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Abstract 1 

Trust is a nebulous construct central to successful cooperative exchanges and interpersonal 2 
relationships. In this study, we introduce a new approach to establishing construct validity of trust 3 
using “neurometrics”. We develop a whole-brain multivariate pattern capable of classifying 4 
whether new participants will trust a relationship partner in the context of a cooperative 5 
interpersonal investment game (n=40) with 90% accuracy and find that it also generalizes to a 6 
variant of the same task collected in a different country with 82% accuracy (n=17). Moreover, we 7 
establish the convergent and discriminant validity by testing the pattern on eleven separate 8 
datasets (n=496) and find that trust is reliably related to beliefs of safety, inversely related to 9 
negative affect, but unrelated to reward, cognitive control, social perception, and self-referential 10 
processing. Together these results provide support for the notion that the psychological 11 
experience of trust contains elements of beliefs of reciprocation and fear of betrayal aversion. 12 
Contrary to our predictions, we found no evidence that trust is related to anticipated reward. This 13 
work demonstrates how “neurometrics” can be used to characterize the psychological processes 14 
associated with brain-based multivariate representations.   15 

  16 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451074doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451074
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neurometrics-based construct validity of trust 

 2 

Introduction  1 

The foundation of modern society is built upon our ability to successfully conduct cooperative 2 
social exchanges such as strategic coalitions, exchange markets, and systems of governance. 3 
Trust plays a central role in facilitating social exchange 1 based on its ability to reduce transaction 4 
costs and increase information sharing 2. Successful interpersonal, business, and political 5 
transactions require trusting that a relationship partner will honor their agreement. Countries with 6 
formal institutions that protect property and contract rights are associated with higher perceptions 7 
of trust and civic cooperation, decreased rates of violent crime in neighborhoods 3, and increased 8 
economic growth 4. From an interpersonal perspective, trust can be considered the psychological 9 
state of assuming mutual risk with a relationship partner to attain an interdependent goal in the 10 
face of competing temptations 5,6 which can be assayed using a two-person Investment Game 7,8. 11 
In this game, a Trustor has the opportunity to invest a portion of a financial endowment to a 12 
Trustee. The investment amount is multiplied by a factor specified by the experimenter (e.g., 3 or 13 
4), and the Trustee ultimately decides how much of the multiplied endowment to return back to 14 
the Trustor to honor or betray their trust. This game has been well studied in behavioral economics 15 
9 and also in the field of decision neuroscience, which has investigated the neurobiological 16 
processes associated with trust 10–18 and its reciprocation 19,20. This work has found that trust and 17 
reciprocity are associated with neural reward circuitry including the ventral striatum, ventral 18 
tegmental area (VTA), and medial prefrontal cortex. However, it remains unclear precisely how 19 
this neural circuitry produces psychological feelings of trust that drives behavior in interpersonal 20 
interactions. In this paper, we establish a “neurometric” approach to assessing the construct 21 
validity of brain activity patterns predictive of individual decisions to trust in the investment game.  22 
 23 
Trust is a dynamic state that evolves over the course of a relationship. Early stages of a 24 
relationship are focused on assessing a partner’s trustworthiness level, which can be impacted 25 
by previous interactions 13,14,18,21, gossip 22–24, group membership 25, or judgments based on 26 
appearance 26,27. Trustors must be willing to endure a risk  28,29, while Trustees must be willing to 27 
overcome their own self-interest and take an action that fulfills an interdependent goal. As the 28 
relationship progresses, both parties are better able to predict each other’s behavior and develop 29 
a sense of security in the relationship. In this way, trustworthiness reflects a dynamic belief about 30 
the likelihood of a relationship partner reciprocating 14,16,30–32. These mutually beneficial 31 
collaborations can be rewarding 10,12,33. However, at some point in the relationship, one person 32 
may end up betraying their partner 34, which could eventually lead to a dissolution of the 33 
relationship 17. Thus, the candidate motivations influencing our likelihood to place trust in others 34 
include: (a) beliefs about probability of future reciprocation, (b) anticipated rewards, and (c) 35 
betrayal-aversion.  36 
 37 
In psychometrics, creating a quantitative measurement of a nebulous and multifaceted concept 38 
such as trust requires establishing construct validity. Constructs provide consensus 39 
understanding of the semantic meaning of an abstract concept based on a nomological network 40 
of associations to other concepts 35. Validating a construct requires assessing its generalizability 41 
to new populations and contexts and its convergent and discriminant validity to other constructs 42 
36. Though the principles of psychometrics were originally established for more traditional 43 
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psychological tests and questionnaires, there is growing evidence that patterns of brain activity 1 
can serve as “neurometrics” of constructs 37. For example, there has been a longstanding interest 2 
in using multivariate decoding methods to determine an individual’s psychological state based on 3 
patterns of brain activity 38–41 with demonstrated success in predicting the intensity of a variety of 4 
affective experiences 42–46, reconstructing a visual stimulus 47 or uncovering its semantic meaning 5 
48. Neurometrics has several advantages over psychometrics in that it can utilize a high 6 
dimensional measurement of voxel activity observed during the engagement of a specific 7 
psychological process without requiring retrospective verbal self-report (e.g., questionnaires) or 8 
completing many different behavioral tasks (e.g., intelligence tests). By leveraging quickly 9 
changing scientific norms in open data sharing 49–53, it is increasingly possible to train a model 10 
predictive of a psychological state using brain activity such as pain 42, and establish a nomological 11 
network based on the model’s convergent and discriminative validity with other constructs such 12 
as negative emotions 45, cognitive control 41, social rejection 54, and vicariously experienced pain 13 
43.  14 
 15 
Building on this approach, in this study we use supervised multivariate pattern-based analysis to 16 
predict individual decisions to trust a relationship partner in an interpersonal context using data 17 
from two previously published studies 12,14 (Figure 1A). We then establish the neurometric 18 
properties of this brain model by assessing its generalizability to a slightly different version of the 19 
task collected in a different country 55 (Figure 1B) and its convergent and divergent validity across 20 
11 different tasks probing risk 56,57, affect 45,58, rewards 59–61, cognitive control 62, and social 21 
cognition 63–66. This process allows us to characterize the psychological properties of the construct 22 
of trust using neurometric analyses (Figure 1C). Based on the findings outlined above, we 23 
hypothesize that the construct of trust will be positively associated with beliefs of safety, feelings 24 
of anticipated reward, and negatively with feelings of negative affect, but not associated with other 25 
psychological processes (Figure 1D).  26 

 27 
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Figure 1. A demonstration of construct validity based on neurometric information. (A) A support vector machine 1 
algorithm was used to train the trust model. (B) An independent trust dataset was used to validate the trust model’s 2 
generalizability. (C) We tested the model on independent datasets such as the Balloon Analog Risk Task to assess the 3 
convergent and discriminant validity of the trust model. (D) We hypothesized that trust was associated with beliefs of 4 
safety, feelings of anticipated reward, and affect, but not other processes.  5 

Results 6 

Training trust brain model 7 

Using data from two published studies 12,14, we trained a linear Support Vector Machine (SVM) to 8 
classify when participants (n=40) decided to trust a relationship partner in the investment game 9 
using whole-brain patterns of brain activity (Figure 1A). We performed an initial temporal data 10 
reduction using univariate general linear models (GLMs) to create an average map of each 11 
participant’s brain response when making decisions to trust or not. We then used a leave-one-12 
subject-out (LOSO) cross-validation procedure to evaluate the performance of our multivariate 13 
SVM model in classifying maps associated with each participant's decisions to prospectively trust 14 
or distrust using data from the rest of the participants. Our trust brain model (Figure 2A) was able 15 
to accurately discriminate between trust and distrust decisions within each participant (forced-16 
choice accuracy: 90%, p < 0.001, Figure 2B & 2C, Table S1). Forced choice tests compare the 17 
relative pattern expression of the model between brain maps within the same participant and are 18 
particularly well suited for fMRI because they do not require signals to be on the same scale 19 
across individuals or scanners 42.  20 
 21 
To establish the face validity of our model, we used a parametric bootstrap to identify which voxels 22 
most reliably contributed to the classification, which involved retraining the model 5,000 times 23 
after randomly sampling participants with replacement. This procedure is purely for visualization 24 
and not used for spatial feature selection 67. Consistent with prior work, we observed positive 25 
weights in the ventromedial prefrontal cortex (vmPFC), septal area 12,14,68, amygdala, and ventral 26 
hippocampus. Negative weights were found in the dorsal anterior cingulate cortex (dACC) and 27 
bilateral insula (Figure 2A). The pattern of weights learned across these bootstrap were highly 28 
reliable. We computed the pairwise spatial similarity of the whole brain pattern estimated across 29 
each bootstrap iteration and observed a high level of spatial consistency, r=0.91 45. 30 
 31 
Next, we trained a general trust model using data from all participants and evaluated its 32 
generalizability on a variant of the trust game in which participants receive feedback about their 33 
partner’s decisions regardless if the participant decided to trust or not (Figure 1B). Importantly, 34 
we found that our model was able to accurately discriminate between the trust and distrust 35 
decisions from participants recruited from a different country collected on a different scanner 36 
(forced-choice accuracy: 82%, p = 0.006, Figure 2B, Table S1). This provides further confirmation 37 
that our model is capturing aspects of the psychological experience of trust that is shared across 38 
participants.  39 
 40 
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         1 
Figure 2. The trust model and its performance in the training and validation dataset. (A) The trust model is a 2 
whole brain pattern of voxel weights that can be linearly combined with new data to predict psychological levels of trust. 3 
We visualize the voxels that most reliably contribute to the classification using a bootstrap procedure (thresholded p < 4 
0.005 uncorrected for visualization). (B) The receiver-operating-characteristic (ROC) plot highlights the sensitivity and 5 
specificity of the model in cross-validation and in an independent holdout dataset. (C) We plot the pattern expression, 6 
which reflects the spatial correlation between the model and decisions to trust and distrust across each of the 40 7 
participants in the training dataset.  8 
 9 

Construct Validity  10 

After establishing the sensitivity of our model to accurately discriminate trust decisions, we next 11 
sought to evaluate the generalizability of the trust model to other psychological constructs using 12 
additional datasets. If the model performs at chance in other contexts, then this establishes the 13 
specificity of the model in capturing trust. However, if the model gets confused in other contexts, 14 
then this may reflect overlap in the psychological experience of trust to other related constructs.  15 
 16 
Decisions to trust a relationship partner signal that the participant believes the partner is likely to 17 
reciprocate 30.  Trust reflects security in the relationship that the partner will behave as expected 18 
in their mutually interdependent interests. We first examined whether the trust model might be 19 
related to beliefs of safety, which can be measured using risk-taking tasks. The Balloon Analog 20 
Risk task (BART) is among the most widely used behavioral assay of risk-taking behavior 56,57. In 21 
this task, participants are presented a series of colorful (the risk condition) or achromatic balloons 22 
(the safety or control condition) and are instructed to inflate the balloons. In the risk condition, 23 
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participants can choose to inflate a balloon and only receive a reward if the balloon does not 1 
explode. However, each inflation is associated with an increasing probability of explosion, and 2 
when the balloon explodes, participants do not receive a reward for that round 56,57. In contrast, in 3 
the safety condition, participants are also instructed to inflate a series of balloons, but there is no 4 
risk of the balloons exploding, nor an opportunity to receive a reward. We calculated the spatial 5 
similarity of our trust model to univariate beta maps from a GLM measuring average brain activity 6 
to the risk or safety conditions from two independent BART datasets (N=15 in dataset 356 and N 7 
= 123 in dataset 457; Table S1). In both datasets, we found that the trust model could accurately 8 
discriminate between the safety and risk conditions (accuracy=93%, p < 0.001 in dataset 3; 9 
accuracy=93%, p < 0.001 in dataset 4; Figure 3B-2). These results indicate that the trust model 10 
captures a psychological experience that is shared with beliefs about safety when making risky 11 
choices (Figure 3A-2). When a relationship partner seems untrustworthy and reciprocation seems 12 
risky, participants will choose to keep their money rather than investing it.  13 
 14 
Next, we explored if the trust model captured aspects of the experience related to negative affect. 15 
One reason why people may choose to distrust and not invest their money in a relationship partner 16 
is because of potential concerns about the partner betraying their trust and keeping all of the 17 
money. This results in negative utility for both losing money, and also being betrayed 34. To test 18 
this hypothesis, we evaluated if the trust model might be inversely related to feelings of negative 19 
affect elicited by pictures from the international affective picture system (IAPS) from two 20 
independent datasets (Table S1). We found that in dataset 5 (N=93)45, the trust model 21 
differentiated between conditions of neutral and negative emotional pictures (accuracy = 72%, p 22 
< 0.001; Figure 3B-3). A similar finding was also shown in dataset 6 (N=56) 58, where the trust 23 
model discriminated between the neutral and negative-valence picture conditions (accuracy = 24 
69%, p = 0.002; Figure 3B-3) as well as between positive and negative-valence conditions 25 
(accuracy = 73%, p < 0.001; Figure 3B-3). These analyses provide evidence of overlap in the 26 
psychological processes associated with trust and negative affect. Specifically, decisions to trust 27 
are associated with less negative affect, consistent with a betrayal-aversion motivation. However, 28 
it is also possible that decisions to trust are associated with positive affect, but dataset 6 rules out 29 
this possibility. In this dataset, we did not observe a significant association with viewing positive 30 
compared to neutral pictures (accuracy = 50%, p = 0.551; Table S1), only positive and neutral 31 
compared to viewing negative pictures.  32 
 33 
Third, we examined whether the trust model can be generalized to feelings of anticipated reward. 34 
We have previously demonstrated that learning that a close friend reciprocated is associated with 35 
a greater rewarding experience compared to when a stranger reciprocates 12, suggesting that 36 
trust may be associated with the anticipation of a future reward. To test this hypothesis, we 37 
evaluated whether our model was related to reward across three different tasks 59,60,69. In dataset 38 
7 (N=64; Table S1), participants guessed whether a randomly drawn card would be higher or 39 
lower than a specific number. If they were correct, they would receive a monetary reward, and if 40 
they were incorrect they would lose money 70.  We found that the trust model performed at chance 41 
in differentiating experienced rewards from losses 59 (accuracy = 42%, p = 0.921; Figure 3B-4). A 42 
similar result was also found in dataset 8 (N=18; Table S1), in which participants were shown 43 
either a cue indicating maximal gain or loss 60, and the trust model was unable to discriminate 44 
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between these two conditions (accuracy = 66%, p = 0.119; Figure 3B-4). The trust model also 1 
failed to show a generalizability to discriminate anticipated rewards from no-rewards in the 2 
monetary incentive delay task 71 in dataset 9 (N=29; Table S1; accuracy = 38%, p = 0.933; Figure 3 
3B-4) 61. Thus, contrary to our hypotheses, our results revealed that the trust model has no clear 4 
association with feelings of anticipated reward across all three datasets related to anticipated or 5 
experienced rewards (Figure 3A-2).  6 

Specificity of trust model 7 

There are many other potential psychological aspects of the trust experience that can be 8 
evaluated using this neurometric approach. First, it is possible that people may vary in their 9 
preferences for selfishness and cooperation, and choosing to trust may involve overriding selfish 10 
motivations, which would require exhibiting cognitive control 72,73. We tested this hypothesis by 11 
applying the model to a stop signal task (dataset 10; N=19; Table S1) 62, in which participants are 12 
instructed to override a prepotent response, and found that the trust model was unable to 13 
discriminate between the successful inhibition and inhibition failure conditions (accuracy = 57%, 14 
p = 0.326; Figure 3B-5). Decisions to trust may also require social cognition to consider the other 15 
player’s mental states such as their beliefs, preferences, and financial outcomes. In order to 16 
demonstrate the specificity of the trust construct, we additionally tested our model on several 17 
datasets probing distinct aspects of social cognition. We found that the trust model did not 18 
generalize to perceptual judgments such as familiarity, in which participants judged whether a 19 
face is familiar or unfamiliar to the participants (dataset 11; N=16; accuracy = 63%, p = 0.217; 20 
Figure 3B-5; Table S1) 63. We also found that the trust model did not generalize to the 21 
classification between viewing social and non-social scenes in dataset 12 (N=36; accuracy = 47%, 22 
p = 0.686; Figure 3B-5; Table S1) 64. Lastly, we tested if the trust model was similar to self-23 
referential cognition in a task in which participants made self-referential judgments or perceptual 24 
judgments (e.g., type of font) to a variety of trait adjectives (dataset 13; N=27; accuracy = 40%, p 25 
= 0.876; Figure (B-5); Table S1) 65,66. Together, these findings indicate that the trust model was 26 
not associated with cognitive control, social perception, or self-referential processing (Figure 3A-27 
2).  28 
 29 
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 1 
Figure 3. Construct validity of the trust model and model generalizability. (A) (1) Network plot illustrates that the 2 
trust model significantly generalizes to safety and affect datasets, but not to reward and other processing datasets. The 3 
distances and thickness of edges are weighted based on every 10% decrease in classification accuracy, and the size 4 
of nodes represents sample size of each dataset. (2) The forced-choice classification accuracy for each dataset within 5 
the four domains was shown in the bar plot. Only the safety and affect domains demonstrated above chance accuracy 6 
across datasets. (B) Trust model pattern expression differences between the two conditions in the: (1) trust testing 7 
datasets, (2) two safety datasets, (3) two affect datasets, (4) three reward datasets, as well as (5) four datasets involving 8 
cognitive control and social cognition. 9 
 10 

Trust Nomological Network 11 

Finally, we constructed a nomological network of psychological states by computing the spatial 12 
similarity of patterns of brain activity elicited by different experimental tasks. To do so, we first 13 
used Uniform Manifold Approximation and Projection (UMAP) 74, a nonlinear dimensionality 14 
reduction technique to visualize similarities of whole brain spatial patterns across all participants 15 
(N=553) from all thirteen datasets. We found that whole-brain multivariate patterns of trust were 16 
closer to those of beliefs of safety, feelings of anticipated no-reward or loss, and feelings of neutral 17 
or positive affect (Figure 4A). By contrast, whole-brain multivariate patterns of distrust were closer 18 
to those of beliefs of risk, feelings of anticipated reward, and feelings of negative affect (Figure 19 
4A). Similar findings were also revealed in several brain regions, such as vmPFC, dmPFC and 20 
dACC (Figure S1). 21 
 22 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451074doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451074
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neurometrics-based construct validity of trust 

 9 

 1 
Figure 4. Spatial pattern similarity across all brain data from thirteen datasets. (A) Based on whole-brain spatial 2 
patterns, trust was more similar to safety, no-reward, neutral and positive affect; whereas distrust was more similar to 3 
risk, reward, and negative affect. (Each dot represents a beta map from each participant) (B) Hierarchical clustered 4 
heatmap of correlation across the mean spatial pattern from each condition (26 conditions from 13 datasets) also 5 
revealed similar findings as above.  6 
 7 
 8 
We quantitatively verified the results from the UMAP visualization by computing the average brain 9 
response across participants for each condition of each task and then evaluating the pairwise 10 
spatial similarity of these maps (Figure 4B). We found that the spatial patterns between two trust 11 
conditions were highly similar to each other (r = 0.33), the training trust condition in dataset 1 was 12 
similar to the two safety conditions (r = 0.31 for dataset 3 and r = 0.30 for dataset 4, respectively), 13 
and the validation trust condition in dataset 2 was also similar to the two safety conditions (r = 14 
0.39 for dataset 3 and r = 0.30 for dataset 4, respectively). In contrast, the spatial patterns between 15 
the two distrust conditions were highly similar to each other (r = 0.32), the training distrust 16 
condition in dataset 1 was similar to the two risk conditions (r = 0.31 for dataset 3 and r = 0.30 for 17 
dataset 4, respectively), and the validation distrust condition in dataset 2 was also similar to the 18 
two risk conditions (r = 0.39 for dataset 3 and r = 0.30 for dataset 4, respectively). In addition, the 19 
safety condition in dataset 4 revealed similar patterns to neutral/positive emotion conditions (r = 20 
0.30 for neutral emotion and r = 0.19 for positive emotion in dataset 6), and the risk condition in 21 
dataset 4 was similar to negative emotion conditions (r = 0.52 for dataset 5 and r = 0.34 for dataset 22 
6, respectively; Figure 4B). This means that, based on brain spatial patterns, the construct of trust 23 
is more closely related to beliefs of safety, anticipated no-reward, and non-negative affect, but not 24 
to beliefs of risk, anticipated reward, or negative affect.  25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451074doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451074
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neurometrics-based construct validity of trust 

 10 

Discussion 1 

In this study, we sought to create a model of trust based on patterns of brain activity elicited during 2 
an interpersonal investment task. We employed a neurometric approach 37,40,42,43,45 to characterize 3 
this model by assessing its reliability and validity using multiple previously published open 4 
datasets. This model leverages reliable patterns of brain activity and is sensitive to detecting 5 
psychological states of trust that generalizes to new subjects, scanners, and variants of the 6 
investment game task. In addition, we also assessed the validity of our model 36. Prior work has 7 
primarily relied on establishing face validity by demonstrating that regions associated with a 8 
construct have a reliable independent contribution to the prediction 42,43,45. However, directly 9 
interpreting the weights of linear models can potentially be misleading 75. An alternative approach 10 
based on the principles of construct validity attempts to triangulate a construct by establishing 11 
convergent and discriminant validity with respect to related and distinct constructs probed using 12 
multiple methods 36,41. This has also been described as establishing a “nomological network” 35 13 
and identifying the “receptive field” of a model 37. We assessed the ability of our trust model to 14 
discriminate task conditions across a variety of potentially related psychological constructs elicited 15 
using many different types of tasks across 11 previously published datasets.  16 
 17 
Overall, we found that our brain model of trust was associated with a distinct signature of related 18 
psychological processes. First, previous work has established that trust reflects dynamic beliefs 19 
about the likelihood of a relationship partner overcoming self-interest and reciprocating 13,30. We 20 
find strong evidence supporting this interpretation. Across two separate experiments exploring 21 
risky decision-making, our trust model is reliably associated with safety compared to risk, or in 22 
other words, a high degree of certainty in avoiding a negative outcome compared to more 23 
uncertainty in the risky condition. In addition, our pattern similarity analyses indicate that decisions 24 
to not trust are associated with the risky conditions, while the trust conditions are associated with 25 
the safety conditions. Second, we find support for the hypothesis that trust requires overcoming 26 
concerns of potential betrayal 17,34. We find that our trust model is reliably negatively associated 27 
with the psychological experience elicited from viewing negative arousing images relative to 28 
viewing neutral or positive images. We did not observe a significant relationship with differences 29 
between positive vs neutral indicating that it is neither positive nor neutral images driving this 30 
effect. Moreover, pattern similarity analyses revealed that viewing negative images correlated 31 
with the risky decision condition, while the neutral images correlated with the safety decisions. 32 
These findings are consistent with a betrayal-aversion account. It has been hypothesized that 33 
people may choose to keep their money and avoid investing in a relationship partner not just 34 
because they don’t want to lose their money, but also because they want to avoid feeling betrayed 35 
by another person 34. Of course, viewing negative arousing images is hardly the same thing as 36 
being betrayed and we believe this finding should be further substantiated in future work. Third, 37 
contrary to our predictions, we found no evidence that trust is associated with experiencing or 38 
anticipating a future reward. We tested our trust model on 3 distinct tasks probing the anticipation 39 
and experience of reward and found no indication that trust was related to reward or its 40 
anticipation. We think this is particularly important as it has been often assumed that the main 41 
motivation for trusting a relationship partner in the trust game is because the expected value is 42 
higher 9,12,30. Our findings suggest that it is not the reward, but rather the probability calculus that 43 
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may be driving decisions to trust. Finally, we also find that trust does not appear to be related to 1 
overcoming a prepotent tendency to be selfish, which would recruit cognitive control. Nor does it 2 
appear to be involved in social perceptual judgments such as whether an image is a person or an 3 
object, or if a person has been seen before or is new. We also find no evidence suggesting that 4 
trust involves self-referential processing such as considering self-other relative payoffs 76. 5 
 6 
There are several important considerations when interpreting our results. First, we made no 7 
assumptions about potential brain regions that may be involved in the psychological experience 8 
of trust and chose to utilize a whole-brain approach when training our model 67. This demonstrates 9 
which regions independently and additively contribute to the prediction. However, it is highly likely 10 
that brain activity may be highly collinear, which may lead to instability of the model weights 75,77. 11 
We used a bootstrap approach to iteratively retrain the model using different subsets of the data 12 
and found that the regions with the largest weights were highly consistent (r=0.91). Future work 13 
may consider additionally exploring different types of spatial feature selection 78. Second, our 14 
model is currently ignoring interactions between brain regions, which may be an important 15 
signature of the trust construct. This might be explored in the future by training new models using 16 
functional connectivity or interactions between brain regions. Third, our model is also agnostic to 17 
individual differences. We have established that the model generalizes to new participants, but it 18 
is not currently able to assess variations in potential motivations (e.g., risk-aversion vs betrayal-19 
aversion). Future work might use multivariate methods for probing individual differences such as 20 
intersubject representational similarity analysis 20,79,80. Finally, our construct validity analyses are 21 
completely dependent on the reliability and validity of the additional tasks, which has never really 22 
been fully established. In addition, we have only tested our model on a subset of the possible 23 
related constructs. We see this as an iterative process that cannot be fully addressed by a single 24 
paper, but instead will require continued refinement as more datasets become available in the 25 
future 37.  26 
 27 
In summary, using 14 datasets, we establish a neurometric-based construct validity of trust. This 28 
model is stored as a three-dimensional brain image that contains a recipe for how to linearly 29 
combine information from each voxel in the brain81. Importantly, this model generalizes beyond 30 
the specific subjects, scanner, or experimental paradigm and can easily be shared with other 31 
researchers 37. In addition, we move beyond a reverse inference approach 82 in interpreting the 32 
psychological processes associated with trust based on which regions contribute to the prediction 33 
40,45, to a more quantitative construct validity approach. These analyses support several previous 34 
accounts of trust, but importantly rule out a reward-based motivation. This provides a proof of 35 
concept that brain activity can be used to make inferences about a psychological process beyond 36 
self-report or behavioral observations. We believe this general approach could be applied to any 37 
other psychological constructs that can be measured using patterns of brain activity.  38 
 39 
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Methods 1 

fMRI Dataset 2 

Trust model training datasets. The training datasets (dataset 1-1 and 1-2) for the trust model 3 
contained data from two published studies 12,14. In dataset 1-1, 17 participants played an iterated 4 
trust game with three different trustees while undergoing fMRI in a 3T Siemens Allegra scanner 5 
(TR=2000ms; TE=25ms)14. Participants were endowed with one dollar and on each trial decided 6 
whether to invest this money in the other trustee (i.e., trust) or keep it (i.e., distrust). Decisions to 7 
trust resulted in the one dollar investment being multiplied by a factor of three. The trustee then 8 
decided whether to keep all three dollars, or share half of the return on the investment back to the 9 
participant (i.e., $1.50). In dataset 1-2, 23 participants also played a similar iterated trust game 10 
with two different trustees while undergoing fMRI in a 3T Siemens Magnetom Trio scanner 11 
(TR=2000ms; TE=30ms) 12.  12 
 13 
In total, there were 40 participants from dataset 1-1 and 1-2 in the current study. We focused our 14 
analysis only on the decision epoch when participants made decisions to either trust or distrust. 15 
fMRI data were analyzed using a combination of custom scripts 16 
(https://github.com/rordenlab/spmScripts) for SPM12 and FSL (v5.09; FMRIB).  We performed 17 
standard preprocessing in SPM (motion correction, brain extraction and coregistration, slice time 18 
correction). Motion artifact was removed using ICA-AROMA in FSL (Pruim et al., 2015). 19 
Functional data were smoothed using a 5mm kernel in FSL. Each condition was modeled as a 20 
separate regressor in a general linear model (GLM). This included a regressor modeling each of 21 
the decision types (trust or distrust) and the different possible decision outcomes (though these 22 
data were not the focus of the present manuscript). The GLM resulted in a trust whole-brain beta 23 
map and a distrust whole-brain beta map for each trustee (detailed preprocessing and GLM steps 24 
see 12,14). We then averaged the beta maps across partner types within each participant. These 25 
maps were mean-centered values across all voxels within each beta map 83 and used to train the 26 
trust model.  27 
 28 
Trust model validation dataset. The validation dataset (dataset 2) contained data from 17 29 
participants (mean age = 20.6 years, SD=1.49; 24% female) who participated in a repeated trust 30 
game while undergoing fMRI in a 3T Philips Achieva scanner (TR = 2200 ms, TE = 30 ms, FOV 31 
= 220 × 220 × 114.7 mm; see 55 for more details about the sample and scanning parameters). All 32 
participants provided informed consent and the study was approved by the institutional review 33 
board at Leiden University Medical Center. Participants were instructed to play a trust game with 34 
three different targets, including a friend, an antagonist, and an anonymous peer. The game was 35 
designed to be slightly more similar to a prisoner’s dilemma in that both players made their 36 
decisions simultaneously. Unlike a traditional trust game, participants received information about 37 
their partner’s decisions regardless if they chose to share or keep. However, the responses from 38 
these targets were pre-determined by the computer and not the actual partner. Similar to dataset 39 
1, we also focused our analysis on the decision epoch when participants made either a trust or 40 
distrust decision. Image pre-processing and analysis was conducted using SPM8 software 41 
(www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB R2010 (MathWorks). Pre-processing included 42 
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slice-time correction, realignment, spatial normalization to EPI templates, and smoothing with a 1 
Gaussian filter of 8 mm full-width at half maximum (FWHM). The fMRI time series were modeled by a 2 
series of events convolved with a canonical hemodynamic response function (HRF). The data was 3 
modeled at choice and feedback onset as null duration events. During decision-making the choice 4 
events (i.e., trust and keep decisions) were modeled for each of the three partner types. These 5 
modeled events were used as regressors in a general linear model (GLM) with a high pass filter using 6 
a discrete cosine basis set with a cutoff of 120 seconds. The GLM resulted in a trust whole-brain 7 
beta map and a distrust whole-brain beta map for each target. We then computed the mean trust 8 
whole-brain beta map across all three targets and repeated the same procedure for computing 9 
the mean distrust whole-brain beta map within each participant. We then mean-centered values 10 
across all voxels within each of the beta maps for all participants, and the mean-centered beta 11 
maps were used as a novel trust dataset for brain model validation. 12 
 13 
Safety datasets. In order to test whether trust is associated with beliefs of safety, we had two 14 
open fMRI datasets using the Balloon Analog Risk Task (BART), in which one condition probes 15 
beliefs of risk and another probes beliefs of safety in this study. The BART aims to elicit naturalistic 16 
risk-taking behaviors, and each participant received two conditions in the fMRI scanner. In the 17 
risk condition, each inflation of balloons is a risky choice (pump), whereas inflating balloons in the 18 
safe condition is not a risky choice (control pump). In dataset 3 (OpenfMRI ds000001) 56, there 19 
are 15 healthy participants who underwent the two conditions in a 3T Siemens Allegra MRI 20 
scanner. The data were preprocessed by FSL (www.fmrib.ox.ac.uk/fsl), including realignment, 21 
highpass-filtering, brain extraction with BET, motion correction, spatial normalization, and 22 
smoothing with a 5 mm FWHM Gaussian kernel. For trials in the risky condition, the risky inflation 23 
and the other two task-related regressors were modeled separately in the GLM. For trials in the 24 
safe condition, the safe inflation and the other two task-related regressors were also modeled 25 
separately in the GLM. For each participant, the GLMs resulted in a risk inflation whole-brain beta 26 
map and a safe inflation whole-brain beta map. We then mean-centered values across all voxels 27 
within each beta map for all participants, and these mean-centered beta maps were used as data 28 
representing the risk condition and safety condition in the generalization testing.   29 
  30 
In dataset 4 (OpenfMRI ds000030) 57, there are 123 healthy participants who also underwent the 31 
two conditions in a 3T Siemens Allegra MRI scanner. The data were preprocessed by FMRIPREP 32 
version 0.4.4, including motion correction, skullstripping and coregistration to T1 weighted 33 
volume, applying brain masks, realignment, normalization, and spatial smoothing with a 5 mm 34 
FWHM Gaussian kernel 84. A risk inflation (accept pump) and a safe inflation (control pump), along 35 
with the other seven regressors were modeled in the GLM. For each participant, the GLM resulted 36 
in a risk inflation whole-brain beta map and a safe inflation whole-brain beta map, and we then 37 
mean-centered values across all voxels within each beta map for all participants. These mean-38 
centered risk inflation beta maps and safe inflation beta maps were then used as data 39 
representing the risk condition and safety condition in the generalization testing. 40 
 41 
Affect datasets. Two affect datasets were included in the current study. Dataset 5 came from 42 
the PINES dataset 45, which was an open dataset on Neurovault 43 
(https://identifiers.org/neurovault.collection:503). In this dataset, participants were asked to view 44 
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numerous negative and neutral-valenced pictures from the international affective picture system 1 
(IAPS), and then rated how negative they felt from 1 (neutral) to 5 (most negative). Details of the 2 
experimental design were described in previous studies 45,85. Among these participants, this 3 
current study only used data from those (N = 93) whose ratings had 1 (neutral) and 5 (most 4 
negative). The fMRI data was collected in a Siemens Trio 3T scanner (TR= 2000 ms, TE=29ms), 5 
and then preprocessed by SPM8, including unwarping, realignment, coregistration, normalization, 6 
spatial smoothing with a 6 mm FWHM Gaussian kernel and high pass filtering (180 sec cutoff). 7 
Then five separate regressors indicating different rating levels (1 to 5) were modeled in the GLM 8 
for each participant as well as 24 covariate regressors modeled movement effects (6 realignment 9 
parameters demeaned, their 1st derivatives, and the squares of these 12 regressors). Since our 10 
goal was to compare the neutral and negative condition, only the neutral (rating = 1) beta map 11 
and the negative (rating = 5) beta map were included in the current study. We then mean-centered 12 
values across all voxels within each of the above two kinds of beta maps for all participants. These 13 
mean-centered neutral and negative beta maps were taken as data in the generalization testing. 14 
 15 
In Dataset 6, fifty-six participants were recruited to complete an emotional scene task 58. In this 16 
task, participants were asked to make indoor/outdoor categorization judgments on scenes in a 17 
block design. Each block lasted 15 seconds and consisted of six emotional scenes with the same 18 
emotional valence. Each emotional-scene block alternated with a 15-sec fixation block, and each 19 
participant went through five blocks for each of three different valences, including positive, neutral, 20 
and negative valence. The emotional valence of the scenes used in each condition were selected 21 
from the IAPS and have been validated in a previous fMRI study 86. The fMRI data was collected 22 
in a Philips Intera Achieva 3T scanner (TR = 2500 ms, TE = 35 ms), and then preprocessed by 23 
SPM8, including slice timing correction, unwarping, realignment, coregistration, normalization, 24 
and spatial smoothing with a 6 mm FWHM Gaussian kernel. The positive, neutral, and negative 25 
valence conditions were then modeled separately in the GLM for each participant. The GLM 26 
resulted in a positive, neutral, and negative emotion beta map from each participant, and we then 27 
mean-centered values across all voxels within each beta map for all participants. These mean-28 
centered beta maps were used in the current study, representing three different emotional-29 
valence conditions in the generalization testing. 30 
 31 
Reward datasets. Three reward anticipation fMRI datasets were used in the current study. 32 
Dataset 7 comes from the Human Connectome Project 59, and the reward anticipation task used 33 
in this dataset is the Card Gambling task 70. In this task, participants were asked to guess whether 34 
the number on a mystery card is greater or smaller than five. Participants would receive a reward 35 
of one dollar if the number is greater than five; by contrast, they would lose fifty cents if the number 36 
is smaller than five. In total, fMRI data from 64 participants were collected and preprocessed with 37 
the HCP fMRIVolume pipeline 87. The preprocessing steps included gradient unwarping, motion 38 
correction, fieldmap-based EPI distortion correction, coregistration, normalization, and spatial 39 
smoothing with a 4 mm FWHM Gaussian kernel. The reward and loss conditions were then 40 
modeled in the GLM. The GLM resulted in a reward beta map and a loss beta map within each 41 
participant, and we then mean-centered values across all voxels within each beta map for all 42 
participants. These mean-centered reward and loss beta maps were then used as data 43 
representing the reward condition and non-reward/loss condition in the generalization testing.  44 
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 1 
In dataset 8, eighteen participants completed a reward/loss anticipation task while undergoing 2 
scanning in a 3T Siemens Trio scanner 60. In this task, different cues were shown on the screen 3 
indicating different amounts of monetary reward or loss. After the cue phase, an outcome phase 4 
occurred, indicating the actual amount of reward and loss. The monetary reward or loss amounts 5 
were equally sampled from [1, 5, 20, 100]. The data were preprocessed using BrainVoyager QX 6 
2.8 and NeuroElf V1.1, including: motion correction, slice timing correction, high-pass filtering, 7 
normalization, and spatial smoothing with a 6 mm FWHM Gaussian kernel. The cue and outcome 8 
phases with different levels were modeled separately in the GLM for each participant. Only the 9 
maximal-reward (i.e., a gain of $100) and maximal-loss (i.e., a loss of $100) beta maps from each 10 
participant were used in the current study, and we then mean-centered values across all voxels 11 
within each beta map for all participants. These mean-centered beta maps would represent the 12 
reward condition and non-reward/loss condition in the generalization testing. 13 
 14 
In dataset 9 (OpenNeuro ds003242) 61, twenty-nine participants underwent a monetary incentive 15 
delay task 71,88 in an fMRI scanner. Before the task, participants were asked to memorize five 16 
abstract art images, and these familiar images were then taken as cues in the reward condition. 17 
In the reward condition, after a familiar image was shown on the screen as a reward cue, a number 18 
ranging from 1 to 9 was shown and participants had to respond whether the number was larger 19 
or smaller than 5. If participants responded fast enough (< 500 ms), they would receive a reward 20 
of one dollar. In the other condition, the non-reward condition, after a new abstract art image was 21 
shown as a non-reward cue, a number was also shown on the screen and participants were also 22 
asked to respond whether the number is greater or smaller than 5. However, the responding 23 
performance in the non-reward condition was not associated with any reward. FMRIPREP 89 was 24 
used for brain data preprocessing, and the steps included motion correction, skullstipping and 25 
coregistration to T1 weighted volume, applying brain masks, realignment, normalization, and 26 
spatial smoothing with a 6 mm FWHM Gaussian kernel. We modeled the reward condition and 27 
non-reward conditions as separate regressors in a univariate GLM, along with 24 covariate 28 
regressors modeling movement effects (6 realignment parameters demeaned, their 1st 29 
derivatives, and the squares of these 12 regressors), a 128 sec high pass filter using a discrete 30 
cosine transform, and separate scanner spikes based on frame differences that exceeded 3 31 
standard deviations. For each participant, the GLM resulted in a reward beta map and a non-32 
reward beta map, which were then mean-centered across all voxels within each beta map for all 33 
participants. These mean-centered reward and non-reward beta maps were then used as data 34 
representing the reward condition and non-reward/loss condition in the generalization testing. 35 
 36 
Other processing datasets. In order to demonstrate the specificity of our trust model, we 37 
validated our model on four additional datasets, including cognitive control, familiarity, social 38 
cognition and self-referential cognition. To test the domain of cognitive control, in Dataset 10, 39 
nineteen participants performed a stop-signal task (SST) in a 3T Siemens Allegra MRI scanner 40 
(TR=2000ms, TE=30ms) 62. This open dataset is available on both OpenNeuro (ds000007) and 41 
Neurovault (https://neurovault.org/collections/1807/). We used data from Neurovault task001, 42 
which was a manual SST. For the go trials in this task, participants were asked to press on the 43 
right or left button according to whether the letter “T” or “D” was shown on the screen. For stop 44 
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trials, an auditory tone cue signaling stop was played after the letter being shown with some delay 1 
(stop-signal delay; SSD), and participants were asked to inhibit their approaching responses 2 
toward the button. Throughout the task, the length of SSD changed according to whether 3 
participants succeeded or failed to inhibit their responses in order to maintain the accuracy rate 4 
at 50%. Thus, the number of inhibition-success and inhibition-failure trials would be the same, 5 
and we would use data from both of these two conditions for further analysis. The data was 6 
preprocessed by FSL version 3.3, and the preprocessing steps included coregistration, 7 
realignment, motion correction, denoising using MELODIC, normalization, spatial smoothing with 8 
a 5 mm FWHM Gaussian kernel, and high-pass filtering. Details about the preprocessing steps 9 
were described in the original study 62. Four conditions, including go, inhibition-success, inhibition-10 
failure, and nuisance events, were modeled separately in the GLM for each participant. The GLM 11 
resulted in a go, inhibition-success, inhibition-failure, and nuisance event beta map, and we then 12 
mean-centered values across all voxels within each beta map for all participants. Only the mean-13 
centered inhibition-success and inhibition-failure beta maps were used in the generalization 14 
testing. 15 
 16 
For the domain of familiarity, in Dataset 11, sixteen participants completed a face-viewing task in 17 
a Siemens 3T TRIO scanner (TR=2000ms, TE=30ms) 63. This open dataset is available on both 18 
OpenNeuro (ds000117) and Neurovault (https://neurovault.org/collections/1811/), and we used 19 
data downloaded from Neurovault. In this face-viewing task, participants were asked to view three 20 
different types of faces, including famous, unfamiliar, and scrambled faces. Each trial began with 21 
a fixation cross on the screen, and then one of the three types of faces were shown on the screen. 22 
Participants were asked to pay attention to all trials throughout the whole experiment. The fMRI 23 
data was preprocessed by SPM8, which included slice timing correction, realignment, 24 
coregistration, normalization, and spatial smoothing with a 8 mm FWHM Gaussian kernel. Three 25 
conditions, including famous, non-familiar, and scrambled faces were modeled separately in the 26 
GLM for each participant. The GLM resulted in a famous, non-familiar, and scrambled beta map, 27 
and we then mean-centered values across all voxels within each beta map for all participants. 28 
Only the mean-centered famous and non-familiar beta maps were used in the current study for 29 
the generalization testing.  30 
 31 
For the domain of social cognition, in Dataset 12, thirty-six participants completed a scene 32 
judgment task in a Philips Intera Achieva 3T scanner (TR = 2500 ms, TE = 35 ms) 64. In this task, 33 
each participant was asked to make indoor/outdoor categorization judgements on 270 different 34 
scenes, including 90 social scenes, 90 non-social scenes, and another 90 food scenes. These 35 
pictures have been used in several studies 90–92, and compared to non-social scenes, social 36 
scenes have been found to reliably activate brain regions, such as the dmPFC, PCC, and  vmPFC 37 
90. In each trial, a scene image was shown on the screen for 2000 ms, followed by a 500 ms 38 
fixation, and a jitter (range: 0-5000 ms) was followed between each trial. The fMRI data were 39 
preprocessed by SPM8, which included slice timing correction, unwarping, realignment, motion 40 
correction, normalization, spatial smoothing with a 6 mm FWHM Gaussian kernel. The social, 41 
non-social, and food conditions were then modeled separately in the GLM for each participant. 42 
The GLM resulted in a social, non-social, and food beta map, and we then mean-centered values 43 
across all voxels within each beta map for all participants. Only the mean-centered social and 44 
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non-social beta maps from each participant were then used in the current study, representing the 1 
social and non-social condition for the generalization testing. 2 
 3 
For the domain of self-referential cognition, in Dataset 13, twenty-seven participants completed a 4 
trait-judgment task in a Philips Intera Achieva 3T scanner (TR = 2500 ms, TE = 35 ms) 65,66. In 5 
this trait-judgment task, participants were asked to make three different targets of judgments, 6 
including self-judgment (i.e. does this adjective describe you?), mother-judgment (i.e. does this 7 
adjective describe your mother?) and font-judgment (i.e. is this adjective printed in bold-faced 8 
letters?) in two different languages. For each trial, a trait adjective word (e.g. smart) was paired 9 
with a target word (i.e. SELF, MOTHER, or FONT) and were shown on the screen for 2500ms. 10 
Although each trait word was presented once in Mandarin and once in English, the current study 11 
only used the three conditions in Mandarin. The fMRI data was preprocessed by SPM8, which 12 
included slice timing correction, unwarping, realignment, motion correction, normalization, spatial 13 
smoothing with a 6 mm FWHM Gaussian kernel. The self-judgment, mother-judgment, and font-14 
judgment conditions were then modeled separately in the GLM for each participant. The GLM 15 
resulted in a self-judgment, mother-judgment, and font-judgment beta map, and lastly we mean-16 
centered values across all voxels within each beta map for all participants. Only the mean-17 
centered self-judgment and font-judgment beta mps from each participant were then used for the 18 
generalization testing in the current study.  19 
 20 

Training and validating a trust model 21 

Training model and cross-validation within the training dataset. We used a three stage 22 
approach to train our whole-brain multivariate classification model using a linear Support Vector 23 
Machine (SVM). First, we were interested in evaluating how well the model might generalize to 24 
new data using a leave-one-subject-out (LOSO) cross-validation procedure, ensuring that every 25 
subject served as both training and testing data 45. This allowed us to evaluate how a model 26 
trained on 39 participants could classify trust or distrust decisions from the left-out participant and 27 
provided an estimate of the expected generalizability of the model to similar datasets. Second, 28 
we were interested in assessing which voxels most reliably contributed to the trust classification. 29 
We used a parametric bootstrap procedure, which involved retraining the model 5,000 times after 30 
randomly sampling participants with replacement. The resulting distribution was then converted 31 
into a z-value at each voxel, which allowed the map to be thresholded based on a corresponding 32 
p-value. We used p < 0.005 as the threshold to visualize the most reliable weights, which allowed 33 
us to assess the face validity of the model (Figure 2A). It is important to note that we did use this 34 
thresholded map to perform any inferences. We further computed the spatial intersubject 35 
correlation across the models trained on each bootstrapped sample to estimate the approximate 36 
reliability of the spatial pattern of weights. This metric can be interpreted similarly to a reliability 37 
coefficient, but will be somewhat inflated compared to using completely independent data. Third, 38 
we trained the final model using the data from all participants, which is what we ultimately used 39 
to test on all other datasets. This model will be the most reliable as it was trained on all available 40 
data. For all tests, we used a forced-choice accuracy procedure to evaluate the performance of 41 
the model. Forced-choice accuracy examines the relative expressions of the model between the 42 
two brain images collected from the same participant and is well suited for fMRI as the input 43 
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images are unlikely to be on the same scale across individuals or scanners 42,45. We performed 1 
hypothesis tests using permutations in which the labels for each image across participants were 2 
randomly flipped 10,000 times to generate a null distribution. We were only interested in whether 3 
the target condition was significantly greater than the reference condition, so we reported one-4 
tailed tests. We also computed receiver operator character (ROC) curves using forced choice 5 
accuracy. An interesting property of forced choice accuracy is that it is equivalent to sensitivity, 6 
specificity, and area under the curve (AUC) of the ROC curve.  7 
 8 
Model validation using an independent testing dataset. In order to examine the validity of the 9 
trust brain model in an even more rigorous and unbiased way beyond cross-validation, we 10 
evaluated its generalizability to a new test dataset (Dataset 2). This dataset was collected in a 11 
different country (The Netherlands), using a different scanner and variant of the trust game. We 12 
computed forced-choice accuracy on this dataset based on the spatial similarity of the trust model 13 
and each participant’s trust and distrust beta images estimated using a first level GLM, and also 14 
calculated an ROC curve to quantify the tradeoff of sensitivity and specificity at different 15 
thresholds (Figure 2B). 16 

Construct validity and specificity of trust model 17 

To evaluate the convergent and discriminant validity of the trust model to other psychological 18 
constructs, we tested our trust classification model on other datasets probing distinct 19 
psychological constructs, including: beliefs of safety (Dataset 3 and 4), negative affect (Dataset 5 20 
and 6), feelings of anticipated reward (Dataset 7, 8 and 9), cognitive control (Dataset 10), social 21 
cognition (Dataset 11 and 12), and self-referential cognition (Dataset 13). 22 
 23 
For each dataset, we computed the spatial similarity between the trust multivariate brain pattern 24 
and each participant’s beta maps representing the test and control conditions from each task. For 25 
example, we evaluated how well the trust model could discriminate between safety and risk in 26 
datasets 3 and 4, neutral and negative emotional experience in dataset 5 and 6, positive and 27 
negative emotional experiences in dataset 6, anticipated reward and loss in dataset 7, anticipated 28 
money gain and loss in dataset 8, anticipated reward and no-reward in dataset 9, success and 29 
failure in cognitive control in dataset 10, familiarity and unfamiliarity in dataset 11, social and non-30 
social viewing in dataset 12, as well as self and non-self referential cognition in dataset 13. We 31 
followed the same forced-choice testing procedure outlined above. Assessing the generalizability 32 
of the trust model across different datasets in this manner allowed us to demonstrate convergent 33 
and discriminant validity of the trust brain model with other psychological constructs.  34 

Trust Nomological network 35 

Finally, we were interested in assessing the overall spatial similarity between all of the 13 datasets 36 
in order to assess the trust nomological network. We employed both qualitative and quantitative 37 
approaches. First, to qualitatively visualize the similarity of all of the participants from all 13 38 
datasets (N=547), we used Uniform Manifold Approximation and Projection (UMAP), a nonlinear 39 
dimensionality reduction technique (Figure 4A; https://github.com/lmcinnes/umap). UMAP 40 
attempts to project high dimensional data into a low dimensional space preserving both local and 41 
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global distance in the feature space using manifold learning 74. We first removed dataset-specific 1 
differences in brain activity by subtracting the mean brain activity of each dataset from each brain 2 
map, ensuring that mean brain activity of each dataset was the same. We used arbitrarily selected 3 
values for the hyperparameters (number of neighbors = 50, minimal distance = 0.001). Because 4 
the ROI maps contained considerably less features, we used a lower neighbor embedding (Figure 5 
S2; number of neighbors = 15, minimal distance = 0.001). Second, to quantitatively assess the 6 
overall similarity between the datasets, we averaged beta maps across participants for each 7 
condition and computed the spatial similarity across conditions from all datasets in a hierarchical 8 
clustered heatmap (Figure 4B).  9 
 10 
 11 
 12 
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Supplementary materials 1 

 2 
Table S1. Basic information of each dataset as well as forced-choice classification accuracy and p values for each 3 
generalization testing. 4 
 5 

Dataset 
number 

Number of 
participants 

Construct Name of the two 
conditions 

Accuracy P value 

1 40 Trust Trust vs. Distrust 90% < 0.001 

2 17 Trust Trust vs. Distrust 82% 0.006 

3 15 Safety Safety vs. Risk 93% < 0.001 

4 123 Safety Safety vs. Risk 93% < 0.001 

5 93 Affect Neutral vs. Negative 72% < 0.001 

6 56 Affect Neutral vs. Negative 69% 0.002 

6 56 Affect Positive vs. Negative 73% < 0.001 

6 56 Affect Positive vs. Neutral 50% 0.551 

7 64 Reward Reward vs. Loss 42% 0.921 

8 18 Reward Gain vs. Loss 66% 0.119 

9 29 Reward Reward vs. No reward 38% 0.933 

10 19 Cognitive 
control 

 Inhibition success vs. 
failure  

57% 0.326 

11 16 Social 
cognition 

Familiar vs.  
unfamiliar faces 

63% 0.217 

12 36 Social 
cognition 

Social vs.  
nonsocial scenes 

47% 0.686 

13 27 Social 
cognition 

Self vs.  
nonself referential  

40% 0.876 

 6 
 7 
 8 

 9 

 10 

  11 
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