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Abstract 45 

The architecture of the cortical system underlying concept representation is a topic of intense 46 

debate. Much evidence supports the claim that concept retrieval selectively engages sensory, 47 

motor, and other neural systems involved in the acquisition of the retrieved concept, yet there is 48 

also strong evidence for involvement of high-level, supramodal cortical regions. A fundamental 49 

question about the organization of this system is whether modality-specific information 50 

originating from sensory and motor areas is integrated across multiple “convergence zones” or  51 

in a single centralized “hub”. We used representational similarity analysis (RSA) of fMRI data to 52 

map brain regions where the similarity structure of neural patterns elicited by large sets of 53 

concepts matched the similarity structure predicted by a high-dimensional model of concept 54 

representation based on sensory, motor, affective, and other modal aspects of experience. 55 

Across two studies involving different sets of concepts, different participants, and different tasks, 56 

searchlight RSA revealed a distributed, bihemispheric network engaged in multimodal 57 

experiential representation, composed of high-level association cortex in anterior, lateral, and 58 

ventral temporal lobe; inferior parietal lobule; posterior cingulate gyrus and precuneus; and 59 

medial, dorsal, ventrolateral, and orbital prefrontal cortex. These regions closely resemble 60 

networks previously implicated in general semantic and “default mode” processing and are 61 

known to be high-level hubs for convergence of multimodal processing streams. Supplemented 62 

by an exploratory cluster analysis, these results indicate that the concept representation system 63 

consists of multiple, hierarchically organized convergence zones supporting multimodal 64 

integration of experiential information. 65 

 66 

Significance Statement 67 

It has long been known that information about visual, auditory, motor, affective, and other 68 

features of our phenomenal experience originate in distinct brain regions. However, it is still 69 

unclear how these processing streams converge to form multimodal concept representations. 70 
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Using fMRI together with a multimodal experiential model of conceptual content, we show in two 71 

large studies that concept knowledge is represented across a distributed, bihemispheric network 72 

including temporal, parietal, limbic, and prefrontal association cortices. These results argue 73 

against the idea of a single centralized “hub” for concept representation, suggesting instead that 74 

multiple high-level convergence zones encode conceptual information in terms of multimodal 75 

experiential content. 76 

 77 

Introduction 78 

Concepts are the building blocks of meaning and are essential for everyday thinking, planning, 79 

and communication, yet there remains considerable debate surrounding their neural 80 

implementation. “Grounded” theories of concept representation postulate that sensory-motor 81 

and affective representations involved in concept formation are re-activated during concept 82 

retrieval (Damasio, 1989; Barsalou, 2008; Glenberg et al., 2009). Support for this claim includes 83 

many studies showing that perceptual and motor processing areas are activated when 84 

corresponding perceptual or motor information about concepts is retrieved (Meteyard and 85 

Vigliocco, 2008; Binder and Desai, 2011; Kiefer and Pulvermuller, 2012; Kemmerer, 2014).  86 

How these multiple modality-specific representations are combined during concept 87 

retrieval, however, is not yet clear. Primate cortex contains multiple regions where information 88 

converges across sensory modalities (Jones and Powell, 1970; Mesulam, 1998; Man et al., 89 

2013; Man et al., 2015). Portions of the human superior temporal sulcus (STS), for example, are 90 

known to respond to tactile, auditory, and visual stimulation (Beauchamp et al., 2008). The 91 

homolog of this region in macaque monkeys contains neurons that similarly respond to any of 92 

these stimulation modalities (Bruce et al., 1981) and are anatomically connected to 93 

corresponding unimodal cortex (Padberg et al., 2003). Other primate brain areas reported to 94 

have multimodal characteristics include posterior parietal cortex (Andersen, 1997), prefrontal 95 

cortex (Sugihara et al., 2006), parahippocampus (Damasio et al., 1982), and entorhinal cortex 96 
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(Van Hoesen et al., 1972). Possible human homologs of these regions include cortical areas 97 

identified with the “default mode network”, as suggested by a step-wise connectivity analysis of 98 

resting-state fMRI (Sepulcre et al., 2012). Beginning with seed regions in multiple primary 99 

sensory cortices, these authors showed that connections arising from these regions gradually 100 

converge, over multiple connectivity steps, at high-level “hubs” that include much of the lateral 101 

temporal cortex, angular gyrus, dorsomedial and inferolateral prefrontal cortex, posterior 102 

cingulate gyrus and precuneus. 103 

Various models propose a central role for multimodal or supramodal hubs in concept 104 

processing, though both the anatomical location and information content encoded in these hubs 105 

remain unclear (Mahon and Caramazza, 2008; Binder and Desai, 2011; Lambon Ralph et al., 106 

2017). One prominent theory proposes that the anterior temporal lobe (ATL) plays a unique role 107 

in storing abstract concept representations. During concept retrieval, the central ATL hub would 108 

activate modality-specific representations stored in unimodal cortical areas (the “spokes”) 109 

(Patterson et al., 2007). An alternative model postulates widespread and hierarchically 110 

organized convergence zones in multiple brain locations (Damasio, 1989; Mesulam, 1998; 111 

Meyer and Damasio, 2009). We have previously proposed that these convergence zones are 112 

neurally implemented in the multimodal connectivity hubs identified by Sepulcre et al. (2012), 113 

which closely correspond to the regions identified in a large neuroimaging meta-analysis of 114 

semantic word processing (Binder et al., 2009). This idea is supported by neuroimaging findings 115 

indicating that these cortical regions encode multimodal information about the experiential 116 

content of lexical concepts (Bonner et al., 2013; Fernandino et al., 2016b; Fernandino et al., 117 

2016a; Fernandino et al., 2021). 118 

Here we use representational similarity analysis (RSA) with a whole-brain searchlight 119 

approach to identify cortical regions involved in multimodal conceptual representation. RSA 120 

measures the level of correspondence between the similarity matrix for a set of stimuli (e.g., 121 

words) derived from neural data and the similarity matrix for the same stimulus set computed 122 
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from an a priori representational model (Kriegeskorte et al., 2008). We used a searchlight 123 

approach (Kriegeskorte et al., 2008) to generate a map of cortical regions where this 124 

representational correspondence holds true. We used an experiential model of conceptual 125 

content as the basis for RSA (Binder et al., 2016). Unlike the abstract representations used in 126 

previous RSA studies, this model encodes conceptual content explicitly in terms of 65 sensory, 127 

motor, affective, and other experiential processes. Identical analyses were run on two large 128 

datasets to assess replication across independent participant samples, word sets, and tasks. 129 

The analyses provided strong evidence that the multimodal experiential content of lexical 130 

concepts is represented across several high-level convergence zones. 131 

 132 

Material and Methods 133 

Experiment 1 134 

Participants 135 

Nineteen native English speakers (11 women, 8 men) participated in Experiment 1. Their mean 136 

age was 26.4 years (range 20 to 38). All were right-handed according to the Edinburgh 137 

handedness inventory (Oldfield, 1971) and had no history of neurological disease. All 138 

participants in Experiments 1 and 2 were compensated for their time and gave informed consent 139 

in conformity with a protocol approved by the Institutional Review Board of the Medical College 140 

of Wisconsin.  141 

 142 

Stimuli and Concept Features  143 

The stimuli consisted of 242 words, including 141 nouns, 62 verbs, and 39 adjectives 144 

(Supplementary Table 1). The noun concepts included inanimate objects, animate objects, 145 

human roles (e.g., mother, doctor), settings (e.g., church, forest), and events. Stimuli were 146 

selected by the Intelligence Advanced Research Projects Activity, which funded the study. 147 

Experiential representations for these words were available from a previous study in which 148 
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ratings on 65 experiential domains were used to represent word meanings in a high-dimensional 149 

space (Binder et al., 2016). In brief, the experiential domains were selected based on known 150 

neural processing systems – such as color, shape, visual motion, touch, audition, motor control, 151 

olfaction – as well as other fundamental aspects of cognition whose neural substrates are less 152 

clearly understood, such as space, time, affect, reward, numerosity, and others. Ratings were 153 

collected using the crowd sourcing tool Amazon Mechanical Turk, in which volunteers rated the 154 

relevance of each experiential domain to a given concept on a 0-6 Likert scale. The value of 155 

each feature was represented by averaging ratings across participants. This feature set was 156 

highly effective at clustering concepts into traditional taxonomic categories (e.g., animals, 157 

plants, vehicles, occupations, etc.) (Binder et al., 2016) and has been used successfully to 158 

decode fMRI activation patterns during sentence reading (Anderson et al., 2017; Anderson et 159 

al., 2019). 160 

 161 

Stimulus Presentation and Tasks 162 

Words were presented visually in a fast event-related procedure with variable inter-stimulus 163 

intervals. The entire list was presented to each participant six times in a different pseudorandom 164 

order across two separate imaging sessions (3 presentations per session). 165 

Stimuli were presented in white font on a black background. Each trial began with 166 

presentation of a single word for 500 ms, followed by a 1.5-sec fixation period (Figure 1). 167 

Participants were instructed to read each word silently and think about the meaning of the word. 168 

To ensure attention to the stimuli, a random 10% of the trials were followed by a semantic-169 

matching probe task, in which 2 words were shown side by side, and the participant indicated by 170 

a button press which of the two was more similar in meaning to the word just presented (these 171 

probe trials were not included in the analyses). All trials then concluded with presentation of a 172 

nonverbal “reset” stimulus for 1.5 seconds, the aim of which was to suppress processing of the 173 

previously presented word. The reset stimulus consisted of two grey squares presented side by 174 
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side and separated by a vertical black line. The participant indicated by a button press which of 175 

the two squares was brighter. A variable fixation period of 0-4 sec followed all trials prior to the 176 

beginning of the next trial. 177 

 178 

 179 

Figure 1. Schematic illustration of the tasks used in Experiment 1. 180 

 181 

Each presentation of 242 test words and 26 probe trials (268 trials in total) occurred over 182 

the course of four imaging runs, each lasting 6 minutes. The four runs that comprised one 183 

repeat of the entire list was referred to as a "set". To minimize lexical ambiguity, grammatical 184 

class was used to block items by run. This was necessary because many of the nouns in the list 185 

can also be used as verbs, and several had very different semantic features when used as 186 

nouns vs. verbs (e.g., 'left', 'duck', 'saw', 'fence', 'spring'). Although the verbs in the set were all 187 

in past tense, several are also used commonly as adjectival participles ('celebrated', 'damaged', 188 

'lost', 'planned', 'used'). Thus, nouns and verbs were presented in different runs, and adjectives 189 
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 9 

were blocked with the nouns to separate them from the verbs. The nouns and adjectives were 190 

distributed evenly across 3 of the 4 imaging runs in each set, with the runs balanced on word 191 

class and noun category. Each of these 3 runs thus included 13 adjectives, 4-5 event nouns, 8 192 

animate object nouns, 12-13 inanimate object nouns, 12-13 human role nouns, and 10 setting 193 

nouns. The remaining run of each set contained all 62 verbs.  194 

Stimuli for probe trials were selected pseudo-randomly with replacement. For the 3 195 

noun-adjective runs, a random set of either 6 or 7 probe trial words was selected for each run 196 

from the words comprising the other two noun-adjective runs, such that no stimulus used on a 197 

probe trial was repeated within the same run. This was not possible for the verb run, since all 62 198 

verbs were presented in the same run. Thus, for the verb run, 7 verbs appeared twice – one 199 

time followed by a probe and one time without a probe. 200 

Nine complete sets were composed in this way. Six were selected for each participant, 201 

with counterbalancing across participants. In addition, the order of presentation within each run 202 

was randomized for each participant to eliminate order effects at the group level. 203 

 204 

MRI Data Acquisition and Processing 205 

Images were acquired with a 3T GE 750 scanner at the Center for Imaging Research of the 206 

Medical College of Wisconsin. High-resolution T1-weighted anatomical images were acquired 207 

with a 3D spoiled gradient echo sequence (FOV = 240 mm, 220 axial slices, in-plane matrix = 208 

256 x 224, voxel size = 1 x 1 x 1 mm3). T2-weighted anatomical images were acquired with a 209 

CUBE T2 sequence (FOV = 256 mm, 168 sagittal slices, in-plane matrix = 256 x 256, voxel size 210 

= 1 x 1 x 1 mm3). T2*-weighted gradient-echo echoplanar images were obtained for functional 211 

imaging (TR = 2000 ms, TE = 24 ms, flip angle = 77°, FOV = 192 mm, 41 axial slices, in-plane 212 

matrix = 64 x 64, voxel size = 3 x 3 x 3 mm3).  213 

Preprocessing was performed using AFNI. EPI images were corrected for slice timing. 214 

All images were then aligned to the 3rd functional image in the series before aligning to the T1-215 
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weighted anatomical image. All voxels were normalized to have a mean of 100 and a range of 0 216 

to 200. A general linear model was built to fit the time series of the functional data via 217 

multivariable regression. Each word was treated as a single regressor of interest, which 218 

included the 6 repetitions of the word and excluded any probe task trials involving that word, 219 

resulting in 242 beta coefficient maps. Regressors of no interest included 12 degrees of 220 

freedom of head motion, response time for the reset task, and response time for the probe task 221 

trials. Individual word, reset, and probe task event regressors were convolved with a 222 

hemodynamic response function. A t statistical map was generated for each word and these 223 

maps were subsequently used for the searchlight RSA. 224 

 225 

Surface-Based Searchlight Representational Similarity Analysis 226 

To optimize alignment between participants and to constrain the searchlight analysis to cortical 227 

grey matter, individual brain surface models were constructed from T1-weighted and T2-228 

weighted anatomical data using Freesurfer and the HCP pipeline (Glasser et al., 2013). The 229 

cortex ribbon was reconstructed in standard grayordinate space with 2-mm spaced vertices. We 230 

visually checked the quality of reconstructed surfaces before carrying out the analysis. 231 

Segmentation errors were corrected manually, and the corrected images were fed back to the 232 

pipeline to produce the final surfaces. Only cortical grey matter was included in the analysis.  233 

 RSA was carried out using custom Python and Matlab scripts. Searchlight RSA typically 234 

employs spherical volumes moved systematically through the brain or the cortical grey matter 235 

voxels. This method, however, does not exclude signals from white matter voxels that happen to 236 

fall within the sphere, and which may contribute noise. Spherical volumes may also erroneously 237 

combine non-contiguous cortical regions across sulci. Surface-based searchlight analysis 238 

overcomes these shortcomings using circular 2-dimensional “patches” confined to contiguous 239 

vertices on the cortical surface. At each vertex, a fast-marching algorithm was applied to create 240 

a 5-mm radius patch around the seed vertex on the midthickness surface, resulting in a group of 241 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.05.451188doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451188
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

vertices comprising each patch. These vertices were then mapped one by one back to the 242 

native volume space of the participant to label voxels associated with the surface patch. To 243 

avoid partial-volume effects, we included only voxels that contained the entire middle 80% of the 244 

cortical ribbon at the mapped vertex location. Each surface vertex was thus associated with a 245 

group of voxels in native space (the searchlight ROI) for subsequent RSA. 246 

 Representational dissimilarity matrices (RDMs) were calculated for the semantic model 247 

(the model RDM) and for each vertex-associated ROI (the neural RDM). Each entry in the 248 

neural RDM represented the correlation distance between fMRI responses evoked by two 249 

different words. Neural RDMs were computed for each of the 64,984 vertices. For the model 250 

RDM, we calculated the cosine distances between each pair of words in the 65-dimensional 251 

experiential feature space. A word length RDM, created by taking the absolute difference in 252 

letter length between each word pair, was included as a covariate matrix of no interest. Pearson 253 

correlations between neural RDMs and the model RDM were computed controlling for the word 254 

length RDM, resulting in a partial correlation score map on the surface for each participant. 255 

Finally, second level analysis was performed on the partial correlation score maps after 256 

alignment of each individual map to a common surface template (generated by averaging the 257 

individual 32k_FS_LR meshes produced by the HCP pipeline), Fisher z-transformation, and 258 

smoothing of the maps with a 6-mm full width at half maximum Gaussian kernel. A one-tailed, 259 

one-sample t-test against zero was applied at all vertices. FSL’s PALM was used for non-260 

parametric permutation testing to determine cluster-level statistical inference. Cluster-level 261 

statistical inference was implemented with a cluster-forming threshold of z > 3.1 (p < 0.001). 262 

The distribution of the largest clusters across permutations, in which the correlations were 263 

randomly sign-flipped 10,000 times, was calculated, and a significance level of α < 0.01 was set. 264 

The final data were rendered on the group averaged HCP template surface. 265 

 266 

 267 
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Experiment 2 268 

Participants 269 

Experiment 2 involved 22 right-handed, native English speakers (11 women, 11 men; mean age 270 

29.1; range 20 to 41). None of the participants took part in Experiment 1. This dataset was 271 

reported in a previous study (Fernandino et al., 2021). 272 

 273 

Stimuli  274 

Stimuli (see Supplementary Table 2) included 160 object nouns (40 each of animals, foods, 275 

tools, and vehicles) and 160 event nouns (40 each of social events, verbal events, non-verbal 276 

sound events, and negative events). Of the 320 concepts included in Experiment 2, 24 objects 277 

and 9 events were also used in Experiment 1. Concept ratings on the same 65 experiential 278 

domains used for the model in Experiment 1 were obtained for each concept using the same 279 

crowd-sourcing methods as in Experiment 1.  280 

 281 

Stimulus Presentation and Tasks 282 

As in Experiment 1, words were presented visually in a fast event-related procedure with 283 

variable inter-stimulus intervals, and the entire list was presented 6 times in random order over 284 

three imaging sessions performed on separate days. 285 

On each trial, a noun was displayed in white font on a black background for 500 ms, 286 

followed by a 2.5-second blank screen. Each trial was followed by a central fixation cross with 287 

variable duration between 1 and 3 s (mean = 1.5 s). Participants rated each noun according to 288 

how often they encountered the corresponding entity or event in their daily lives, on a scale from 289 

1 (“rarely or never”) to 3 (“often”). This familiarity judgment task was designed to encourage 290 

semantic processing of the word stimuli without emphasizing any particular semantic features or 291 

dimensions. Participants indicated their response by pressing one of three buttons on a 292 

response pad with their right hand. In contrast to Experiment 1, no reset task was used. 293 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.05.451188doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.451188
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Each presentation of the 320 test words occurred over the course of 4 imaging runs. 294 

Each session consisted of 2 presentations of the full list (8 runs). 295 

 296 

MRI Data Acquisition and Processing 297 

Images were acquired with a 3T GE Premier scanner at the Medical College of Wisconsin. 298 

Structural imaging included a T1-weighted MPRAGE volume (FOV = 256 mm, 222 axial slices, 299 

voxel size = 0.8 x 0.8 x 0.8 mm3) and a T2-weighted CUBE acquisition (FOV = 256 mm, 222 300 

sagittal slices, voxel size = 0.8 x 0.8 x 0.8 mm3). T2*-weighted gradient-echo echoplanar images 301 

were obtained for functional imaging using a simultaneous multi-slice sequence (SMS factor = 302 

4, TR = 1500 ms, TE = 23 ms, flip angle = 50°, FOV = 208 mm, 72 axial slices, in-plane matrix = 303 

104 x 104, voxel size = 2 x 2 x 2 mm3). A pair of T2-weighted spin echo echo-planar scans (5 304 

volumes each) with opposing phase-encoding directions was acquired before run 1, between 305 

runs 4 and 5, and after run 8, to provide estimates of EPI geometric distortion in the phase-306 

encoding direction due to B0 inhomogeneities. 307 

 In addition to the preprocessing steps described above for Experiment 1, functional 308 

images were also corrected for geometric distortion using AFNI’s 3dQwarp, which implemented 309 

non-linear transformations estimated from the paired T2-weighted spin echo images. As in 310 

Experiment 1, each word was treated as a single regressor of interest and convolved with a 311 

hemodynamic response function, resulting in 320 beta coefficient maps. Head motion vectors 312 

were again included as regressors of no interest. Response time z-score on each trial of the 313 

familiarity judgment task was also included as a covariate of no interest. 314 

 315 

Surface-Based Searchlight Representational Similarity Analysis 316 

RSA analysis, generation of group maps, and thresholding methods for Experiment 2 were 317 

identical to those used for Experiment 1. 318 

 319 
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Hierarchical clustering based on neural similarity structure 320 

Although the regions identified in Experiments 1 and 2 all show neural similarity structures that 321 

are correlated with the semantic model structure, it is possible that they vary somewhat in their 322 

information content. To investigate relative differences and similarities between the 323 

representational structure of the various regions identified in the RSAs, we performed 324 

hierarchical clustering analysis on the neural RDMs of these regions, as follows. First, the group 325 

maps from each experiment were thresholded at p <.0005 to separate minimally connected 326 

regions and highlight vertices with strong correlations to the semantic model. These maps were 327 

then overlapped to identify vertices common to both experiments. These steps resulted in 23 328 

regions common to both analyses, which were used as regions of interest (ROIs) for the 329 

hierarchical clustering analysis. At the individual participant level, within each ROI, seed vertices 330 

with the highest correlation scores were combined iteratively until a set of approximately 100 331 

voxels associated with these vertices was compiled. A neural RDM was then computed for each 332 

such voxel set, resulting in 23 RDMs for each individual. Pairwise RDM correlation was 333 

calculated for these 23 voxel sets at the individual level, resulting in a new 23 x 23 matrix in 334 

which each entry represented the correlation between neural RDMs of two ROIs. These 335 

matrices were then averaged across all 41 participants, and hierarchical clustering was 336 

implemented on this averaged matrix, excluding the diagonal. Ward’s variance minimization 337 

algorithm was applied to calculate distances between clusters. 338 

 339 

Results 340 

Experiment 1. “Probe” trials requiring semantic forced-choice matching of 2 words with the 341 

preceding list word were presented after 10% of list words to encourage attention to the list 342 

words. One participant failed to provide responses on this task, probably due to inadequate 343 

instruction. For the remaining participants, the mean response rate was 95.5% (SD 4.2%), and 344 

mean accuracy was 82.1% (SD 7.0%). A perceptual “reset” task occurred after all list words 345 
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(and probe trials) with the aim of curtailing processing of the previous list word. The mean 346 

response rate on this task was 98.9% (SD 2.5%), and mean accuracy was 96.1% (SD 4.6%). 347 

 Group-level searchlight RSA showed a bilateral, distributed network of regions where 348 

neural similarity correlated with semantic similarity across the 242 list words (Figure 2, left). 349 

Extensive temporal lobe involvement included much of the temporal pole, superior temporal 350 

sulcus (STS) and middle temporal gyrus (MTG), and anterior fusiform and parahippocampal gyri 351 

bilaterally. The inferior temporal gyrus (ITG) was also involved, more so on the left. Parietal lobe 352 

involvement was mainly in the inferior parietal lobule, including angular and supramarginal gyri 353 

(AG and SMG) bilaterally. Frontal lobe regions included the inferior frontal gyrus (IFG), much of 354 

the superior frontal gyrus (SFG) laterally and medially, more restricted patches in the middle 355 

frontal gyrus, and orbital frontal cortex bilaterally. Small regions of the precentral gyrus were 356 

involved in both hemispheres, and there was substantial involvement of the right insula. On the 357 

medial surface there was extensive involvement of the posterior cingulate gyrus and adjacent 358 

precuneus bilaterally, and the rostral anterior cingulate cortex bilaterally. 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 
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 367 

Figure 2. Brain areas where similarity between the neural patterns evoked by concepts was 368 

significantly correlated with concept similarity according to the semantic model. Results for 369 

Experiment 1 (left) and Experiment 2 (right) are shown on dorsal, lateral, medial, and ventral 370 

surface views. All results are significant at p < 0.001 and cluster corrected at α < 0.01. Colors 371 

represent t values. 372 

 373 

Experiment 2. The mean response rate on the familiarity judgment task was 98.6% (SD 2.3%). 374 

Intra-individual consistency in familiarity ratings across the 6 repetitions of each word was 375 

evaluated using intraclass correlations (ICCs) based on a single measurement, two-way mixed 376 

effects model and the absolute agreement definition. Results suggested generally good overall 377 

intra-individual agreement, with individual ICCs ranging from fair to excellent (mean ICC = 378 

0.661, range: 0.438 – 0.858, all ps<0.00001) (Cicchetti, 1994).  To examine consistency in 379 
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familiarity ratings across participants, responses to the 6 repetitions were first averaged within 380 

individuals, and the  ICC across participants was calculated using the consistency definition. 381 

The resulting ICC of 0.595 (95% confidence interval [0.556, 0.635], p < .00001) suggested fair 382 

to good inter-individual consistency. 383 

 As with Experiment 1, group-level searchlight RSA showed a bilateral, distributed 384 

network of regions where neural similarity correlated with semantic similarity across the test 385 

concepts (Figure 1, right). Most of these overlapped with those in Experiment 1, including 386 

temporal pole, STS, MTG, AG, SMG, IFG, SFG, and posterior cingulate/precuneus (PCC) 387 

bilaterally. Compared to Experiment 1, there was notably more extensive involvement of lateral 388 

prefrontal cortex, including inferior and middle frontal gyri, bilaterally, and somewhat less 389 

extensive ventral temporal lobe involvement. Areas of overlap between the two experiments are 390 

shown in Figure 3. 391 

 392 
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 393 

Figure 3. Brain areas where neural similarity was significantly correlated with model similarity in 394 

both Experiment 1 and Experiment 2. LACC: left anterior cingulate cortex; LAG: left angular 395 

gyrus; LaSTG: left anterior superior temporal gyrus; LdPF: left dorsal prefrontal cortex; LIFG: left 396 

inferior frontal gyrus; LIPS: left intraparietal sulcus; LMT: left medial temporal lobe; LMTG: left 397 

middle temporal gyrus; LOFC: left orbital frontal cortex; LPCC: left posterior cingulate and 398 

precuneus cortex; LSMG: left supramarginal gyrus; LTP: left temporal pole; RAG: right angular 399 

gyrus; RaSTG: right anterior superior temporal gyrus; RdPF: right dorsal prefrontal cortex; 400 

RIFG: right inferior frontal gyrus; RIns: right insula; RMT: right medial temporal lobe; RMTG: 401 

right middle temporal gyrus; ROFC: right orbital frontal cortex; RPCC: right posterior cingulate 402 

and precuneus cortex; RSMG: right supramarginal gyrus; RTP: right temporal pole.  403 
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 404 

Hierarchical clustering of neural similarity structures. Overlap of the Experiment 1 and 405 

Experiment 2 RSA maps showed 23 regions common to both (color-coded in Figure 4, right). 406 

Degree of similarity between the neural RDMs extracted from each of these regions was 407 

examined using hierarchical cluster analysis (Figure 4, left). The results revealed a division 408 

between ROIs in the parietal lobe (PCC, AG, SMG, left intraparietal sulcus) and lateral temporal 409 

lobe in one major cluster, and ROIs in the medial temporal lobe, temporal pole, and frontal lobes 410 

in another major cluster. The parietal/lateral temporal cluster was further divided by hemisphere, 411 

such that right AG, SMG, MTG, and anterior STG fell in one subcluster, and left parietotemporal 412 

ROIs in another, along with left and right PCC. The other main cluster included a “limbic” 413 

subcluster consisting of bilateral temporal poles, parahippocampus/hippocampus, and right 414 

insula. A final subcluster included all frontal lobe ROIs and the left anterior STG. 415 

 416 

 417 

 418 

Figure 4. Results of hierarchical clustering of neural similarity structures. Left: Dendrogram 419 

based on the averaged similarity structures of neural data from 23 ROIs. The vertical axis 420 

indicates linkage distance. Right: The 23 ROIs defined by overlapping the RSA maps from the 421 
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two experiments after thresholding each map at p < 0.0005 and cluster-correcting at α < 0.01. 422 

Anatomical labels match those in Figure 3. 423 

 424 

Discussion 425 

We sought to clarify the large-scale architecture of the concept representation system by 426 

identifying cortical regions whose activation patterns encoded multimodal experiential 427 

information about individual lexical concepts. Previous whole-brain searchlight RSA studies on 428 

this topic have used semantic representation models based on category membership, semantic 429 

feature lists, or word co-occurrence statistics, producing highly variable results. Here we used a 430 

model based entirely on multimodal experiential content with no explicit reference to taxonomic 431 

or distributional similarity. Across two independent experiments, each involving a large number 432 

and a wide range of concepts, we detected multimodal concept representation in widespread 433 

heteromodal cortical regions, bilaterally, including anterior and posterior temporal cortex, inferior 434 

parietal cortex, posterior cingulate gyrus and precuneus, and medial, dorsal, ventrolateral, and 435 

ventral prefrontal regions. These results call into question the idea that information streams 436 

originating in unimodal cortical areas are integrated at a single anatomically localized hub for 437 

concept representation. 438 

 Four previous RSA studies using semantic models and word stimuli implicated 439 

anteromedial temporal cortex, particularly perirhinal cortex, as a semantic hub (Devereux et al., 440 

2013; Liuzzi et al., 2015; Martin et al., 2018; Liuzzi et al., 2019). All used semantic models 441 

based on crowd-sourced feature production lists, and all used a feature verification task during 442 

fMRI (e.g., “WASP – Does it have paws?”). Validity issues with feature production lists have 443 

been noted previously, such as the fact that many features people produce are multimodal or 444 

highly abstract, and some types of features are difficult to verbalize or systematically ignored 445 

(Hoffman and Lambon Ralph, 2013). Another potential problem with these RSA studies is that 446 

the verification task used during fMRI requires semantic processing of the explicitly named 447 
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feature, which logically must contribute to the observed neural activation pattern but is not 448 

coded in the semantic model. These problems may have weakened the ability of these studies 449 

to detect other regions involved in concept representation. 450 

 Prior studies combining searchlight RSA with either taxonomic (Devereux et al., 2013; 451 

Carota et al., 2021) or distributional (Anderson et al., 2015; Carota et al., 2021) semantic 452 

models have implicated more widespread regions, including posterior lateral temporal cortex, 453 

inferior parietal lobe, posterior cingulate gyrus, and prefrontal cortex. Only one of these studies 454 

(Anderson et al., 2015) reported any representational correspondence in medial or ventral 455 

temporal areas. The two studies using taxonomic models (Devereux et al., 2013; Carota et al., 456 

2021) showed similar involvement of the left posterior superior temporal sulcus and MTG, with 457 

extension into adjacent AG and SMG. In contrast, the two studies using distributional models 458 

(Anderson et al., 2015; Carota et al., 2021) found little or no posterior temporal involvement, and 459 

inferior parietal involvement was confined mainly to the left SMG. Frontal cortex involvement 460 

was uniformly present but highly variable in extent and location across the studies. Two studies 461 

reported involvement of the posterior cingulate/precuneus (Devereux et al., 2013; Anderson et 462 

al., 2015). 463 

 Several factors may have negatively impacted sensitivity and reliability in these studies. 464 

First, ROI-based RSAs show that, relative to experiential models of concept representation, 465 

taxonomic and distributional models are consistently less sensitive to the neural similarity 466 

structure of lexical concepts (Fernandino et al., 2021). Furthermore, most of the prior studies 467 

used volume-based spherical searchlights, which typically sample a mix of grey and white 468 

matter voxels, while the surface-based approach used in the present study ensures that only 469 

contiguous cortical gray matter voxels are included, thus reducing noise from uninformative 470 

voxels. Finally, the nature of the task and the particularities of the concept set used as stimuli 471 

can affect both the sensitivity of the analysis and the cortical distribution of the RSA searchlight 472 

map, and variations in these properties may underlie some of the variation in results across 473 
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studies. We dealt with this issue by (1) employing large numbers of concepts from diverse 474 

semantic categories and (2) by analyzing data from two independent experiments to identify 475 

areas displaying reliable representational correspondence with the semantic model across 476 

different concept sets and different tasks. 477 

 The network of brain regions identified in the current study closely resembles the 478 

network identified previously in a meta-analysis of 120 functional imaging studies on semantic 479 

processing (Binder et al., 2009). The results provide novel evidence that these brain regions, 480 

consisting essentially of heteromodal association areas distant from primary sensory and motor 481 

systems, represent conceptual information in terms of multimodal experiential content. In 482 

contrast to previous RSA studies of concept representation (Devereux et al., 2013; Anderson et 483 

al., 2015; Martin et al., 2018; Carota et al., 2021), the network includes extensive cortex in the 484 

ATL, a region strongly implicated in high-level semantic representation (Lambon Ralph et al., 485 

2017). Although the current results support a role for the ATL in concept representation, they 486 

argue against it having a unique role as a central integration hub. 487 

 The concept representation network identified in the current study also closely 488 

resembles the set of brain regions referred to as the “default mode network” (Buckner et al., 489 

2008). This overlap supports the view that concept retrieval and manipulation are major 490 

components of the brain’s “default mode” of processing (Binder et al., 1999; Binder et al., 2009; 491 

Andrews-Hanna et al., 2014). Our results add to prior evidence by showing that the 492 

representational structure of neural activity in these regions reflects the experiential content of 493 

lexical concepts. 494 

 The finding of extensive frontal lobe involvement in concept “representation” deserves 495 

comment. Studies of brain damaged individuals and functional imaging experiments in the 496 

healthy brain have long been interpreted as supporting the classic view that frontal cortex plays 497 

an operational control rather than an information storage function in the brain (Stuss and 498 

Benson, 1986; Kimberg and Farah, 1993; Thompson-Schill et al., 1997; Wagner et al., 2001). 499 
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Nevertheless, nearly all RSA studies of concept representation have observed similarity 500 

structure correlations in prefrontal regions. Why would activity in these areas reflect semantic 501 

content? We believe these observations can be reconciled with the classic view by postulating a 502 

more fine-grained organization of control systems in the frontal lobe than is usually assumed in 503 

semantic theories. Rather than being composed of large, homogeneous areas with a 504 

nonspecific control function, control systems in the prefrontal cortex may be tuned, at a 505 

relatively small scale, to particular sensory-motor and affective features. Neurophysiological 506 

studies in nonhuman primates provide evidence for tuning of prefrontal neurons to preferred 507 

stimulus modalities (Romanski, 2007), as well as differential connectivity across the prefrontal 508 

cortex with various sensory systems (Barbas and Mesulam, 1981; Petrides, 2005). A few 509 

human functional imaging studies provide similar evidence for sensory modality tuning in 510 

prefrontal cortex (Greenberg et al., 2010; Michalka et al., 2015; Tobyne et al., 2017). If 511 

conceptual representation in temporal and parietal cortex is inherently organized according to 512 

experiential content, it seems plausible that controlled activation and short-term maintenance of 513 

this information would require similarly fine-grained control mechanisms.  514 

 This hypothesis finds some support in a comparison of our two experiments. The 515 

infrequent probe task procedure used in Experiment 1 was intentionally designed to minimize 516 

explicit, goal-directed retrieval of semantic information, and the inclusion of a non-semantic 517 

perceptual discrimination task after each trial likely encouraged participants to focus their 518 

attention on this task rather than on semantic retrieval. In contrast, the task in Experiment 2 519 

required participants to make a semantic decision about each word. Compared to Experiment 1, 520 

the Experiment 2 results show much more extensive involvement of lateral prefrontal cortex. A 521 

likely interpretation is that the explicit task in Experiment 2 led to stronger engagement of 522 

feature-specific control networks in these frontal regions. We propose that the information 523 

represented in these prefrontal regions reflects their entrainment to experiential representations 524 
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stored primarily in temporoparietal cortex, providing context-dependent control over their level of 525 

activation. 526 

 Related to this issue is the question of how similar the many regions identified by RSA 527 

are to each other in terms of their representational structure. Although RSA ensures that the 528 

neural similarity structure of all these regions is related to the similarity structure encoded in the 529 

semantic model, representational structure should be expected to vary to some degree across 530 

distinct functional regions. An exploratory cluster analysis of the neural RDMs from these 531 

regions suggests a broad distinction between two clusters, one consisting of medial and lateral 532 

parietal cortex and posterior lateral temporal areas (across both hemispheres) and the other 533 

consisting of medial, ventral, and anterior temporal areas, right insula, and frontal areas. There 534 

was also evidence for a distinction between left and right parietotemporal representational 535 

structures. These results are consistent with proposed distinctions between the functions of 536 

frontal, posterior association, and limbic cortices, as well as longstanding claims regarding 537 

interhemispheric differences in semantic representation (Beeman and Chiarello, 1998). 538 

Interestingly, this analysis suggests that representations in the ATL are more similar to those in 539 

prefrontal areas than to those in posterior temporal and parietal areas involved in the 540 

representation of objects and events (Martin, 2007; Bedny et al., 2014). More research is 541 

needed to understand the factors that underlie these regional differences in representational 542 

content. 543 

  544 
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Figure Legends 668 

 669 

Figure 1. Schematic illustration of the tasks used in Experiment 1. 670 

 671 

Figure 2. Brain areas where similarity between the neural patterns evoked by concepts was 672 

significantly correlated with concept similarity according to the semantic model. Results for 673 

Experiment 1 (left) and Experiment 2 (right) are shown on dorsal, lateral, medial, and ventral 674 

surface views. All results are significant at p < 0.001 and cluster corrected at α < 0.01. Colors 675 

represent t values. 676 

 677 

Figure 3. Brain areas where neural similarity was significantly correlated with model similarity in 678 

both Experiment 1 and Experiment 2. LACC: left anterior cingulate cortex; LAG: left angular 679 

gyrus; LaSTG: left anterior superior temporal gyrus; LdPF: left dorsal prefrontal cortex; LIFG: left 680 

inferior frontal gyrus; LIPS: left intraparietal sulcus; LMT: left medial temporal lobe; LMTG: left 681 

middle temporal gyrus; LOFC: left orbital frontal cortex; LPCC: left posterior cingulate and 682 

precuneus cortex; LSMG: left supramarginal gyrus; LTP: left temporal pole; RAG: right angular 683 

gyrus; RaSTG: right anterior superior temporal gyrus; RdPF: right dorsal prefrontal cortex; 684 

RIFG: right inferior frontal gyrus; RIns: right insula; RMT: right medial temporal lobe; RMTG: 685 

right middle temporal gyrus; ROFC: right orbital frontal cortex; RPCC: right posterior cingulate 686 

and precuneus cortex; RSMG: right supramarginal gyrus; RTP: right temporal pole.  687 

 688 

Figure 4. Results of hierarchical clustering of neural similarity structures. Left: Dendrogram 689 

based on the averaged similarity structures of neural data from 23 ROIs. The vertical axis 690 

indicates linkage distance. Right: The 23 ROIs defined by overlapping the RSA maps from the 691 

two experiments after thresholding each map at p < 0.0005 and cluster-correcting at α < 0.01. 692 

Anatomical labels match those in Figure 3. 693 
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Supplementary Materials 694 

 695 

Adjective  Verb  Noun     
aggressive soft approached left accident coffee flower office team 
angry spiritual arrested liked activist commander football parent television 
big tired ate listened actor company forest park terrorist 
black used blocked lived agreement computer girl party theater 
blue wealthy bought lost airport corn glass patient ticket 
clever white broke marched army council guard pencil tourist 
cold yellow built met artist couple hall pilot tree 
dangerous young carried negotiated author court highway plane trial 
dark  celebrated opened ball criminal horse policeman vacation 
dead  crossed planned banker debate hospital politician victim 
dusty  damaged played baseball desk hotel priest voter 
empty  delivered put beach dime hurricane prison water 
expensive  destroyed ran bed dinner island protest window 
famous  drank read bicycle diplomat journalist reporter winter 
friendly  drew saw bird doctor judge restaurant witness 
green  dropped shouted boat dog jury river woman 
happy  ended slept book door lab school worker 
heavy  feared spoke boy driver lake scientist  
hot  fed stayed bread duck lawyer soccer  
injured  fixed stole bridge editor magazine soldier  
lonely  flew survived businessman egg man spring  
long  found threw cabinet election mayor stone  
loud  gave took camera embassy medicine store  
new  grew used car engineer meeting storm  
old  held visited cash family minister street  
peaceful  helped walked cellphone farmer mob student  
powerful  hiked wanted chair feather morning summer  
red  interviewed watched chicken fence mountain sun  
shiny  kicked went child field mouse table  
sick  landed worked church fish newspaper tea  
small  laughed wrote cloud flood night teacher  

Supplementary table. 1. Words for experiment 1 696 
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 698 

Event       Object       
Negative Nonverbal Social Verbal Animal Food/Plant Tool Vehicle 
avalanche chuckle bash lecture hippopotamus chestnut scissors ferry 
battle squeal parade eulogy fish ketchup dime ambulance 
blizzard screaming conference tribute ant cranberry candle train 
bombing sizzle rally deposition goldfish flower stapler automobile 
brawl screeching party showdown turtle raspberry rake boat 
cyclone applause tournament protest tiger custard spatula bobsled 
downpour siren gathering compliment jackal sauerkraut umbrella skateboard 
drought crescendo musical greeting cricket mushroom axe carriage 
earthquake snap cruise testimony butterfly pudding crutches helicopter 
epidemic growling wedding discourse mosquito ham comb barge 
explosion sneeze convention praise chameleon honey tongs tricycle 
famine boom circus rebuke horse lemonade anchor wagon 
flood thumping pageant rebuttal salmon tomato ladle sled 
gunshot shrieking luncheon dispute alligator chocolate sandpaper motorcycle 
gust sobbing outing comment trout banana book jeep 
hail clattering jubilee commemoration chimpanzee cider faucet van 
hailstorm gulp expo denial chicken broccoli pencil bus 
hurricane whine reception trial duck pumpkin glass plane 
inferno whimpering banquet huddle baboon bread hoe tractor 
invasion melody reunion advice lion cheese fork steamer 
landslide hiccup dance quarrel mouse champagne camera car 
lightning murmuring feast thanks caterpillar spaghetti binoculars rowboat 
monsoon roaring safari interrogation hawk eggplant straw taxi 
murder sigh celebration joke moose dandelion calculator convertible 
outbreak squeaking fair plea snake egg stethoscope streetcar 
plague wheezing expedition class octopus pineapple corkscrew limousine 
raid rumble concert recitation dog cucumber cash glider 
riot bang symphony dictation hamster milk handsaw truck 
shooting giggle cookout debate cardinal mustard magazine rocket 

squall reverberation contest sermon penguin tobacco football canoe 
stampede crackle carnival rant whale bean microscope locomotive 
storm rustle festival lesson crow jam hammer trolley 
tempest thunderclap housewarming threat turkey blueberry thermometer bicycle 
thunderstorm jingle fiesta wisecrack elephant asparagus baseball sleigh 
tornado clapping march grievance bison nectarine keyboard subway 
twister chattering christening complaint cheetah coffee key escalator 
volcano bellowing prom apology rhinoceros beer ticket sailboat 
war grunt cocktails commentary chipmunk cherry newspaper elevator 
whirlwind laughter picnic meeting monkey plant hairbrush submarine 

wildfire groaning tour squabble dolphin carrot skillet scooter 
Supplementary table. 2. Words for experiment 2 699 
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