package for Python. Using the normalized 
and scaled gene counts for the 3,000 highly variable genes a matrix was exported as the input. 
Using the matrix, principal components were calculated and then diffusion maps were 
calculated as an estimate of the low dimensional phenotypic manifold of the data. Then, the 
actual Palantir was run by specifying a start cell state (the progenitor cell type from the dataset). 
Palantir then returned the terminal cell states, entropy values, pseudotime values, and the 
probability of ending up in each of the terminal states for all cells. 

RNAScope in-situ hybridization 

RNA was visualized using RNAScope Multiplex Fluorescent Reagent Kit v2 Assay, RNAScope 
2.5 HD Detection Reagent – RED, and RNAScope 2.5 HD Duplex Assay kits (Advanced Cell 
Diagnostics) using probes designed by Advanced Cell Diagnostics for ANKRD1, MYH6, NPPA, 
NPPB, CD163, DCN, POSTN, PLA2G2A, CCL2, PCOLCE2, ELN, and RGS5.42 Samples were 
fixed for 24 hours at 4°C in 10% neutral buffered formalin. Samples were then washed in 1X 
PBS, equilibrated in 30% sucrose and embedded in OCT medium (Sakura Finetek) and stored 
at -80°C (fluorescence) or washed in 1X PBS, dehydrated in ethanol and embedded in paraffin 
(red and duplex). OCT embedded sections were cut at 12μm and paraffin embedded sections 
cut at 8μm. Fluorescent images were collected using a Zeiss LSM 700 laser scanning confocal 
microscope. Chromogenic/brightfield images were acquired using a Zeiss Axioscan Z1 
automated slide scanner. Image processing was performed using Zen Blue and Zen Black 
(Zeiss), FIJI/ImageJ43,44, and Photoshop (Adobe). 
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Data and Code Availability 

The processed single cell objects that support the findings of this study are available on the 
Gene Expression Omnibus (GEO, ACCESION NUMBER TO BE ADDED PRIOR TO 
PUBLICATION). Scripts and methods used in processing can be found at 
https://github.com/alkoenig/Atlas_of_Human_Heart_Failure_Lavine. Sequences and raw 
expression matrices available from the authors upon request.   
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Figure 1. Cellular Composition of the Healthy and Failing Human Heart. 
 
A, Schematic depicting design of the single nucleus and single cell RNA sequencing 
experiments. Transmural sections were obtained from the apical anterior wall of the left ventricle 
during donor heart procurement, LVAD implantation, or heart transplantation for comparison of 
disease, sex, and age (single nucleus RNA sequencing: n=26 donor control, n=12 dilated 
cardiomyopathy; single cell RNA sequencing: n=2 donor control, n=5 dilated cardiomyopathy). 
B, The analysis pipeline included tissue processing and single cell barcoded library generation 
(10X genomics 5’v1 kit), sequence alignment (Cell Ranger), and further analysis using R and 
Python packages (Seurat, DEseq2, Palantir). C, Unsupervised UMAP clustering of 220,752 
nuclei, 49,723 cells, and an integrated dataset combining single nucleus and single cell RNA 
sequencing data after QC and data filtering. D, Violin plots generated from the integrated 
dataset displaying characteristic marker genes of each identified cell population. E, Pie chart 
showing the proportion of cells within the single nucleus RNA sequencing, single cell RNA 
sequencing, and integrated datasets.   
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Figure 2. Differential influence of disease state, sex, and age on cell type specific gene 
expression. 
 
Dot plots showing pseudobulk (DESeq2, left) and single cell (Seurat, right) based differential 
gene expression across major cell populations. Differential expression was calculated from 
single nucleus RNA sequencing data for disease (A, Donor vs DCM), sex (B, male vs female), 
and age (C, young vs old) is shown. Differential expression analysis for age was calculated by 
dividing samples into younger (<52 years old) and older (>52 years old) groups based on 
median age. Genes with adjusted p-value <0.05 colored in red and genes with adjusted p-value 
>0.05 are colored in grey. Number of upregulated and downregulated genes with adjusted p-
value <0.05 per cell type is displayed in parenthesis.   
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Figure 3. Acquisition of disease associated cardiomyocyte states in dilated 
cardiomyopathy. 
 
A, Principal component analysis (PCA, DESeq2) plots of cardiomyocyte pseudobulk single 
nucleus RNA sequencing data colored by sex and disease state (left) and age (right). Each data 
point represents an individual subject. B, Heatmap displaying the top 100 upregulated and 
downregulated genes ranked by log2 fold-change comparing donor control to dilated 
cardiomyopathy (DCM). Differentially expressed genes were derived from the intersection of 
pseudobulk (DESeq2) and single cell (Seurat) analyses. C, Unsupervised clustering of donor 
and DCM cardiomyocytes within the integrated dataset split by disease state. Major 
cardiomyocyte states are labeled. D, Dot plot displaying the z-scores for transcriptional 
signatures that distinguish cardiomyocyte states (genes selected by enrichment in Seurat 
differential expression analysis, listed in box below plot). E, Distribution of cardiomyocyte states 
by cluster (*<0.05, **<0.01, ***<0.001, Welch’s T-test, two-tailed, lines represent mean and 
standard deviation). F, Violin plots of MYH6, ANKRD1, NPPA, and ADGRL3 expression in 
donor control and DCM cardiomyocytes. G, Quantification of the number of cardiomyocytes 
expressing ANKRD1, MYH6, NPPA, and NPPB mRNA in donor control and DCM samples (p-
value from Welch’s T-Test, two-tailed, lines represent mean and standard deviation). H, 
Representative RNA in situ hybridization images (RNAScope) of indicated genes. I. Palantir 
pseudotime trajectory analysis of cardiomyocytes showing entropy and pseudotime scores 
overlaid on the UMAP projection (left). Entropy vs pseudotime plots of donor and DCM 
cardiomyocytes identifying differing trajectories of healthy and disease associated 
cardiomyocyte states (right).
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Figure 4. Dilated cardiomyopathy is associated with shifts in macrophage composition 
and gene expression favoring inflammatory populations.  
 

A, Principal component analysis (PCA, DESeq2) plots of monocyte, macrophage, and dendritic 
cell pseudobulk single nucleus RNA sequencing data colored by sex and disease state (left) 
and age (right). Each data point represents an individual subject. B, Heatmap displaying the top 
100 upregulated and downregulated genes ranked by log2 fold-change comparing donor control 
to dilated cardiomyopathy (DCM). Differentially expressed genes were derived from the 
intersection of pseudobulk (DESeq2) and single cell (Seurat) analyses. C, Unsupervised 
clustering of monocytes, macrophages, and dendritic cells within the integrated dataset split by 
disease state. Major cell states are labeled. D, Dot plot displaying the z-scores for 
transcriptional signatures that distinguish monocyte, macrophage, and dendritic cell populations 
(genes selected by enrichment in Seurat differential expression analysis are listed in blue). E, 
Distribution of myeloid states by cluster (*<0.05, ***<0.001, Welch’s T-test, two-tailed, lines 
represent mean and standard deviation, derived from single nucleus data).  F-G, Z-score 
feature plot (F) and violin plot (G) of the tissue resident macrophage signature split by disease 
state. H, Representative RNA in situ hybridization images (RNAScope) for CD163 (red, blue: 
hematoxylin) and quantification of CD163+ cells in donor and DCM samples (p-value from 
Welch’s T-Test, two-tailed, lines represent mean and standard deviation). CD163 is a marker of 
tissue resident macrophages. I, UMAP projection of unsupervised re-clustering of myeloid cells 
from the single cell RNA sequencing dataset. Major cell states are labeled. J, Dot plot displaying 
the z-scores for transcriptional signatures that distinguish each monocyte, macrophage, and 
dendritic cell state (genes selected by enrichment in Seurat differential expression analysis, 
listed in box below plot). K, Z-score feature plot overlaying an inflammatory gene expression 
signature (genes in blue) on the single cell RNA sequencing UMAP projection split by disease 
state. L, Palantir pseudotime trajectory analysis of myeloid single cell RNA sequencing data. 
Entropy vs pseudotime plots split by disease state identify major cell trajectories (non-classical 
monocytes, resident macrophages, dendritic cells). Inflammatory cell states that emerge in DCM 
have high entropy and low pseudotime values suggesting an intermediate state of 
differentiation.  
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Figure 5. Phenotypic shifts and emergence of disease associated fibroblasts in dilated 
cardiomyopathy. 
 
A, Principal component analysis (PCA, DESeq2) plots of fibroblast pseudobulk single nucleus 
RNA sequencing data colored by sex and disease state (left) and age (right). Each data point 
represents an individual subject. B, Heatmap displaying the top 100 upregulated and 
downregulated genes ranked by log2 fold-change comparing donor control to dilated 
cardiomyopathy (DCM). Differentially expressed genes were derived from the intersection of 
pseudobulk (DESeq2) and single cell (Seurat) analyses. C, Unsupervised clustering of donor 
and DCM fibroblasts within the integrated dataset split by disease state. Major fibroblast states 
are labeled. Pericytes and smooth muscle cells are displayed in grey. D, Distribution of 
fibroblast states by cluster (*<0.05, **<0.01, Welch’s T-test, two-tailed, lines represent mean and 
standard deviation). E, Dot plot displaying the z-scores for transcriptional signatures that 
distinguish fibroblast states (genes selected by enrichment in Seurat differential expression 
analysis, listed in box below plot). F, Z-score feature plot of transcriptional signatures associated 
with DCM (top) and with donor (bottom) fibroblast states. Plot is split by disease state. DCM 
fibroblasts are enriched in genes associated with activation. Enriched genes (blue) were defined 
using Seurat differential gene expression analysis. G, Quantification of the number of cell 
expressing DCN, POSTN, PLA2G2A, CCL2, and PCOLCE2 mRNA in donor control and DCM 
samples (p-value from Welch’s T-Test, two-tailed, lines represent mean and standard 
deviation). H, Representative RNA in situ hybridization images (RNAScope) of indicated genes 
(red). Blue hematoxylin. 
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Figure 6. Endothelial and endocardial cells exhibit global gene expression shifts in 
dilated cardiomyopathy 

A, Principal component analysis (PCA, DESeq2) plots of vascular endothelial cell pseudobulk 
single nucleus RNA sequencing data colored by sex and disease state (left) and age (right). 
Each data point represents an individual subject. B, Heatmap displaying the top 100 
upregulated and downregulated genes ranked by log2 fold-change comparing donor control to 
dilated cardiomyopathy (DCM). Differentially expressed genes were derived from the 
intersection of pseudobulk (DESeq2) and single cell (Seurat) analyses. C, Unsupervised 
clustering of donor and DCM vascular endothelial cells within the single nucleus RNA 
sequencing dataset split by disease state. Major endothelial states are labeled. D, Dot plot 
displaying z-scores for transcriptional signatures that distinguish endothelial cell populations 
(genes selected by enrichment in Seurat differential expression analysis, genes listed in the box 
to right of plot). E, Bar graph of the number of differentially expressed genes per endothelial 
population (intersection of DESeq2 and Seurat differential expression analyses, adjusted 
p<0.05, log2FC>0.1). F, WikiPathways analysis identifying pathways enriched in donor and 
DCM capillary endothelial cells. G, Z-score feature plots of transcriptional signatures associated 
with donor and DCM groups in capillary and venous endothelial cells split by disease state. 
Genes (blue) were selected by enrichment in the differential expression analyses. H, 
Unsupervised clustering of donor and DCM endocardial cells (single nucleus RNA sequencing 
data) split by disease state. I. UMAP feature plots of NRG1 and NRG3 split by disease state. J. 
Violin plots displaying NRG1 and NRG3 expression in endocardial cells from donor and DCM 
samples. 
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