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2	

ABSTRACT 15	

Background: Prediction of the response of cancer patients to different treatments and 16	

identification of biomarkers of drug sensitivity are two major goals of individualized 17	

medicine. In this study, we developed a deep learning framework called TINDL, 18	

completely trained on preclinical cancer cell lines, to predict the response of cancer 19	

patients to different treatments. TINDL utilizes a tissue-informed normalization to 20	

account for the tissue and cancer type of the tumours and to reduce the statistical 21	

discrepancies between cell lines and patient tumours. In addition, this model identifies a 22	

small set of genes whose mRNA expression are predictive of drug response in the trained 23	

model, enabling identification of biomarkers of drug sensitivity.  24	

 25	

Results: Using data from two large databases of cancer cell lines and cancer tumours, we 26	

showed that this model can distinguish between sensitive and resistant tumours for 10 27	

(out of 14) drugs, outperforming various other machine learning models. In addition, our 28	

siRNA knockdown experiments on 10 genes identified by this model for one of the drugs 29	

(tamoxifen) confirmed that all of these genes significantly influence the drug sensitivity 30	

of the MCF7 cell line to this drug. In addition, genes implicated for multiple drugs pointed 31	

to shared mechanism of action among drugs and suggested several important signaling 32	

pathways.  33	
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Conclusions: In summary, this study provides a powerful deep learning framework for 34	

prediction of drug response and for identification of biomarkers of drug sensitivity in 35	

cancer.  36	

 37	

INTRODUCTION  38	

Cancer is one of the deadliest public health problems worldwide and cases are still rapidly 39	

growing. In 2020, it is estimated that around 10 million people have died of cancer [1]. 40	

Individualized medicine is a promising concept, which aims to improve the prognosis of 41	

patients by adapting the patient's treatment to their unique clinical and molecular 42	

characteristics. One of the main goals of individualized medicine is the prediction of the 43	

patients’ response to different treatments, and identification of biomarkers that enable 44	

such predictions. High throughput sequencing technologies along with major initiatives 45	

such as The Cancer Genome Atlas (TCGA) [2] have provided a unique opportunity for 46	

machine learning (ML) algorithms to address these challenges. However, ML models and 47	

particularly deep learning (DL) approaches require a large number of samples with known 48	

drug response to train generalizable models. However, data on clinical drug response 49	

(CDR) of cancer patients, even in large databases such as TCGA, is usually small for the 50	

majority of the drugs and does not lend itself to training of DL models.  51	

 52	

On the other hand, large databases of molecular profiles of hundreds of in-vitro cancer 53	

cell lines (CCLs) and their response to hundreds of drugs [3-5] have enabled development 54	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2021. ; https://doi.org/10.1101/2021.07.06.451273doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451273
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	
	
	
	

4	

of various ML algorithms for prediction of drug response [6-8]. Unfortunately, these 55	

models, even though accurate in predicting the drug response of held-out CCLs, usually 56	

do not generalize well to predicting the CDR of real tumours from cancer patients, and 57	

their prediction performance significantly deteriorates due to the major biological and 58	

statistical differences between CCLs and tumours [9].  59	

 60	

Recognizing these issues, some studies have adopted to utilize tumour samples with 61	

known CDR in the training of their models, either by fully training their models on data 62	

corresponding to tumour samples [10-12], or by using them in addition to CCLs (e.g., using 63	

transfer learning [13]). However, as a result of this strategy, these studies have only been 64	

able to develop models on very few drugs due to the small samples sizes of patient cohort 65	

data with known drug response. Another strategy is to train ML models completely on 66	

preclinical CCLs but use computational approaches to overcome the statistical differences 67	

between CCLs and tumours. For example, multiple approaches [9, 14] have used batch 68	

removal methods such as ComBat [15] to reduce the discrepancy between the training 69	

CCLs and test tumours. One limitation of these methods is that ComBat is used as a 70	

preprocessing step such that the gene expression profile of both CCLs (training set) and 71	

tumours (test set) are adjusted. As a result, prediction of CDR of new cancer patients 72	

requires re-training of the model.  73	

 74	
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In this study, our goal was to develop a deep learning computational pipeline, fully trained 75	

on gene expression profile and drug response of preclinical CCLs, to 1) predict the CDR of 76	

cancer patients and 2) to identify biomarkers of drug sensitivity for a variety of cancer 77	

drugs. Motivated by Huang et al. [9], who showed that carefully incorporating information 78	

on the tissue (or cancer) type of the test samples can improve the predictive power of 79	

computational models, we developed a deep learning pipeline with tissue-informed 80	

normalization (TINDL) to achieve these goals. Unlike methods mentioned above, TINDL 81	

requires normalization of only test samples, and as a result re-training of the model is not 82	

necessary for new test samples.  83	

 84	

The TINDL pipeline includes two phases. The first phase is responsible for prediction of 85	

CDR of cancer patients, while the second phase utilizes these predictions to identify a 86	

small number of genes that considerably contribute to the predictive ability of the model. 87	

Focusing on drugs shared between the Genomics of Drug Sensitivity in Cancer (GDSC) [3] 88	

and TCGA [2], we showed that TINDL can distinguish between the sensitive and resistant 89	

patients for 10 (out of 14) drugs, considerably improving the performance of other 90	

methods, including our previous work TG-LASSO [9]. TINDL utilizes a simple, yet effective, 91	

tissue-informed normalization to reduce the statistical discrepancies between the gene 92	

expression profile of the training and test samples. We showed that TINDL outperforms 93	

other DL-based models that try to explicitly remove these discrepancies using other 94	

techniques such as ComBat or domain adaptation [16, 17].  95	
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 96	

Focusing on tamoxifen, for which TINDL performed best, we showed that only a small 97	

panel of genes identified by TINDL can be used to predict the CDR of cancer patients. 98	

Moreover, using siRNA gene knockdown of 10 genes identified by TINDL in a breast cancer 99	

cell lines (MCF7), we showed that the knockdown of any of these genes significantly 100	

changes the response to tamoxifen. These in-vitro experiments further validate the TINDL 101	

pipeline and its ability to identify biomarkers of drug sensitivity.  102	

 103	

RESULTS 104	

Deep learning prediction of clinical drug response of cancer patients and identification 105	

of biomarkers of drug sensitivity using in vitro cell line data 106	

We developed a deep learning pipeline with tissue-informed normalization (called TINDL) 107	

to 1) predict the clinical drug response (CDR) of cancer patients (test set) and 2) identify 108	

predictive biomarkers of drug sensitivity based on models completely trained on 109	

preclinical cell line data (training set). The pipeline has two major phases: the modeling 110	

phase and the gene identification phase. In the modeling phase (Figure 1a), a neural 111	

network is trained using the gene expression (GEx) profiles of cancer cell lines (CCLs) and 112	

their response to a drug (e.g., normalized ln(IC50) values in this study). The trained model 113	

was then used to predict the drug response of cancer patients based on the carefully 114	

normalized GEx profiles of their primary tumours. Details of the DL architecture are 115	

provided in Methods.  116	
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 117	

Figure 1. The pipeline used for prediction of drug responses and identification of important genes. In Phase 1, (A) the 118	
gene expression data of the cancer cell lines (CCL) and log IC50 are both z-score normalized, while the tumour gene 119	
expression (test data) is normalized using the tissue-informed normalizer. We then used the train a cancer drug 120	
response (CDR) predictor using the CCL data.  After training, we predict the response value for the tumours. In Phase 2 121	
(B), we take the trained CDR predictor and train a neural network explainer using the same training data. We used the 122	
trained explainer to give gene contribution scores for each genes of the test samples. We aggregated the scores across 123	
samples and then selected the top genes by estimating the point of maximum curvature.   124	

 125	

We designed the normalization step of GEx profiles of patient tumours to address two 126	

important issues. First, we required this approach to remove the discrepancy between 127	

the statistical properties of GEx of CCLs and patient tumours, originating from the 128	

technical differences in protocols for measuring the data and the biological differences 129	

between pre-clinical CCLs and clinical tumours. Second, we required this approach to 130	

incorporate information on the tissue of origin (or cancer type) of tumours in the 131	
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prediction task. In a previous study [9], we showed that information on the tissue of origin 132	

of samples plays an important role in improving prediction performance, however most 133	

commonly used methods for this task are not capable of appropriately incorporating this 134	

information. For this purpose and given a drug, we first identified the set of tissues 135	

(henceforth referred to as “target tissues”) of the clinical samples to whom the drug was 136	

administered. Then, we collected additional GEx profile of samples from the same target 137	

tissues, independent of what drug was used for their treatment. The GEx profile of each 138	

test sample was then normalized against this additional set of “unlabeled” data (see 139	

Methods for details).  140	

 141	

This simple, yet effective, normalization approach used in our pipeline removes the 142	

statistical discrepancy between the test and training datasets by mapping the expression 143	

of each gene in each dataset to a distribution with unit variance and zero mean. However, 144	

since the test samples are normalized while considering the GEx of a much larger 145	

unlabeled set of samples, this normalization will not be negatively affected if the size of 146	

the test set is small (e.g., if we want to predict the drug response of a single sample). This 147	

is different from methods that perform the normalization using only the test samples. In 148	

addition, since the normalization is done independently for the training and test sets, one 149	

does not need to retrain the DL model every time the drug response of a new test sample 150	

is to be predicted (a shortcoming of our previous approach [9]).   151	

 152	
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The second phase of the pipeline seeks to assign a contribution score to each gene based 153	

on its contribution to the trained predictive model. In this phase, we first use CXPlain [18] 154	

to assign a sample-specific score to each gene. These scores are then averaged over all 155	

samples (separately for each gene) and normalized to provide a final contribution score. 156	

Additionally, we use the distribution of these scores to systematically identify the critical 157	

point that the contribution of the genes diminishes, enabling us to narrow down the top 158	

ranked list of genes for follow-up analysis (e.g., pathway enrichment analysis, gene 159	

knockdown experiments, etc.). The details of this phase are provided in Methods.  160	

 161	

TINDL can distinguish between sensitive and resistant patients for the majority of the 162	

drugs 163	

In order to assess the performance of TINDL in predicting CDR of cancer patients, we 164	

obtained GEx profile of primary cancer tumours from the TCGA database [2]. We used 165	

data corresponding to RECIST CDR of TCGA patients carefully collected in [10] and 166	

identified 14 drugs that satisfy two conditions: 1) there were at least 20 patients with 167	

known CDR values for each drug in TCGA database and 2) the ln(IC50) response of these 168	

drugs were measured in the GDSC database. Similar to previous studies [9, 14] , we 169	

transformed the CDR of these tumours into a Boolean label in which “resistant” referred 170	

to patients with CDR of “stable disease” or “progressive disease” and “sensitive” referred 171	

to patients with CDR of “complete response” or “partial response”. These CDR values 172	

were used to evaluate the predicted drug response values using TINDL and other 173	
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algorithms but were not used for training them. The list of these 14 drugs, number of 174	

TCGA patients, and their cancer type are provided in Supplementary Table S1. Similarly, 175	

we obtained GEx profiles and ln(IC50) drug response of CCLs from different lineages from 176	

the GDSC database [3], corresponding to the 14 drugs above (See Supplementary Table 177	

S1 for number of training samples for each drug).  178	

 179	

Following previous work in this area [9, 14], we used a one-sided Mann-Whitney U test 180	

to determine if the predicted ln(IC50) values of resistant patients for a drug are 181	

significantly higher than sensitive patients. Table 1 shows the performance of TINDL in 182	

prediction of CDR of TCGA samples using preclinical GDSC samples based on this statistical 183	

test for different drugs (also see Supplementary Table S2 for the area under the receiver 184	

operating characteristic (AUROC) values). TINDL is capable of distinguishing between 185	

resistant and sensitive patients for 10 (out of 14) drugs (p < 0.05, one-sided Mann-186	

Whitney U test) with a combined p-value of 2.77 E-10 (Fisher’s method).  187	

 188	

Next, we defined a measure called precision at kth percentile to determine whether 189	

patients whose predicted ln(IC50) is within the lower tail of the distribution correspond 190	

to sensitive patients (i.e. responders to the drug). For different values of k, tumours with 191	

predicted ln(IC50) in the bottom k% were predicted as sensitive and their count was used 192	

to calculate precision. Figure 2A and Supplementary Table S3 show precision at kth 193	

percentile of TINDL for different values of k. These results suggest that for six drugs 194	
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(tamoxifen, etoposide, vinorelbine, cyclophosphamide, bleomycin, and cisplatin) TINDL 195	

can identify responders with a precision at kth percentile above 84% for any choice of k. 196	

The distribution of predicted CDR values for sensitive and resistant patients for these 197	

drugs are shown in Figure 2B.  198	

	199	
	200	
Table 1: The number of TCGA samples and the performance of TINDL in predicting their CDR for 14 drugs. The first 201	
column shows the name of the drug, the second column shows the total number of clinical samples for each drug, and 202	
third and fourth columns show the number of sensitive and resistant samples, respectively. The fifth column shows the 203	
p-value of a one-sided Mann-Whitney U test to determine if TINDL can distinguish between sensitive and resistant 204	
patients. To ensure the results are not biased by the initialization of the model’s parameters, TINDL was trained using 205	
ten random initializations and the mean aggregate of its prediction were used to calculate the p-values. Drugs are 206	
sorted based on their associated p-value.  207	

 208	

Drug 
Number of 

clinical samples 

Number of 

sensitive samples 

Number of resistant 

samples 
p-value 

Cisplatin 303 237 66 6.36E-4 

Tamoxifen 20 14 6 1.14E-3 

Etoposide 84 73 11 4.00E-3 

Doxorubicin 100 68 32 1.42E-2 

Paclitaxel 158 111 47 2.29E-2 

Vinorelbine 30 23 7 2.41E-2 

Oxaliplatin 54 33 21 2.41E-2 

Temozolomide 95 11 84 2.94E-2 

Bleomycin 52 46 6 3.41E-2 

Gemcitabine 157 75 82 4.57E-2 

Cyclophosphamide 101 96 5 5.60E-2 

Pemetrexed 38 18 20 2.86E-1 

Irinotecan 23 6 17 3.04E-1 

Docetaxel 102 67 35 7.04E-1 

 209	
 210	
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 211	
 212	
 213	
Figure 2: Performance metrics for a subset of the drugs. To prevent the figure from becoming cluttered, the results 214	
corresponding to only six drugs are shown (see Supplementary Tables S2 and S3 for performance metrics of all drugs). 215	
A) Precision at kth percentile for identification of sensitive patients. B) Distribution of predicted drug response for 216	
sensitive and resistant patients. The p-values are calculated using a one-sided Mann Whitney U test.  217	
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TINDL outperforms alternative methods in prediction of clinical drug response 219	

Next, we sought to determine how TINDL performs against alternative computational 220	

models. For this purpose, we considered multiple traditional and state-of-the-art machine 221	

learning models [9, 14] for prediction of CDR of cancer patients from preclinical CCLs. The 222	

detailed performance measures for each drug and each model are provided in 223	

Supplementary Table S2 and the summary of the results are provided in Table 2. In this 224	

table, we used the combined p-value of 14 drugs to summarize the performance of 225	

different methods (Fisher’s method for combining p-values was used).  226	

 227	
Table 2: The performance of different computational models in predicting CDR of TCGA samples using models 228	
completely trained on preclinical GDSC CCLs. The first column shows the algorithm. The second column shows the 229	
number of drugs for which a one-sided Mann-Whitney U test showed a significant p-value. The third column shows the 230	
total number of drugs used for evaluation, and the fourth column shows the combined p-value (combined over all 14 231	
drugs using Fisher’s method). 232	

Algorithm Drugs with P<0.05 Drugs Combined P (Fisher) 

TINDL 10 14  2.77 E-10 

LASSO 7 14  7.47 E-7 

TG-LASSO, Huang et al. [9] 6 14  8.32 E-7 

SVR (RBF kernel) 5 14 1.89 E-6  

Geeleher, et al. [14] 4 14  5.63 E-3 

Random Forests 4 14 3.12 E-3 

 233	

As shown in table 2, TINDL can distinguish between sensitive and resistant patients for 10 234	

(out of 14) drugs (with a combined p-value of 2.77E-10 for all drugs), while the second-235	

best method in this table can only distinguish between sensitive and resistant patients for 236	

7 drugs. Similar to our previous study [9], we also observed that Lasso and its variation, 237	
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TG-Lasso, perform reasonably well (when considering all drugs), while Support Vector 238	

Regression and Random Forests did not perform as well.  239	

 240	

As discussed earlier, one of the major challenges in predicting the CDR of cancer patients 241	

based on ML models trained on preclinical CCLs is the statistical differences between 242	

these samples. To assess the performance of TINDL against other DL models that explicitly 243	

try to remove these statistical differences, we considered three alternative methods. The 244	

first method (referred to as “ComBat-DL”) utilizes ComBat [15] as a pre-processing step 245	

to remove the statistical discrepancy between CCLs and tumour samples. ComBat [15] is 246	

a popular method for removing “batch effects” in gene expression datasets and has been 247	

widely used for drug response prediction  [9, 14, 19] and other applications [20, 21]. The 248	

ComBat-transformed GEx profiles are then used in a DL architecture similar to TINDL for 249	

a fair comparison. The second and third methods (called “DANN-DL”  and  “ADDA-DL” 250	

henceforth) are based on DANN [16] and ADDA [17] , two domain adaptation techniques 251	

that were originally developed for image processing. Instead of adapting the GEx input 252	

features, these methods adjust the latent feature representations learned by the 253	

encoder. DANN uses adversarial neural networks to create a shared latent feature space 254	

between the datasets. ADDA, on the other hand, is a unidirectional domain adaptation 255	

approach that builds over a pre-trained predictor and tries to adapt the first few layers of 256	

the neural network such that the target dataset’s latent feature representation aligns 257	

with that of the source dataset. We trained models of these methods with a similar 258	
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architecture to that of TINDL, with the exception of the discriminators, which are specific 259	

to ADDA and DANN and are used for domain adaptation. The details of these methods, 260	

including their architecture and training procedure are provided in Methods and 261	

Supplementary Methods. Table 3 and Supplementary Table S2 show the performance of 262	

these DL-based approaches. These results show that in all three cases, only for 7 (out of 263	

14) drugs the predicted normalized ln(IC5) of sensitive patients is significantly smaller 264	

than resistant patients.  265	

 266	

Table 3: The performance of three deep learning-based methods that explicitly try to remove discrepancy between 267	
preclinical training and clinical test datasets. The first column shows the name of the algorithm. The second column 268	
shows the number of drugs for which a one-sided Mann-Whitney U test showed a significant p-value. The third column 269	
shows the total number of drugs used for evaluation, and the fourth column shows the combined p-value (combined 270	
over all 14 drugs using Fisher’s method). To ensure a fair comparison, a similar architecture to TINDL was used for all 271	
these methods. Additionally, each model was trained using ten random initializations and the mean aggregate of these 272	
predictions were used for calculating the p-values.  273	

Algorithm Drugs with P<0.05 Drugs Combined P (Fisher) 

ComBat-DL 7 14  6.73E-10 

ADDA-DL 7 14  2.16E-07 

DANN-DL 7 14  1.66E-06 

 274	

To assess the superior performance of TINDL compared to these DL-based models that 275	

use an architecture similar to TINDL, we assessed their ability in removing the discrepancy 276	

between preclinical and clinical samples. For this purpose, we assessed the distance of 277	

clinical samples and preclinical samples for each method and each drug (see Methods for 278	

details of calculating distances). Since methods that use domain adaptation do not modify 279	

the input features, but rather seek to remove the domain discrepancies in the latent 280	
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space (the output of the encoder), we used the learned representation of each sample in 281	

the latent space for all methods. Using a one-sided Wilcoxon signed rank test, we 282	

observed that TINDL’s learned representations for clinical samples have a significantly 283	

smaller average distance to preclinical samples compared to ComBat-DL (p = 6.10E-5), 284	

ADDA-DL (p = 4.27E-4), and DANN-DL (p = 6.10E-5), for all drugs (Figure 3A). The 285	

effectiveness of tissue-informed normalization of TINDL in removing the statistical 286	

discrepancy between the preclinical and clinical embeddings can also be visually observed 287	

using principal component analysis and UMAP plots of the representations learned by 288	

each method (Figure 3B and Supplementary Figures S1-S4).  289	

 290	

Next, we sought to determine whether the latent space representation similarity has an 291	

influence on drug response prediction performance of TINDL across different drugs. We 292	

observed a negative Spearman’s rank correlation (r = -0.17, p = 3.93 E-2) between the 293	

aforementioned distances and the AUROC of prediction for different drugs. In particular, 294	

tamoxifen that had the highest AUROC (Supplementary Table S2, AUROC=0.92), also had 295	

the smallest average distance between clinical and pre-clinical representations of its 296	

samples among all drugs in TINDL. These results further support the conclusion that 297	

reducing the discrepancy between the statistical characteristics of clinical and preclinical 298	

samples plays an important role in the success of TINDL in the prediction of CDR.  299	
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 300	

Figure 3: Evaluation of the embeddings used by TINDL and other deep learning methods used for prediction of drug 301	
response. A) The scatter plots compare the distance between preclinical samples and clinical samples in the embedding 302	
space for each drug. Each point in the scatter plot corresponds to a different drug. The p-values are calculated using a 303	
one-sided Wilcoxon signed rank test. The error bars show the 95% confidence intervals and are calculated based on ten 304	
runs of each method with random initializations. B) The PCA analysis of the embeddings used by each method to predict 305	
the response to etoposide. Visually, the TCGA samples are better mixed (i.e. are not easily separable) with GDSC 306	
samples in TINDL compared to other methods.  307	
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TINDL identifies biomarkers of drug sensitivity 308	

We used TINDL (Figure 1B) to assign a score to the contribution of each gene in the trained 309	

model (see Methods for details). Supplementary Figure S5 shows the distribution of these 310	

scores for each drug. To identify the threshold below which the contribution of the genes 311	

to the predictive model is small, we used a method called kneedle [22], which 312	

systematically determines this threshold for each drug based on the distribution of the 313	

scores. This method identified between 64 (for pemetrexed) to 243 (for bleomycin) genes, 314	

depending on the drug. The ranked list of genes identified by TINDL that pass this drug-315	

specific threshold are provided in Supplementary Table S4.  316	

 317	

Next, we sought to determine whether the identified genes are drug specific. To this end, 318	

we calculated the Jaccard similarity coefficient of drug pairs (Figure 4A). The results 319	

revealed a high degree of drug specificity with the average Jaccard similarity coefficient 320	

for all drugs equal to only 0.027. However, some genes were implicated for multiple drugs 321	

(Figure 4B and Supplementary Table S5). In particular, SLFN11 was implicated for nine 322	

drugs and was the top contributor for bleomycin, cisplatin, doxorubicin, etoposide, 323	

gemcitabine, and irinotecan, and the top third contributor for oxaliplatin. SLFN11 324	

(Schlafen family member 11) is a putative DNA/RNA helicase that is recruited to the 325	

stressed replication fork and inhibits DNA replication. DNA replication is one of the 326	

fundamental biological processes in which dysregulation can cause genome instability 327	

[23]. This instability is one of the hallmarks of cancer and confers genetic diversity during 328	
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tumorigenesis [24, 25]. Various studies have shown that the expression of this gene 329	

sensitizes cancer cells to many chemotherapeutic agents including cisplatin, oxaliplatin, 330	

irinotecan, gemcitabine, doxorubicin, and etoposide [26-30]. Epigenetically mediated 331	

suppression of SLFN11 via EZH2 contributes to acquired chemotherapy resistance, one 332	

that can be prevented and/or actively remodeled through targeting EZH2 [31]. Several 333	

potent and selective EZH2 inhibitors are now in different stages of clinical development 334	

with promising safety profile, including phase II (Epizyme) and phase I (Constellation, GSK) 335	

trials in multiple solid tumor and hematological indications. Our data supports the notion 336	

that the combination of downregulating SLFN11 via EZH2 inhibitor with 337	

chemotherapeutic reagents should be considered in multiple cancer types [32, 33]. 338	

 339	

To better understand the functional characteristics of genes implicated by TINDL for 340	

multiple drugs, we used KnowEnG’s gene set characterization pipeline [34] to identify 341	

pathways associated with 29 genes identified by TINDL for at least 4 drugs (Figure 4B). 342	

This pipeline enables identification of associated pathways while incorporating 343	

interactions among genes and their protein products through network-guided analysis. 344	

The results (Supplementary Table S5) implicated five pathways, which included 345	

“Regulation of toll-like receptor signaling pathway”, “Alpha-synuclein signaling”, “Arf6 346	

trafficking events”, “Insulin Pathway”, and “RalA downstream regulated genes”. Innate 347	

immune receptors such as toll-like receptors (TLRs) are responsible for recognizing 348	

molecular patterns associated with pathogens and provide critical molecular links 349	
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between innate cells and adaptive immune responses. Engagement of TLRs on dendritic  350	

cells (DCs) promotes cross-talk between the innate and the adoptive immune system, 351	

maturation and migration of DCs into lymph nodes leading to activation, proliferation and 352	

survival of tumour antigen-specific naïve CD4+ and CD8+ T cells [35]. Tumour cells 353	

themselves do not express molecules which would induce DC maturation, thus 354	

application of TLR agonists is an important element of immunotherapy protocols aiming 355	

T cell activation [36]. In addition, TLR agonists have been proposed as adjuvants for cancer 356	

vaccines [37]. TLR3 agonist as an adjuvant with conventional chemotherapy can break 357	

tolerogenic or immunosuppressive effects generated by the tumour and drive T cell 358	

responses and tumor rejection [38-41].  359	

 360	

Alpha-synuclein (α-syn) is a neuronal protein responsible for regulating synaptic vesicle 361	

trafficking. α-syn is frequently expressed in various brain tumours and melanoma [42, 43] 362	

and its upregulation has been linked to aggressive phenotypes of meningiomas [44]. 363	

Moreover, loss of α-syn results in dysregulation of iron metabolism and suppression of 364	

melanoma tumour growth [45]. Oncogenic activation of synuclein contributes to the 365	

cancer development by promoting tumor cell survival via activation of JNK/caspase 366	

apoptosis pathway and ERK and by providing resistance to certain chemotherapeutic 367	

drugs [46, 47], suggesting synuclein as a new therapeutic target for future treatment to 368	

overcome resistance to certain chemotherapeutic. ARF6 (ADP-ribosylation factor 6) 369	

governs the trafficking of bioactive cargos to tumor-derived microvesicles (TMVs) which 370	
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comprise a class of extracellular vesicles released from tumor cells that facilitate 371	

communication between the tumor and the surrounding microenvironment [48]. Invasive 372	

tumor cells shed TMVs containing bioactive cargo and utilize TMVs to degrade 373	

extracellular matrix during cell invasion [49]. Indeed, several studies have suggested a 374	

correlation between expression of ARF6 and invasion and metastasis of multiple cancers 375	

[50-52], suggesting that antagonistic ARF6 signaling can dictate TMV shedding and the 376	

overall mode of invasion. Insulin, a signaling molecule that controls systemic metabolic 377	

homeostasis, can be seen as enabling tumour development by providing a mechanism for 378	

PI3K activation and enhanced glucose uptake [53-58] and plays a role in cytotoxic therapy 379	

response [59].  RalA (RAS Like Proto-Oncogene A) is a member of the Ral family, and the 380	

RalA pathway contributes to anchorage independent growth, tumorigenicity, migration 381	

and metastasis  [60-64].  In conclusion, the link between genes implicated for multiple 382	

drugs and the pathways above that play different roles in cancer may point to shared 383	

mechanisms of action among different anti-cancer drugs. We also performed a similar 384	

pathway enrichment analysis for genes implicated for each drug separately and the 385	

results are provided in Supplementary Table S6. 386	

 387	

 388	
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 389	

Figure 4: Genes identified by TINDL for different drugs. A) Heatmap of the Jaccard similarity of the selected top genes 390	

in the 14 drugs. B) Number of drugs in which the genes were identified as a top gene. Only genes that were present in 391	

the top genes of at least four drugs are included.  392	

 393	

Functional validations confirm the role of TINDL-identified genes in response to 394	

tamoxifen  395	

We sought to evaluate the drug response predictive ability of top identified genes by 396	

TINDL, both computationally and experimentally. We focused on tamoxifen due to the 397	

good prediction performance of TINDL for this drug (AUROC=0.92, p=1.14E-3 for Mann 398	

Whitney U test). First, using only top implicated genes for this drug (n = 136 based on the 399	

threshold identified by kneedle), we observed a consistently high value of AUROC and a 400	

significant Mann-Whitney U test p-value (Figure 5A, AUROC = 0.89, p =2.32 E-3). Next, we 401	

reduced the number of genes for the model to only top twenty and observed that AUROC 402	
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remains high even with this small number of genes (Figure 5A, AUROC = 0.90, p = 1.65 E-403	

3). This shows that even a small panel of twenty genes can be used to predict the CDR of 404	

this drug, suggesting potential clinical applications in precision medicine for these small 405	

panels of genes.  406	

 407	

Next, we set out to determine whether genes identified by TINDL as predictive of 408	

tamoxifen response could be associated in-vitro to significant changes in drug sensitivity. 409	

We selected 10 genes identified by TINDL, which included the top 9 ranked genes (RPP25, 410	

EMP1, EXTL3, EXOC2, NUP37, RPL13, WBP2NL, RPS6, GBP1) as well as the gene ranked as 411	

19 (JAK2), due to its involvement with the type II interferon signaling pathway, an 412	

important pathway in cancer [65]. We used estrogen receptor positive breast cancer cell 413	

line, MCF7, since tamoxifen has most often been used as the treatment for estrogen 414	

receptor positive breast cancer patients in general and 85% of patients in our test dataset 415	

for this drug corresponded to breast cancer. We measured the dose-response values of 416	

tamoxifen in MCF7 cell line for these ten genes using Cyquant assay which provides an 417	

accurate measure of cell number based on DNA content [66-68]. We defined 418	

“significance” as a gene knockdown with a significant change in apparent IC50 in 419	

comparison with a negative control siRNA. Knockdown of all ten genes with specific 420	

siRNAs had a significant effect on tamoxifen sensitivity in MCF7 cell line (p<0.0001, extra 421	

sum-of-squares F test), validating 100% of tested genes in this cell line (Figure 5B, Table 422	

4, Supplementary Figure S6). Taken together, through the functional validation in 423	
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estrogen receptor positive breast cancer cells, we found that the expression of ten genes, 424	

RPP25, EMP1, EXTL3, EXOC2, NUP37, RPL13, WBP2NL, RPS6, GBP1, and JAK2, were 425	

involved in tamoxifen-induced response. The percentage of variation in the IC50 of breast 426	

cancer cells that was explained by the variation of these ten genes' expression is provided 427	

in Table 4.  428	

 429	

 430	

Figure 5: Top genes identified for tamoxifen and their functional validation. A) The ROC curve for tamoxifen, when 431	

different number of genes are used for CDR prediction. TINDL utilizes the GEx values of all genes (AUROC = 0.92), while 432	

TINDL-top20 (AUROC = 0.90) and TINDL-kneedle (AUROC = 0.83) assign a value of 0 to all genes except for top 20 and 433	

top genes identified by kneedle, respectively. B) Tamoxifen dose-response curves corresponding to the siRNA 434	

knockdown of RPS6 and RPL13 in MCF7 cells. The dose response curves for all genes are provided in Supplementary 435	

Figure S6. The p-values are calculated using an extra sum-of-squares F test.  436	

 437	
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Table 4: The result of siRNA gene knockdown experiments in MCF7 cell line for 10 genes identified by TINDL for 438	
tamoxifen. The p-values are calculated using an extra sum-of-squares F test. Genes are sorted based on their rank by 439	
TINDL.  440	

Gene  Rank by TINDL 
MCF7 

p-value Change in IC50 

RPP25 1 <0.0001 146% 

EMP1 2 <0.0001 69% 

EXTL3 3 <0.0001 101% 

EXOC2 4 <0.0001 89% 

NUP37 5 <0.0001 83% 

RPL13 6 <0.0001 201% 

WBP2NL 7 <0.0001 113% 

RPS6 8 <0.0001 202% 

GBP1 9 <0.0001 113% 

JAK2 19 <0.0001 134% 

 441	

 442	

DISCUSSION: 443	

Predicting the response of an individual to cancer treatments and identification of 444	

predictive biomarkers of drug sensitivity are two major goals of individualized medicine. 445	

Computational models that can achieve these goals based on preclinical in-vitro data can 446	

make a significant impact, due to the significant ease of preclinical data generation and 447	

data collection compared to clinical samples. This is particularly important for newly 448	

developed or newly approved drugs, for which clinical samples may be very limited or 449	

non-existent. However, the biological and statistical differences between cancer cell lines 450	

and patient tumours, make this task challenging. In a recent study [9], we assessed the 451	

ability of a wide range of machine learning models trained on preclinical CCLs, including 452	

those that incorporate auxiliary information such as gene interaction networks, in 453	
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predicting the CDR of cancer patients. Our analysis confirmed the difficulty of this task 454	

and emphasized the importance of carefully designing advanced computational 455	

techniques.  456	

 457	

In this study, we developed TINDL, and showed substantial improvement compared to 458	

state-of-the-art machine learning models (based on both traditional and deep learning 459	

techniques) (Figure 1). Our results showed the importance of removing the statistical 460	

discrepancies between preclinical and clinical samples, as well as incorporating the cancer 461	

type and tissue of origin of the tumour samples. TINDL is not simply a drug response 462	

predictor, but rather allows identification of most predictive biomarkers for each drug. 463	

The biomarkers identified by multiple drugs (Figure 4B) suggested important genes and 464	

signaling pathways that may play important roles in the mechanism of action of different 465	

drugs in cancer. Many genes identified during our study have been reported to have 466	

altered levels of expression in response to a given drug, especially SLFN11 for multiple 467	

chemotherapies [26-30], SALL4 for cisplatin [69], ABCB1 for taxane and doxorubicin [70, 468	

71], PIGB for gemcitabine [72], and BAX to oxaliplatin [73].  These results suggest that our 469	

preclinical-to-clinical model could generate biologically relevant candidate genes and 470	

pathways for understanding mechanisms underlying drug resistance, and may offer 471	

additional combinational therapeutic strategies to overcome certain drug resistance. 472	

 473	
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Focusing on tamoxifen, we were able to show that only a small panel of 20 genes can 474	

preserve the predictive performance of TINDL for this drug (Figure 5A). Moreover, 475	

functional validation of 10 of these genes identified by TINDL using siRNA knockdown 476	

performed with MCF-7 estrogen receptor positive breast cancer cells, confirmed the 477	

direct role of these genes in response to tamoxifen (Figure 5B and Supplementary Figure 478	

S6). These results suggest that, like many complex traits, response to tamoxifen also 479	

involves multiple genes in different pathways.  In addition, these results provided us with 480	

new insights into novel mechanisms in tamoxifen response. For example, among these 481	

ten genes, RPS6 is the canonical substrate of S6 kinase (S6K), which is activated by integrin 482	

engagement and inactivated by detachment. Abnormal expression of RPS6 has been 483	

indicated as a critical trigger for detachment-induced keratinization related to breast 484	

cancer development [74]. Indeed, the prognostic value of RPS6 was assessed by Kaplan-485	

Maier Plotter analysis of gene expression data from estrogen receptor positive/HER2 486	

negative breast tumor samples of 686 patients. High expression of RPS6 was associated 487	

with better relapse-free survival (RFS) in this cohort of patients (Supplementary Figure 488	

S7A). Decreased phosphorylation of RPS6 was previously observed in tamoxifen resistant 489	

breast cancer cells compared to parental cells [75]. However, to the best of our 490	

knowledge, no previous study has linked RPS6 to tamoxifen sensitivity. The fact that we 491	

found that RPS6 expression can predict tamoxifen sensitivity and that knockdown of RPS6 492	

desensitized breast cancer cells to tamoxifen exposure by two folds suggests a potential 493	

role for RPS6 in the estrogen response pathway, in addition to its role as a protein 494	
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synthesis regulator. In addition to its prognostic value, further analysis revealed that high 495	

mRNA expression of RPS6 was also remarkably associated with prolonged RFS in 496	

tamoxifen treated patients (Supplementary Figure S6B). This hypothesis will need to be 497	

tested further in future experiments. The second gene that influenced tamoxifen 498	

response the most was RPL13, also known as “Ribosomal Protein L13”. RPL13 is a 499	

component of the 60S ribosomal subunit that expressed at significantly higher levels in 500	

benign breast lesions than in breast carcinomas [76], however, to the best of our 501	

knowledge, no previous study has linked RPL13 to estrogen signaling or tamoxifen 502	

response. Kaplan-Meier analysis revealed that patients with high expression of RPL13 had 503	

a significantly longer RFS than those with low RPL13 expression (Supplementary Figure 504	

S7C). Our observations here suggest an important role of RPL13 expression level in 505	

predicting tamoxifen sensitivity, and could help identify additional drug targets or 506	

treatment options to overcome tamoxifen resistance. 507	

 508	

Our analysis suggested that TINDL performs better than DL-based domain adaptation 509	

techniques in removing the discrepancies between the preclinical and clinical samples. 510	

However, these domain adaptation techniques were originally developed for the task of 511	

analyzing images. We posit that novel domain adaptation techniques may be able to 512	

overcome the shortcoming of current techniques and improve the results. However, such 513	

methods need to be carefully designed for the analysis of gene expression data and must 514	

take into account biological factors that influence the response of cancer patients to 515	
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different drugs. In addition, including information on the cancer type or even subtypes of 516	

each cancer may be necessary to achieve better results.  517	

 518	

Another important consideration is that due to the limitation of CCLs in mimicking patient 519	

tumours (e.g., their growth in 2D environment, being more homogenous than tumours, 520	

and not being able to capture the effect of tumour microenvironment, etc.), 521	

computational models trained on CCLs are limited in their ability to predict CDR of cancer 522	

patients, even if they remove the statistical discrepancies of the training and test sets. As 523	

a result, availability of large datasets, pertaining to better models of cancer, such as 524	

patient-derived organoids or xenografts play an important role in improving the 525	

predictive ability of computational models.  526	

 527	

In this study, our focus was on models trained only on gene expression profiles of samples. 528	

However, a multi-omics approach that incorporates different molecular characteristics of 529	

samples may provide a more complete understanding of the mechanisms of drug 530	

response in cancer. Such models, however, need to be carefully designed to avoid over-531	

fitting due to the additional number of features. Another limitation of this study was that 532	

all the computational models were trained on CCLs and their response to single drugs. 533	

However, some of the patients in the TCGA dataset have received multiple drugs in the 534	

course of their treatment, which we had to include in the analysis due to the small number 535	

of samples with known CDR. In such cases, any computational model trained on single 536	
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drugs can only provide an approximation. To improve the prediction performance in such 537	

cases, a computational model must also consider the synergistic and antagonistic effects 538	

of the drugs. Recent large publicly available datasets such as DrugComb [77] and 539	

DrugCombDB [78] that contain response of different cell lines to pairs of drugs provide an 540	

opportunity for developing such methods, a direction that we will pursue in the future.  541	

 542	

METHODS: 543	

Datasets: 544	

We used the publicly available data from GDSC and TCGA for training and testing, 545	

respectively. For training data, we used the RMA-normalized gene expression data in 546	

GDSC, which contains 15650 genes and 958 unique cell lines. For the test data, we used 547	

RNAseq (in FPKM) from primary tumors in TCGA, which we transformed using 548	

log(FPKM+0.1). We z-score normalized the gene expression data as well as the ln(IC50) 549	

values. We obtained clinical drug response of cancer patients from the supplementary file 550	

of Ding et al. [10]. Since the number of samples with known drug response in TCGA is 551	

relatively small, in our analysis we also included samples that have received multiple 552	

drugs in their course of treatment. We only focused on drugs which are common to both 553	

datasets and have at least 20 samples with known CDR in TCGA. We used a tissue-554	

informed normalization, which is detailed below. Furthermore, we re-categorized the 555	

clinical drug responses to sensitive (corresponding to complete and partial response) and 556	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2021. ; https://doi.org/10.1101/2021.07.06.451273doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.06.451273
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
	
	
	
	

31	

resistant (corresponding to stable disease and clinically progressive disease). Details on 557	

sample counts and tissue types per drug are in Supplementary Table S1. 558	

 559	

Tissue-informed Normalization 560	

TINDL trains a separate model for each drug. Each model performs a separate 561	

normalization on the GEx profiles of test samples from TCGA to account for the cancer 562	

type and tissue of origin of the samples. First, for each drug 𝐷 the set of tissues/cancer 563	

types to which this drug is administered in the TCGA samples is identified (referred to as 564	

𝑇!). All samples corresponding to 𝑇! (excluding those used in the test set) are collected 565	

from TCGA, forming the unlabeled dataset. Then, the gene-wise mean (𝜇"!) and standard 566	

deviation (𝜎"!) of these unlabeled samples are calculated and used to normalize labeled 567	

test samples corresponding to drug 𝐷 . More specifically, for a gene 𝑖  of an arbitrary 568	

sample in the test set, the normalized value 𝑥#  would be: 569	

𝑥# =	
𝑥)# − 𝜇#,"!
𝜎#,"!

, 570	

where  𝑥)#  is the log-transformed expression for gene 𝑖 of that sample. The test samples 571	

are then used as input to the trained model to predict the normalized ln(IC50)s, which 572	

were compared to the actual CDR categories for evaluation. 573	

 574	

TINDL Architecture, hyperparameter selection and training 575	
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We used grid-search and 5-fold cross validation to select the number of epochs, batch 576	

size and learning rate of all our DL-based models (including TINDL). Specific 577	

hyperparameters chosen using this procedure for TINDL are provided in the 578	

Supplementary table S7. We only used the training data corresponding to CCLs (from 579	

GDSC) to perform the hyperparameter search. In addition to the input layer (which 580	

contained one node for each gene), we used three hidden layers with dense connections, 581	

each with 512, 256, and 128 hidden nodes, in the order of their distance to the input 582	

layer. We used a rectified linear units (ReLU) activation function and added a dropout 583	

layer with 0.2 probability of dropping out prior to the output layer.  584	

 585	

Models were trained using mean squared error (MSE) as the loss function, and the 586	

normalized ln(IC50) as the labels. During hyperparameter tuning, models were allowed to 587	

train up to a maximum of 1000 epochs, but early stopping was applied when the model’s 588	

loss did not decrease after 30 epochs. After hyperparameter tuning, we retrained a final 589	

model using all the labeled CCL samples. We used 10 different random initializations (i.e., 590	

seeds) to ensure robustness of the results. A similar technique was used for ADDA-DL, 591	

DANN-DL, and ComBat-DL.  592	

 593	

Calculating contribution scores of genes 594	

In the second phase of TINDL (Figure 1B) we used CXPlain [18] as the explainer to assign 595	

a contribution score to each gene in each sample. CXPlain is a method that attempts to 596	
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provide causal explanations of a trained model’s predictions. This is achieved by training 597	

a separate model (called “explainer”) using the outputs of the trained model (called 598	

“predictor”). This method utilizes Granger’s causality [79] to evaluate the contribution of 599	

a single feature (gene in our case) by zeroing out features one by one and calculating the 600	

normalized difference of the predictor’s original error and its error when the feature is 601	

zeroed out. In our case, we define error as 𝜀% = (𝑦% − 𝑦/%)&, where 𝑦% is the true value 602	

and 𝑦/% is the output of the predictor for sample 𝑋 = 2𝑥', … , 𝑥(4, 𝑝 being the number of 603	

features. Prior to training the explainer, the real contribution vectors, Ω% =604	

2𝜔'(𝑋), … , 𝜔((𝑋)4, are calculated for each training sample as follows: 605	

𝜔#(𝑋) =
Δ𝜀%,#

∑ Δ𝜀%,))*'…(
, 606	

where Δ𝜀%,# = 𝜀%\{#} − 𝜀% . Here, 𝜀%\{#}  denotes the predictor’s error when given 𝑋  but 607	

with feature 𝑖 zeroed out. The explainer has an architecture such that the dimensions of 608	

the input vector 𝑋 and the output vector Ω:% = {𝜔<'(𝑋), … , 𝜔<((𝑋)} are the same. Each of 609	

the outputs correspond to the predicted contribution for the corresponding feature. The 610	

explainer is trained by minimizing the KL divergence 𝐾𝐿(Ω% , Ω:%) of the real contributions 611	

Ω% and predicted contributions Ω:%	of the training set.  612	

 613	

We used a neural network with two layers and 512 hidden units for the explainer, and 614	

used the ensemble mode, which trains 10 independent explainers and reports their 615	

median as the final contribution values. We modified the CXPlain library’s code to fit our 616	
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application, which we also included in our published code. Once trained, we predicted 617	

the contribution values of each genes in each of the samples in the testing set. To obtain 618	

drug-specific gene contribution scores, we calculated the mean contribution score of each 619	

gene across all the labeled test samples for that drug and normalized it such that the 620	

largest contribution score of a drug equals 1.   621	

 622	

Identifying genes with highest contribution scores 623	

After obtaining contribution scores to each gene for a drug, we sought to identify the top 624	

genes that substantially affect our model’s predictions. We sorted the genes according to 625	

their final test contribution scores and plotted a curve (Supplementary Figure S5), where 626	

the x-axis is the rank of the gene 𝑖 and the y-axis is gene 𝑖’s drug-specific contribution 627	

score  𝜔@# . We used the kneedle algorithm [22] to identify the point of maximum 628	

curvature, called “knee”, which we then treated as the cutoff for the top genes. Kneedle 629	

relies on the idea that if one forms a line 𝑙 from (1, 𝜔@/01) to (𝑛,𝜔@/#2) and rotate the 630	

curve around the point (𝑛,𝜔@/#2), the “knee” can be approximated by the set of points in 631	

the local maxima. Among these points, the point that is farthest from the line 𝑙 is then 632	

identified as the knee. 633	

 634	

Knowledge-guided Pathway Enrichment Analysis 635	

We identified pathways associated with the top identified genes using KnowEng’s gene 636	

set characterization (GSC) pipeline [34]. We used the network-guided mode, which 637	
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incorporates knowledge in the form of gene-gene interactions to augment the analysis. 638	

For the knowledge network, we selected the STRING Experimental PPI [80], which 639	

contains experimentally verified protein-protein interactions. We then proceeded with 640	

the default 50% network smoothing parameter and used the “Enrichr” pathway 641	

collection. This pipeline does not provide a p-value, but rather uses a score called 642	

“Difference Score” to implicate top pathways. Any pathway above the 0.5 threshold is 643	

considered associated with the input query set. A value above this threshold shows that 644	

the pathway has a high relevance score to the input query set (using a random walk with 645	

restarts algorithm), compared to the background [34].  646	

 647	

Precision at kth percentile 648	

For each drug, we used TINDL’s predictions of ln(IC50) of the tumour samples, and 649	

identified the kth percentiles of the distribution (k ≤ 50), which we denote as 𝑡3 . We 650	

stratified the predictions such that all predictions below 𝑡3 is predicted as positives (i.e. 651	

sensitive).  We then calculated the precision at kth percentile as	𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛3 =
"4"

"4"564"
, 652	

where 𝑇𝑃3  and 𝐹𝑃3  are the true positives and false positives at kth percentile, 653	

respectively. 654	

 655	

Baseline models 656	

SVR, Random Forest, and Lasso Regression were all implemented using the Scikit-learn. 657	

Geeleher’s method [14] was reimplemented using Scikit-Learn and PyComBat, a python 658	
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implementation of ComBat [15]. We used the available implementation of TG-Lasso [9]. 659	

All hyperparameters were tuned as described in the previous subsections except for TG-660	

Lasso, which has its built-in hyperparameter tuning.  661	

 662	

To ensure a fair comparison, all DL-based baseline models used a similar architecture to 663	

TINDL. Additionally, the hyperparameter tuning and training procedure was also similar 664	

to the one described above for TINDL. Below, we describe model-specific considerations. 665	

For ComBat-DL we used ComBat [15] for removing the discrepancy between TCGA and 666	

GDSC datasets. Similar to TINDL, we used both labeled and unlabeled samples of TCGA 667	

for this purpose.  668	

 669	

ADDA-DL utilizes adversarial discriminative domain adaptation (ADDA) [17], to remove 670	

the discrepancy between TCGA and GDSC datasets. ADDA is a unidirectional domain 671	

adaptation technique, which takes a pre-trained neural network and attempts to adapt 672	

the network to the target dataset by forcing the latent feature space of the target dataset 673	

(TCGA) to be similar to that of the source dataset’s (GDSC). We used the TINDL model as 674	

the pre-trained network which we adapt through ADDA’s adversarial losses. We used the 675	

unlabeled tumour samples from the drugs target tissues during training. Details are 676	

provided in the Supplementary Methods.  677	

 678	
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DANN-DL utilizes domain adaptive neural network (DANN) [16] to remove the 679	

discrepancies between TCGA and GDSC datasets. DANN utilizes the shared latent feature 680	

space to allow the model to be used on the target dataset despite only being trained using 681	

the source dataset’s labels. This is done by incorporating a gradient-reversed 682	

discriminative loss function such that a discriminator cannot tell whether the given 683	

embedding came from the source (GDSC) or target (TCGA) datasets. Similar to ADDA-DL, 684	

we used the unlabeled tumours from the drug’s target tissues for training of the 685	

discriminator. 686	

 687	

Measuring distance of clinical and preclinical samples in the latent space of DL-based 688	

models 689	

To assess the ability of each DL-based model in removing discrepancy between preclinical 690	

and clinical samples, we used pairwise Euclidean distance of samples based on their 691	

representation learned by the encoder of the DL models. Since these representations are 692	

used by the decoder to make predictions, comparing these latent representations is more 693	

meaningful than comparing input feature representations. We used Ward’s method [81] 694	

to assess the distance of preclinical samples and clinical samples, which is one of the most 695	

popular methods in assessing the distance of two groups of samples. This method, that is 696	

widely used in hierarchical clustering, has the advantage that not only analyzes the 697	

Euclidean distances of the data points, but also incorporates their variance in determining 698	

the distance of two groups of samples.  699	
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 700	

Chemicals and reagents 701	

Dulbecco's minimum essential medium (DMEM) medium was purchased from Life 702	

Technologies, Inc. (Carlsbad, CA, USA). Fetal bovine serum (FBS) and charcoal-stripped 703	

FBS were from Invitrogen (Carlsbad, CA, USA). Ontarget-plus SMARTpool small interfering 704	

RNAs (siRNA) targeting RPP25, EMP1, EXTL3, EXOC2, NUP37, RPL13, WBP2NL, RPS6, 705	

GBP1, and JAK2 as well as negative control siRNA were purchased from Dharmacon 706	

(Thermo Scientific Dharmacon, Inc.). Reagents and primers for real time PCR were 707	

purchased from Qiagen (Valencia, CA, USA). 17β-estradiol (E2) and 4-hydroxytamoxifen 708	

(OH-TAM) were purchased from Sigma Aldrich (Saint Louis, MO USA).  709	

 710	

Cell lines 711	

MCF-7 cell line wase obtained from American Type Culture Collection (ATCC) (Manassus, 712	

VA) in 2014 and the identities of all cell lines were confirmed by the medical genome 713	

facility at Mayo Clinic Center (Rochester MN) using short tandem repeat profiling upon 714	

receipt.  MCF-7 cells were cultured in DMEM containing 10% fetal bovine serum (FBS). 715	

 716	

Transfection and gene silencing 717	

Specific short interfering RNAs (siRNAs) that targeted RPP25, EMP1, EXTL3, EXOC2, 718	

NUP37, RPL13, WBP2NL, RPS6, GBP1, JAK2, and negative siRNA controls (Dharmacon, 719	

Lafayette, CO) were transfected into MCF-7 cells in 96-well plates using Lipofectamine 720	
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RNAiMAX Reagent (Thermo Fisher Scientific, Waltham, MA) according to the vendor's 721	

protocol [67, 68]. Total RNA was extracted 48 hours after transfection for RNA 722	

quantification. Specific siGENOME siRNA SMARTpool reagents against a given gene as 723	

well as a negative control, siGENOME Non-Targeting siRNA, were purchased from 724	

Dharmacon Inc. (Lafayette, CO, USA). For the purpose of drug tamoxifen response assay, 725	

cells were plated in base medium supplemented with 5% charcoal stripped FBS for 24 726	

hours, and then cultured in FBS-free DMEM media for another 24 hours before 727	

transfection. Different treatments were started 24 hours after transfection.  728	

 729	

Tamoxifen sensitivity assay 730	

Drugs were dissolved in DMSO, and aliquots of stock solutions were frozen at −80°C. 731	

Cytotoxicity assays were performed in triplicate at each drug concentration. Specifically, 732	

4000 breast cancer cells were seeded in 96-well plates and were cultured in base media 733	

containing 5% (vol/vol) charcoal-stripped FBS for 24 hours and were subsequently 734	

cultured in FBS-free base media for another 24 hours. Cells were then transfected with 735	

either control siRNA or siRNA targeting specific gene. Twenty-four hours after 736	

transfection the media was replaced with fresh FBS-free base media and the cells were 737	

treated with 10 μL of tamoxifen at final concentrations of 0, 0.1875, 0.375, 0.75, 1.5, 3, 6, 738	

12, 24, and 48 μM [82]. After incubation for an additional 72 hours, cytotoxicity was 739	

determined by quantification of DNA content using CYQUANT assay (#C35012, Invitrogen) 740	

following the manufacturer’s instructions [66, 83, 84]. 100μL of CyQUANT assay solution 741	
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was added, and plates were incubated at 37°C for one hour, and then read in a Safire2 742	

plate reader with filters appropriate for 480 nm excitation and 520 nm emission. 743	
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