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Abstract 
Motivation: Gradient boosting decision tree (GBDT) is a powerful ensemble machine learning method 
that has the potential to accelerate biomarker discovery from high-dimensional molecular data. Recent 
algorithmic advances, such as Extreme Gradient Boosting (XGB) and Light Gradient Boosting (LGB), 
have rendered the GBDT training more efficient, scalable and accurate. These modern techniques, 
however, have not yet been widely adopted in biomarkers discovery based on patient survival data, 
which are key clinical outcomes or endpoints in cancer studies. 
Results: In this paper, we present a new R package Xsurv as an integrated solution which applies two 
modern GBDT training framework namely, XGB and LGB, for the modeling of censored survival out-
comes. Based on a comprehensive set of simulations, we benchmark the new approaches against 
traditional methods including the stepwise Cox regression model and the original gradient boosting 
function implemented in the package gbm. We also demonstrate the application of Xsurv in analyzing 
a melanoma methylation dataset. Together, these results suggest that Xsurv is a useful and computa-
tionally viable tool for screening a large number of prognostic candidate biomarkers, which may facili-
tate cancer translational and clinical research.  
Availability:	Xsurv is freely available as an R package at:  
https://github.com/topycyao/Xsurv 
Contact:	xuefeng.wang@moffitt.org  
Supplementary information:	Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Boosting is one of the most powerful and successful techniques 
introduced in the fields of statistics and machine learning for solv-
ing complex classification and regression problems. The basic 
idea is to sequentially learn a combination of multiple weak learn-
ers to create a more sophisticated learning model that achieves 
better prediction performance. AdaBoost, developed in 1995 
(Freund and Schapire, 1997), is the first practical implementation 
in this category. In early 2000’s, a more flexible and effective so-
lution called gradient boosting machine (GBM) was proposed by 
Friedman (Friedman, 2001).  GBM generalizes the boosting idea 

to any loss function which is differentiable. By combining the gra-
dient descent algorithm, GBM in each stage identifies an add-on 
weak learner function by fitting on the negative gradient of the 
loss function (the "pseudo-residuals"). The main reasons for the 
widespread application of GBM today are because of its flexibil-
ity, extensibility and easy implementation. It works for various 
popular loss functions and can be coupled with different types of 
weak learners from simple regression to decision trees (i.e. 
GBDT). Extensions of GBM have been implemented and inte-
grated in various R packages, most notably the gbm (Greenwell, 
et al., 2007) and caret package (Kuhn, 2020). Nonetheless, GBM 
faces several drawbacks that might lead to inferior prediction per-
formance in real data analysis. First, like other greedy-search-
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based algorithms, GBM and GBDT can converge to local optimal 
and tends to overfit the training data, especially with a large learn-
ing rate and more iterations. Second, GBM involves more hy-
perparameters than methods such as random forest (uses two tun-
ing parameters), making hyper-parameter tuning more challeng-
ing and producing less reproducible results in practice.  
   Extreme gradient boosting (Chen and Guestrin, 2016), or 
XGBoost (XGB), is a recent advancement that builds on the 
GBDT framework (Mason, et al., 1999) (Hastie, et al., 2009) and 
has rapidly gained considerable prominence in the field of applied 
machine learning. Because of its superior and reliable predictive 
performance across a variety of test data sets, XGB has become a 
de facto benchmark algorithm in data science competitions (e.g. 
Kaggle) and real-world machine learning projects. XGB signifi-
cantly mitigates the overfitting issue by introducing extra regular-
ization, built-in tree pruning, and subsampling features. XGB is 
especially attractive for its computational efficiency.  As will be 
further discussed in the method section below, the optimization 
problem in tree boosting is greatly simplified by using a trick in 
calculating the gain score that can be extended to a customized 
loss function. In addition, it leverages multithreading parallel 
computing offered by modern CPUs. Therefore, this framework 
scales well to both large sample size and feature numbers that con-
ventional packages like gbm are not geared to handle.  
  LightGBM (Jeschke, et al., 2017), hereafter referred to as LGB, 
is another significantly improved gradient boosting tree algorithm 
that has achieved great popularity recently. It integrates multiple 
novel techniques to jointly optimize computation speed, memory 
usage and prediction performance. The most notable differences 
compared to other gradient boosting methods are that LGB uses 
the leaf-wise growth strategy (instead of level-wise strategy) to 
construct the tree and it adopts the gradient-based one-side sam-
pling (GOSS) to find a split. GOSS allows a more efficient (and 
thus “lighter”) implementation of GBDT, which keeps all the data 
with large gradients and performs random sampling on the data 
with small gradients. In addition, LGB combined GOSS with a 
new algorithm called exclusive feature bundling (EFB) to reduce 
number of features and further improve efficiency. When the 
training data set contains ultra-high dimensional features or ex-
tremely large sample size, LGB is regarded as a more suitable al-
ternative to XGB and other existing gradient boosting methods.  
  The main scope of this study is to investigate the feasibility of 
modern gradient boosting methods, i.e., XGB and LGB frame-
works, for the modeling and prediction of censored survival out-
comes. Our work was primarily motivated by a growing demand 
for more efficient and effective machine learning methods for 
prognostic biomarker identification in cancer research. Although 
XGB and LGB provide the interface for customizing objective 
(loss) function, it is less straightforward to incorporate survival 
data. A special form of loss function and prediction evaluation 
metric need to be defined in the context of XGB and LGB work-
flow because most survival outcomes contain at least two varia-
bles, measuring the survival time and censoring information, re-
spectively. A simple approximation is to force the data to a bi-
nary classification problem by ignoring the censoring and di-
chotomizing the time variable, so off-the-shelf machine learning 
packages can be directly applied. However, it is known that ex-
cluding incomplete patient information will result in an ineffi-
cient and biased estimation of coefficients in the survival model.  
This study will focus on building the survival objective function 
using the Cox proportion hazard (Cox PH) model (Cox, 1972) 
because it is the widely used in biomedical and health fields. A 
key characteristic of the objective function based on Cox PH is 
that it is differentiable and guaranteed to be convex. Of note, the 

newest version of R package xgboost (Chen, et al., 2021) also al-
lows for the analysis of survival data but only implemented one 
type of loss function and evaluation metric (based on the Cox 
likelihood), and specific technical details have not been clearly 
documented. This paper will review and discuss the implementa-
tion of  both XGB and LGB for survival data, with the concord-
ance index (or C-index) as a more robust alternative to the Cox 
loss function.  
  The remainder of the paper is organized as follows. In Section 2, 
we briefly describe the efficient boosting method and provides so-
lutions for Cox's model, as well as the boosting step for boosting 
the concordance index. In Section 3, we present simulation results 
to evaluate the predictive performance of the XGB and LGB sur-
vival routines and compare the approaches with the standard Cox 
regression model and gradient boosting method implemented in 
gbm.  Finally, we apply the developed survival boosting to a mel-
anoma methylation dataset with the goal to identify targeted CpG 
sites with prognostic values, followed by discussions. 

2 Methods 

2.1 Gradient boosting overview 
Similar to other supervised machine learning approach, the ulti-
mate goal of boosting is to find an optimal function of covariates 
𝑓∗(𝒙) to predict the outcome Y, by minimizing the loss func-
tion	ℒ(𝑌, 𝑓(𝑥)). Boosting builds the final predictive model by it-
eratively combining weak learners that predict the outcome based 
on a simple model. Thus, it provides an alternative path to build 
generalized additive models (GAMs):  𝑓(𝒙) = ∑ 𝑓-(𝑥)- , in which 
each 𝑓-(𝑥) is a (weighted) weak learner. Boosting performs vari-
able selection implicitly and works properly even with strong 
multicollinearity and high dimensionality. By incorporating 
weighting scheme into resampling steps, boosting is able to focus 
on more training-informative samples in each step. In the boosted 
linear regression case, the reweighting is achieved by refitting re-
siduals calculated from previous steps as a surrogate outcome. 
Gradient boosting generalizes AdaBoost to any smooth loss func-
tion ℒ(. , . ). In each iteration, gradient boosting trains the base 
learners by refitting the negative gradients of the loss function. 
The gradient in this context can be viewed as pseudo-residual. In 
the special case of square loss, the gradients equal the residuals.  

2.1.1 Cox’s survival model for generalized gradient boosting 
In biomedical research, the Cox proportional hazard model (Cox 
1972) is the most commonly used model for the regression analy-
sis of survival outcomes. In the following, we consider the stand-
ard time-to-event (e.g. to death) data for the i-th instance (𝑡0, 𝒙0, 𝛿0), where 𝑡0 is the observed survival time, 𝒙𝒊	is the covari-
ate vector, and 𝛿0	is the censoring indicator. Censoring occurs 
when a time-to-event is not observed during follow-up. We focus 
on the right censoring, in which the actual event time is no earlier 
than the observed time. The Cox model defines the hazard func-
tion of a subject at time t to be the product of a baseline hazard 
𝜆4(𝑡)	and an exponential function of the covariates,  

   𝜆(𝑡|𝒙) = 𝜆4(𝑡) exp{𝐻(𝒙0)} .     (1) 

Here 𝐻(⋅) is a risk score function that relates covariates and re-
gression coefficients. In the standard Cox model, the risk score is 
a linear term, i.e., H(𝒙0) = 𝒙0=𝛽.  In the case of high-dimensional 
and non-parametric setting, it is often difficult to specify the func-
tional form of 𝐻(⋅) explicitly. In boosting framework, the target 
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function 𝐻 is a linear combination of base functions.	For most of 
the following discussion, we will take derivative with respect to 
the risk term 𝐻, instead of the original parameters 𝛽. A key ad-
vantage of the Cox model and its partial likelihood (PL) is that the 
estimation of 𝛽 does not depend on 𝜆4(𝑡)	, 𝑃𝐿 = ∏{exp	(𝐻(𝒙))/
∑ exp	(𝐻(𝒙))CDE }F. Here R is the set of the observations at risk at 
time t. The key to understanding this formula is to recognize that 
the PL is similar to the conditional probability that a particular 
study subject is the one that has an event at time t. Here we want 
to minimize the negative of the Cox’s log-partial likelihood as the 
loss function,  

      ℒ = −𝑙𝑜𝑔𝑃𝐿 = −∑ 𝛿0{𝐻(𝒙0) − log	[∑ exp	(CDE 𝐻(𝒙𝒊)))}0 .          (2) 

The regression coefficients can be thus estimated by 𝛽O =
argminU(ℒ(𝛽) + 𝑅(𝛽)), where 𝑅(𝛽) denotes the regularization 
terms which constrain coefficients, such as the L1/L2 or group 
lasso penalty terms (Yuan and Lin, 2006) (Simon, et al., 2013). 
Since the Cox objective function is convex, the problem can be 
efficiently solved by gradient or subgradient based algorithms.  
    Both XGB and LGB start with computing the negative gradient 
direction of the loss function (working/pseudo response or resid-
ual) with respect to the current estimate of risk score. The gradient 
for the Cox’s loss function is thus, 

                     𝑔0 = 𝛿0 − ∑ 𝛿-𝐼(YZ[Y\)
]^_	(`(𝒙Z))

∑ a(bcdb\)]^_	(`(𝒙Z))
e
c

f
-gh  . 

The standard gradient boosting will iteratively optimize the loss 
function (2) by choosing a weak learner (based on a single or few 
predictors) that is closest to the negative gradient directions, e.g., 
at step m, the optimal basis function 𝜂(j) can be calculated by  

argmink∈`m(𝜂(𝒙0) − 𝑔0
(j))n

f

0gh

	. 

Modern gradient boosting frameworks further consider the second 
order Taylor expansion of the loss, which basically can be viewed 
as improved variants of Newton boosting.  To simplify the expres-
sion, we denote 𝜋p0- = 𝐼(YZ[Y\)

]^_	(`(𝒙𝒊))
∑ a(bcdb\)]^_	(`(𝒙𝒌))
e
c

.  𝜋 can be treated 

as estimated absolute probability of failure for subject i at time 𝑡- 
(given that a failure occurs at 𝑡-). The empirical gradient function 
can now be written as  

  𝑔0 = 𝛿0 − ∑ 𝛿-𝜋p0-f
-gh .                    (3) 

As detailed in Supplementary Materials, it can be shown that the 
second derivative of the Cox PL loss (with respect to H) is 

                𝑠s = −∑ 𝛿t𝜋pst(1 − 𝜋pst)v
tgh  .     (4) 

Note that both 𝑔0 and 𝑠s are empirical terms evaluated at the given 
data points. At m-th step, we can thus approximate the Cox loss 
function with functions (3) and (4) through second order Taylor’s 
series expansion of the loss around the current function 𝐻(jwh),
  
				ℒ (j) ≈ ∑ y𝑔0

(j)𝜂(j)(𝒙0) +
h
n
𝑠0
(j)[𝜂(j)(𝒙0)]n{ + 𝐶(j)f

0gh  .             (5) 
𝐶 only involves loss term evaluated at 𝐻(jwh), which thus can be 
treated as a constant term at the current iteration. The above equa-
tion provides a new optimization objective, which is equivalent to 
weighted least square regression problem. By rearranging terms 
in (5), the optimal basis function can be expressed as 
													𝜂(j) = argmink∈` ∑ (h

n
𝑠0
(j)[− }Z

(~)

�Z
(~) − 𝜂(j)(𝒙0)]	n)	f

0gh .     (6) 

The updated function after step m is then 𝐻(j) = 𝐻(jwh) +
𝜈𝜂(j), where parameter 𝜈 represents the learning rate or step size. 
The step size moving along the selected direction is determined in 
line search step through fitting a linear proportional hazard 
model(Li and Luan, 2005).The reason that the new formulation is 
much more efficient than directly optimizing the original loss 
function in (2) is that most terms are the same for a given iteration 
and only need to calculate once, while only the term 𝜂(𝒙0) need 
to be evaluated for each candidate function or new split. The com-
putation is particularly efficient when using regression tree as base 
learner, which will be discussed in the following section.  

2.1.2 Efficient tree boosting framework 
Tree boosting as proposed originally by (Friedman, 2001) uses 
decision tress as base learners. Each leaf (terminal) node in a de-
cision tree is assigned with a prediction value or leaf weight. The 
tree basis function is defined as 𝜂(j)(𝑥) = ∑ 𝑤�𝐼(𝑥 ∈ 𝑇�)�

�gh , 
where 𝑤�  is the leaf weight and the leaf node indicator func-
tion	𝐼(𝑥 ∈ 𝑇�) defines the structure of a proposed tree. By plug-
ging the tree basis function into (5), the empirical loss function 
can be rewritten as 

ℒ(j) =mm�𝑔0
(j)𝑤� +

1
2
𝑠0
(j)𝑤�n� =

	

0∈a�

�

�gh

m �𝐺0
(j)𝑤� +

1
2
𝑆0
(j)𝑤�n�

�

�gh

. 

where 𝐺0 and 𝑆0 are the sum of 𝑔0 and 𝑠0 in one leaf node. Solving 
the quadratic function of 𝑤�, the optimal solution is thus  𝑤�� =

−𝐺0
(j)/𝑆0

(j).  The optimal score function is thus −h
n
∑ [�Z

(~)]�

�Z
(~)

�
�gh . 

In XGB  (Chen and Guestrin, 2016) or LGB (Jeschke, et al.), reg-
ularization terms are further incorporated into the loss function to 
control for model complexity. For example, if the l2 regulariza-
tion term of the leaf weights is considered, the optimal score func-

tion becomes − h
n
∑ [�Z

(~)]�

�Z
(~)��

�
�gh + 𝛾𝐿, where 𝜆 is the l2 regulariza-

tion term of the leaf weights and 𝛾	is the penalty term for the num-
ber of terminal nodes. The loss reduction after one split, also 
known as gain score, is given by  

ℒ�_�s� =
1
2
�
𝐺�n

𝑆� + 𝜆
+

𝐺En

𝑆E + 𝜆
−
(𝐺� + 𝐺E)n

𝑆� + 𝑆E + 𝜆
� − 𝛾	. 

The l2 regularization term will not only shrink the leaf weight but 
also, together with the variance term (S), will alter the structure of 
the final tree. Therefore, the optimization problem is greatly sim-
plified by searching splits that minimize the empirical loss—
based on the derived gain function. In the descriptions below, we 
will use XGB-Cox and LGB-Cox to stand for XGB and LGB 
based algorithms for solving Cox partial likelihood. The current 
framework can be easily implemented in R and Python and also 
allows other customized loss function for survival data as long as 
it is twice differentiable, such as the smoothed concordance index 
to be introduced.  
 
2.1.3 Hyperparameter tuning 
Similar to XGB and LGB, there are three groups of hyperparam-
eters needed to be determined in Xsurv.  The first group is basic 
parameters defining boosting types (e.g., choice of decision tree 
or linear model) and parameters for basic computational environ-
ment. The second group is booster parameters such as the number 
of trees, tree depth, learning rate, regularization terms, etc. Xsurv 
provides functions to automatically perform cross-validation to 
identify these hyperparameters. The default learning rate and 
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regularization terms are set from 0.01 to 0.5, with two parameter 
search strategies (grid search and random search) offered in the 
main function options. The third group include more specific 
learning task parameters that defines the objective function and 
evaluation metrics for validation data.  

2.2 Directly boosting the concordance Index 
One limitation of the Cox model is the assumption of proportion 
hazards (2). In Xsurv, we also implement an alternative approach 
based on boosting the C-index (Harrell, et al., 1982) directly. The 
C-index is defined as 

𝐶 = h
|𝒫|
∑ 𝐼(𝐻(𝑥0) < 𝐻(𝑥-))(0,-)∈𝒫 . 

where 𝒫 is the set of orderable pairs and 𝑡0 < 𝑡-, 𝐻(⋅) is the as-
signed risk score. Since the C-index is not differentiable, we use 
a smoothed concordance index as proposed previously (Chen, et 
al., 2013), 
 

𝑆𝐶𝐼 =
1
|𝒫|

m
1

1 + exp	(𝛼(𝐻(𝑥0) − 𝐻(𝑥-)))(0,-)∈𝒫

	. 

in which 𝛼 is a hyperparameter that controls the steepness. To im-
plement XGB and LGB, we need the first and second derivative 
of SCI with respect to 𝐻(⋅). The first derivative of C-index loss 
function is 

𝑔0 =
𝜕𝑆𝐶𝐼
𝜕𝐻(𝑥0)

=
α
|𝒫|

� m
−exp �𝛼 �𝐻(𝑥0) − 𝐻�𝑥- ¡¢

£1 + exp �𝛼 �𝐻(𝑥0) − 𝐻�𝑥- ¡¢¤
n

(0,-)∈𝒫

¥ + 

α
|𝒫|

¦ m
−exp �𝛼�𝐻(𝑥C) − 𝐻(𝑥C) ¡

£1 + exp �𝛼�𝐻(𝑥C) − 𝐻(𝑥0) ¡¤
n

(C,0)∈𝒫

§	. 

 
The derivation of second derivative is provided in Supplemen-
tary Materials. With these two derivatives, we can optimize the 
loss function in same way as in the Cox model. In the following 
sections, we denote the C-index based boosting methods as XGB-
C and LGB-C.  
 
2.3 Survival outcome calibration  
One shortcoming of Cox and C-index based boosting methods is 
that the predicted risk scores are only meaningful at the population 
level. The predicted risk score cannot be immediately interpreted 
as survival time or probability of individual patients. To facilitate 
its usage in the personalized medicine setting, Xsurv provides a 
function to transform predicted scores back to survival time. In 
addition, we provide an option to output single-patient prognostic 
group classification (high, medium and low-risk groups), which 
are more interpretable as illustrated by the example below. 

3 Results 

In this section, we first present simulation studies that evaluate the 
performance of the survival gradient boosting methods in terms 
of risk function estimation and variable selection. We consider 
survival outcome data generated based on both linear and nonlin-
ear different risk score functions, under three different scenarios. 
We then illustrate the application of Xsurv with an example of 
discovering prognostic biomarkers in melanoma using methyla-
tion data.  
 

3.1 Simulation Scenario 1 (linear model) 
In this scenario, we start with a simple proportional hazard model 
with linear link function. Let covariates 𝑋 = 𝑋h,… , 𝑋ª  be i.i.d. 
standard normal distributed random variables and the dimension 
𝑝 = 100. The failure time 𝑇 follows an exponential distribution 
with mean at exp(𝑋h + 𝑋n +…𝑋h4). The censoring time C fol-
lows an exponential distribution with mean equals 10, in order to 
prevent tail region values from dominating the prediction error, 
observations exceeding 4 are forced to be censored.  

To benchmark the prediction performance of different algo-
rithms, the following six different methods were conducted: Step-
wise Cox(Draper and Smith, 1981; Efroymson, 1960; Hocking, 
1976), GBM-Cox, XGB-Cox, XGB-C, LGB-Cox and LGB-C. 
Two metrics are selected to verify our results: C-index and the 
Integrated Brier Score (IBS) (Brier, 1950). A total of 100 inde-
pendent replicates were generated from the same model above, 
and the total sample size n is 1000 in each replicate. The first 800 
samples were used as the training data and the remaining 200 as 
test data. The resulted C-index and IBS are reported in Table 1. 
As expected, in this simulation setting, Stepwise Cox achieved the 
best results because it fits the true model. XGB and LGB outper-
formed GBM with relatively higher C-index. 
 

 

 
3.2 Simulation scenarios 2 and 3 (nonlinear models) 
In the second scenario we consider nonlinear effects. Let 𝑋 =
𝑋h,… , 𝑋ª be i.i.d. standard normal distributed random variables. 
We simulated 100 replicates, each with a feature dimension 𝑝 =

Model C-index (S.E.) IBS (S.E.) 
Simulation scenario 1   

Stepwise-Cox .883 (.009) .022 (.007) 
GBM-Cox .728 (.026) .054 (.014) 
XGB-Cox .782 (.017) .052 (.010) 
XGB-C .798 (.017) .045 (.010) 
LGB-Cox .770 (.018) .052 (.010) 
LGB-C .779 (.018) .049 (.011) 

Simulation scenario 2   

Stepwise-Cox .587 (.023) .038 (.014) 
GBM-Cox .647 (.026) .036 (.013) 
XGB-Cox .704 (.021) .033 (.012) 
XGB-C .704 (.023) .032 (.012) 
LGB-Cox .698 (.026) .032 (.012) 
LGB-C .702 (.024) .032 (.012) 

Simulation scenario 3   

Stepwise-Cox .588 (.021) .039 (.015) 
GBM-Cox .638 (.027) .037 (.014) 
XGB-Cox .702 (.020) .034 (.013) 
XGB-C .702 (.021) .033 (.013) 
LGB-Cox .718 (.020) .032 (.012) 
LGB-C .708 (.021) .033 (.013) 

Table 1. Comparisons of predictive performance of the Cox regression, 
GBM, XGB and LGB based on three simulation scenarios. 
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100 and the sample size of 1000. The failure time T follows an 
exponential distribution with mean equals to 

exp{2[Φ([𝑋h4 > 0.5] + 𝑋n4n − 1) + 
																																									Φ(0.5𝑋°4+𝑋±4n − 1) + 
																																									Φ(0.5𝑋²4 + 𝑋³4n − 1) + 
																																									Φ(sin𝑋µ4 + 𝑋¶4n − 1	) + 
																																									Φ(cos𝑋¸4 + 𝑋h44n )]}, 
 where Φ is the standard normal cumulative distribution function. 
The censoring time 𝐶 has probability 1/3 to be 0.02 and probabil-
ity 2/3 to be uniform (0, 0.02), the censoring rate in this case is 
approximately 30%.  
   As summarized in Table 1, Stepwise-Cox yielded the worst re-
sults. XGB and LGB models still showed satisfactory results 

given the complicated nonlinear generative model. In order to 
evaluate the algorithms in terms of feature selection accuracy, we 
examined the top ranked biomarkers based on the feature im-
portance score from all replicates (Figure 1a). It can be shown that 
nonlinear signals like 𝑋n4,𝑋±4,𝑋³4,𝑋¶4 had more chances to be 
detected by XGB and LGB based survival models. Meanwhile, 
GBM and the stepwise model selected more null or false positive 
signals if based on the top-ranking feature list.  
    In the third simulation scenario, we further considered corre-
lated covariates. This simulation was an extension of the scenario 
2 but with covariates  X = (Xh,… , Xh44) following a multivariate 

Fig.1. Comparisons of top predictive features selected based on 100 replicates in Simulation 2 (a) and Simulation 3 (b). The y-axes list all variables that 
appeared in top five features in the final predictive model of each training while x-axes represent the frequencies of being selected. The selected “True” 
signal features are represented by orange bars, and the selected “Noise” features are represented by blue ones.  
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normal distribution with covariance matrix V, where Vst = ρ|swt| 
and we set 𝜌 = 0.5 in this scenario. The results are summarized 
in Table 1 and Figure 1b. Similar to the previous scenario, overall 
the new gradient boosting models implemented in Xsurv outper-
formed the baseline models in terms of overall prediction accu-
racy and feature selection.  
 
3.3  Survival outcome calibration  
We further generated a simulation setting to demonstrate the sur-
vival calibration function offered by the Xsurv package. In this 
simulation, 100 covariates were generated from a normal distri-
bution with variance 1 and three groups of mean 𝜇0: 𝜇h = 0, 𝜇n =
10 and 𝜇° = 15. We generated 400 samples in each group, hence 
the total sample size is 1200. The failure time T follows a Weibull 
distribution with the shape parameter equaling 2 and the scale pa-
rameter  

𝜇 = 5¾Φ([𝑋h4 > 10] + 𝑋n4 − 1  + 
						Φ(0.5𝑋°4 +[𝑋±4 > 5] − 1) +			 
Φ([𝑋²4 > 10] +																						 
Φ[𝑋³4 > 15]) +																						 
Φ([𝑋µ4 > 20] + 𝑋¶4n − 1	) + 

																																	Φ([𝑋¸4 > 20] + 𝑋h44n − 1)}, 
where Φ is the standard normal cumulative distribution function. 
The censoring time 𝐶 has probability 1/3 to be 0.005 and proba-
bility 2/3 to be uniform (0, 0.005). The censoring rate in this case 
is approximately 30%. For each replicate, we use 1000 samples as 
training data and the remain 200 as test data. The risk level is de-
fined based on the value of 𝜈. A larger value of 𝜇 is equivalent to 
a higher risk of mortality. The real risk level for 1200 samples is 
defined by its corresponding true 𝜈. For each replicate, samples 
were divided into three groups based on tertiles of 𝜈, representing 
“Low Risk”, “Medium Risk”, and “High Risk”, respectively. The 
result in Figure 2 (based on five replicates) shows that XGB mod-
els can successfully classify patients into three risk groups (accu-
racy around 95%). Similar results were found for LGB models 
(Supplementary Fig. 1). 
 
3.4  Melanoma methylation dataset 
In this section, we demonstrate the use of Xsurv through an anal-
ysis aiming to identify prognostic methylation biomarkers in mel-
anoma. Matched methylation data (Illumina HumanMethylation 
450K array) and gene expression from 470 melanoma samples 
were downloaded using the R package TCGA2STAT(Liu and 
Wan, 2015). All methylation values are arcsine transformed on 
beta values. For illustration purpose, we only select methylation 
CpG sites that have the strongest correlation (Spearman’s rho 
>0.3) with the gene expression level of the same gene. This 
shortlisted CpGs is closely related to the concept of cis-meQTL 
(Khan, 2018). This step resulted 9801 candidate CpGs as input 
data for prognostic biomarker discovery. To minimize patient het-
erogeneity, we focus the analysis on metastatic melanoma tumor 
sample. We further filtered 943 CpGs with small coefficient of 
variations (< 0.05). Stage is divided into two groups: stage I, II 
and I/II NOS into the low stage group and III, IV into the high 
stage group. The final data set contains 320 patients with 3 clinical 
covariates (including sex, age, stage) and 8858 CpGs. The predic-
tion accuracy is evaluated by C-index and IBS. We compared the 
results of XGB and LGB with different models such as Cox model 
with Lasso method (Tibshirani, 1996) (Tibshirani, 1997), Random  

Fig.2. Survival calibration results from XGB-Cox (left panel) and XGB-
C (right panel). The blue dots represent correctly classified (high/me-
dium/low risk group) instances and red dots represent the misclassified 
instances.  

Fig.3. Top prognostic CpGs selected by XSurv (LGB-Cox) for predict-
ing patient survival in melanoma . (a) SHAP summary plot  of top 15 
features from the LGB-Cox implementation. Each sample is represented 
by one dot at each row. (b) Circular barplot showing the frequency of 
the appearance of the CpG biomarkers in the top 15 features in each 
subsampling training (based on 100 replicates), where only those that 
appeared more than five times are displayed.  

 (a) 

 (b) 
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Forest (RF) (Ho, 1995) and GBM-Cox. The results are summa-
rized in Table 2. We randomly resampled 100 times from the orig-
inal dataset with a subsample of 80% of the samples (n=256 in 
each experiment). The average C-index and IBS in out-of-bag da-
taset were calculated. The top ranked CpG biomarkers are shown 
in Table 2. Among these CpGs, cg13629753 (in gene GBP2) and 
cg17209284 (in gene SP140L) were the most two selected by dif-
ferent models in Table 2 with 6 and 7 respectively. In addition, 
they are the only two that were selected by all Xsurv models. 
SP140L is a part of Speckled Protein (SP) family of chromatin 
‘readers’ in humans and mice, and might play a key regulator role 
in silencing genes that establish immune cell identify and function 
(Fraschilla and Jeffrey, 2020). Another notable biomarker is 
cg11429292 (in gene LAG3). LAG3 is a well-known immune 
checkpoint regulator mostly expressed in tumor infiltrated T cells 
and a promising target for immunotherapy in melanoma (Pardoll, 
2012).We show the top 15 features selected by the LGB-Cox 

model who has the best C-index using the SHAP value plot 
(Lundberg and Lee, 2017) in Figure 3a and the aggregated feature 
selection results for LGB-Cox model in Figure 3b. Results for 
other models are represented in Supplementary Fig. 3. Since 
there are minor discrepancy for feature ranks between the SHAP- 
and gain-based results, we also provide the result based on gain in 
Supplementary Fig. 2. We present the recursive partitioning sur-
vival tree based on two most prognostic CpGs (cg13629753 and 
cg17209284) and stage in Figure 4. Through searching the Human 
Protein Atlas portal, we found that many top prognostic CpGs 
identified were in genes that are more pronounced in specific im-
mune cells (https://www.proteinatlas.org/).Together, these results 
highlight the immunogenic characteristics of cutaneous mela-
noma and the underlying roles of these CpGs and genes warrant 
further investigation.  
 
4 Conclusion 

                                                                                                     Models 

 Lasso-Cox RF GBM-Cox XGB-Cox XGB-C LGB-Cox LGB-C 

Top 15 CpGs cg06942685 

(ZNF542, ZSCAN5A) 

cg13984492 

(LPPR1)  

cg17808901 

(WDR48) 
cg19980593 
(KCNJ5) 
cg08036278  

(SYVN1) 

cg14967066 

 (IFITM1) 

cg22473973 

(BNIP3) 

cg05371498 

(CIITA) 

cg18419045 

(TNXB) 

cg24670442 

(GBP5) 

cg14750551 

(PARP14) 

cg07745373 

(DTX4) 

cg07535605 

(USP14) 

cg07896558 

 (NPTX1) 

cg08639339 

(ELK4, SLC45A3) 

cg04293930 

(TULP1) 

cg07235805 

(PARD6G) 

cg01550473 

(HSPA6) 

cg12766106 

(TRAF2) 

cg19502867 

(FAM110B) 

cg13629753 

(GBP2) 

cg19789466 

(OAS1) 

cg22168987 

(SLC4A2) 

cg05512157 

(DIP2B) 

cg12548899 

(CSTB) 

cg24988036 

(NECAB3) 

cg22110267 

(ARRB1) 

cg13577505 

(MAPK11) 

cg21192979 

(SLC7A4) 

cg19692996 

(PSMB1) 

cg13629753 

(GBP2) 

cg19789466 

(OAS1) 

cg14967066 

(IFITM1) 

cg03270881 

(TMSB10) 

cg07935568 

(MLNR) 

cg20724257 

(HLA-DRA) 

cg00674365 

(ZNF471) 

cg14750551 

(PARP14) 

cg17209284 

(SP140L) 

cg27285720 

(GBP4) 

cg16018204 

(TDRP, C8orf42) 

cg19571715 

(OCA2) 

cg22168987 

(SLC4A2) 

cg12548899 

(CSTB) 

cg23539753 

(SP100) 

cg02334987 

(FBXL16) 

cg17209284 

(SP140L) 

cg27209571 

(DNER) 

cg21533216 

(PYURF) 

cg09709457 

(XXYLT1, C3orf21) 

cg13629753 

(GBP2) 

cg01062113 

(PANX1) 

cg18485596 

(SLC16A10) 

cg06942685 

(ZNF542, ZSCAN5A) 

cg27472937 

(COLEC11) 

cg06840243 

(UBE2O) 

cg06576021 

(SNAI2) 

cg25025992 

(DNAJA4) 

cg12336960 

(CCDC50) 

cg22645201 

(C7orf58) 

cg14967066 

(IFITM1) 

cg13629753 

(GBP2) 

cg16970828 

(UBA7, UBE1L) 

cg11429292 

(LAG3) 

cg22874858 

(PDE11A) 

cg17209284 

(SP140L) 

cg26741686 

(ANKRD37) 

cg27248148 

(GGACT) 

cg10591652 

(FBLL1) 

cg26847438 

(SP140, SP140L) 

cg19571715 

(OCA2) 

cg19571715 

(OCA2) 

cg11954384 

(SYNC) 

cg09088834 

(NINL) 

cg04706995 

(BAZ2B) 

cg17209284 

(SP140L) 

cg11325273 

(DCLK1) 

cg26464998 

(SNED1) 

cg18523477 

(MIR5095, RBM38) 

cg18119485 

(OSBPL9) 

cg14072140 

(DPYD) 

cg11429292 

(LAG3) 

cg16546864 

(FAM207A, C21orf70) 

cg01136183 

(TM7SF4) 

cg07644368 

(CDO1)  

cg16970828 

(UBA7, UBE1L)  

cg13629753 

(GBP2) 

cg19502867 

(FAM110B) 

cg14053030 

(SIGLEC15) 

cg04105250 

(GAD1) 

cg22874858 

(PDE11A) 

cg13629753 

(GBP2) 

cg11429292 

(LAG3) 

cg04521957 

(SKAP2) 

cg12074585 

(RBP5) 

cg16970828 

(UBA7, UBE1L) 

cg14967066 

(IFITM1) 

cg27209571 

(DNER) 

cg15055577 

(ALMS1) 

cg17209284 

(SP140L) 

cg12446199 

(CD247) 

cg11954384 

(SYNC) 

cg10591652 

(FBLL1) 

cg02334987 

(FBXL16) 

cg00767116 

(CARS2) 

Clinical covariates Stage Stage 

Age 

None Age Age Stage None 

C-index .548(.060) .619(.046) .620(.043) .625(.047) .641(.042) .642(.044) .631(.041) 

IBS .153(.034) .142(.033) .141(.028) .141(.030) .141(.030) .140(.030) .141(.029) 

Table 2. Top prognostic CpGs and corresponding genes selected by each method in the melanoma dataset. CpGs that were 
selected by multiple methods are highlighted. 
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In this paper, we proposed a modern gradient boosting based 
framework, and a software package called Xsurv, to facilitate 
prognostic biomarker discovery with high-dimensional features 
and survival outcomes. Xsurv allows efficient survival analysis 
based on boosting either Cox PH loss or smoothed C-index, 
which relaxes the PH assumption in real data analyses. Our re-
sults suggested both XGB- and LGB-based approaches achieved 
considerably high prediction accuracy and robust biomarker se-
lection under multiple scenarios considered in the simulation 
study. We recommend using LGB implementation when the data 
dimension is extremely high, due to its comparatively higher 
computationally efficiency over XGB. A distinctive feature of 
our package is that it allows survival time (subgroup) calibration 
and decision tree visualization, which will greatly aid in the in-
terpretation of learned models. Finally, we applied the developed 
methods to a melanoma dataset to identify prognostic methyla-
tion biomarkers, and found many top predictive biomarkers to be 
indicative of potential immune regulations. Together, our Xsurv 
package provides a complementary and integrated tool for bi-
omarker discovery with high-dimensional molecular, clinical or 
imaging data. Future efforts will be needed to allow the package 
to handle competing risks and to explore putative mediation ef-
fects.  
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Fig.4. Melanoma patient survival prediction based on prognostic CpG 
biomarkers. (a) The recursive partitioning survival tree based on 
Stage and the top two robust prognostic CpGs in Table 2. (b) Kaplan-
Meier plots comparing the predicted (based on LGB-Cox) and the ob-
served patient overall survival data. (c) Kaplan-Meier plots compar-
ing the patient subgroups stratified by the predicted risk group.  
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