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Abstract

Understanding how dysregulated transcriptional processes result in tissue-speci�c pathology requires
a mechanistic interpretation of expression regulation across di�erent cell types. It has been shown
that this insight is key for the development of new therapies. These mechanisms can be identi�ed
with transcriptome-wide association studies (TWAS), which have represented an important step
forward to test the mediating role of gene expression in GWAS associations. However, due to
pervasive eQTL sharing across tissues, TWAS has not been successful in identifying causal tissues, and
other methods generally do not take advantage of the large amounts of RNA-seq data publicly
available. Here we introduce a polygenic approach that leverages gene modules (genes with similar
co-expression patterns) to project both gene-trait associations and pharmacological perturbation data
into a common latent representation for a joint analysis. We observed that diseases were signi�cantly
associated with gene modules expressed in relevant cell types, such as hypothyroidism with T cells
and thyroid, hypertension and lipids with adipose tissue, and coronary artery disease with
cardiomyocytes. Our approach was more accurate in predicting known drug-disease pairs and
revealed stable trait clusters, including a complex branch involving lipids with cardiovascular,
autoimmune, and neuropsychiatric disorders. Furthermore, using a CRISPR-screen, we show that
genes involved in lipid regulation exhibit more consistent trait associations through gene modules
than individual genes. Our results suggest that a gene module perspective can contextualize genetic
associations and prioritize alternative treatment targets when GWAS hits are not druggable.

Introduction

Human diseases have tissue-speci�c etiologies and manifestations [1,2,3]. In this context,
determining how genes in�uence these complex phenotypes requires mechanistically understanding
expression regulation across di�erent cell types [4,5,6], which in turn should lead to improved
treatments [7,8]. Previous studies have described regulatory DNA elements, including chromatin-
state annotations [9,10], high-resolution enhancers [11,12], DNase I hypersensitivity maps [5], and
genetic e�ects on gene expression across di�erent tissues [4]. Integrating functional genomics data
and GWAS data [13] has improved the identi�cation of these transcriptional mechanisms that, when
dysregulated, commonly result in tissue- and cell lineage-speci�c pathology.

Given the availability of gene expression data across several tissues [4,14,15,16], a popular approach
to identify these biological processes is the transcription-wide association study (TWAS), which
integrates expression quantitative trait loci (eQTLs) data to provide a mechanistic interpretation for
GWAS �ndings. TWAS relies on testing whether perturbations in gene regulatory mechanisms mediate
the association between genetic variants and human diseases [17,18,19,20]. However, TWAS have
not reliably detected tissue-speci�c e�ects because eQTLs are commonly shared across tissues
[21,22]. This sharing makes it challenging to identify the tissue or tissues speci�cally associated with a
phenotype. Alternative existing statistical approaches that connect GWAS �ndings with gene
expression data can infer disease-relevant tissues and cell types [22,23,24,25,26,27], but they
generally rely on small sets of expression data compared with the total number of RNA-seq samples
that are increasingly available [14,15]. Moreover, widespread gene pleiotropy and polygenic traits
reveal the highly interconnected nature of transcriptional networks [28,29], where potentially all
genes expressed in disease-relevant cell types have a non-zero e�ect [30,31]. Consequently, this
complicates the interpretation of genetic e�ects and hampers translational e�orts.

We propose PhenoPLIER, a polygenic approach that maps both gene-trait associations and drug-
transcriptional responses into a common representation for a joint analysis. For this, we integrated
more than 4,000 gene-trait associations (using TWAS from PhenomeXcan [32]) and transcriptional
pro�les of drugs (LINCS L1000 [33]) into a low-dimensional space learned from public gene
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expression data on tens of thousands of RNA-seq samples (recount2 [14,34]). We used a latent
representation de�ned by a computational approach [35] that learns recurrent gene co-expression
patterns with certain sparsity constraints and preferences for those that align with prior knowledge
(pathways). This low-dimensional space comprised features representing groups of genes (gene
modules) with coordinated expression across di�erent tissues and cell types. When mapping gene-
trait associations to this reduced expression space, we observed that diseases were signi�cantly
associated with gene modules expressed in relevant cell types, such as hypothyroidism with T cells
and thyroid, coronary artery disease with cardiomyocytes, hypertension and lipids with adipose
tissue, and heart problems with heart ventricle and muscle cells. We replicated gene module
associations with cardiovascular and autoimmune diseases in the Electronic Medical Records and
Genomics (eMERGE) network phase III [36]. Moreover, we performed a CRISPR-screen to analyze lipid
regulation in HepG2 cells and observed more consistent trait associations with modules than we
observe with individual genes. Our approach was also robust in �nding meaningful gene module-trait
associations, even when individual genes involved in lipid metabolism did not reach genome-wide
signi�cance in lipid-related traits. Compared to a single-gene approach, our module-based method
also better predicted FDA-approved drug-disease links by capturing tissue-speci�c pathophysiological
mechanisms linked with the mechanism of action of drugs (e.g., niacin with cardiovascular traits via a
known immune mechanism), suggesting that modules may provide a better means to examine drug-
phenotype relationships than individual genes. Finally, exploring the phenotype-module space also
revealed stable trait clusters associated with relevant tissues, including a complex branch involving
lipids with cardiovascular, autoimmune, and neuropsychiatric disorders.

Results

PhenoPLIER: an integration framework based on gene co-expression
patterns
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Figure 1:  Schematic of the PhenoPLIER framework. a) The integration process between gene co-expression patterns
from MultiPLIER (top) and TWAS results from PhenomeXcan (bottom). PhenoPLIER projects gene-trait associations to a
latent space learned from large gene expression datasets. The process generates matrix , where each trait is now
described by latent variables (LV) or gene modules. b) After the integration process, we found that neutrophil counts
and other white blood cells (bottom) were ranked among the top 10 traits for LV603, which was termed a neutrophil
signature in the original MultiPLIER study. Genes in LV603 were expressed in relevant cell types (top). PBMC: peripheral
blood mononuclear cells; mDCs: myeloid dendritic cells.

PhenoPLIER combines TWAS results with gene co-expression patterns by projecting gene-trait
associations onto a latent gene expression representation (Figure 1). We used PhenomeXcan [32], a
TWAS resource for the UK Biobank [37] and other cohorts that provides results for 4,091 di�erent
diseases and traits. We obtained a latent gene expression representation from MultiPLIER [34], an
unsupervised learning approach applied to recount2 [14] (a gene expression dataset including RNA-
seq data on a huge and heterogeneous number of samples, including rare diseases, cell types on
speci�c di�erentiation stages, or under di�erent stimuli, among others). Each of the 987 latent
variables (LV) represents a gene module, essentially a group of genes with coordinated expression
patterns (i.e., expressed together in the same tissues and cell types as a functional unit). Since LVs
might represent a functional set of genes regulated by the same transcriptional program [38,39], the
projection of TWAS results into this latent space could provide context for their interpretation.
PhenoPLIER translates gene-trait associations to an LV-trait score, linking di�erent traits and diseases
to LVs representing speci�c cell types and tissues, even at speci�c developmental stages or under

M̂

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.05.450786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.450786
http://creativecommons.org/licenses/by/4.0/


distinct stimuli. Examining these LVs is possible because the MultiPLIER models link to samples, which
may be annotated for experimental conditions (represented by matrix  in Figure 1 a) in which genes
in an LV are expressed.

In the original MultiPLIER study, the authors found one of the latent variables, LV603, to be
signi�cantly associated with a known neutrophil pathway and highly correlated with neutrophil count
estimates from gene expression [40]. We analyzed LV603 using PhenoPLIER (Figure 1 b) and found
that neutrophil counts and other white blood cell traits were ranked among the top 10 traits for this
LV, suggesting a high degree of internal consistency. We adapted the gene-property approach from
MAGMA [41] for LVs and found that gene weights in this LV were predictive of gene associations for
neutrophil abundance (FDR < 0.01). These initial results strongly suggested that shared patterns exist
in the gene expression space (which has no GTEx samples) and the TWAS space (with gene models
trained using GTEx v8); the approach linked transcriptional patterns from large and diverse dataset
collections, including tissue samples and perturbation experiments, to complex traits.

LVs link genes that alter lipid accumulation with relevant traits and
tissues

We performed a �uorescence-based CRISPR-Cas9 screen for genes associated with lipid
accumulation. We found 271 genes associated with lipids accumulation by using a genome-wide
lentiviral pooled CRISPR-Cas9 library targeting 19,114 genes in the human genome in the HepG2 cell
line. From these, we identi�ed two gene-sets that either caused a decrease (96 genes in total, with
eight high-con�dence genes: BLCAP, FBXW7, INSIG2, PCYT2, PTEN, SOX9, TCF7L2, UBE2J2) or an
increase of lipids (175 genes in total, with six high-con�dence genes: ACACA, DGAT2, HILPDA, MBTPS1,
SCAP, SRPR) (Supplementary File 1). Four LVs were signi�cantly enriched for these lipid-altering gene-
sets (FDR<0.05) (Supplementary Table 1).

First, for each lipid-altering gene-set, we assessed the genes’ e�ects on all phenotypes by adding their 
-values (transformed to -scores) and obtaining a ranked list of traits. The top associated traits for

genes in the decreasing-lipids gene-set were highly relevant to lipid levels, such as hypertension,
diastolic and systolic blood pressure, and vascular diseases, also including asthma and lung function
(Supplementary Table 2). We performed the same operation for our LV-based approach by
considering 24 LVs nominally enriched (unadjusted -value < 0.05) with the decreasing-lipids gene-set
by using Fast Gene Set Enrichment Analysis (FGSEA) [42]. In this case, we also found lipid-related traits
among the top 25, including hypertension, blood pressure, cardiometabolic diseases like
atherosclerosis, and celiac disease (Supplementary Table 3).

B

p z

p
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a b

Figure 2:  Tissues and traits associated with a gene module related to lipid metabolism (LV246). a) Top cell
types/tissues where LV246’s genes are expressed in. Values in the -axis come from matrix  in the MultiPLIER models
(Figure 1 a). In the -axis, cell types/tissues are sorted by the maximum value. b) Gene-trait associations (S-MultiXcan;
threshold at -log( )=10) and colocalization probability (fastENLOC) for the top traits in LV246. The top 40 genes in LV246
are shown, sorted by their module weight, from largest (top gene SCD) to smallest (gene FAR2); DGAT2 and ACACA, in
bold, are two of the six high-con�dence genes in the increasing-lipids gene set from our HepG2 CRISPR analyses. SGBS:
Simpson Golabi Behmel Syndrome; CH2DB: CH2 groups to double bonds ratio; NMR: nuclear magnetic resonance; HDL:
high-density lipoprotein; RCP: locus regional colocalization probability.

When we considered the increasing-lipids gene-set, genes and LVs were associated with a more
diverse set of traits, such as blood count tests, impedance measures, and bone-densitometry
(Supplementary Tables 4 and 5). FGSEA found 27 LVs nominally enriched for the increasing-lipids
gene-set which were associated with the same traits, and additionally to lung function, arterial
sti�ness, intraocular pressure, handgrip strength, rheumatoid arthritis, and celiac disease. Among
these, LV246 contained genes mainly co-expressed in adipose tissue (Figure 2 a), which plays a key
role in coordinating and regulating lipid metabolism. Additionally, using the gene-property analysis,
we found that gene weights for this LV were predictive of gene associations for blood lipids and
hypercholesterolemia (Supplementary Table 7). Two high-con�dence genes from our CRISPR
screening, DGAT2 and ACACA, are responsible for encoding enzymes for triglycerides and fatty acid
synthesis and were among the highest-weighted genes of LV246. However, as it can be seen in Figure
2 b, these two genes were not strongly associated with any of the top traits for this LV and thus would
not be revealed by TWAS alone; other members of LV246, such as SCD, LPL, FADS2, HMGCR, and
LDLR, were instead signi�cantly associated and colocalized with lipid-related traits. This suggested
that an LV-based perspective can integrate hits across modalities by leveraging information from
functionally related genes.

PhenoPLIER with LVs predicts drug-disease pairs better than single
genes

y B

x
p
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We systematically evaluated whether substituting LVs in place of individual genes more accurately
predicted known treatment-disease pairs. For this, we used the transcriptional responses to small
molecule perturbations pro�led in LINCS L1000 [33], which were further processed and mapped to
DrugBank IDs [43,44,45]. Based on an established drug repurposing strategy that matches reversed
transcriptome patterns between genes and drug-induced perturbations [46,47], we adopted a
previously described framework that uses imputed transcriptomes from TWAS to prioritize drug
candidates [48]. For this, we computed a drug-disease score by anti-correlating the -scores for a
disease (from TWAS) and the -scores for a drug (from LINCS) across sets of genes of di�erent size.
Therefore, a large score for a drug-disease pair indicated that a higher (lower) predicted expression of
disease-associated genes are down (up)-regulated by the drug, thus predicting a potential treatment.
Similarly, for the LV-based approach, we estimated how pharmacological perturbations a�ected the
gene module activity by projecting expression pro�les of drugs into our latent representation (see
Methods). We used a manually-curated gold standard set of drug-disease medical indications [44,49]
for 322 drugs across 53 diseases to evaluate the prediction performance.

Figure 3:  Drug-disease prediction performance for gene-based and module-based approaches. The receiver
operating characteristic (ROC) (left) and the precision-recall curves (right) for a gene-based and our module-based
approach. AUC: area under the curve; AP: average precision.

The gene-trait associations and drug-induced expression pro�les projected into the latent space
represent a compressed version of the entire set of results. Despite this compression, the LV-based
method outperformed the gene-based one with an area under the curve of 0.632 and an average
precision of 0.858 (Figure 3). The prediction results suggest that this low-dimensional space captures
biologically meaningful patterns that can link pathophysiological processes with the mechanism of
action of drugs.

We examined a speci�c drug-disease pair to determine whether the LVs driving the prediction were
biologically plausible. Nicotinic acid (niacin) is a B vitamin widely used clinically to treat lipid disorders.
Niacin exerts its e�ects on multiple tissues, although not all its mechanisms have been documented
[50,51]. This compound can increase high-density lipoprotein (HDL) by inhibiting an HDL catabolism
receptor in the liver. Niacin also inhibits diacylglycerol acyltransferase–2 (DGAT2), which decreases the
production of low-density lipoproteins (LDL) by modulating triglyceride synthesis in hepatocytes, or by
inhibiting adipocyte triglyceride lipolysis [50]. Niacin was one of the drugs in the gold standard
indicated for atherosclerosis (AT) and coronary artery disease (CAD). For AT, the LV-based approach
predicted niacin as a therapeutic drug with a score of 0.52 (above the mean), whereas the gene-based
method assigned a negative score of -0.01 (below the mean). To understand why the LV-based

z
z
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method gave an anticipated prediction di�erent from the gene-based approach, we obtained the LVs
that contributed substantially to the score, including those with top positive/negative LV values for the
disease and top negative/positive LV values for the drug of interest. Notably, LV246 (analyzed
previously) was among the top 20 modules contributing to the prediction of niacin as a therapeutic
drug for AT. Gene weights of LV246 were predictive of cardiovascular traits (Supplementary Table 7),
and several of its top genes were signi�cantly associated and colocalized with cardiovascular-related
traits: SCD (10q24.31) was associated with hypercholesterolemia (P=1.9e-5) and its GWAS and eQTL
signals were fully colocalized (RCP=1.0); LPL (8p21.3), which was previously linked to di�erent
disorders of lipoprotein metabolism, was signi�cantly associated with hypercholesterolemia (P=7.5e-
17, RCP=0.26), and family history of heart disease (P=1.7e-5, RCP=0.22); other genes associated with
hypercholesterolemia in this LV were FADS2 (11q12.2) (P=9.42e-5, RCP=0.623), HMGCR (5q13.3)
(P=1.3e-42, RCP=0.23), and LDLR (19p13.2) (P=9.9e-136, RCP=0.41).

The analysis of other niacin-AT-contributing LVs revealed additional known mechanisms of action of
niacin. For example, GPR109A/HCAR2 encodes a G protein-coupled high-a�nity niacin receptor in
adipocytes and immune cells, including monocytes, macrophages, neutrophils and dendritic cells
[52,53]. It was initially thought that the antiatherogenic e�ects of niacin were solely due to inhibition
of lipolysis in adipose tissue. However, it has been shown that nicotinic acid can reduce
atherosclerosis progression independently of its antidyslipidemic activity through the activation of
GPR109A in immune cells [54], thus boosting anti-in�ammatory processes and reversing cholesterol
transport [55]. In addition, �ushing, a common adverse e�ect of niacin, is also produced by the
activation of GPR109A in Langerhans cells (macrophages of the skin). This alternative mechanism for
niacin could have been hypothesized by examining the cell types where the top two modules
positively contributing to the niacin-AT prediction are expressed: LV116 and LV931 (Supplementary
Figures 14 and 15). Among these, we also found LV678 positively contributing to this prediction,
which was signi�cantly enriched with the lipids-decreasing genes from our CRISPR screening
(Supplementary Table 1). This module was expressed in the heart and muscle cells (Supplementary
Figure 13).

The LV-based method was able to integrate di�erent data types to provide an interpretable approach
for drug repositioning research based on genetic studies. Additionally, our approach could also be
helpful to understand better the mechanism of pharmacological e�ect of known or experimental
drugs. For example, LV66, one of the top LVs a�ected by niacin (Supplementary Figure 16) was mainly
expressed in ovarian granulosa cells. This compound has been very recently considered as a potential
therapeutic for ovarian diseases [56,57], as it was found to promote follicle growth and inhibit
granulosa cell apoptosis in animal models. Our LV-based approach could be helpful to generate novel
hypotheses to evaluate potential mechanisms of action, or even adverse e�ects, of di�erent drugs.

LV projections reveal trait clusters with shared transcriptomic
properties
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Figure 4:  Cluster analysis on traits using the latent gene expression representation. a) The projection of TWAS
results on =3,752 traits into the latent gene expression representation is the input data to the clustering process. A
linear (PCA) and non-linear (UMAP) dimensionality reduction techniques were applied to the input data, and the three
data versions were processed by �ve di�erent clustering algorithms. These algorithms derive partitions from the data
using di�erent sets of parameters (such as the number of clusters), leading to an ensemble of 4,428 partitions. Then, a
distance matrix is derived by counting how many times a pair of traits were grouped in di�erent clusters across the
ensemble. Finally, a consensus function is applied to the distance matrix to generate consolidated partitions with
di�erent number of clusters (from 2 to  60). These �nal solutions were represented in the clustering tree (Figure
5). b) The clusters found by the consensus function were used as labels to train a decision tree classi�er on the original
input data, which detects the LVs that better di�erentiate groups of traits.

The previous results suggested that the compression into  increases the signal-to-noise ratio. Thus,
we analyzed  to �nd groups of traits that were a�ected by the same transcriptional processes.
Selecting a clustering algorithm implies that a particular assumption about the structure of the data is
most appropriate. Instead, we employed a consensus clustering approach where we applied di�erent
methods with varying sets of parameters and later combined these into a consolidated solution. Our
clustering pipeline generated 15 �nal consensus clustering solutions with 5 to 29 clusters
(Supplementary Figure 33). Instead of selecting a speci�c number of clusters, we used a clustering

n
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tree [58] (Figure 5) to examine stable groups of traits across multiple resolutions. To interpret the
clusters, we trained a decision tree classi�er (a highly interpretable machine learning model) on the
input data  using the clusters found as labels. This quickly revealed the latent variables/gene
modules that di�erentiated the groups of traits.
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Figure 5:  Clustering tree using multiple resolutions for clusters of traits. Each row represents a partition/grouping
of the traits, and each circle is a cluster from that partition, and the number of clusters go from 5 to 29. Arrows indicate
how traits in one cluster move across clusters from di�erent partitions. Most of the clusters are preserved across
di�erent resolutions, showing highly stable solutions even with independent runs of the clustering algorithm. MCV:
mean corpuscular volume; MCH: mean corpuscular hemoglobin; MRV: mean reticulocyte volume; MSCV: mean sphered
cell volume; RDW: red cell (erythrocyte) distribution width; BMI: body mass index; WC: waist circumference; HC: hip
circumference; BMR: basal metabolic rate; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; IBD:
in�ammatory bowel disease; Descriptions of traits by cluster IDs (from left to right): 12: also includes lymphocyte count
and allergies such as allergic rhinitis or eczema; 4: includes reticulocyte count and percentage, immature reticulocyte
fraction, and high light scatter reticulocytes count and percentage; 5: includes erythrocyte count, hemoglobin
concentration, and hematocrit percentage; 18: also includes ankle spacing width; 1: includes platelet count, crit, mean
volume, and distribution width; 13: diabetes refers to age when the diabetes was �rst diagnosed; 25: includes vascular
problems such as angina, deep vein thrombosis (DVT), intraocular pressure, eye and mouth problems, pulse rate, hand-
grip strength, several measurements of physical activity, jobs involving heavy physical work, types of transport used,
intake of vitamin/mineral supplements, and various types of body pain and medications for pain relief; 21: also includes
attention de�cit hyperactivity disorder (ADHD), number of years of schooling completed, bone density, and intracranial
volume measurement; 28: includes diabetes, gout, arthrosis, and respiratory diseases (and related medications such as
ramipril, allopurinol, and lisinopril), urine assays, female-speci�c factors (age at menarche, menopause, �rst/last live
birth), and several environmental/behavioral factors such as intake of a range of food/drink items including alcohol,
time spent outdoors and watching TV, smoking and sleeping habits, early-life factors (breastfed as a baby, maternal
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smoking around birth), education attainment, psychological and mental health, and health satisfaction; 11: also includes
fasting blood glucose and insulin measurement; 16: lipids include high and low-density lipoprotein cholesterol (HDL and
LDL), triglycerides, and average number of methylene groups per a double bond; 14: includes myocardial infarction,
coronary atherosclerosis, ischaemic heart disease (wide de�nition). 9: includes neutrophil count, neutrophil+basophil
count, neutrophil+eosinophil count, granulocyte count, leukocyte count, and myeloid cell count.

We found that phenotypes grouped into �ve clear branches (Figure 5). These were 0) a “large” branch
that includes most of the traits subdivided only starting at =16 (with asthma, subjective well-being
traits, and nutrient intake clusters), 1) heel bone-densitometry measurements, 2) hematological
assays on red blood cells, 3) physical measures, including spirometry and body impedance, and
anthropometric traits with fat-free and fat mass measures in separate sub-branches, and 4) a
“complex” branch including keratometry measurements, assays on white blood cells and platelets,
skin and hair color traits, autoimmune disorders (type 1 diabetes, psoriasis, hyper/hypothyroidism,
rheumatoid arthritis, systemic lupus erythematosus, celiac disease), and cardiovascular diseases
(hypertension, coronary artery disease, myocardial infraction, hypercholesterolemia, and other
cardiovascular-related traits such hand-grip strength [59], and environmental/behavioral factors such
as physical activity and diet) (See Supplementary Files 1-5 for clustering results). Within these
branches, results were relatively stable. The same traits were often clustered together across di�erent
resolutions, even with the consensus algorithm using random initializations at each level. Arrows
between di�erent clusters show traits moving from one group to another across di�erent resolutions.
This mainly happens between clusters within the “complex” branch, and between clusters from the
“large” branch to the “complex” branch. We would expect that continuing to explore higher
dimensionalities would result in further subdivisions of these large groupings. This behavior was
expected since complex diseases are usually associated with shared genetic and environmental
factors and are thus hard to categorize into a single cluster. We would also expect that exploring
solutions with a larger number of clusters would result in further subdivisions of these large
groupings.

Figure 6:  Cluster-speci�c and general transcriptional processes. The plot shows a submatrix of  for the main trait
clusters at =29, considering only LVs (rows) that align well with at least one known pathway. Values are standardized
from -5 (lighter color) to 16 (darker color).
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Next, we analyzed which LVs were driving these clusters of traits. We trained decision tree classi�ers
on the input data (Figure 4) using each cluster at =29 (bottom of Figure 5) as labels (see Methods).
This yielded for each cluster the top LVs, where several of them were well-aligned to existing
pathways, and others were “novel” and expressed in relevant tissues. We summarized this in Figure 6,
where it can be seen that some LVs were highly speci�c to certain types of traits, while some were
associated with a wide range of di�erent traits and diseases, thus potentially involved in more general
biological functions. For example, LVs such as LV928 and LV30 (Supplementary Figures 17 and 18),
which were well-aligned to early progenitors of the erythrocytes lineage [60], were predominantly
expressed in early di�erentiation stages of erythropoiesis, and strongly associated with di�erent
assays on red blood cells (erythrocytes and reticulocytes). On the other side, others, such as LV730,
were highly speci�c and expressed in thrombocytes from di�erent cancer samples (Supplementary
Figures 19), and strongly associated with hematological assays on platelets; or LV598, whose genes
were expressed in corneal endothelial cells (Supplementary Figures 20) and associated with
keratometry measurements (FDR < 0.05; Supplementary Table 12).

The autoimmune diseases sub-branch also had signi�cant LVs associations expressed in relevant cell
types. LV155 was strongly expressed in thyroid (Supplementary Figures 21), and signi�cantly
associated with hypothyroidism both in PhenomeXcan and eMERGE (FDR < 0.05; Supplementary
Tables 13 and 14). LV844 was the most strongly associated gene module with autoimmune disorders
(FDR < 1e-15; Supplementary Tables 15 and 16), and was expressed in a wide range of cell types,
including blood, breast organoids, myeloma cells, lung �broblasts, and di�erent cell types from the
brain (Supplementary Figures 22). Other important LVs associated with autoimmunity in both
PhenomeXcan and eMERGE were LV57 expressed in T cells (Supplementary Figure 23, and
Supplementary Tables 17 and 18), and LV54 expressed in di�erent soft tissue tumors, breast, lung,
pterygia and epithelial cells (Supplementary Figure 24, and Supplementary Tables 19 and 20).

The cardiovascular sub-branch also exhibited signi�cant associations, such as LV847 (Supplementary
Figure 25) with blood pressure traits and hypertension (Supplementary Tables 21 and 22), which was
expressed in CD19 (B cells) (which are related to preeclampsia [61]), Jurkat cells (T lymphocyte cells),
and cervical carcinoma cell lines (the uterus was previously reported to be linked to blood pressure
through a potential hormonal pathway [62,63]). LV136 was aligned with known collagen formation
and muscle contraction pathways, and it was associated to coronary artery disease, myocardial
infarction and keratometry measurements (Supplementary Tables 23 and 24), and expressed in a
wide range of cell types, including �broblasts, mesenchymal stem cells, osteoblasts, pancreatic stellate
cells, cardiomyocytes, and adipocytes (Supplementary Figure 26). Lipids were clustered with
chronotype and Alzheimer’s disease, and were signi�cantly associated with several modules
expressed mainly in brain cell types, including LV93 (Supplementary Figure 27, and Supplementary
Tables 25 and 26), LV206 (Supplementary Figure 28, and Supplementary Tables 27 and 28), and
LV260 (Supplementary Figure 29, and Supplementary Tables 29 and 30). These modules were
associated mainly with cardiovascular traits in eMERGE.

Within the cardiovascular sub-branch, we found neuropsychiatric and neurodevelopmental disorders
such as Alzheimer’s disease, schizophrenia, and attention de�cit hyperactivity disorder (ADHD). These
disorders were previously linked to the cardiovascular system [64,65,66,67], and share several risk
factors, including hypertension, high cholesterol, obesity, smoking, among others [68,69]. In our
results, however, these diseases were grouped by potentially shared transcriptional processes
expressed in speci�c tissues/cell types. Alzheimer’s disease, for example, was signi�cantly associated
with LV21 (FDR < 1e-18) and with LV5 (FDR < 0.01) (Supplementary Tables 31 and 33). LV21 was
strongly expressed in a variety of soft tissue sarcomas, monocytes/macrophages (including microglia
from cortex samples), and aortic valves (Supplementary Figure 30); as discussed previously,
macrophages play a key role in the reverse cholesterol transport and thus atherogenesis [70]. LV5
was expressed in breast cancer and brain glioma samples, microglia (cortex), liver, and kidney, among
other cell types (Supplementary Figure 31). LV21 and LV5 were also strongly associated with lipids:
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LDL cholesterol (FDR < 0.001) and triglycerides (FDR < 0.05 and FDR < 0.001, respectively). Additionally,
LV5 was associated with depression traits from the UK Biobank. ADHD was the only signi�cantly
associated trait for LV434 (FDR < 0.01) (Supplementary Table 35), which was expressed in breast
cancer and glioma cells, cerebral organoids, and several di�erent cell populations from the brain: fetal
neurons (replicating and quiescence), microglia, and astrocytes (Supplementary Figure 32).
Schizophrenia was not signi�cantly associated with any gene module tested in our analysis. None of
these LVs were aligned to prior pathways, which might represent potentially novel transcriptional
processes a�ecting the cardiovascular and central nervous systems.

Discussion

We have introduced a novel computational approach that can map TWAS results into a representation
learned from gene expression to infer cell type-speci�c features of complex phenotypes. Our key
innovation is that we project association statistics through a representation and that representation is
derived not strictly from measures of normal tissue but also cell types under a variety of stimuli and at
various developmental stages. We found that this analysis using latent representations prioritized
relevant associations, even when single gene-trait e�ects are not detected with standard methods.
Projecting gene-trait and gene-drug associations into this common representation links drug-disease
treatment pairs more accurately than the single-gene method we derived this strategy from; and the
�ndings were more interpretable for potential mechanisms of action. Finally, we found that the
analysis of associations through latent representations provided reasonable groupings of diseases
and traits a�ected by the same transcriptional processes and highlighted disease-speci�c modules
expressed in highly relevant tissues.

In some cases, the features linked to phenotypes appear to be associated with speci�c cell types.
Associations with such cell type marker genes may reveal cell types that are potentially causal for a
phenotype with more precision. We observed modules expressed primarily in one tissue (such as
adipose in LV246, thyroid in LV155, or ovary in LV66). Others appeared to be expressed in many
contexts. These may capture pathways associated with a set of related complex diseases (for
example, LV136 is associated with coronary artery disease and keratometry measurements, and
expressed in �broblasts, osteoblasts, pancreas, liver, and cardiomyocytes). To our knowledge,
projection through a representation learned on complementary but distinct datasets is a novel
approach to identify cell type and pathway e�ects on complex phenotypes that is computationally
simple to implement.

Our approach rests on the assumption that gene modules with coordinated expression will also
manifest coordinated pathological e�ects. Our implementation in this work integrates two
complementary approaches. One, MultiPLIER, which extracts latent variables from large expression
datasets. In this case, we use a previously published model derived from the analysis of recount2,
which was designed for interpretability. The MultiPLIER LVs could represent real transcriptional
processes or technical factors (“batch e�ects”). Also, the underlying factorization method rests on
linear combinations of variables, which could miss important and more complex co-expression
patterns, and the training dataset of recount2 has since been surpassed in size and scale by other
resources [15,71]. Second, TWAS have several limitations that can lead to false positives [72,73]. Like
GWAS, which generally detects groups of associated variants in LD (linkage disequilibrium), TWAS
usually identi�es several genes within the same locus [20,74]. This is due to sharing of GWAS variants
in gene expression models, to correlated expression of nearby genes, or even correlation of their
predicted expression due to eQTLs in LD, among others [72]. Larger datasets and methods designed
to learn representations with this application in mind could further re�ne the approach and are a
promising avenue for future research.
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Our �ndings are concordant with previous studies showing that drugs with genetic support are more
likely to succeed through the drug development pipeline [7,48]. In this case, projecting association
results through latent variables better prioritizes disease-treatment pairs than considering single-gene
e�ects alone. An additional bene�t is that the latent variables driving predictions can be examined.
We also demonstrate that clustering trees, introduced as a means to examine developmental
processes in single-cell data, provide multi-resolution grouping of phenotypes based on latent
variable associations. In this portion, we used S-MultiXcan associations, which only provide the
association strength between a gene and a trait, but with no direction of e�ect. This does mean that
traits are grouped based on associated genes, but genes could have opposite e�ects on traits within
the same cluster. Second, we employed hard-partitioning algorithms (one trait belongs exclusively to
one cluster) where the distance between two traits takes into account all gene modules. Considering
groups of related diseases was previously shown to be more powerful to detect shared genetic
etiology [75,76], and clustering trees provide a way to explore such relationships in the context of
latent variables.

Ultimately, the key to performance is the quality of the representations. Here we use a representation
derived from a factorization of bulk RNA-seq data. Detailed perturbation datasets and single-cell
pro�ling of tissues, with and without perturbagens, and at various stages of development provide an
avenue to generate higher quality and more interpretable representations. The key to interpretability
is driven by the annotation of sample metadata. New approaches to infer and annotate with
structured metadata are promising and can be directly applied to existing data [77]. Rapid
improvements in both areas set the stage for latent variable projections to be widely applied to
disentangle the genetic basis of complex human phenotypes.

Methods

PhenomeXcan: gene-based associations on 4,091 traits

We used TWAS results from PhenomeXcan [32] on 4,091 traits for 22,515 genes. PhenomeXcan was
built using publicly available GWAS summary statistics to compute 1) gene-based associations with the
PrediXcan family of methods [19,20,78], and 2) a posterior probability of colocalization between
GWAS loci and cis-eQTL with fastENLOC [32,79]. The PrediXcan family of methods �rst build
prediction models using data from the Genotype-Tissue Expression project (GTEx v8) [4] for gene
expression imputation and then correlate this predicted expression with the phenotype of interest.
This family is comprised of S-PrediXcan [78] (which computes a gene-tissue-trait association using
GWAS as input) and S-MultiXcan [19] (which computes a gene-trait association by aggregating
evidence of associations across all tissues).

We refer to the standardized e�ect sizes ( -scores) of S-PrediXcan across  traits and  genes in
tissue  as . For S-MultiXcan we do not have the direction of e�ect, and we used the -
values converted to -scores , where  is the probit function. Higher -scores
correspond to stronger associations.

MultiPLIER and Pathway-level information extractor (PLIER)

MultiPLIER [34] extracts patterns of co-expressed genes from recount2 [14], a large gene expression
dataset. The approach applies the pathway-level information extractor method (PLIER) [35], which
performs unsupervised learning using prior knowledge (canonical pathways) to reduce technical
noise. Via a matrix factorization approach, PLIER deconvolutes the gene expression data into a set of
latent variables (LV), where each represents a gene module. This reduced the data dimensionality into
987 latent variables or gene modules.

z n m

t M
t ∈ R

n×m p

z M = Φ−1(1 − p/2) Φ−1 z
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Given a gene expression dataset  with  genes and  experimental conditions and a prior
knowledge matrix  for  MSigDB pathways [80] (so that  if gene  belongs to
pathway ), PLIER �nds , , and  minimizing

subject to ;  are the gene loadings with  latent variables,  is the latent space
for  conditions,  speci�es which of the  prior-information pathways in  are represented for
each LV, and  are di�erent regularization parameters used in the training step.  is a low-
dimensional representation of the gene space where each LV aligns as much as possible to prior
knowledge, and it might represent either a known or novel gene module (i.e., a meaningful biological
pattern) or noise.

We projected  (either from S-PrediXcan across each tissue, or S-MultiXcan) into the low-dimensional
gene module space learned by MultiPLIER using:

where in  all traits in PhenomeXcan are now described by gene modules.

Gene module-trait associations

To compute an association between a gene module and a trait, we used an approach similar to the
gene-property analysis in MAGMA [41], which is essentially a competitive test using gene weights
from  to predict gene -scores from . Thus, the regression model uses genes as data points by
�tting , where ,  are gene -values (for a trait) from S-MultiXcan
that we transformed to -scores as mentioned before. Since we are only interested in whether genes
with a stronger membership to a module (highest weights) are more associated with the phenotype,
we performed a one-sided test on the coe�cient  with the null hypothesis of  against the
alternative . Since the error terms  could be correlated due to correlation between predicted
expression, we used a generalized least squares approach instead of standard linear regression. To
calculate , we �rst estimated the correlation of predicted expression for each gene pair  in
tissue  using equations from [19,78]:

Y
m×c m c

C ∈ {0, 1}m×p p Cij = 1 i

j U Z B

||Y − ZB||2F + λ1||Z − CU||2F + λ2||B||2F + λ3||U||L1

(1)

U > 0, Z > 0 Z
m×l l B

l×c

c U
p×l p C

λi Z

M

M̂ = (Z
⊤

Z + λ2I)−1
Z

⊤
M. (2)

M̂
l×n

Z z M

m = β0 + zβz + ϵ ϵ ∼ MVN(0, Σ̂) m p

z

βz βz = 0
βz > 0 ϵ

Σ̂ (ti, tj)
t
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where  is the genotype covariance matrix using 1000
Genomes Project data [81,82]. The variances for predicted gene expression of gene  is estimated as:

Finally,  where =49 is the number of tissues.

Drug-disease prediction

For the drug-disease prediction, we used a method based on a drug repositioning framework
previously used for psychiatry traits [48] where gene-trait associations are anticorrelated with
expression pro�les for drugs. For the single-gene approach, we computed a drug-disease score by
multiplying each S-PrediXcan set of results in tissue , , with the transcriptional responses pro�led
in LINCS L1000 [33],  (for  compounds): , where  refers to the number of
most signi�cant gene associations in  for each trait. As suggested in [48],  could be either all
genes or the top 50, 100, 250, and 500; then we average score ranks across all  and obtain .
Finally, for each drug-disease pair, we took the maximum prediction score across all tissues: 

.

The same procedure was used for the gene module-based approach, where we projected S-PrediXcan

results into our latent representation, leading to ; and also , leading to . Finally, 

, where in this case  could be all LVs or the top 5, 10, 25 and 50 (since have an
order of magnitude less LVs than genes).

Since the gold standard of drug-disease medical indications used contained Disease Ontology IDs
(DOID) [83], we mapped PhenomeXcan traits to the Experimental Factor Ontology [84] using [85], and
then to DOID.

Σ̂
t

ij = Cor(ti, tj)

=

=

=

= ,

Cov(ti, tj)

√v̂ar(ti)v̂ar(tj)
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w
j

b
Xb)

√v̂ar(ti)v̂ar(tj)

∑a∈modeli
b∈modelj

wi
aw

j

b
Cov(Xa,Xb)

√v̂ar(ti)v̂ar(tj)

∑a∈modeli
b∈modelj

wi
aw

j

b
Γab

√v̂ar(ti)v̂ar(tj)

(3)

Γ = v̂ar(X) = (X − X̄)⊤(X − X̄)/(m − 1)
i

v̂ar(ti) = (W
i)⊤Γi

W
i

= ∑
a∈modeli
b∈modeli

wi
aw

i
b
Γi
ab

. (4)

Σ̂ = ∑
t
Σ̂
t
/|t| |t|

t M
t

L
c×m c D

t,k = −1 ⋅ M
t,k

L
⊤ k

M
t k

k D
t

Dij = max{D
t
ij ∣ ∀t}

M̂
t

L L̂
l×c

D
t,k = −1 ⋅ M̂

t,k
L̂

⊤
k

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.05.450786doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.05.450786
http://creativecommons.org/licenses/by/4.0/


Consensus clustering of traits

We performed two preprocessing steps on the S-MultiXcan results before the cluster analysis
procedure. First, we combined results in  (S-MultiXcan) for traits that mapped to the same

Experimental Factor Ontology (EFO) [84] term using the Stou�er’s method: ,

where  is a weight based on the GWAS sample size for trait , and  is the -score for gene .
Second, we standardized all -scores for each trait  by their sum to reduce the e�ect of highly
polygenic traits: . Finally, we projected this data matrix using Equation 2, obtaining 
with =3752 traits and =987 LVs as the input of our clustering pipeline.

A partitioning of  with  traits into  clusters is represented as a label vector . Consensus
clustering approaches consist of two steps: 1) the generation of an ensemble  with  partitions of
the dataset: , and 2) the combination of the ensemble into a consolidated
solution de�ned as:

where  is a set of data indices with known cluster labels for partition ,  is a
function that measures the similarity between two partitions, and  is a measure of central tendency,
such as the mean or median. We used the adjusted Rand index (ARI) [86] for , and the median for .
To obtain , we de�ne a consensus function  with  as the input. We used consensus
functions based on the evidence accumulation clustering (EAC) paradigm [87], where  is �rst
transformed into a distance matrix , where  is the number of times traits  and  were
grouped in di�erent clusters across all  partitions in . Then,  can be any similarity-based clustering
algorithm, which is applied on  to derive the �nal partition .

For the ensemble generation step, we used di�erent algorithms to create a highly diverse set of
partitions (see Figure 4), since diversity is an important property for ensembles [88,89,90]. We used
three data representations: the raw dataset, its projection into the top 50 principal components, and
the embedding learned by UMAP [91] using 50 components. For each of these, we applied �ve
clustering algorithms, covering a wide range of di�erent assumptions on the data structure: -means
[92], spectral clustering [93], a Gaussian mixture model (GMM), hierarchical clustering, and DBSCAN
[94]. For -means, spectral clustering and GMM, we speci�ed a range of  between 2 and ,
and for each  we generated �ve partitions using random seeds. For hierarchical clustering, for each 
we generated four partitions using four common linkage criteria: ward, complete, average and single.
For DBSCAN, we combined di�erent ranges for parameters  (the maximum distance between two
data points to be considered part of the same neighborhood) and minPts (the minimum number of
data points in a neighborhood for a data point to be considered a core point). Speci�cally, we used
minPts values from 2 to 125, and for each data version, we determined a plausible range of  values
by observing the distribution of the mean distance of the minPts-nearest neighbors across all data
points. Since some combinations of minPts and  might not produce a meaningful partition (for
instance, when all points are detected as noisy or only one cluster is found), we resampled partitions
generated by DBSCAN to ensure an equal representation in the ensemble. This procedure generated
a �nal ensemble of 4428 partitions.

Finally, we used spectral clustering on  to derive the �nal consensus partitions.  was �rst
transformed into a similarity matrix by applying an RBF kernel  using four di�erent values
for  that we empirically determined to work best. Thus for each  between 2 and 60, we derived four
consensus partitions and selected the one that maximized Equation 5. We further �ltered this set of
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59 solutions to keep only those with an ensemble agreement larger than the 75th percentile, leaving a
total of 15 �nal consensus partitions shown in Figure 5.

Cluster interpretation

We used a supervised learning approach to interpret clustering results by detecting which gene
modules are the most important for clusters of traits. For this, we used the highest resolution
partition ( =29, although any could be used) to train a decision tree model using each of the clusters
as labels and the projected data  as the training samples. For each , we built a set of binary labels
with the current cluster’s traits as the positive class and the rest of the traits as the negative class.
Then, we selected the LV in the root node of the trained model only if its threshold was positive and
larger than one standard deviation. Next, we removed this LV from  (regardless of being previously
selected or not) and trained the model again. We repeated this procedure 20 times to extract the top
20 LVs that better discriminate traits in a cluster from the rest.

CRISPR-Cas9 screening

Cell culture. HepG2 cells were obtained from ATCC (ATCC® HB-8065™), and main-tained in Eagle’s
Minimum Essential Medium with L-Glutamine (EMEM, Cat. 112-018-101, Quality Biology)
supplemented with 10% Fetal Bovine Serum (FBS, Gibco, Cat.16000-044), and 1% Pen/Strep (Gibco,
Cat.15140-122). Cells were kept at 37oC in a humidity-controlled incubator with 5% CO2, and were
maintained at a density not exceed more than 80% con�uency.

Genome-wide lentiviral pooled CRISPR-Cas9 library. 3rd lentiviral generation, Broad GPP genome-
wide Human Brunello CRISPR knockout Pooled library was provided by David Root and John Doench
from Addgene (Cat. 73179-LV), and was used for HepG2 cell transduction. It consists of 76,441
sgRNAs, targets 19,114 genes in the human genome with an average of 4 sgRNAs per gene. Each 20nt
sgRNA cassette was inserted into lentiCRIS-PRv2 backbone between U6 promoter and gRNA sca�old.
Through cell transduction, the lentiviral vectors which encode Cas9 were used to deliver the sgRNA
cassette containing plasmids into cells during cell replication. Unsuccessful transduced cells were
excluded through puromycin selection.

Lentiviral titer determination. No-spin lentiviral transduction was utilized for the screen. In a
Collagen-I coated 6-wells plate, approximate 2.5 M cells were seeded each well in the presence of
8ug/ml polybrene (Millipore Sigma, Cat. TR-1003 G), and a di�erent titrated virus volume (e.g., 0, 50,
100, 200, 250, and 400ul) was assigned to each well. EMEM complete media was added to make the
�nal volume of 1.24ml. 16-18hrs post transduction, virus/polybrene containing media was removed
from each well. Cells were washed twice with 1x DPBS, and replaced with fresh EMEM. At 24h, cells in
each well were trypsinized, diluted (e.g.,1:10), and seeded in pairs of wells of 6-well plates. At 60hr
post transduction, cell media in each well was replaced with fresh EMEM. 2ug/ml of puromycin (Gibco,
Cat. A1113803) was added to one well out of the pair. 2-5 days after puromycin selection, or the 0
virus well treated with puromycin had no survival of cells, cells in both wells with/without puromycin
were collected and counted for viability. Percentage of Infection (PI%) was obtained by comparing the
cell numbers with/without puromycin selection within each pair. By means of Poisson’s distribution
theory, when transduction e�ciency (PI%) is between 30-50%, which corresponding to a MOI
(Multiplicity of Infection) of ~0.35-0.70. At MOI equal or close to 0.3, around 95% of infected cells are
predicted to have only one copy of virus. Therefore, a volume of virus (120ul) yielding 30-40% of
transduction e�-ciency was chosen for further large-scale viral transduction.

Lentiviral Transduction in HepG2 Using Brunello CRISPR Knockout Pooled Library. In order to
achieve a coverage (representation) of at least 500 cells per sgRNA, and at a MOI between 0.3-0.4 to
ensure 95% of infected cells get only one viral particle per cell, ~200M cells were initiated for the
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screen. Transduction was carried out in the similar fashion as de-scribed above. Brie�y, 2.5M cells
were seeded in each well of 14 6-well plates, along with 8ug/ml of polybrene. Volume of 120ul of virus
was added to each experimental well. 18hrs post transduction, virus/PB mix medium was removed,
and cells in each well were collect-ed, counted, and pooled into T175 �asks. At 60hr post transduction,
2ug/ml of puromycin was added to each �ask. Mediums were changed every 2 days with fresh EMEM,
topped with 2ug/ml puromycin. 7 days after puromycin selection, cells were collected, pooled,
counted, and replated.

Fluorescent dye staining. 9 days after puromycin selection, cells were assigned to 2 groups. 20-30M
cells were collected as Unsorted Control. Cell pellet was spun down at 500 x g for 5min at 4oC. Dry
pellet was kept at -80oC for further genomic DNA isolation. The rest of the cells (approximately 200M)
were kept in 100mm dishes, and stained with �uo-rescent dye (LipidSpotTM 488, Biotium, Cat. 70065-
T). In Brief, LipidSpot 488 was diluted to 1:100 with DPBS. 4ml of staining solution was used for each
dish, and incubated at 37oC for 30min. Cell images were captured through �uorescent microscope
EVOS for GFP signal detection (Supplementary Figure 7).

Fluorescence-activated cell sorting (FACS). Cells were immediately collected into 50ml tubes (From
this point on, keep cells cold), and spin at 500 x g for 5min at 4oC. After DPBS wash, cell pellets were
resuspended with FACS Sorting Bu�er (1x DPBS without Ca2+/Mg2+, 2.5mM EDTA, 25mM HEPES, 1%
BSA. Solution was �lter sterilized, and kept at 4oC), pi-pet gently to make single cells. Cell solution then
�ltered through cell strainer (Falcon, Cat. 352235), and were kept on ice protected from light.
Collected cells were sorted on FACSJazz. 100um nozzle was used for sorting. ~20% of each GFP-High
and GFP-Low (Supplementary Figure 8) were collected into 15ml tubes. After sorting, cells were
immediately spun down. Pellets were kept in -80oC for further genomic DNA isolation.

Genomic DNA isolation and veri�cation. 3 conditions of Genomic DNA (Un-Sorted Con-trol, lentiV2
GFP-High, and lentiV2 GFP-Low) were extracted using QIAamp DNA Blood Mini Kit (Qiagen, Cat.51104),
followed by UV Spectroscopy (Nanodrop) to access the quality and quantity of the gDNA. Total 80-
160ug of gDNA was isolated for each condi-tion. sgRNA cassette and lentiviral speci�c transgene in
isolated gDNA were veri�ed through PCR (Supplementary Figure 9).

Illumina libraries generation and sequencing. Fragment containing sgRNA cassette was ampli�ed
using P5 /P7 primers, as indicated in [95] and primer sequences were adapted from Broad Institute
protocol (Supplementary Figure 10). Stagger sequence (0-8nt) was included in P5, and 8bp uniquely
barcoded sequence in P7. Primers were syn-thesized through Integrated DNA Technologies (IDT), each
primer was PAGE puri�ed. 32 PCR reactions were set up for each condition. Each 100ul PCR reaction
consists of roughly 5ug of gDNA, 5ul of each 10uM P5 and P7. ExTaq DNA Polymerase (TaKaRa, Cat.
RR001A) was used to amplify the amplicon. PCR Thermal Cycler Parameters set as: Initial at 95oC for
1min; followed by 24 cycles of Denaturation at 94oC for 30 seconds, Annealing at 52.5oC for 30
seconds, Extension at 72oC for 30 seconds. A �nal Elongation at 72oC for 10 minutes. 285bp-293bp
PCR products were expected (Supplementary Figure 11 A). PCR products within the same condition
were pooled and puri�ed using SPRIselect beads (Beckman Coulter, Cat. B23318). Puri�ed illumina
libraries were quantitated on Qubit, and the quality of the library were analyzed on Bio-analyzer using
High Sensitivity DNA Chip. A single approxi-mate 285bp peak was expected. (Supplementary Figure 11
B). Final illumina library samples were se-quenced on Nova-seq 6000. Samples were pooled and
loaded on a SP �ow cell, along with 20% PhiX control v3 library spike-in.
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Supplementary material

CRISPR-screen

Figure 7:  EVOS Fluorescent Microscope Image Capture. A. HepG2_lentiV2_Ctrl with no-viral transduction. B.
HepG2_lentiV2 with viral transduction.
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Figure 8:  Fluorescence-Activated Cell Sorting Gate Setting. A. HepG2_UnStained WT. B. HepG2_lentiV2 with viral
transduction.

Figure 9:  Veri�cation of sgRNA cassette and lentiV2 transgene. A. 20nt sgRNA cassette was veri�ed in lentiV2
transduced genomic DNA population, 163 bp PCR product obtained, while WT HepG2 didn’t possess the cassette, thus,
no PCR product. B. lentiviral-speci�c transgene WPRE was veri�ed in lentiV2 transduced genomic DNA population, while
no transduced WT didn’t have the transgene, therefore, no 173 bp PCR product observed.
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Figure 10:

Figure 11:  Illumina library generation. A. Construct for generating illumina libraries. B. Final illumina library from HS
DNA —showed a single ~285bp peak was generated.

Gene modules enriched for lipids gene-sets

Table 1:  Gene modules (LVs) enriched for lipids gene-sets found with CRISPR screening.

Gene module Lipids gene-set p-value FDR

LV678 decrease 2.61e-07 2.57e-04

LV707 increase 1.74e-07 2.57e-04

LV905 increase 4.29e-05 2.82e-02

LV915 increase 6.37e-05 3.14e-02
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Top traits across lipids-associated genes and modules

Table 2:  Top 25 traits associated with genes from the lipids-decreasing gene-set found with CRISPR screening.

Ord
er Trait Category

1 Vascular/heart problems diagnosed by doctor: High blood pressure Diseases
(cardiovascular)

2 Diastolic blood pressure, automated reading Blood pressure

3 Non-cancer illness code, self-reported: hypertension Diseases
(cardiovascular)

4 Suggestive for eosinophilic asthma Diseases (FinnGen)

5 Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones:
Blood pressure medication Medication

6 Forced expiratory volume in 1-second (FEV1), predicted Spirometry

7 Vascular/heart problems diagnosed by doctor: None of the above Diseases
(cardiovascular)

8 Treatment/medication code: levothyroxine sodium Medications

9 Haematocrit percentage Blood count

10 Treatment/medication code: lisinopril Medications

11 Haemoglobin concentration Blood count

12 Job coding: counter clerk, bank clerk, cashier, post o�ce clerk Employment
history

13 Acute alcohol intoxication Diseases (FinnGen)

14 Systolic blood pressure, automated reading Blood pressure

15 Platelet count Blood count

16 Red Blood Cell Count Blood

17 Peak expiratory �ow (PEF) Spirometry

18 Sitting height Body size measures

19 Treatment/medication code: bendro�umethiazide Medications

20 Age started wearing glasses or contact lenses Eyesight

21 Comparative height size at age 10 Early life factors

22 Workplace very cold: Often Employment
history

23 Salt added to food Diet

24 Di�culty concentrating during worst period of anxiety Anxiety

25 Treatment/medication code: metformin Medications

Table 3:  Top 25 traits associated with gene modules (LVs) enriched for the lipids-decreasing gene-set found with
CRISPR screening.

Order Trait Category

1 Non-cancer illness code, self-reported: malabsorption/coeliac disease Diseases
(gastrointestinal/abdominal)
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Order Trait Category

2 Diastolic blood pressure, automated reading Blood pressure

3 Immature reticulocyte fraction Blood count

4 Treatment/medication code: ferrous salt product Medications

5 Vascular/heart problems diagnosed by doctor: None of the above Diseases (cardiovascular)

6 Platelet distribution width Blood count

7 Unstable angina pectoris Diseases (FinnGen)

8 Vascular/heart problems diagnosed by doctor: High blood pressure Diseases (cardiovascular)

9 Nucleated red blood cell count Blood count

10 Diagnoses - main ICD10: K90 Intestinal malabsorption Diseases (ICD10 main)

11 Coeliac disease Diseases (FinnGen)

12 Non-cancer illness code, self-reported: hypertension Diseases (cardiovascular)

13 Nucleated red blood cell percentage Blood count

14 Relative age of �rst facial hair Male-speci�c factors

15 Treatment/medication code: thiamine preparation Medications

16 Diagnoses - main ICD10: I70 Atherosclerosis Diseases (ICD10 main)

17 White Blood Cell Count Blood

18 Treatment/medication code: gtn 400micrograms spray Medications

19 Treatment/medication code: singulair 10mg tablet Medications

20 Di�culty not smoking for 1 day Smoking

21 Mean reticulocyte volume Blood count

22 Other malignant neoplasms of skin Diseases (FinnGen)

23 Length of working week for main job Employment

24 Pulse rate, automated reading Blood pressure

25 Milk type used: Skimmed Diet

Table 4:  Top 25 traits associated with genes from the lipids-increasing gene-set found with CRISPR screening.

Order Trait Category

1 Lymphocyte percentage Blood count

2 Neutrophill percentage Blood count

3 Neutrophill count Blood count

4 Red blood cell (erythrocyte) count Blood count

5 Lymphocyte Count Blood

6 Trunk predicted mass Impedance measures

7 Trunk fat-free mass Impedance measures

8 Mean corpuscular volume Blood count

9 Mean sphered cell volume Blood count

10 White blood cell (leukocyte) count Blood count
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Order Trait Category

11 Skin colour Sun exposure

12 Arm fat-free mass (left) Impedance measures

13 Impedance of arm (left) Impedance measures

14 Mean reticulocyte volume Blood count

15 Whole body water mass Impedance measures

16 Impedance of arm (right) Impedance measures

17 Mean corpuscular haemoglobin Blood count

18 Whole body fat-free mass Impedance measures

19 Arm predicted mass (left) Impedance measures

20 Arm predicted mass (right) Impedance measures

21 Arm fat-free mass (right) Impedance measures

22 Hair colour (natural, before greying): Red Sun exposure

23 Ease of skin tanning Sun exposure

24 High light scatter reticulocyte count Blood count

25 White Blood Cell Count Blood

Table 5:  Top 25 traits associated with gene modules (LVs) enriched for the lipids-increasing gene-set found with CRISPR
screening.

Or
der Trait Category

1 Ankle spacing width Bone-densitometry of heel

2 Ankle spacing width (left) Bone-densitometry of heel

3 Ankle spacing width (right) Bone-densitometry of heel

4 Job SOC coding: Advertising and public relations managers Employment history

5 Hair colour (natural, before greying): Red Sun exposure

6 Sitting height Body size measures

7 Platelet distribution width Blood count

8 Non-cancer illness code, self-reported: malabsorption/coeliac disease
Diseases
(gastrointestinal/abdomina
l)

9 Job coding: advertising or public relations manager, media/publicity manager,
campaign/fundraising manager Employment history

10 Forced expiratory volume in 1-second (FEV1), predicted Spirometry

11 Heel Broadband ultrasound attenuation, direct entry Bone-densitometry of heel

12 Intra-ocular pressure, Goldmann-correlated (right) Intraocular pressure

13 Hearing test done: No, I am unable to do this Hearing test

14 Rheumatoid Arthritis Diseases (ICD10 main)

15 Red blood cell (erythrocyte) distribution width Blood count

16 Job coding: childminder, au pair, children’s nanny Employment history
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Or
der Trait Category

17 Heel bone mineral density (BMD) Bone-densitometry of heel

18 Heel quantitative ultrasound index (QUI), direct entry Bone-densitometry of heel

19 Heel bone mineral density (BMD) T-score, automated Bone-densitometry of heel

20 Job SOC coding: Hand craft occupations n.e.c. Employment history

21 Reason for glasses/contact lenses: For just reading/near work as you are getting
older (called ‘presbyopia’) Eyesight

22 Intra-ocular pressure, Goldmann-correlated (left) Intraocular pressure

23 Pulse wave peak to peak time Arterial sti�ness

24 Hand grip strength (left) Hand grip strength

25 Treatment/medication code: luteine Medications

LV246

Figure 12:  Cell types for LV246.

Table 6:  Pathways aligned to LV246.

Pathway AUC p-value (adjusted)

REACTOME_FATTY_ACID_TRIACYLGLYCEROL_AND_KETONE_BODY_METABOLISM 0.89 3.97e-16

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 0.67 1.14e-08
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Pathway AUC p-value (adjusted)

REACTOME_TRIGLYCERIDE_BIOSYNTHESIS 0.86 6.52e-04

KEGG_PYRUVATE_METABOLISM 0.82 2.66e-03

KEGG_PROPANOATE_METABOLISM 0.83 4.27e-03

Table 7:  Signi�cant trait associations of LV246 in PhenomeXcan.

Trait description Sampl
e size

Ca
se
s

Partition/clust
er number

p-value
(adjusted)

CH2DB NMR 24,154 29 / 16 9.36e-11

Non-cancer illness code, self-reported: high cholesterol 361,14
1

43
,9
57

29 / 17 5.24e-05

Medication for cholesterol, blood pressure, diabetes, or take exogenous
hormones: Cholesterol lowering medication

193,14
8

24
,2
47

29 / 17 9.34e-03

HDL Cholesterol NMR 19,270 29 / 16 9.34e-03

Fasting Glucose 46,186 29 / 11 4.13e-02

Table 8:  Signi�cant trait associations of LV246 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

LV678

Figure 13:  Cell types for LV678.

Table 9:  Pathways aligned to LV678.

Pathway
A
U
C

p-value
(adjusted)
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Pathway
A
U
C

p-value
(adjusted)

KEGG_OXIDATIVE_PHOSPHORYLATION 0.
98 5.75e-14

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPL
ING_AND_HEAT_PRODUCTION_BY_UNCOUPLING_PROTEINS_

0.
99 5.94e-11

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT 1.
00 3.10e-09

REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT 0.
86 9.66e-09

MIPS_55S_RIBOSOME_MITOCHONDRIAL 0.
81 8.20e-05

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE 0.
69 6.03e-03

REACTOME_MITOCHONDRIAL_PROTEIN_IMPORT 0.
74 1.99e-02

Table 10:  Signi�cant trait associations of LV678 in PhenomeXcan.

Trait description Sample
size

Case
s

Partition/cluster
number

p-value
(adjusted)

Vascular/heart problems diagnosed by doctor: Heart attack 360,420 8,28
8 29 / 14 1.08e-02

In�ammatory Bowel Disease 34,652 12,8
82 29 / 21 2.35e-02

Non-cancer illness code, self-reported: heart
attack/myocardial infarction 361,141 8,23

9 29 / 14 2.35e-02

Table 11:  Signi�cant trait associations of LV678 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

LV116
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Figure 14:  Cell types for LV116.

LV931

Figure 15:  Cell types for LV931.

LV66
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Figure 16:  Cell types for LV66.

LV928

Figure 17:  Cell types for LV928.

LV30
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Figure 18:  Cell types for LV30.

LV730

Figure 19:  Cell types for LV730.

LV598
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Figure 20:  Cell types for LV598.

Table 12:  Signi�cant trait associations of LV598 in PhenomeXcan.

Trait description Sample size Cases Partition/cluster number p-value (adjusted)

6mm strong meridian (right) 66,256 29 / 10 4.13e-07

6mm weak meridian (right) 66,256 29 / 10 2.63e-06

6mm strong meridian (left) 65,551 29 / 10 3.13e-06

3mm strong meridian (left) 75,398 29 / 10 3.24e-06

6mm weak meridian (left) 65,551 29 / 10 1.53e-05

3mm weak meridian (left) 75,398 29 / 10 2.00e-05

3mm strong meridian (right) 75,410 29 / 10 3.70e-05

3mm weak meridian (right) 75,410 29 / 10 4.81e-05

LV155
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Figure 21:  Cell types for LV155.

Table 13:  Signi�cant trait associations of LV155 in PhenomeXcan.

Trait description Sample
size

Case
s

Partition/cluster
number

p-value
(adjusted)

Non-cancer illness code, self-reported:
hypothyroidism/myxoedema 361,141 17,5

74 29 / 13 2.01e-03

Non-cancer illness code, self-reported:
hyperthyroidism/thyrotoxicosis 361,141 2,73

0 29 / 13 1.29e-02

Treatment/medication code: levothyroxine sodium 361,141 14,6
89 29 / 13 1.41e-02

Table 14:  Signi�cant trait associations of LV155 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

244.2 Acquired hypothyroidism 45,839 1,155 2.19e-02

427.9 Palpitations 35,214 6,092 4.43e-02

LV844
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Figure 22:  Cell types for LV844.

Table 15:  Signi�cant trait associations of LV844 in PhenomeXcan.

Trait description Sample
size

Cas
es

Partition/cluste
r number

p-value
(adjusted)

Rheumatoid Arthritis 80,799 19,
234 29 / 26 4.27e-57

Non-cancer illness code, self-reported: malabsorption/coeliac
disease 361,141 1,5

87 29 / 8 4.83e-43

Coeliac disease 361,194 842 29 / 8 4.76e-41

Diagnoses - main ICD10: K90 Intestinal malabsorption 361,194 922 29 / 8 1.41e-39

Started insulin within one year diagnosis of diabetes 16,415 1,9
99 29 / 13 1.78e-37

Systemic Lupus Erythematosus 23,210 7,2
19 29 / 26 1.41e-34

Age diabetes diagnosed 16,166 29 / 13 3.93e-34

Never eat eggs, dairy, wheat, sugar: Wheat products 359,777 9,5
73 29 / 13 2.78e-31

Non-cancer illness code, self-reported:
hyperthyroidism/thyrotoxicosis 361,141 2,7

30 29 / 13 6.08e-30

Treatment/medication code: insulin product 361,141 3,5
45 29 / 13 3.05e-25

Medication for cholesterol, blood pressure, diabetes, or take
exogenous hormones: Insulin 193,148 1,4

76 29 / 13 4.63e-23

Medication for cholesterol, blood pressure or diabetes: Insulin 165,340 2,2
48 29 / 13 1.92e-20

Non-cancer illness code, self-reported:
hypothyroidism/myxoedema 361,141 17,

574 29 / 13 4.96e-20
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Trait description Sample
size

Cas
es

Partition/cluste
r number

p-value
(adjusted)

Treatment/medication code: levothyroxine sodium 361,141 14,
689 29 / 13 4.01e-19

Non-cancer illness code, self-reported: psoriasis 361,141 4,1
92 29 / 13 9.28e-16

Table 16:  Signi�cant trait associations of LV844 in eMERGE.

Phecod
e Trait description Sample size Cases p-value (adjusted)

714.1 Rheumatoid arthritis 49,453 2,541 8.22e-09

250.1 Type 1 diabetes 42,723 2,450 2.54e-08

714 Rheumatoid arthritis and other in�ammatory
polyarthropathies 50,215 3,303 5.06e-07

440 Atherosclerosis 47,471 4,993 3.15e-03

578.8 Hemorrhage of rectum and anus 47,545 1,991 3.15e-03

585.32 End stage renal disease 43,309 1,842 4.38e-03

440.2 Atherosclerosis of the extremities 45,524 3,046 5.00e-03

514.2 Solitary pulmonary nodule 50,389 2,270 6.16e-03

444 Arterial embolism and thrombosis 43,378 900 1.36e-02

558 Noninfectious gastroenteritis 40,177 3,191 2.94e-02

747.11 Cardiac shunt/ heart septal defect 58,364 1,037 3.60e-02

585 Renal failure 51,437 9,970 3.87e-02

443.9 Peripheral vascular disease, unspeci�ed 46,926 4,448 4.43e-02

LV57
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Figure 23:  Cell types for LV57.

Table 17:  Signi�cant trait associations of LV57 in PhenomeXcan.

Trait description Sample
size

Cas
es

Partition/cluste
r number

p-value
(adjusted)

Non-cancer illness code, self-reported:
hypothyroidism/myxoedema 361,141 17,

574 29 / 13 1.17e-24

Treatment/medication code: levothyroxine sodium 361,141 14,
689 29 / 13 6.07e-23

Non-cancer illness code, self-reported:
hyperthyroidism/thyrotoxicosis 361,141 2,7

30 29 / 13 1.16e-06

Started insulin within one year diagnosis of diabetes 16,415 1,9
99 29 / 13 8.17e-05

Treatment/medication code: insulin product 361,141 3,5
45 29 / 13 6.33e-04

Medication for cholesterol, blood pressure, diabetes, or take
exogenous hormones: Insulin 193,148 1,4

76 29 / 13 1.13e-03

Medication for cholesterol, blood pressure or diabetes: Insulin 165,340 2,2
48 29 / 13 4.50e-03

Table 18:  Signi�cant trait associations of LV57 in eMERGE.

Phecod
e Trait description Sample size Cases p-value (adjusted)

244 Hypothyroidism 54,404 9,720 3.97e-09

244.4 Hypothyroidism NOS 53,968 9,284 3.97e-09

279 Disorders involving the immune mechanism 56,771 3,309 4.93e-03

514.2 Solitary pulmonary nodule 50,389 2,270 1.19e-02
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Phecod
e Trait description Sample size Cases p-value (adjusted)

714 Rheumatoid arthritis and other in�ammatory
polyarthropathies 50,215 3,303 1.68e-02

452.2 Deep vein thrombosis [DVT] 38,791 2,131 4.37e-02

LV54

Figure 24:  Cell types for LV54.

Table 19:  Signi�cant trait associations of LV54 in PhenomeXcan.

Trait description Sample
size

Cas
es

Partition/cluste
r number

p-value
(adjusted)

Diagnoses - main ICD10: K90 Intestinal malabsorption 361,194 922 29 / 8 5.09e-25

Coeliac disease 361,194 842 29 / 8 7.77e-25

Never eat eggs, dairy, wheat, sugar: Wheat products 359,777 9,5
73 29 / 13 6.33e-23

Systemic Lupus Erythematosus 23,210 7,2
19 29 / 26 1.32e-22

Started insulin within one year diagnosis of diabetes 16,415 1,9
99 29 / 13 3.84e-20

Non-cancer illness code, self-reported:
hyperthyroidism/thyrotoxicosis 361,141 2,7

30 29 / 13 9.59e-19

Treatment/medication code: insulin product 361,141 3,5
45 29 / 13 5.07e-18

Age diabetes diagnosed 16,166 29 / 13 1.28e-17

Non-cancer illness code, self-reported: malabsorption/coeliac
disease 361,141 1,5

87 29 / 8 1.36e-14

Medication for cholesterol, blood pressure or diabetes: Insulin 165,340 2,2
48 29 / 13 8.67e-14
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Trait description Sample
size

Cas
es

Partition/cluste
r number

p-value
(adjusted)

Non-cancer illness code, self-reported: psoriasis 361,141 4,1
92 29 / 13 2.61e-13

Rheumatoid Arthritis 80,799 19,
234 29 / 26 3.11e-13

Medication for cholesterol, blood pressure, diabetes, or take
exogenous hormones: Insulin 193,148 1,4

76 29 / 13 3.89e-12

Treatment/medication code: levothyroxine sodium 361,141 14,
689 29 / 13 5.92e-10

Non-cancer illness code, self-reported:
hypothyroidism/myxoedema 361,141 17,

574 29 / 13 3.31e-08

Table 20:  Signi�cant trait associations of LV54 in eMERGE.

Phecod
e Trait description Sample size Cases p-value (adjusted)

250.1 Type 1 diabetes 42,723 2,450 2.04e-13

244 Hypothyroidism 54,404 9,720 5.10e-06

244.4 Hypothyroidism NOS 53,968 9,284 5.37e-06

695 Erythematous conditions 48,347 4,210 4.25e-05

714 Rheumatoid arthritis and other in�ammatory
polyarthropathies 50,215 3,303 3.06e-04

440 Atherosclerosis 47,471 4,993 8.88e-04

585 Renal failure 51,437 9,970 3.40e-03

585.32 End stage renal disease 43,309 1,842 3.64e-03

585.33 Chronic Kidney Disease, Stage III 46,279 4,812 3.64e-03

285.2 Anemia of chronic disease 39,673 2,606 7.62e-03

415.1 Acute pulmonary heart disease 49,887 1,857 8.67e-03

285.21 Anemia in chronic kidney disease 38,616 1,549 1.16e-02

743 Osteoporosis, osteopenia and pathological fracture 55,165 11,99
0 1.31e-02

415.11 Pulmonary embolism and infarction, acute 49,867 1,837 1.39e-02

577 Diseases of pancreas 60,538 1,795 1.42e-02

585.1 Acute renal failure 46,803 5,336 1.51e-02

195 Cancer, suspected or other 50,040 2,250 1.52e-02

440.2 Atherosclerosis of the extremities 45,524 3,046 1.89e-02

714.1 Rheumatoid arthritis 49,453 2,541 3.18e-02

458.9 Hypotension NOS 50,150 3,241 3.32e-02

LV847
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Figure 25:  Cell types for LV847.

Table 21:  Signi�cant trait associations of LV847 in PhenomeXcan.

Trait description Sampl
e size

Ca
se
s

Partition/clust
er number

p-value
(adjusted)

Medication for cholesterol, blood pressure, diabetes, or take
exogenous hormones: Blood pressure medication

193,14
8

33
,5
19

29 / 17 1.95e-18

Vascular/heart problems diagnosed by doctor: None of the above 360,42
0

25
3,
56
5

29 / 17 4.07e-15

Vascular/heart problems diagnosed by doctor: High blood pressure 360,42
0

97
,1
39

29 / 17 6.99e-14

Non-cancer illness code, self-reported: hypertension 361,14
1

93
,5
60

29 / 17 1.48e-13

Treatment/medication code: bendro�umethiazide 361,14
1

20
,1
96

29 / 17 1.41e-08

Medication for cholesterol, blood pressure or diabetes: Blood
pressure medication

165,34
0

40
,9
87

29 / 17 1.47e-07

Medication for cholesterol, blood pressure, diabetes, or take
exogenous hormones: None of the above

193,14
8

13
3,
33
8

29 / 17 1.55e-06

Diastolic blood pressure, automated reading 340,16
2 29 / 17 3.76e-06

Medication for cholesterol, blood pressure or diabetes: None of the
above

165,34
0

11
0,
37
2

29 / 17 6.36e-06
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Table 22:  Signi�cant trait associations of LV847 in eMERGE.

Phecod
e Trait description Sample size Cases p-value (adjusted)

585.32 End stage renal disease 43,309 1,842 1.88e-08

442.1 Aortic aneurysm 45,589 3,111 5.23e-06

411.3 Angina pectoris 43,503 4,382 2.14e-05

415.11 Pulmonary embolism and infarction, acute 49,867 1,837 5.13e-05

416 Cardiomegaly 53,289 5,259 6.50e-05

415.1 Acute pulmonary heart disease 49,887 1,857 7.28e-05

411 Ischemic Heart Disease 54,275 15,15
4 5.49e-04

401.2 Hypertensive heart and/or renal disease 30,405 6,253 1.28e-03

519 Other diseases of respiratory system, not elsewhere classi�ed 56,909 2,056 1.28e-03

411.8 Other chronic ischemic heart disease, unspeci�ed 44,123 5,002 1.42e-03

427.6 Premature beats 31,575 2,453 5.65e-03

687.1 Rash and other nonspeci�c skin eruption 47,039 4,964 9.88e-03

185 Cancer of prostate 52,630 2,815 1.03e-02

591 Urinary tract infection 49,727 10,01
6 1.34e-02

442.11 Abdominal aortic aneurysm 44,531 2,053 2.08e-02

427.21 Atrial �brillation 37,743 8,621 2.26e-02

389.1 Sensorineural hearing loss 53,672 4,318 2.73e-02

427.2 Atrial �brillation and �utter 37,934 8,812 4.50e-02

LV136
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Figure 26:  Cell types for LV136. Pulmonary microvascular endothelial cells were exposed to hypoxia for 24 hours or
more [96];

Table 23:  Signi�cant trait associations of LV136 in PhenomeXcan.

Trait description Sample
size

Case
s

Partition/cluster
number

p-value
(adjusted)

3mm strong meridian (right) 75,410 29 / 10 9.19e-11

6mm strong meridian (left) 65,551 29 / 10 2.06e-09

6mm strong meridian (right) 66,256 29 / 10 2.38e-09

3mm strong meridian (left) 75,398 29 / 10 1.34e-08

3mm weak meridian (right) 75,410 29 / 10 1.67e-08

Coronary Artery Disease 184,305 60,8
01 29 / 11 1.67e-08

6mm weak meridian (right) 66,256 29 / 10 3.21e-08

3mm weak meridian (left) 75,398 29 / 10 5.20e-08

6mm weak meridian (left) 65,551 29 / 10 1.21e-07

Coronary atherosclerosis 361,194 14,3
34 29 / 14 3.90e-06

Ischaemic heart disease, wide de�nition 361,194 20,8
57 29 / 14 7.22e-06

Vascular/heart problems diagnosed by doctor: Heart attack 360,420 8,28
8 29 / 14 2.93e-04

Myocardial infarction 361,194 7,01
8 29 / 14 6.33e-04

Myocardial infarction, strict 361,194 7,01
8 29 / 14 6.33e-04

Diagnoses - main ICD10: I21 Acute myocardial infarction 361,194 5,94
8 29 / 14 9.92e-04

Non-cancer illness code, self-reported: heart
attack/myocardial infarction 361,141 8,23

9 29 / 14 1.40e-03

Major coronary heart disease event excluding
revascularizations 361,194 10,1

57 29 / 14 1.85e-02

Major coronary heart disease event 361,194 10,1
57 29 / 14 1.85e-02

Fasting Insulin 38,238 29 / 11 3.85e-02

Table 24:  Signi�cant trait associations of LV136 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

747.1 Cardiac congenital anomalies 59,198 1,871 4.71e-02

411.4 Coronary atherosclerosis 52,836 13,715 4.80e-02

LV93
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Figure 27:  Cell types for LV93.

Table 25:  Signi�cant trait associations of LV93 in PhenomeXcan.

Trait description Sample size Cases Partition/cluster number p-value (adjusted)

CH2DB NMR 24,154 29 / 16 9.61e-24

Chronotype 128,266 29 / 16 1.17e-03

HDL Cholesterol NMR 19,270 29 / 16 2.99e-03

Table 26:  Signi�cant trait associations of LV93 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

208 Benign neoplasm of colon 55,694 8,597 6.21e-03

440.2 Atherosclerosis of the extremities 45,524 3,046 1.31e-02

444 Arterial embolism and thrombosis 43,378 900 4.06e-02

LV206
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Figure 28:  Cell types for LV206.

Table 27:  Signi�cant trait associations of LV206 in PhenomeXcan.

Trait description Sample size Cases Partition/cluster number p-value (adjusted)

CH2DB NMR 24,154 29 / 16 7.67e-21

HDL Cholesterol NMR 19,270 29 / 16 6.46e-03

Table 28:  Signi�cant trait associations of LV206 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

458 Hypotension 51,341 4,432 1.41e-02

286.9 Abnormal coagulation pro�le 48,006 800 1.54e-02

458.9 Hypotension NOS 50,150 3,241 1.58e-02

428.2 Heart failure NOS 48,178 3,584 1.65e-02

LV260
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Figure 29:  Cell types for LV260.

Table 29:  Signi�cant trait associations of LV260 in PhenomeXcan.

Trait description Sample size Cases Partition/cluster number p-value (adjusted)

CH2DB NMR 24,154 29 / 16 5.96e-17

HDL Cholesterol NMR 19,270 29 / 16 2.37e-02

Table 30:  Signi�cant trait associations of LV260 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

427.6 Premature beats 31,575 2,453 2.85e-02

426.3 Bundle branch block 31,827 2,705 4.80e-02

LV21

Figure 30:  Cell types for LV21.

Table 31:  Signi�cant trait associations of LV21 in PhenomeXcan.
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Trait description Sample size Cases Partition/cluster number p-value (adjusted)

Alzheimers Disease 54,162 17,008 29 / 16 1.64e-19

LDL Cholesterol NMR 13,527 29 / 16 1.18e-04

Triglycerides NMR 21,559 29 / 16 2.19e-02

Table 32:  Signi�cant trait associations of LV21 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

573 Other disorders of liver 47,826 2,524 1.37e-02

577 Diseases of pancreas 60,538 1,795 2.15e-02

LV5

Figure 31:  Cell types for LV5.

Table 33:  Signi�cant trait associations of LV5 in PhenomeXcan.

Trait description Sample
size

Cas
es

Partition/cluster
number

p-value
(adjusted)

LDL Cholesterol NMR 13,527 29 / 16 1.78e-04

Triglycerides NMR 21,559 29 / 16 5.00e-04

Alzheimers Disease 54,162 17,
008 29 / 16 3.06e-03

Ever had prolonged feelings of sadness or depression 117,763 64,
374 29 / 27 8.69e-03

Substances taken for depression: Medication prescribed to you
(for at least two weeks) 117,763 28,

351 29 / 27 1.03e-02

Recent feelings of depression 117,656 29 / 27 1.32e-02

Ever contemplated self-harm 117,610 29 / 27 1.89e-02

Recent lack of interest or pleasure in doing things 117,757 29 / 27 2.08e-02

Amount of alcohol drunk on a typical drinking day 108,256 29 / 27 3.50e-02
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Trait description Sample
size

Cas
es

Partition/cluster
number

p-value
(adjusted)

Ever sought or received professional help for mental distress 117,677 46,
020 29 / 27 3.92e-02

General happiness 117,442 29 / 27 4.74e-02

Table 34:  Signi�cant trait associations of LV5 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

241 Nontoxic nodular goiter 47,842 3,158 8.98e-03

241.1 Nontoxic uninodular goiter 47,125 2,441 2.57e-02

241.2 Nontoxic multinodular goiter 46,465 1,781 4.43e-02

LV434

Figure 32:  Cell types for LV434. HEK293 is a cell line derived from human embryonic kidney cells; 3T3 is a cell line
derived from mouse embryonic �broblasts.

Table 35:  Signi�cant trait associations of LV434 in PhenomeXcan.

Trait description Sample size Cases Partition/cluster number p-value (adjusted)

Attention De�cit Hyperactivity Disorder 53,293 19,09
9 29 / 21 7.01e-03

Table 36:  Signi�cant trait associations of LV434 in eMERGE.

Phecode Trait description Sample size Cases p-value (adjusted)

722 Intervertebral disc disorders 47,659 7,458 6.65e-03

721 Spondylosis and allied disorders 47,517 7,316 7.62e-03

250.4 Abnormal glucose 45,220 4,947 1.02e-02

721.1 Spondylosis without myelopathy 47,315 7,114 1.22e-02

720 Spinal stenosis 44,807 4,606 1.74e-02
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Phecode Trait description Sample size Cases p-value (adjusted)

288 Diseases of white blood cells 47,288 2,802 2.10e-02

796 Elevated prostate speci�c antigen [PSA] 51,990 2,175 3.09e-02

288.2 Elevated white blood cell count 46,595 2,109 3.54e-02

079 Viral infection 46,991 1,934 4.19e-02

Agreement of consensus clustering partitions with the ensemble by
number of clusters

Figure 33:  Final selected partitions for follow-up analysis. From all consensus clustering partitions generated with 
from 2 to 60, we selected those with a median adjusted Rand index (ARI) with the ensemble members greater the 75th
percentile.
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