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Abstract 28 
The rodent visual system has attracted great interest in recent years due to its experimental tractability, but 29 
the fundamental mechanisms used by the mouse to represent the visual world remain unclear. In the 30 
primate, researchers have argued from both behavioral and neural evidence that a key step in visual 31 
representation is “figure-ground segmentation,” the delineation of figures as distinct from backgrounds [1-32 
4]. To determine if mice also show behavioral and neural signatures of figure-ground segmentation, we 33 
trained mice on a figure-ground segmentation task where figures were defined by gratings and naturalistic 34 
textures moving counterphase to the background. Unlike primates, mice were severely limited in their ability 35 
to segment figure from ground using the opponent motion cue, with segmentation behavior strongly 36 
dependent on the specific carrier pattern. Remarkably, when mice were forced to localize naturalistic 37 
patterns defined by opponent motion, they adopted a strategy of brute force memorization of texture 38 
patterns. In contrast, primates, including humans, macaques, and mouse lemurs, could readily segment 39 
figures independent of carrier pattern using the opponent motion cue. Consistent with mouse behavior, 40 
neural responses to the same stimuli recorded in mouse visual areas V1, RL, and LM also did not support 41 
texture-invariant segmentation of figures using opponent motion. Modeling revealed that the texture 42 
dependence of both the mouse’s behavior and neural responses could be explained by a feedforward 43 
neural network lacking explicit segmentation capabilities. These findings reveal a fundamental limitation in 44 
the ability of mice to segment visual objects compared to primates.  45 
 46 
Introduction 47 
Primates rely primarily on vision to meaningfully interact with objects in the world. Mice, in contrast, rely far 48 
less on their visual system, though they do use visual cues for important behaviors such as hunting, 49 
evasion, and navigation [5-9]. The field of mouse vision has attracted great excitement in recent years due 50 
to the wealth of tools available for mouse circuit dissection, with many groups adopting the mouse as a 51 
model for visual perception [10] and visually-guided decision making [11, 12]. Yet the fundamental ethology 52 
of mouse vision remains poorly understood. What does the mouse perceive as a visual object? 53 
 54 
While work has shown that visual responses in mouse visual cortex share low-level organizing principles 55 
with those of primate visual cortex, including temporal/spatial frequency tuning [13], orientation selectivity 56 
[14], and contextual surround effects [15, 16], it remains unclear to what extent the two species share more 57 
abstract representations of visual objects and scenes.  58 
 59 
In particular, it is unclear whether mice explicitly segment visual scenes into discrete surfaces. 60 
Segmentation refers to the identification of borders of each object in a visual scene and assignment of 61 
discrete labels to pixels corresponding to each object. In primates, segmentation is a key step in visual 62 
processing following early feature extraction [2, 17-20]. For example, in the famous “face-vase” illusion, 63 
human viewers inexorably segment the scene as a face or a vase, with bistable dynamics. A large body of 64 
psychophysics suggests that the primate visual system performs segmentation by generating a surface 65 
representation, an assignment of each retinal pixel to a distinct contiguous surface situated in 3D space 66 
[18, 21] (Fig. 1a). 67 
 68 
How could the brain solve visual segmentation? The key visual cue signaling a surface border is a 69 
discontinuity, an abrupt change in features at the surface border. For example, there is often a change in 70 
luminance, orientation, or texture at a surface border. However, this need not be the case: changes in 71 
luminance, orientation, and texture can also occur within interior regions of a surface (Fig. 1b). Conversely, 72 
object borders can exist without any change in luminance, orientation, or texture—a fact exploited by 73 
animals that use camouflage [22]. Thus a key challenge of intermediate vision is to identify true object 74 
borders using ambiguous local cues. Aiding this goal, there is one cue that is unambiguous: accretion-75 
deletion, the appearance or disappearance of pixels forming the background surface due to motion (or 76 
binocular disparity) of the foreground surface (Fig. 1b). Gibson identified accretion-deletion as the single 77 
most important cue to surface organization because it is unambiguous, invariant to texture, and locally 78 
available [23]. Psychophysical experiments in humans demonstrate that accretion-deletion alone is able to 79 
evoke a vivid percept of an object border [24]. Furthermore, a recent computational theory of surface 80 
representation shows how surface segmentation can be computed using local accretion-deletion cues in a 81 
simple way without requiring learning, top-down feedback, or object recognition [21]. Moreover, this new 82 
theory shows how such local accretion-deletion cues can be used not only to solve segmentation, but also 83 
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to solve invariant tracking of objects (Fig. 1c), widely considered one of the hardest problems in vision [25, 84 
26]. To summarize, while there are multiple cues to segmentation, accretion-deletion holds a special status 85 
for the following reasons: (i) it is unambiguous, occurring only at true object borders and never at internal 86 
texture borders; (ii) it is cue-invariant; (iii) it is especially computationally powerful, supporting not only 87 
segmentation but also invariant tracking. 88 
 89 
A variety of neural correlates of segmentation have been found in the primate brain. Neurons in primate 90 
V1, V2, and V4 modulate their firing according to whether a stimulus is part of the foreground or background 91 
[2-4] (Fig. 1d). Complementing figure-ground signaling, a population of neurons have been found in 92 
macaque areas V2 and V4 that explicitly signal object borders. These “border-ownership” cells respond 93 
selectively to figure edges and are moreover modulated by the side of the figure relative to the edge [19] 94 
(Fig. 1e).  95 
 96 
It remains unclear whether figure-ground and border-ownership cells provide an explicit, cue-invariant 97 
solution to the segmentation problem, for both conceptual and experimental reasons. Conceptually, natural 98 
vision scenes typically contain multiple objects, necessitating multiple distinct neural labels. However, 99 
figure-ground cells seem capable of unambiguously labeling only a single figure via increased firing rate; 100 
additional processing of figure-ground and border-ownership cell output would be necessary to generate 101 
distinct labels for each object. Experimentally, classic studies of figure-ground segmentation in the primate 102 
used figures composed of oriented lines on a background of orthogonally-oriented lines [2]. Such 103 
modulation could in theory have arisen as a result of lower-level cues (e.g., neurons with receptive fields 104 
near the edge signaling low-level orientation contrast) [27]. Hesse and Tsao investigated the consistency 105 
in the sign of selectivity of border-ownership cells across different visual conditions. While 55% of V2/V3 106 
cells met the criteria for border ownership selectivity when assayed with a luminance-defined square, not a 107 
single cell showed fully consistent selectivity when assayed with figures defined by other types of cues [28]. 108 
Overall, these experimental findings raise the possibility that segmentation is solved by a population code 109 
rather than explicit cue-invariant figure and edge detectors. Despite these uncertainties about neural 110 
mechanism, we underscore that behavioral evidence unequivocally demonstrates that primates possess a 111 
mechanism for explicit, cue-invariant segmentation exploiting accretion-deletion [24]. 112 

Behaviorally, mice are capable of texture-based segmentation, in which figure and background are defined 113 
by grating patterns and have different orientation or phase [29, 30]. Consistent with this behavioral 114 
capability, cells in mouse V1 show iso-orientation surround suppression [15, 16] and have been reported 115 
to be modulated by figure versus ground [29-31]. However, all of these studies have used texture-based 116 
cues, which are fundamentally ambiguous for solving segmentation (Fig. 1b). Thus it remains an open 117 
question whether mice are capable of explicit object segmentation, or simply of texture segregation. 118 
 119 
Here, we took advantage of the ability to record from large numbers of neurons across the mouse cortical 120 
visual hierarchy to look for behavioral and neural correlates of visual segmentation in the mouse. We 121 
discovered a surprising difference between mouse and human segmentation behavior, which led us to 122 
systematically investigate segmentation behavior in three additional species: the macaque, mouse lemur, 123 
and treeshrew. We found that the mouse, like the treeshrew and unlike the two primate species, is 124 
behaviorally incapable of texture-invariant segmentation. In fact, mice tasked to localize objects with 125 
naturalistic textures adopted a strategy of brute force memorization—a cognitively impressive feat. 126 
Furthermore, we found no evidence for single neurons in mouse visual cortex modulated by figure/ground 127 
or border ownership in a texture-invariant manner. For patterns containing orientation or phase contrast 128 
between figure and background, we could decode figure location from population neural recordings, with 129 
best decoding in putative ventral stream area LM, followed by RL and V1, but we could not decode figure 130 
location for figures with naturalistic texture. A simple feedforward neural network could account for the 131 
observed dependence of mouse behavior and neural responses on carrier pattern. Taken together, these 132 
findings reveal a fundamental difference between primate and mouse mechanisms for object segmentation, 133 
with the mouse relying much more on texture statistics than the primate. The findings have broad 134 
implications for use of the mouse as a model for visual perception.  135 
 136 
Results 137 
 138 
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Mice fail to segment objects defined purely by opponent motion 139 
  140 
We set out to clarify (i) whether mice are capable of invariantly segmenting figure from ground and (ii) 141 
whether there exist texture-invariant segmentation-related signals in the mouse brain, as reported in the 142 
macaque brain [2, 32]. To address the mouse’s ability to segment objects, we designed a two-alternative 143 
forced choice task in which mice reported the side of a touch screen that contained a figure for a water 144 
reward (Fig. 2a). We tested mouse segmentation behavior using three classes of stimuli: (i) “Cross” stimuli, 145 
in which the figure consisted of a grating, and the ground consisted of an orthogonal grating; (ii) “Iso” stimuli, 146 
in which the figure consisted of a grating, and the ground consisted of a grating at the same orientation, but 147 
offset in phase; (iii) Naturalistic (“Nat”) stimuli, in which both the figure and the ground consisted of 1/f noise 148 
patterns (Fig. 2b, Extended Data Movie 1). In each case, figure and ground moved in counterphase 149 
providing a differential motion cue with accretion-deletion; this motion cue was essential for defining the 150 
figure in the Nat condition. The logic of including these three conditions was as follows: (i) the Cross 151 
condition has been used previously in multiple studies of figure ground segmentation [2, 3] and extra-152 
classical receptive field modulation [15]; (ii) the Iso condition constitutes a slightly more challenging figure-153 
ground segmentation problem due to lack of orientation contrast; nevertheless, the figure can be readily 154 
segmented in static images using the phase difference between figure and ground; (iii) the Nat condition 155 
allowed us to disambiguate true figure-ground signals from low-level orientation or phase contrast signals.  156 
 157 
We first trained mice on four different patterns (two orientations/textures x two sides) for each of the three 158 
stimulus conditions (Cross, Iso, Nat, Fig. 2b). Each session consisted of a single condition (see Methods). 159 
The learning curves for the three stimulus conditions were very different (Fig. 2c). Mice quickly learned the 160 
Cross task, reaching 88% performance after 7 days. They were slightly slower to learn the Iso task, reaching 161 
77% performance after 9 days. However, they struggled to effectively learn the Nat task, reaching only 162 
around 71% performance after 13 days. We next tested two macaque monkeys on the same task. The 163 
monkeys performed at >90% for all three conditions within the first session (Fig. 2d). This is consistent with 164 
Gibson's original observation that accretion-deletion provides a strong cue to object borders in humans 165 
[23], as well as previous studies showing that figures defined by differential motion cues can be readily 166 
detected by macaque monkeys [2]. Thus, there was a clear difference between the segmentation 167 
capabilities of the mouse and primate.  168 
 169 
We next wondered whether through more gradual shaping, the mice could learn the Nat task. We trained 170 
the mice in a series of stages across 26 training sessions over which the stimulus morphed from the Cross 171 
to the Nat condition (Fig. 2e). For each stage, mice would reach good performance (> 80%), followed by a 172 
dramatic drop when a new, more difficult stage was introduced. By the end of 26 training sessions, three 173 
out of four mice successfully learned to detect the square in the full Nat condition (Fig. 2e, “100%”). Thus 174 
it appeared that through this gradual shaping, mice had acquired the ability to segment figure from ground 175 
using opponent motion. 176 
 177 
To confirm this, we next tested the mice on seven new textures. To our surprise, the mice performed near 178 
chance on these new textures (Fig. 2f, mean performance across three mice that had learned the task: 179 
60%; test for significant difference between performance on new textures and performance on last day of 180 
noise shaping: p<0.01 for each mouse, Chi-square test). This lack of ability to generalize suggests that the 181 
mice had not in fact learned to segment figure from ground using opponent motion. 182 
 183 
How then were they able to perform the Nat task on the trained patterns? We hypothesized that the animals 184 
had simply learned to memorize the mapping between the noise patterns in the Nat condition and the 185 
appropriate motor response, in effect using a lookup table from four patterns to two actions instead of relying 186 
upon visual perception of a figure. If this was the case, we reasoned that we should be able to remove 187 
motion from the stimulus and the animals should still perform well. Astonishingly, this turned out to be the 188 
case: mice displayed no change in performance upon removal of motion in the stimulus, which completely 189 
removed any way of inferring a figure (Fig. 2g, mean performance across three mice that had learned the 190 
task: 87%; test for significant difference between performance on static textures and performance on last 191 
day of noise shaping: p>0.01 for each mouse, Chi-square test).  192 
 193 
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We next tested all three conditions (Cross/Iso/Nat) in a separate cohort of mice to further examine whether 194 
the animals were indeed discarding the opponent motion cue. We tested them on a static condition of the 195 
task after training on the motion task. As before, these mice showed no drop in behavioral performance for 196 
any of the three conditions (Fig. 2h, Cross: p=0.67, Iso: p=0.02 (increasing), Nat: p=0.26), confirming that 197 
the animals were not using the motion cue for figure detection. While this was not surprising for the Cross 198 
and Iso cases, as the single static frame still had strong edge contrast due to orientation/phase differences 199 
and thus contained a clear figure that could be detected, it was surprising for the Nat condition which had 200 
minimal cues for the figure when static. Thus this experiment further confirmed that mice did not use the 201 
opponent motion cue to perform the segmentation task. 202 
 203 
For comparison, we performed the same test on two monkeys. Their performance showed a very different 204 
pattern. Like mice, monkeys did not display a drop in performance in the Cross and Iso conditions. For the 205 
Nat condition, however, monkeys showed a dramatic drop in performance when motion cues were removed 206 
from the stimulus (Fig. 2h, Fisher Exact test, p-vals, Monkey 1: Cross 1.0, Iso: 0.407, Nat: 9.7e-14; Monkey 207 
2: Cross 0.77, Iso: 0.75, Nat: 2.21e-19). This experiment reveals that monkeys and mice used 208 
fundamentally different strategies to solve the Nat condition: monkeys used the opponent motion cue, 209 
resulting in their dramatic drop in performance upon removal of motion, while mice used a learned lookup 210 
table mapping patterns to responses. 211 
 212 
Given the inability of mice to generalize to new textures for the Nat condition (Fig. 2f), we wondered whether 213 
the same would hold true for the Cross and Iso conditions. We next trained 8 new animals on the Cross 214 
and Iso tasks with 4 patterns (2 orientations x 2 positions), and then tested their ability to generalize to 10 215 
new patterns from the same class (see Methods). We found that mice were able to generalize well for the 216 
Cross condition (Fig. 2i1, left, mean performance drop = 2.47%), and moderately well for the Iso condition 217 
(mean performance drop = 6.55%). However, for the Nat condition, performance dropped almost to chance 218 
(mean performance drop = 20.61%; p=0.0011, ranksum test), consistent with the result of our previous 219 
experiment (Fig. 2f). One concern may be that the mice simply could not see the motion cue. To control for 220 
this, we trained the same four mice to perform the Nat condition in a modified situation in which the 221 
background was static. The animals learned this modified Nat task much more quickly, indicating that they 222 
could see the motion cue (Extended Data Fig. 1a).  223 
 224 
Since mice showed their best generalization performance for cross-oriented gratings, this suggested that 225 
orientation contrast is a key feature used by mice to solve the task of localizing the figure. This in turn 226 
suggested that we might improve the animal’s performance on random textures by introducing an element 227 
of orthogonal orientation. To test this, we generated two new sets of figure-ground stimuli starting from 228 
random textures: (i) “Iso-tex” stimuli, in which a square was cropped from the texture and placed in either 229 
the left or right position, and (ii) “Cross-tex” stimuli, in which the same square was rotated 90º, increasing 230 
orientation contrast (Extended Data Fig. 2a); for both sets of stimuli, opponent motion between figure and 231 
ground was added. To compare the generalization ability of mice on these two classes of stimuli, we first 232 
measured baseline performance on Iso-tex and Cross-tex stimuli drawn from 7 random textures. We then 233 
trained mice Iso-tex and Cross-tex stimuli drawn from a different set of 30 textures. Finally, we re-measured 234 
performance on the original set of 7 textures (Extended Data Fig. 2b). While there was no difference in 235 
baseline performance between the two conditions, a significant difference emerged during training 236 
(Extended Data Fig. 2c-f). Animals trained on the Iso-tex condition achieved a mean performance of 57% 237 
after 14 days of training (Extended Data Fig. 2c, d, g), whereas animals trained on the Cross-tex condition 238 
achieved 67% correct after 14 days (Extended Data Fig. 2e, f, g), indicating that a strong orthogonal 239 
component could aid the mice in performing the task. However, despite above chance performance on the 240 
bank of 30 random textures, just as before, mice were largely unable to utilize any information about the 241 
motion cue, as demonstrated by their drop back to initial performance for the original bank of 7 textures 242 
(Extended Data Fig. 2d, f, h). Overall, our behavioral results suggest that mice adopt a strategy for object 243 
localization that relies heavily on orientation contrast and phase differences between figure and ground and 244 
is blind to opponent motion cues.  245 
 246 
Comparing segmentation behavior in mouse, macaque, treeshrew, and mouse lemur 247 
The striking difference between mouse and macaque segmentation behavior inspired us to run the 248 
generalization test of Fig. 2i1 on two macaque monkeys (Fig. 2i4). The macaques showed a very different 249 
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behavioral pattern compared to the mice: they were able to generalize to unseen patterns for all 3 250 
conditions, indicating that they were capable of performing segmentation using the opponent motion cue, 251 
and had not simply memorized the texture pattern in the Nat condition like the mice. 252 
 253 
This clear difference between the behavioral strategies for visual segmentation used by mice versus 254 
macaques further inspired us to perform the same pattern generalization test (i.e., train on one set of 255 
patterns/orientations, test on a different set of unseen patterns/orientations) in two additional species: (i) a 256 
second mammalian species of the order scadentia (Tupaia belangeri; treeshrew), and (ii) a second primate 257 
species (Microcebus murinus; mouse lemur). The treeshrews performed similarly to mice, displaying 258 
generalization for the Cross and Iso conditions but not the Nat condition (Fig. 2i2). In contrast, and similarly 259 
to macaques, the mouse lemurs were readily able to generalize for all three conditions (Fig. 2i3), implying 260 
that they, like the macaques (Fig. 2i4), were able to perform visual segmentation using the opponent motion 261 
cue. Training curves for all four species on this task are shown in Extended Data Fig. 1b & c. Taken 262 
together, these results provide strong evidence that primates including mouse lemurs, macaques, and 263 
humans all use a visual segmentation strategy exploiting opponent motion cues, in contrast to mice and 264 
treeshrews, which rely on texture cues to perform visual segmentation and are incapable of using opponent 265 
motion cues. 266 
 267 
Absence of texture-invariant figure signals in mouse visual cortex 268 
 269 
Given the evident inability of mice to perform texture-invariant visual segmentation, a natural question 270 
arises: what segmentation-related signals are available in mouse visual cortex to decode the location and 271 
boundary of an object? To address this, we recorded responses in mouse visual cortex to figure-ground 272 
stimuli defined by both texture and opponent motion using (i) electrophysiology with a 64-channel silicon 273 
probe, and (ii) 2-photon calcium imaging. We compared responses across three distinct mouse visual 274 
areas: primary visual cortex (V1), a putative ventral stream area (LM), and a putative dorsal stream area 275 
(RL) [33]. 276 
 277 
We first localized visual areas using wide-field imaging in GCAMP6s transgenic animals and used 278 
vasculature maps to guide subsequent two photon and electrophysiology experiments (Fig. 3a, b) (see 279 
Methods). We then measured the receptive field centers of neurons using either a sparse noise stimulus or 280 
a spatially isolated flashing Gabor of varying orientations. Imaging and electrophysiology data were 281 
generally consistent. For most analyses below (with the exception of Fig. 3f, g and Fig. 6d, f), we present 282 
electrophysiology data, as it had better temporal resolution and gave better receptive field estimates (due 283 
to absence of neuropil activity leading to blurring of receptive fields). The latter was critical as the analyses 284 
depended on accuracy of receptive field estimates for single cells.  285 
 286 
To visualize a neuron’s response to figure, ground, and borders, we computed a “figure map” consisting of 287 
the neuron’s mean response to a figure centered at each of 128 (16 x 8) positions across the visual field 288 
(Fig. 3c, Extended Data Movie 2). The square figure appeared for 250 ms at each position. The stimulus 289 
closely mimicked that used for behavioral tests; in particular, the square moved in counterphase to the 290 
background. This stimulus enabled us to measure responses of each neuron to figure, ground, and borders, 291 
as on any given trial a particular location contained figure, ground, or borders. For example, the figure map 292 
of an ideal figure cell would reveal a square corresponding to the figure (Fig. 3d, left), that of a border cell 293 
would reveal stripes corresponding to the figure borders matching the orientation of the cell (Fig. 3d, 294 
middle), and that of an ON-cell would reveal phase-dependent responses to the figure (Fig. 3d, right). As 295 
these model units illustrate, the figure map is a function of a cell’s receptive field location, low-level stimulus 296 
preferences (e.g., orientation selectivity, contrast polarity selectivity), and high-level stimulus preferences 297 
(figure/ground selectivity, border selectivity). Thus the figure map yields a rich fingerprint of a cell’s visual 298 
selectivity. 299 
 300 
Fig. 3e1 shows the figure map for one example cell from V1 recorded with electrophysiology in the Cross 301 
condition. Responses to a subset of four stimuli (Fig. 3e2) revealed a decreasing response as the figure 302 
moved off the receptive field (Fig. 3e1-e3). We confirmed that these figure maps were highly stable using 303 
two-photon imaging across multiple days. Fig. 3f shows figure response maps obtained from six example 304 
cells across two different days. The mean correlation between maps from matched cell pairs across 305 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451059


7 

 

different days was very high (N = 950 cell pairs, Pearson r=0.5579 matched vs Pearson r=0.2054 306 
unmatched, KS test p = 1e-163, Fig. 3g).   307 
 308 
To fully characterize responses of neurons to figure, ground, and borders, we obtained figure maps using 309 
the same three conditions as those used earlier in behavior (Cross, Iso, Nat) (Fig. 4a). We presented two 310 
orientations/textures for each of the three conditions. In V1, we often found cells that showed orthogonal 311 
stripes for the two different cross patterns (Fig. 4b), as expected for an ON- or OFF-cell (Fig. 3d, right). We 312 
failed to find any cells in V1, LM, or RL that showed consistent figure maps across the different conditions 313 
(Fig. 4a-d). To quantify this across the population, we computed distributions of the mean Pearson 314 
correlation between figure maps across all possible pairs from the six conditions: the values were centered 315 
around 0 (V1: 0.032, LM: 0.034, RL: 0.015) (Fig. 5a). Within each condition, the mean Pearson correlation 316 
between figure maps was also centered around 0 (V1:0.013, LM:0.008, RL:0.007) (Fig. 5b). This shows 317 
that across the population, selectivity to figure location within individual neurons was strongly dependent 318 
on the specific texture of the figure. 319 
 320 
We next quantified selectivity for figure ground and border ownership, two of the hallmark segmentation-321 
related signals reported in the macaque visual system, across the V1, LM, and RL cell populations. We 322 
only analyzed neurons that had significant receptive field fits (see Methods); furthermore, we confined our 323 
analysis to neurons with receptive fields centered within four degrees of the monitor center, to ensure that 324 
there were an adequate number of figure, ground, and left/right trials from which to compute the neuron’s 325 
modulation indices. For each of the three conditions, we defined a figure-ground modulation index as 326 

𝐹𝐺𝑀 = 
(𝑅𝐹𝑖𝑔−𝑅𝐵𝑎𝑐𝑘)

(𝑅𝐹𝑖𝑔+𝑅𝐵𝑎𝑐𝑘)
, where 𝑅𝐹𝑖𝑔 is the mean response across the two patterns for the condition within the 327 

figure zone, i.e., the 2 x 2 (6º x 6 º) grid of locations centered on the monitor (4 locations x 10 trials = 40 328 
figure trials) and 𝑅𝐵𝑎𝑐𝑘  is the mean response across the two patterns for the condition in the background 329 
zone, i.e., the leftmost and rightmost column of locations (2 x 8 locations x 10 trials = 160 background trials) 330 
(Fig. 5c). We were extremely conservative in our selection of figure and ground locations to avoid any 331 
mistakes in labeling due to uncertainties in receptive field location. Distributions of FGM indices were 332 
centered on zero (Cross:-0.11, Iso:-0.04, Nat:-0.04) (Fig. 5d). To determine significance of FGM indices, 333 
for each cell and condition, we estimated a bootstrapped p-value for the corresponding FGM value using 334 
distributions of shuffled trials (see Methods); we found no neurons that showed significant figure modulation 335 
across more than three conditions (Fig. 5e). 336 
 337 
We quantified border ownership selectivity in a similar way. We defined a border ownership modulation 338 

index as 𝐵𝑂𝑀 = 
(𝑅𝐿𝑒𝑓𝑡 𝑏𝑜𝑟𝑑𝑒𝑟 −𝑅𝑅𝑖𝑔ℎ𝑡 𝑏𝑜𝑟𝑑𝑒𝑟)

(𝑅𝐿𝑒𝑓𝑡 𝑏𝑜𝑟𝑑𝑒𝑟+𝑅𝑅𝑖𝑔ℎ𝑡 𝑏𝑜𝑟𝑑𝑒𝑟)
, where 𝑅𝐿𝑒𝑓𝑡 𝑏𝑜𝑟𝑑𝑒𝑟 is the mean response across the two patterns 339 

for the condition within the left border zone (Column 4; 8 locations x 10 trials = 80 left edge trials), and 340 
𝑅𝑅𝑖𝑔ℎ𝑡 𝑏𝑜𝑟𝑑𝑒𝑟 is the mean response across the two patterns for the condition within the right border zone 341 
(Column 12; 8 locations x 10 trials = 80 right edge trials) (Fig. 5f). Distributions of BOM indices were 342 
centered on zero (Cross:-0.02, Iso:0.01, Nat:-0.02) (Fig. 5g). We found no neurons that showed significant 343 
border ownership modulation across more than three conditions (Fig. 5h). Thus overall, we found weak 344 
signals for figure-ground and border-ownership modulation, which moreover depended strongly on specific 345 
texture condition, across the three mouse visual areas surveyed. 346 
 347 
Mean time courses of responses across the population to figure, ground, and border confirmed the strong 348 
texture dependence of FGM and BOM signals (Fig. 5i-k). While there was clear enhancement in response 349 
to the figure/border versus ground for the Cross condition starting at the earliest time point of response 350 
(Fig. 5i), differences were much smaller for Iso and Nat conditions (Fig. 5j, k). Comparison of time courses 351 
across areas revealed a more distinct response between figure and ground conditions in LM compared to 352 
V1, and V1 compared to RL, with strong texture dependence of segmentation signals in all three areas 353 
(Extended Data Fig. 3). 354 
 355 
Neural decoding of figure position mirrors behavioral performance 356 
 357 
The neural data so far shows a clear lack of texture-invariant segmentation signals in mouse visual areas 358 
V1, LM, and RL (Figs. 4, 5). This is consistent with the mouse’s inability to generalize segmentation across 359 
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textures for the Nat condition (Fig. 2e, f, i1). However, the mouse was behaviorally able to generalize 360 
segmentation in the Cross and (to a lesser extent) Iso conditions (Fig. 2i1). To what extent can the neural 361 
signals in mouse visual cortex explain this pattern of behavior?  362 
 363 
To address this, we quantified how well we could read out the position of a figure on a given trial using a 364 
linear decoder of neural responses. Within a single condition (Cross, Iso, Nat), decoding position would be 365 
trivial for a single stimulus pattern: a set of ON cells with localized receptive fields like the hypothetical unit 366 
in Fig. 3d (right) would be able to solve this task, as long as cells respond reliably and differentially to stimuli 367 
with different figure locations. How well could a decoder trained on the mouse’s neural responses 368 
generalize segmentation across textures within a class? For each of the three conditions, we pooled trials 369 
for the two orientations/patterns, and then trained a least squares linear regression model using 50/50 cross 370 
validation over trials (Fig. 6a). Fig. 6b shows decoded versus actual figure position for varying numbers of 371 
cells; for convenience, we decoded azimuth position. Decoding improved monotonically with the number of 372 
cells used.  373 
 374 
We quantified decoding performance as the variance in the azimuth position explained by the linear model 375 
(Fig. 6c). Using electrophysiology data, we found that on average neural decoding was best for the Cross 376 
condition (r2=0.89 for 200 cells), followed by Iso (r2=0.53 for 200 cells), and then Nat (r2=0.09 for 200 cells). 377 
This dependence of position decoding on texture condition (Cross > Iso > Nat) matched the ranking 378 
observed in the behavioral performance of animals on the generalization stage of the figure localization 379 
task (Fig. 2i1). In particular, variance explained was close to zero for the Nat condition. 380 
 381 
Using imaging data, we found the same qualitative pattern, though overall decoding performance was 382 
worse than that obtained from electrophysiology data for the same number of neurons (Fig. 6d), likely due 383 
to the fact that the calcium signal is significantly noisier [34].  384 
 385 
We next examined decoding performance for each of the conditions as a function of visual area. For both 386 
the Cross and Iso conditions, decoding was best for LM followed by V1 and RL (for N = 120 cells: Cross: 387 
LM > RL: p<10-4, LM > V1: p<10-4, V1 > RL: n.s.; Iso: LM > RL: p<10-4, LM > V1: p<10-4, V1 > RL: p<10-4, 388 
rank sum test) (Fig. 6e). The same relationship was observed with imaging data (Fig. 6f). 389 
  390 
Mouse segmentation is well-modeled by a deep network 391 
 392 
How could neural signals in the mouse support linear decoding of figure position in the Cross and Nat 393 
conditions despite lack of explicit figure-ground and border-ownership cells? To address this, we tested 394 
different neural encoding models for how well they could explain the observed decoding performance. We 395 
first simulated a population of 25,000 simple cells with varied receptive field size, location, orientation, 396 
preferred phase, and spatial frequency (see Methods). Each unit consisted of a linear filter followed by 397 
linear rectification and additive Gaussian noise (Fig. 7a). We refer to this model as the “feedforward LN 398 
model.” We attempted to decode figure position from this model using the same procedures as we used for 399 
analyzing the neural data (Fig. 6a). Surprisingly, we found that we could robustly decode figure position for 400 
the Cross condition, though not for the Iso and Nat conditions (Fig. 7b). It is widely assumed that figure-401 
ground segregation (i.e., detecting the location of the square in the displays in Extended Data Movie 2) 402 
cannot be accomplished through purely local linear filters. How could a simple feedforward LN model 403 
decode figure position when the local stimulus at the figure center is identical to that of ground after pooling 404 
across conditions? We realized that to decode figure position, one need not rely on signals from the center 405 
of the figure; instead, one can use signals at the edges, and simple cells can readily localize orientation 406 
discontinuities such as those present in the Cross condition. This underscores an important point: the Cross 407 
stimulus completely fails as a behavioral marker for a nonlinear figure-ground segmentation process (see 408 
also [35]).  409 
 410 
We next modeled orientation-dependent surround modulation, a previously reported non-linear interaction 411 
in mouse visual cortex [15, 16, 33]. To simulate orientation-dependent surround modulation, we added a 412 
divisive term such that 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑/(1 + 𝛽 ∗ 𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝑉⃗ 𝑖𝑛 , 𝑉⃗ 𝑜𝑢𝑡)) ), where 413 

𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝑉⃗ 𝑖𝑛, 𝑉⃗ 𝑜𝑢𝑡) is the correlation between the mean orientation energy within a cell’s receptive field (𝑉⃗ 𝑖𝑛), 414 
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compared to that in the surround (𝑉⃗ 𝑜𝑢𝑡). This surround model behaved similarly to our feedforward LN 415 
model, failing to capture the texture dependence of the neural and behavioral data from the mouse (Fig. 416 
7c). This is not surprising, since the nonlinear interaction in this model depends on an orientation 417 
discontinuity, which was absent from the Iso condition. These results held generally across a range of noise 418 
levels (Extended Data Fig. 5). 419 
 420 
Finally, we hypothesized that while orientation-dependent surrounds might be an insufficient nonlinearity to 421 
explain the mouse’s behavioral and neural data, a deep convolutional network (DCN) trained on object 422 
recognition might develop many nonlinearities useful for performing the figure localization task. For 423 
example, common objects in cluttered scenes can resemble either the Cross or Iso conditions. We ran our 424 
stimuli through Vgg-16 pre-trained on ImageNet to perform object classification (Fig. 7d) and analyzed 425 
responses in convolutional layers 1-5 (Fig. 7e) [36]. We then tested decoding performance exactly as for 426 
the feedforward LN and surround models by randomly drawing subsamples of cells from a given layer. The 427 
performance of the DCN matched the mouse’s neural and behavioral data well: performance was best for 428 
Cross, followed by Iso, and then Nat, with this preference emerging in mid to late layers of the network. 429 
These results held generally across a variety of noise levels (Extended Data Fig. 6). Thus a DCN replicated 430 
the rank ordering of the mouse’s behavior and neural decoding performance (Cross > Iso > Nat). This 431 
suggests the mouse visual system may use similar nonlinear interactions as in a feedforward deep network 432 
to accomplish object detection. 433 
 434 
Discussion 435 
We have shown that mice and primates segment visual input using fundamentally different strategies. 436 
Unlike primates, mice are unable to detect figures defined purely by opponent motion, and hence mouse 437 
segmentation behavior is strongly dependent on texture cues (Fig. 7f). Indeed when mice were forced to 438 
detect figures defined purely by opponent motion for a limited number of patterns, they adopted a strategy 439 
of brute force pattern memorization (Fig. 2e-g). The strong texture dependence of mouse object detection 440 
behavior was consistent with neural signals recorded in mouse visual areas V1, RL, and LM, and could be 441 
explained by a simple feedforward deep network model lacking explicit segmentation capabilities (Fig. 7g).  442 
 443 
When we tested three additional species, the macaque, mouse lemur, and treeshrew, using the same 444 
paradigm, we found that only the two primate species could perform segmentation using opponent motion. 445 
It was especially surprising that the mouse lemur, a tiny (~60-80 g) prosimian primate species [37], could 446 
segment purely motion-defined figures well above chance, while the treeshrew (~120-200 g), an animal 447 
with a much more highly developed visual system than the mouse [38-40], could not. Overall, our findings 448 
reveal a fundamental difference in the computational strategy used by mice versus primates for visual 449 
segmentation and suggest that surface perception from accretion-deletion may be a capability unique to 450 
primates. We believe this is highly significant because visual surface representation is a fundamental step 451 
in primate visual processing [1, 21, 41], and accretion-deletion (Fig. 1b, c) has been recognized since the 452 
seminal work of J.J. Gibson as the most powerful cue supporting visual surface representation [23]. In 453 
particular, among all cues to surface organization, accretion-deletion is unique in its (i) high reliability, 454 
occurring only at true object borders and never at internal texture borders, (ii) robustness to object texture, 455 
and (iii) computational power, supporting not only segmentation but also invariant tracking without requiring 456 
any learning or prior experience [21].  457 
 458 
We were inspired by previous rodent behavioral studies that have sought to carefully characterize the visual 459 
capabilities of mice and rats, testing behaviors such as transformation-tolerant object recognition and 460 
natural scene discrimination [42-47]. In particular, consistent with our finding that mice cannot detect 461 
naturalistic figures defined by opponent motion, Keyser et al. found that rats could not learn to detect a bar 462 
defined by a grid of Gabor patches moving counterphase to ones in the background [42] (note, however, 463 
their stimulus did not contain accretion-deletion, the cue we were especially interested in for reasons 464 
explained in the previous paragraph). Overall, our results add to a growing body of work showing that rodent 465 
and primate vision differ in essential ways beyond visual resolution. 466 
 467 
Our finding that figure-ground signals exist in mouse visual cortex (Fig. 3e, f, Fig. 4, Fig. 5d, i), but are 468 
strongly dependent on texture (Fig. 4, Fig. 5a, b, e, i-k), is consistent with previous studies [29-31, 48]. 469 
Optogenetic perturbation studies have further demonstrated that these signals are behaviorally relevant for 470 
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figure detection [29] and require feedback [29, 31]. Thus overall, it seems clear that mouse visual cortex 471 
shows orientation-dependent surround modulation [15, 16] which can support texture-based figure-ground 472 
segmentation behavior. However, importantly, our results show that mice lack a general, texture-invariant 473 
mechanism for surface segmentation, unlike primates.  474 
 475 
The inability of mice to detect figures defined purely by opponent motion was rather surprising, as cells 476 
selective for local motion (distinct from global retinal image drift due to fixational eye movements) have 477 
been reported in the retinas of both rabbits and mice [49, 50]. How could a signal present in the retina not 478 
be used by the animal for segmentation? First, in our experiments, figure and ground moved exactly in 479 
counterphase, a condition that the retinal object-motion cells are unable to detect [50]. Furthermore, retinal 480 
studies have generally used sinusoidal gratings, and it remains unclear how responses of retinal object-481 
motion cells might generalize to arbitrary textures such as those used in our Nat task. Finally, we note that 482 
object localization in the Nat task required perception of differential motion cues. We confirmed that mice 483 
were readily able to detect the same moving figures against stationary backgrounds (Extended Data Fig. 484 
1a). It is possible that retinal object-motion cells are adapted for this latter condition–whose handling may 485 
be sufficient to ensure mouse survival–while different evolutionary pressures led to emergence of a more 486 
sophisticated segmentation mechanism in primates. 487 
 488 
The distinction between mouse and primate segmentation behavior has an intriguing parallel in the 489 
difference between deep network and human object classification behavior. In recent years, deep network 490 
models of vision have started to achieve state of the art performance on object classification tasks. 491 
However, the lack of an explicit segmentation process in these networks leads to susceptibility to 492 
adversarial examples in which noise patterns that lack any surface structure are classified as objects with 493 
high confidence [51, 52]. Furthermore, recent work has shown that deep networks, unlike humans, fail to 494 
exploit global image features such as object boundaries and shape to perform classification, instead relying 495 
much more strongly on texture features [53, 54]. Thus it is clear that a major difference between deep 496 
networks and the primate visual system lies in their segmentation capabilities. Our finding of strong texture-497 
dependence in mouse segmentation behavior suggests that mice adopt a visual strategy more similar to 498 
deep networks than primates do (Fig. 7g; see also [55]).  499 
 500 
Objects are the fundamental building blocks of a primate’s model of the world. An object is first and foremost 501 
a moveable chunk of matter, i.e., a segmentable surface. The remarkable trajectory of the human species 502 
has been variously attributed to language, tool use, upright posture, a lowered larynx, opposable thumbs, 503 
and other traits [56]. We close with a speculation: it may not be entirely implausible that possession of 504 
machinery for cue-invariant visual object segmentation played a role in setting the human trajectory. By 505 
enabling creation of a rich and accurate physical model of the world inside the primate brain, this perceptual 506 
machinery, seemingly less developed in all non-primate species tested so far including both mice and 507 
treeshrews, may have supplied the foundation for subsequent human capabilities requiring a hyper-508 
accurate model of objects in the world--including tool use, causal understanding, and general intelligence. 509 
 510 
  511 
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Methods 512 
 513 
Animal statement 514 
The following animals were used in this study: adult mice 2–12 months old, both male and female; adult 515 
treeshrews 7-18 months old, both male and female; adult mouse lemurs 2-3.5 yrs, both male and female; 516 
and adult macaques 3 and 7 yrs old, male. All procedures on mice, macaques, and tree shrews were 517 
conducted in accordance with the ethical guidelines of the National Institutes of Health and were approved 518 
by the Institutional Animal Care and Use Committee at the California Institute of Technology.  519 
 520 
Mouse lemur experiments were in accordance with European animal welfare regulations and were reviewed 521 
by the local ethics committee (‘‘Comite d’éthique en expérimentation animale No. 68’’) in Brunoy, France, 522 
by the ethics committee of the University of Geneva, Switzerland and authorized by the French ‘‘Ministère 523 
de l’education nationale de l’enseignement supérieur et de la recherche.” 524 
 525 
Transgenic animals 526 
For imaging experiments, we used a cross between a CamKII::ttA mouse (JAX: 00310) with a 527 
tetO:GCaMP6s (JAX: 024742) to target expression to cortical excitatory neurons. For electrophysiology 528 
experiments we used a Thy1::GCamp6s 4.12 (JAX: 025776). Behavioral experiments were carried out with 529 
a combination of Thy1 and C57Bl6 animals. We back crossed all lines to C57bl6. 530 
 531 
Surgical procedures 532 
The cranial window and headplate procedures were based on Wekselblatt et al. [57] with some 533 
modifications as described below.  534 
 535 
Headplate surgery. For both electrophysiology and imaging experiments, a stainless steel headplate was 536 
attached to the animal’s skull in a short procedure. Animals were anesthetized using isoflurane (3% 537 
induction; 1.5%–2% maintenance) in 100% O2(0.8–1.0 l/min) and positioned in a stereotax using earbars 538 
placed just below the ear canal for stability. The animals were given subcutaneous injections of the 539 
analgesic Ketoprofen (5 mg/kg) and 0.2 ml saline to prevent postoperative dehydration. Body temperature 540 
was maintained at 37.5°C by a feedback-controlled heating pad; temperature and breathing were monitored 541 
throughout surgery. Sterilized instruments and aseptic technique were used throughout. Sterile ocular 542 
lubricant (Puralube) was applied at the beginning of each surgical procedure. Scalp hair was removed using 543 
an electric shaver, and the surgical site was cleaned using a combination of dermachlor and chlorohexidine. 544 
A scalp incision was made using #3 scissors (FST) and the periosteum was pulled back using forceps. The 545 
back neck muscles were retracted to make room for a either an 8 or 10 mm circular opening headplate 546 
which was affixed to the skull using either metabond (Parker) or dental acrylic (OrthoJet). A combination of 547 
vet bond and cyanoacrylate-based glue was applied to the skull to both protect the skull surface from 548 
infection and also to provide a clear surface through which to perform widefield imaging to identify cortical 549 
visual areas in electrophysiology experiments. 550 
 551 
Craniotomy surgery/window implantation. After allowing the animal to recover at least 1 week from the 552 
headplate surgery a craniotomy procedure was performed to either allow for acute implantation of an 553 
electrode or to install a glass coverslip for chronic imaging.  554 
 555 
Animals were anesthetized using isoflurane (3% induction; 1.5%–2% maintenance) in 100% O2 (0.8–1.0 556 
l/min) and positioned in the stereotaxic frame affixed by the headplate attached previously. The animals 557 
were given subcutaneous injections of the analgesic Ketoprofen (5 mg/kg) and 0.2 ml saline to prevent 558 
postoperative dehydration. Body temperature was maintained at 37.5°C by a feedback-controlled heating 559 
pad; temperature and breathing were monitored throughout surgery. Sterilized instruments and aseptic 560 
technique were used throughout. Sterile ocular lubricant (Puralube) was applied at the beginning of each 561 
surgical procedure. 562 
 563 
For imaging experiments a 4-5 mm craniotomy was cut out centered at +0.5 mm from lambda and +2.75 564 
mm from midline on the right hemisphere. Care was taken to minimize bleeding, and any bleeds in the skull 565 
during drilling were covered with wet gelfoam (Pfizer) until they resolved. After careful removal of the bone 566 
flap, a durotomy was performed and the exposed brain was covered in a 1:1 mix of artificial dura (Dow 567 
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Corning 3-4680). A sterile 4-5 mm coverslip was then pressed into the opening and sealed in place using 568 
a combination of cyanoacrylate-based glues. The remaining parts of exposed skull in the headplate well 569 
were then covered with black dentral acrylic for light blocking purposes and to prevent infection. 570 
 571 
For electrophysiology experiments, retinotopic mapping was performed prior to performing any craniotomy, 572 
resulting a vasculature and field sign map to identify vasculature landmarks corresponding to either V1, LM, 573 
or RL. Once such landmarks had been identified a small (<1 mm) craniotomy was performed on the morning 574 
of each experiment. The craniotomy, was sealed with KwikSil (WPI) and animals were allowed to recover 575 
for at least 3 hours to subsequent recording experiments. 576 
 577 
Visual stimuli 578 
Visual stimuli were presented on a 32 inch monitor (Samsung 32 inch lcd screen; 42 × 74 cm); linearized 579 
by eye to correct for gamma (mean luminance 50 cd/m2), oriented tangentially 18 cm from the mouse's left 580 
eye (figure size: ~30°) for all experiments except those shown in Fig. 3f for quantifying reproducibility which 581 
were carried out at 27 cm from the eye (Fig. 3b).  582 
 583 
For all experiments (electrophysiology and imaging), attempts were made to re-center the monitor on the 584 
general location of the receptive fields across the population to maximize the number of distinct figure and 585 
ground trials in a given experiment. 586 
 587 
Figure ground/border ownership stimulus. The stimuli used to characterize the figure-ground and 588 
border-ownership modulation of each stimulus consisted of a sinusoidal grating of 0.06 cpd, oriented at 589 
either 45 or 135°. The figure was 27° in size, and all the horizontal positions surveyed spanned 45° (~3° 590 
shift per position). The total elevation positions surveyed varied across 23° (~3° shift per position). For the 591 
Iso and Nat conditions where the texture defining the figure was identical within a given condition, the figure 592 
was generated at each position using the same texture that was there in the background as a new 593 
foreground image, thus creating a “pop out” effect for the stimulus (see Extended Data Movie 2).  594 
 595 
RF mapping. Receptive fields were mapped for neurons under 2-photon using an isolated drifting Gabor 596 
patch stimulus: a patch of ~6° containing a drifting Gabor appeared in one of three different orientations 597 
(45°, 180°, 315°) and 2 directions at a random position. We repeated this procedure for 9 repeats and at 598 
16 by 9 positions and then collapsed responses across all trial types to compute a spatial PSTH. We then 599 
fit a 2D Gaussian to the response and classified neurons as having a significant receptive field fit if the 600 
goodness of fit exceeded the goodness of fit for at least 99 out of 100 bootstrapped trials where spatial 601 
location was shuffled across trials. 602 
 603 
For electrophysiology, we used a sparse noise stimulus with light and dark spots to map receptive fields. 604 
We computed separate PSTHs for ON and OFF subunits, fit 2D Gaussians, and determined significance 605 
using the same procedure as above using shuffled bootstraps.  606 
 607 
We limited our analysis for figure-ground and border-ownership modulation in Fig. 5 to neurons that had 608 
significant receptive field fits and used the central position of that fit as the neuron’s inferred RF center. For 609 
population neural decoding analyses, we used all neurons regardless of receptive field fits. 610 
 611 
Mouse behavior 612 
We trained sixteen adult mice aged 8-12 weeks (4 x C57bl/6; 12 x Thy1-Gcamp6s mice) co-housed 4 to a 613 
cage with access to a running wheel. Mice were housed under reversed light-dark cycle (dark cycle from 614 
10 am to 9 pm), and training was performed during the dark cycle. Mice were water restricted before, during, 615 
and after training days. The weight of the animals was continuously monitored to make sure no mouse 616 
dropped below 85% of their pre-water-restriction weight. 617 
 618 
Mice were trained for 6 days/week, with a single session per day. Each mouse performed around 200 to 619 
450 trials per day depending on the behavioral task. All training was carried out a commercially available 620 
touchscreen operant chamber in a sound-attenuating box (Bussey-Saksida Touch Screen Operant 621 
Chambers/Lafayette Instrument).  622 
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Visual stimuli were presented on a touchscreen monitor (24 x 18.5 cm, W x H) (Lafayette Instrument). In all 623 
experiments, size of figures is given in pixels as the animals were freely moving and thus no estimate can 624 
be made of the size of the figure in visual degrees during the behavior as it will vary depending on the 625 
animal’s position. We generated stimulus movies of size 100 pixels high x 200 pixels wide, with square 626 
figures centered at either 50 or 150 pixels and square side of 50 pixels. Both figure and background moved 627 
out of phase with a sine wave of amplitude 14 pixels. 628 

One side of each chamber was a touch screen monitor, and on the other side was a reward tray with a 629 
water spout. Mice had to touch the left or right side of the screen based on the location of the figure. The 630 
water delivery was cued by a white light illuminating the spout. An IR sensor detected when the mouse 631 
collected the water reward and determined the start of the next trial. For incorrect responses, a white noise 632 
audio stimulus was played for three seconds and followed by a ten second timeout. After the time-out period, 633 
the stimulus of the identical trial was presented again until the mouse made the correct touch. This shaping 634 
procedure can prevent biases in the behavior. All trials following the first incorrect response were not 635 
included in the analysis, as other similar studies have done [30, 58]. 636 
 637 
We first trained the animal to become familiar with the touch screen and the task rules through a luminance 638 
shaping procedure. During this procedure, the mice learned to discriminate a white square moving on a 639 
black background and touch the side of the screen that displayed the square. In this task, they also learned 640 
that a correct touch was associated with a water reward. The mice started their subsequent training steps 641 
after reaching 80% on this task. 642 
 643 
Standard 2-pattern discrimination. For these experiments, there were 4 possible stimuli (2 644 
orientations/natural noise x 2 positions) (Fig. 2b, Fig. 2i1, Extended Data Fig. 1c1). Gratings were 645 
presented at two orientations, 45° and 135° (0.25 cycles/cm).  646 

5-pattern discrimination. Animals were tested on this after training on the 2-pattern task (Fig. 2i1). The 647 
stimuli were the same as for the 2-pattern discrimination, except we introduced 5 novel orientations or 648 
naturalistic noise patterns. For gratings, the 5 novel orientations were 22.5°, 67.5°, 90°, 112.5°, 157.5°. For 649 
the Nat condition, we used 5 new natural noise patterns that shared the same Fourier statistics. 650 
 651 
30 natural textures. After finishing training on 2- and 5-pattern discrimination tasks, mice were trained on 652 
30 natural textures in Iso and Cross configurations (Extended Data Fig. 2). We first tested them on 7 653 
textures (set A) to measure the baseline performance. We then trained them on 30 Iso and Cross natural 654 
textures (set B). After training, they were tested on 7 textures again (set A). For experiments involving 655 
natural textures we randomly selected textures from the describable textures dataset (DTD; 656 
https://www.robots.ox.ac.uk/~vgg/data/dtd/). We converted all textures to grayscale. 657 

Grating to noise shaping. We generated a gradual morph stimulus that changed oriented gratings into 658 
naturalistic noise, with the goal being to train the animals to use the motion cue (Fig. 2e). In total, there 659 
were 10 stages in this shaping procedure. At each stage, the stimulus represented a weighted sum of the 660 
grating and noise, and the weight was changed 10% from the previous stage for both grating (decrease) 661 
and noise (increase). For example, in stage 3, the weight assigned to grating was 70% and the weight for 662 
noise is 30%. By stage 10, the weight for grating was 0% and for noise was 100%. At each stage, figure 663 
texture was flipped vertically and presented at a random height (top, middle, down) to discourage use of 664 
local cues in the task.  665 
 666 
Static version of tasks. We tested mice on static versions of all conditions where only a single frame of 667 
the stimulus was presented (Fig. 2g, h). The static stimulus was the frame that had the largest phase 668 
difference between figure and background.  669 
 670 
New texture task. After mice learned the grating to noise task, they were tested on 7 unseen new natural 671 
textures (Fig. 2f). 672 
 673 
Background static natural textures. We trained the mice to detect a figure moving horizontally on a static 674 
background (Extended Data Fig. 1a). 675 
 676 
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Treeshrew behavior 677 
Four adult treeshrews (3 male, 1 female; age: 7-18 months old) bred and raised at Caltech were trained to 678 
perform the figure-ground segregation task. Animals were singly housed in a 12 hr:12 hr light:dark cycle. 679 
They were not food or water restricted, but free access to water was limited during the 4 hours prior to 680 
training each day. Training was performed during the light cycle in a custom-made behavioral arena (30 x 681 
30 x 25 cm) containing three optical lickports (Sanworks) situated in a custom-built behavior box. Drops of 682 
100% apple juice rewards were provided upon poking at the appropriate lickports and in some cases for 683 
trial initiation. Images were presented on a Sunfounder 10.1” Raspberry Pi 4 (1280 x 800) screen and 684 
controlled using Bpod hardware and Python software. After an initial shaping step in which animals learned 685 
to use the lickports in a luminance detection task (2-3 days), training for Cross, Iso, and Nat conditions was 686 
performed for 4 consecutive days (5 orientations or naturalistic textures), with generalization test sessions 687 
on the fifth day (2 different orientations or naturalistic textures) (Extended Data Fig. 1b, c2). We reversed 688 
the number of train/test patterns compared to what was used for the mice (Fig. 2i1) because we reasoned 689 
that animals might be more likely to generalize if given more patterns for training. 690 
 691 
Mouse lemur behavior 692 
Four adult mouse lemurs (3 male, 1 female; age: 2-3.5 yrs) bred and raised in the ‘‘Mouse Lemur Platform’’ 693 
(authorization number E-91-114-1) of the ‘‘Museum National d’Histoire Naturelle’’ in Brunoy, France (UMR 694 
MECADEV CNRS/MNHN 7179) were trained to perform the figure-ground segregation task.  Animals were 695 
co-housed 2-3 per cage in a reversed long-day (14:10 light:dark) cycle. They were food restricted, with their 696 
body weight maintained above 60g, but had free access to water.  Training was performed during the dark 697 
cycle in a custom-made behavioral arena (20 x 20 x 30 cm) containing three optical lickports (Sanworks) 698 
situated in a sound-attenuating box. Drops of liquid food rewards (standard food mixture composed of 699 
banana, cereal, milk and egg) was provided upon poking at the appropriate lickports. Images were 700 
presented on a Dell P2414H (1920 x 1080, 60Hz) screen and controlled using Psychopy and Matlab 701 
software. Training and testing followed the same paradigm as for treeshrews (Extended Data Fig. 1b, c3). 702 
 703 
Macaque behavior 704 
Two head-fixed rhesus macaque monkeys were trained to indicate whether a square was on the left or right 705 
side of a screen. Movie stimuli were shown on an LCD screen in pseudo-random succession for 2 seconds 706 
ON time each, without any OFF period. The stimuli were shown across the full screen (23° in height and 707 
37° width) and contained a square of 9° length on either the left or right side. Monkeys received a juice 708 
reward for fixating within the 9° square region for at least 1 second. Eye position was monitored using an 709 
infrared eye tracking system (ISCAN). Each monkey performed only one or two sessions of one or two 710 
hours each. In the beginning of the first session, behavior was shaped by training the monkeys on the 711 
luminance squares only until they reached 90% correct performance. Prior to this, the monkeys had been 712 
trained only to fixate. Both monkeys learned this within the first session and subsequently performed the 713 
task with all other stimuli presented in pseudo-random succession (Extended Data Fig. 1c4). Stimuli 714 
included static and moving luminance squares, cross-orientation and iso-orientation gratings and natural 715 
textures. 716 
 717 
For offline analysis, we computed the percentage of correct trials where monkeys were fixating the correct 718 
square location for at least 1 second, including only trials where monkeys were looking at the screen and 719 
not closing the eyes. 720 
 721 
Wide-field imaging 722 
Prior to all electrophysiological and imaging experiments, a reference vasculature image and field-sign map 723 
was acquired under a custom-built widefield epi-fluorescence microscope. The microscope consisted of 724 
two Nikon 50 mm f1.4 lens placed front to front with a dichroic, excitation, and emission filters (Semrock) in 725 
between. Light was delivered via a blue LED light source (Luxeon Star) and images were acquired with a 726 
CMOS camera (Basler). Images were acquired at 10 Hz and were triggered on every 3rd frame of a 30 Hz 727 
retinotopic mapping stimulus (drifting bar; trial period of 0.1 Hz) to ensure proper timing between stimulus 728 
and acquisition. Retinotopic mapping stimulus consisted of a drifting 10° bar of binarized 1/f noise [57], 729 
which cycled with a period of 0.1 Hz. Elevation and azimuth maps were computed using a Fourier 730 
decomposition of the stimulus and plotting preferred phase at the stimulus frequency [59]. 731 
 732 
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Two-photon imaging 733 
We began imaging sessions ~2 weeks after surgery. We used a resonant, two-photon microscope 734 
(Neurolabware, Los Angeles, CA) controlled by Scanbox acquisition software (Scanbox, Los Angeles, CA). 735 
Imaging was through a 16x water immersion lens (Nikon, 0.8 NA) at an acquisition rate of 15.6 Hz at depths 736 
ranging from 150 to 250 uM from the surface corresponding to layer 2/3. Mice were allowed to run freely 737 
on a spherical treadmill (styrofoam ball floated with air). 738 
 739 
We ran a minimum of 7 stimulus conditions in all sessions (RF mapping + 6 conditions) with a short (<3 740 
min) break between each imaging session. Most sessions lasted less than 75 minutes. For analysis, all of 741 
the movies from each session were aligned to a common mean image using a non-rigid registration pipeline 742 
(Suite2P). Suite2P was further used to extract cell locations and perform subsequent deconvolution to 743 
recover spike estimates from calcium signals. Results of cell extraction were inspected manually using the 744 
Suite2P GUI and any outliers (e.g., clearly non-neuronal or artifactual shapes) were discarded.  745 
 746 
Matching cells across days. Cells were tracked across days by first re-targeting to the same plane by eye 747 
such that the mean fluorescence image on a given day was matched to that on the previous day, with online 748 
visual feedback provided by a custom software plugin for Scanbox. Then, a registration correction was 749 
computed from one day to the other such that the two planes were aligned. After extracting cell identities 750 

and cell filter maps for both days independently, a Jacard index 𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
 was computed for a given 751 

cell filter on day 1 with all extracted filters on day 2. A Jacard index > 0.5 was considered the same cell on 752 
the next day. 753 
 754 
Electrophysiology 755 
Electrophysiology experiments were carried out with an acutely-inserted 64 channel silicon probe [60] 756 
attached to a 4-axis manipulator (Siskiyou), that was amplified through a 64 channel headstage (Intan). 757 
Signals were digitized by an open-ephys acquisition box (Open-ephys) and aligned to stimulus frames 758 
through the use of a photodiode. The probe was lowered into the brain at 5 uM/sec and allowed to settle 759 
for a minimum of 5 minutes before experimental stimuli were presented. Animals were head-fixed for a 760 
maximum of 2 hours in any given experiment. Stimuli were presented as outlined in the Visual Stimuli 761 
section of the Methods. 762 
 763 
Analysis 764 
All analyses were performed using custom scripts written in MATLAB (Mathworks) or Python using NumPy, 765 
SciPy, Pandas, seaborn, sklearn, and Matplotlib [61-65]. 766 
 767 
Trial-based response. For all trial-based analysis, we quantified the response for a given trial as the mean 768 
spike count 50-250 ms post trial onset. For imaging experiments, we use the deconvolved calcium trace 769 
where the response value was set to the mean across all frames of the trial.  770 
 771 
Positional decoding using linear regression. To quantify the amount of information present about figure 772 
position, we decoded the azimuth bin (positions 1-16) of each trial from a population of neurons using a 773 
ridge regression model and 50/50 cross validation; results averaged across 100 iterations are reported for 774 
all data and modeling. To quantify the extent to which a single linear model could account for position 775 
across both orientations or textures, we pooled trial types within a stimulus condition (both 776 
orientations/textures for Cross/Iso/Nat).  777 
 778 
Beta values (penalty term) for the ridge regression were computed with a leave-one-out cross-validation 779 
approach using the RidgeCV function from sklearn. As the beta values will be dependent on the number of 780 
regressors (neurons) in the model, this entire procedure was repeated for varying numbers of neurons to 781 
compute the decoding performance as a function of number of neurons in the decoder. All values reported 782 
for decoding correspond to the mean variance explained by the model over 100 iterations of the above 783 
procedure, and error bars correspond to 95% confidence intervals. 784 
 785 
Computing FGM and BOM.  We limited analysis of figure-ground modulation (FGM) and border-ownership 786 
modulation (BOM) to electrophysiologically-recorded neurons that satisfied two criteria: i) they showed a 787 
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statistically significant receptive field fit, and ii) the receptive field center was limited to a central portion of 788 
the screen (central 15° azimuth and 10° elevation). This second receptive field position criterion was to 789 
ensure a reasonable number of figure and ground or left and right trials with which to compute the FGM or 790 
BOM indices. 791 
 792 

For each of the three conditions, we defined a figure ground modulation index as 𝐹𝐺𝑀 =  
(𝑅𝐹𝑖𝑔−𝑅𝐵𝑎𝑐𝑘)

(𝑅𝐹𝑖𝑔+𝑅𝐵𝑎𝑐𝑘)
, where 793 

𝑅𝐹𝑖𝑔 is the mean response across the two patterns for the condition within the figure zone, defined as the 2 794 
x2 (10° x 10°) grid of locations centered on the cell’s receptive field (Fig. 5c) and 𝑅𝐵𝑎𝑐𝑘  is the mean 795 
response across the two patterns for the condition in the background zone, defined as all grid locations with 796 
distance greater than 1.5 * the receptive field width from the receptive field center. We computed 797 
bootstrapped p-values using 500 shuffles where trial identity was randomized to establish a null distribution. 798 
 799 
We quantified border ownership selectivity in a similar way. We defined a border ownership modulation 800 

index as 𝐵𝑂𝑀 = 
(𝑅𝐿𝑒𝑓𝑡 𝑏𝑜𝑟𝑑𝑒𝑟 −𝑅𝑅𝑖𝑔ℎ𝑡 𝑏𝑜𝑟𝑑𝑒𝑟)

(𝑅𝐿𝑒𝑓𝑡 𝑏𝑜𝑟𝑑𝑒𝑟+𝑅𝑅𝑖𝑔ℎ𝑡 𝑏𝑜𝑟𝑑𝑒𝑟)
, where 𝑅𝐿𝑒𝑓𝑡 𝑏𝑜𝑟𝑑𝑒𝑟 is the mean response across the two patterns 801 

for the condition within the left border zone, and 𝑅𝑅𝑖𝑔ℎ𝑡 𝑏𝑜𝑟𝑑𝑒𝑟 is the mean response across the two patterns 802 
for the condition within the right border zone (Fig. 5f). We computed the significance of the modulation 803 
using a bootstrapped distribution as above. 804 
 805 
 806 
Modeling 807 
 808 
Feedforward model. We modeled neuronal responses using an LN model of simple cells, with the linear 809 
filter modeled by a Gabor function and linear rectification. We simulated responses to 100 different cell 810 
types using a classic simple cell model as a linear combination of receptive field with stimulus passed 811 
through a nonlinearity. 812 
 813 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑓( 𝑔(𝑥, 𝑦, 𝜃, 𝜆, 𝛾, σ, 𝜔) ∗ 𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠) 814 
 815 
where 𝑔(𝑥, 𝑦, 𝜃, 𝜆, 𝛾, σ, 𝜔) is a Gabor function: 816 
 817 

𝑔(𝑥, 𝑦, 𝜃, 𝜆, 𝛾, σ, 𝜔) = 𝑒
−
𝑥′2+𝛾2𝑦′2

2𝜎2 cos (2π
𝑥′

𝜆
+ ω) , (

𝑥′

𝑦′) = (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (
𝑥
𝑦) 818 

with parameters sampled as follows:  = rand(0, π), σ = rand(2°, 7°), 1/𝜆 = rand(0.05 cpd, 0.3cpd), 𝜔 = 819 
rand(0, π), 𝛾 = 1. 𝑓(𝑥) represents a linear rectification (max(0,x)) to ensure positive rates and * represents 820 
the convolution operator.  821 
 822 
Surround model. We added a divisive term to the neural response computed from our feedforward LN 823 
model (Extended Data Fig. 4). This divisive term was not recurrent and instead can be most readily 824 
interpreted as a center-surround interaction that would arise in the feedforward inputs from thalamus to 825 
cortex.  826 
 827 

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  
𝑟𝑒𝑠𝑜𝑝𝑛𝑠𝑒𝑓𝑒𝑒𝑑𝑓𝑜𝑟𝑤𝑎𝑟𝑑

1 + 𝛽 ∗ 𝜌(𝑉⃗ 𝑖𝑛 , 𝑉⃗ 𝑜𝑢𝑡) 
 828 

 829 
where 𝜌(𝑉⃗ 𝑖𝑛 , 𝑉⃗ 𝑜𝑢𝑡) represents the Pearson correlation between the mean response of all neuron types 830 

within the receptive field (< 2σ; 𝑉⃗ 𝑖𝑛) and all neuron types outside the classical receptive field (> 2σ & < 5σ; 831 
𝑉⃗ 𝑜𝑢𝑡). The term  𝜌(𝑉⃗ 𝑖𝑛 , 𝑉⃗ 𝑜𝑢𝑡) represents the extent to which orientations inside the cell’s receptive field match 832 

those outside of the receptive field for a given image. In the case of the Iso stimulus, 𝜌(𝑉⃗ 𝑖𝑛 , 𝑉⃗ 𝑜𝑢𝑡) > 0, 833 

yielding suppression, while in the case of Cross stimulus, 𝜌(𝑉⃗ 𝑖𝑛 , 𝑉⃗ 𝑜𝑢𝑡) < 0, yielding facilitation. We set the 834 
scaling factor 𝛽 to 0.95 to ensure that the denominator never reaches zero.  835 
 836 
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Neural network model. We analyzed decoding performance of intermediate layers of a deep network 837 
(VGG-16) trained for classification on ImageNet [36]. We used the mean of the response magnitude to all 838 
14 individual frames corresponding to a given stimulus to represent a given unit’s response to a given trial 839 
type. We extracted this response for each of the 5 max-pool layers in the network and computed decoding 840 
curves using the same procedures as for the neural data. 841 
 842 
Noise factor. To account for neural response variability, we added noise to all models proportional to the 843 
mean of responses for the simulated network within each condition. To achieve this, we added zero-mean, 844 
normally-distributed fluctuations to each trial with variance proportional to the mean response across 845 
neurons followed by linear rectification to ensure positive outputs. Thus the final output of a population 846 
would be equal to 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 + 𝑁(0, 𝑛𝑜𝑖𝑠𝑒𝑓𝑎𝑐𝑡𝑜𝑟 ∗ 𝑝𝑜𝑝𝑚𝑒𝑎𝑛). Sweeps across various noise factors are shown 847 
in Extended Data Figs. 5, 6. 848 
  849 
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Links to supplemental movies: 850 
 851 
Extended Data Movie 1: https://youtu.be/LVRxtmrT168 852 
Extended Data Movie 2: https://youtu.be/YyJ64ngzh8k 853 
 854 
 855 
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Figure 1: Mechanisms for segmentation. 871 
 872 
a) Schematic representation of a hierarchy for visual perception. Figure-ground segmentation serves as a 873 
key intermediate step preceding object recognition.  874 
 875 
b) Accretion and deletion signals at borders induced by object motion provide a strong cue to distinguish 876 
object vs. texture edges. As objects move differently from the background, accretion (left) and deletion 877 
(right) of parts of the background will occur at object edges, providing local cues for object boundaries and 878 
their owners. In contrast to accretion-deletion, texture (e.g., orientation contrast) is locally ambiguous: the 879 
pocket does not constitute an object edge, even though it generates a sharp texture discontinuity.  880 
 881 
c) Left column: two frames taken from a movie of three leaves descending over a bear. Accretion and 882 
deletion signals support not only surface segmentation from a successive pair of image frames (middle 883 
column), but also invariant object tracking across many successive image frames (right column), as 884 
explained in detail in [21]. The key idea is that accretion-deletion enables surfaces to be correctly linked 885 
between successive image frames, because the owner remains invariant between successive frames. In 886 
(b), this corresponds to linking the surface of the shirt at time points t and t+1. When this process is carried 887 
out across many successive time points, it enables correct linking of highly disparate object appearances, 888 
such as the intact bear (top right) and the bear split into three pieces by occlusion (bottom left). Adapted 889 
from [21]. 890 
 891 
d) Figure-ground modulation provides a neural mechanism for explicit segmentation. Here, a hypothetical 892 
neuron’s firing is selectively enhanced to a stimulus when it is part of a figure (purple) compared to ground 893 
(green), even though the stimulus in the classical receptive field remains the same. A population of such 894 
neurons would be able to localize image regions corresponding to objects. 895 
 896 
e) Border-ownership modulation provides an additional neural mechanism for explicit segmentation. Here, 897 
a hypothetical neuron’s response is modulated by the relative position of a figure relative to an object edge. 898 
In the example shown, the neuron prefers presence of a figure on the left (green) as opposed to figure on 899 
the right (purple). A population of such neurons would be able to effectively trace the border of an object 900 
and assign its owner. 901 
 902 
 903 
 904 
  905 
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Figure 2: Mouse segmentation behavior: mice use orientation contrast but not opponent motion to 906 
distinguish figure from ground.  907 
 908 
a) Mice were trained in a touchscreen paradigm in which they were rewarded for touching the side of the 909 
screen containing a texture- and motion-defined figure. 910 
 911 
b) Mice were tested on three classes of stimuli: "Cross" where foreground and background patterns 912 
consisted of orthogonal gratings, "Iso" where foreground and background patterns consisted of the same 913 
orientation gratings, and "Nat" where foreground and background patterns consisted of naturalistic noise 914 
patterns with 1/f spectral content. Initially, four training stimuli were used for each condition. Figure and 915 
background oscillated back and forth, out of phase, providing a common opponent motion cue for 916 
segmentation across all conditions; the movement range of the figure and background is denoted by the 917 
red bar. 918 
 919 
c) Mean performance curve for 12 mice in the Cross (orange), Iso (violet), and Nat (green) conditions, 920 
where the task was to report the side of the screen containing a figure; in each session, one of a bank of 921 
four possible stimuli were shown, as in (b). Shaded error bars represent sem. 922 
 923 
d) Performance of two macaque monkeys on the same task. Monkey behavior, unlike that of mice, showed 924 
no dependence on the carrier pattern, displaying high performance for all three conditions (Cross, Iso, Nat).  925 
 926 
e) Teaching a mouse the Nat condition. Mice that could not learn the Nat version of the task could be 927 
shaped to perform well on the task by a gradual training regimen over 20+ days. Using a gradual morph 928 
stimulus (see Methods), animals could be slowly transitioned from a well-trained condition (Cross) to 929 
eventually perform well on the full Nat task. Each circle represents one mouse.  930 
 931 
f) Despite high performance on the four stimuli comprising the Nat task, performance dropped when mice 932 
were exposed to new unseen textures, suggesting that they had not learned to use opponent motion to 933 
perform the task. 934 
 935 
g) Mice performed just as well on the Nat task even without the opponent motion cue, suggesting that they 936 
had adopted a strategy of memorizing a lookup table of textures to actions, rather than performing true 937 
segmentation in the Nat condition. 938 
 939 
h) Left: Change in performance when the motion cue was removed on a random subset of trials. Mice 940 
experienced no drop in performance in any of the conditions when static images were displayed instead of 941 
dynamic stimuli, indicating they were not using motion information. Right: In contrast, monkeys showed no 942 
performance drop in conditions where the figure was obvious in static frames (Cross and Iso), but showed 943 
a marked drop in performance for the Nat condition where the figure is not easily resolved without the 944 
motion cue.  945 
 946 
i1) To confirm whether mice used an opponent motion cue in the various conditions, mice were trained on 947 
an initial set of 4 stimuli (Tr; 2 sides x 2 patterns/orientations, as in (b)). After performance had plateaued, 948 
they were switched to 10 novel test conditions (Te; 2 sides x 5 patterns/orientations). Animals mostly 949 
generalized for Cross and Iso conditions but failed to generalize for the Nat condition (p=0.0011, ranksum 950 
test), suggesting they were unable to use the opponent motion in the stimulus.  951 
 952 
i2) Same as (i1) for treeshrews. Like mice, treeshrews failed to generalize for the Nat condition (p=0.02, 953 
ranksum test). 954 
 955 
i3, 4) In contrast, two primate species: mouse lemurs (i3) and macaques (i4) were able to generalize in the 956 
Nat condition, suggesting they were able to use the opponent motion cue in the task (p=1.00 mouse lemur, 957 
p=0.99 macaque; ranksum test). 958 
 959 
  960 
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Figure 3: Approach for measuring neural correlates of segmentation-related modulation in mouse 961 
visual cortex. 962 
 963 
a) Widefield imaging of GCaMP transgenic animals was used to localize visual areas prior to neural 964 
recording. A drifting bar stimulus was used to compute azimuth (bottom-left) and elevation (bottom-right) 965 
maps across of the visual cortex. From these maps, a field-sign map (top-left) was computed, allowing 966 
delineation of cortical visual areas (top-right). Alignment to vasculature maps guided subsequent 967 
electrophysiology or 2-photon recordings to V1, LM, or RL. 968 
 969 
b) Rodents were allowed to run freely on a spherical treadmill, with a 72 cm width (32 inch diagonal) screen 970 
centered either 18 cm or 27 cm away from the left eye, while undergoing either electrophysiology or two-971 
photon imaging. 972 
 973 
c) The stimulus consisted of a texture- and motion-defined square that was flashed randomly across a grid 974 
of 16 horizontal positions x 8 vertical positions (128 positions total). On any given trial, a neuron with a 975 
given receptive field location (schematized by the green circle) was stimulated by (1) ground, (2) figure, or 976 
(3) edge, enabling us to measure both figure-ground and border-ownership modulation. 977 
 978 
d) Schematic response maps to the stimulus in (c). Left: a “figure cell” responds only when a part of a figure 979 
is over the receptive field. Middle: a “border cell” responds only when a figure border falls on the receptive 980 
field and has orientation matching that of the cell (here assumed to be vertical). Right: a simple cell with an 981 
ON subunit responds to the figure with phase dependence. 982 
 983 
e1) Mean response at each of the 128 figure positions for an example V1 cell. Colored boxes correspond 984 
to conditions shown in (e2).  985 
 986 
e2) Four stimulus conditions outlined in (e1), ranging from receptive field on the figure (left) to receptive 987 
field on the background (right). 988 
 989 
e3) Raster (top) of spiking responses over 10 trials of each stimulus configuration and mean firing rate 990 
(bottom). Error bars represent sem. 991 
 992 
f) Example response maps from V1 using 2-photon calcium imaging show reliable responses from the same 993 
neurons on successive days. Shown are 6 example neurons imaged across two days. Neurons were 994 
matched according to a procedure described in the Methods. Colormap same as in (e1). 995 
 996 
g) Distribution of Pearson correlations between figure maps for all matched cell pairs (red) and a set of 997 
randomly-shuffled cell pairs (black). Neurons displayed highly reliable responses to the stimulus (N = 950 998 
cell pairs in each group, mean=0.5579 for matched vs. mean=0.2054 for unmatched, p = 1e-163, ks-test). 999 
 1000 
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Figure 4: Segmentation-related modulation across mouse visual cortex is pattern dependent. 1002 
 1003 
a) To search for segmentation-related neural signals, we adapted the stimulus shown in Fig. 3c (a figure 1004 
switching between 128 positions) to the three conditions that we had tested behaviorally (Cross, Iso, and 1005 
Nat). As in the behavior experiments, for each condition we presented two variants (different orientations 1006 
or patterns). Rows 1 & 2: two example frames (with square at different positions) are shown for each of the 1007 
6 stimulus variants. Overlaid on these example stimuli are grids representing the 128 possible figure 1008 
positions and a green ellipse representing the ON receptive field. Row 3: example figure map from one cell 1009 
obtained for the conditions shown above. Rows 4 & 5: Example rasters when the figure was centered on 1010 
(red) or off (blue) the receptive field. Row 6: PSTHs corresponding to the rasters; shaded error bars 1011 
represent sem. 1012 
 1013 
b) Figure maps for each of the 6 stimulus variants for four example neurons from V1 (responses measured 1014 
using electrophysiology). 1015 
 1016 
c) Figure maps for each of the 6 stimulus variants for four example neurons from LM.  1017 
 1018 
d) Figure maps for each of the 6 stimulus variants for four example neurons from RL.  1019 
  1020 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451059


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451059


23 

 

Figure 5: Mice lack consistent segmentation signals across texture conditions. 1021 

a) Distribution of Pearson correlations between figure maps across all (
6
2
) pairs of conditions. No neuron 1022 

in any area showed high correspondence (signified by non-zero mean) across all conditions tested, 1023 
indicative of a texture-invariant figure response. 1024 
 1025 
b) Distribution of Pearson correlations between figure maps across the two stimulus variants for each 1026 
condition (orange: Cross, violet: Iso, green: Nat) and across visual areas (left: V1, middle: LM, right: RL).  1027 
 1028 
c) A figure-ground modulation index was computed by taking the mean response on background trials 1029 
(positions outlined by dashed lines) and the mean response on figure trials (positions outlined by solid line) 1030 
and computing a normalized difference score. 1031 
 1032 
d) Distribution (shown as a kernel density estimate) of figure ground modulation indices for Cross (orange), 1033 
Iso (violet), and Nat (green) conditions, pooling cells from V1, LM, and RL. 1034 
 1035 
e) Fraction of cells with figure-ground modulation index significantly different from zero (p<0.05) for N 1036 
stimulus variants (out of the six illustrated in Fig. 4a). Dotted gray line represents chance level false positive 1037 
rate at p<0.05 after 6 comparisons. For this analysis, FGM was computed similarly as (d), but responses 1038 
were not averaged across orientations/patterns within each condition; thus each cell contributed 6 FGM 1039 
values. 1040 
 1041 
f) A border-ownership modulation index was computed by taking the mean response on left edge trials 1042 
(positions outlined by dashed rectangle marked “L”) and the mean response on right edge trials (positions 1043 
outlined by dashed rectangle marked “R”) and computing a normalized difference score. 1044 
 1045 
g, h) Same as (d), (e), but for border-ownership modulation indices. 1046 
 1047 
i, j, k) Mean response time courses across all cells in V1, RL, and LM to figure, ground, and border in the 1048 
Cross (i), Iso (j), and Nat (k) conditions. Time points for which the response to the figure was significantly 1049 
greater than the response to ground are indicated by the horizontal line above each plot (p<0.01, t-test). 1050 
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Figure 6: Decoding figure position from neural responses. 1052 
 1053 
a) Schematic of approach for decoding figure position from neural population responses. For each neuron, 1054 
figure response maps for both types of stimuli from a given texture condition (Cross, Iso, Nat) were pooled, 1055 
and reshaped into a 1-d vector, producing a population matrix of N neurons x N positions; the population 1056 
response matrix for the Cross condition is shown. A linear decoder for figure azimuth position was then 1057 
learned with cross validation from the population response matrix using 50% of trials for training and the 1058 
remaining 50% of trials for testing.   1059 
 1060 
b) A linear readout was computed for a given random sample of N neurons, shown here for 5 (top), 20 1061 
(middle), and 100 (bottom) neurons. Each dot plots the actual azimuth bin (x-axis) against the predicted bin 1062 
(y-axis). Mean explained variance was then computed across 50 repeated samples and plotted as a 1063 
function of number of neurons (right). 1064 
 1065 
c) Variance explained by decoded azimuth position as a function of number of neurons used to train the 1066 
decoder for each of the different texture conditions (electrophysiology data). The most robust position 1067 
decoding was obtained for Cross (orange), followed by Iso (violet) and then Nat (green). Error bars 1068 
represent sem. 1069 
 1070 
d) Same plot as (c) but for deconvolved calcium imaging data.  1071 
 1072 
e) Same data as in (c), but broken down by both texture condition and visual region. LM (red) consistently 1073 
showed better positional decoding than either V1 (blue) or RL (green). Error bars represent sem. 1074 
 1075 
f) Same as (e) but for deconvolved calcium imaging data. 1076 
 1077 
 1078 
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Figure 7: Mid to late layers of a deep network recapitulate mouse neural and behavioral performance 1080 
on figure position decoding across texture conditions. 1081 
 1082 
a) Schematic of the feedforward linear-nonlinear (LN) encoding model (see Methods). The stimulus was 1083 
passed through a Gabor filter, followed by a rectifying nonlinearity, and then a Poisson spiking model, with 1084 
noise added to responses to simulate population response variability (e.g., due to non-sensory signals such 1085 
as movement or arousal). We ran the same stimuli (128 positions x 6 conditions) through the model that 1086 
we used for electrophysiology and two-photon imaging (cf. Fig. 4a). 1087 
 1088 
b) Positional decoding performance, quantified as variance explained by decoded azimuth position, as a 1089 
function of number of neurons in the feedforward LN model. Cross (orange) positional decoding was robust, 1090 
while both Iso (violet) and Nat (green) were extremely poor, in contrast to electrophysiology (Fig. 6c) and 1091 
imaging (Fig. 6d) results. Noise variance was set to twice the network-level firing rate within a condition 1092 
here and in (c,e) below; for a full sweep across noise parameters, see Extended Data Fig. 5. Error bars 1093 
represent sem. Small random offset added for visualization purposes.  1094 
 1095 
c) Adding an orientation-dependent divisive term to the LN model to mimic iso-orientation surround 1096 
suppression (Extended Data Fig. 4; LN + Surround model) yielded more robust decoding in the Cross 1097 
condition (orange), but did not improve decoding in the Iso (violet) or Nat (green) conditions. For a full 1098 
sweep across noise parameters, see Extended Data Fig. 5. Error bars represent sem. Small random offset 1099 
added for visualization purposes. 1100 
 1101 
d) Architecture of a pre-trained deep neural network (VGG16) trained on image recognition [36]. Five 1102 
convolution layers are followed by three fully connected layers. 1103 
 1104 
e) Positional decoding performance increases throughout the network with most robust decoding in layer 1105 
4. In mid to late layers (3-5) of the deep network, decoding performance was best for Cross (orange), 1106 
followed by Iso (violet) and then Nat (green), mirroring mouse behavioral performance (Fig. 2c, i1) and 1107 
neural data (Fig. 6c, d).  For a full sweep across noise parameters, see Extended Data Fig. 6. Error bars 1108 
represent sem. 1109 
 1110 
f) Schematic summary of behavioral results. Mice showed texture-dependent performance in a figure 1111 
localization task, with Cross > Iso > Nat, despite the presence of a common motion cue for segmentation 1112 
in all conditions. In contrast, primates showed no dependence on carrier texture and were able to use the 1113 
differential motion cue to perform the task. 1114 
 1115 
g) Schematic summary of neural and modeling results, Positional decoding from neural populations in V1, 1116 
LM, and RL mirror the textural dependence of the behavior, with Cross > Iso > Nat. This ordering in 1117 
performance was not captured by a feedforward LN model or an LN model with surround interactions. 1118 
However, it emerged naturally from non-linear interactions in mid to late layers of a deep neural network.  1119 
 1120 
 1121 
 1122 
  1123 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451059


was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.451059doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.04.451059


26 

 

Extended Data Figure 1: Additional behavioral performance statistics. 1124 
 1125 
a) Averaged learning curves for Nat condition (n=12) and Nat condition with static background (n=6). If the 1126 
task is turned into a pure local motion detection task by making the background static, mice learn 1127 
considerably faster, demonstrating that they are able to detect the motion in the Nat condition. Error bars 1128 
indicate sem. 1129 
 1130 
b1) Schematic of training procedure indicating flow of stimuli within a training session. 1131 
b2) Schematic of training procedure used for Fig. 2i1-3. Animals were first trained on a luminance square. 1132 
Then they were trained on Cross, followed by Iso and then Nat. For each condition, the training period was 1133 
followed by one day of generalization testing. 1134 
 1135 
c1) Individual learning curves of 12 mice for Cross, Iso, and Nat conditions. 1136 
c2) Individual learning curves of 4 treeshrews for Cross, Iso, and Nat conditions. Animals could already 1137 
perform Cross and Iso > 70% on the first training session, displaying much faster learning than mice.  1138 
c3) Individual learning curves of 4 mouse lemurs for Cross, Iso, and Nat conditions. 1139 
c4) Learning curves of two monkeys for Cross, Iso, and Nat conditions (monkey A: solid lines, monkey B: 1140 
dashed lines). Both animals rapidly learned within a single session to perform the task (after only a brief 1141 
period of training with a luminance-defined square at the beginning of the session). 1142 
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Extended Data Figure 2: Natural texture task shows advantage for learning figures with cross-1145 
oriented energy. 1146 
 1147 
a) Examples of natural textures in Cross and Iso conditions. 1148 
 1149 
b) Table summarizing the training paradigm for the natural texture task. 1150 
 1151 
c) Performance on baseline day, training days, and test day in Iso condition. Solid black line indicates the 1152 
mean of training curves on training days (N=10).  1153 
 1154 
d) Mean performance on baseline day, training days, and test day in Iso condition. Mice showed no 1155 
improvement in performance on novel textures after showing behavioral increases during the training 1156 
period. Error bars represent sem. 1157 
 1158 
e) Same as (c) but for Cross condition. 1159 
 1160 
f) Same as (d) but for Cross condition. Just as before, mice showed no improvement in performance on 1161 
novel textures after showing behavioral increases during the training period. 1162 
 1163 
g) Comparing performance between Cross and Iso conditions on training days. Each point represents the 1164 
mean performance of a given texture on both Cross and Iso conditions. Most points lie above the unity line 1165 
(p = 5.9x10-5, sign test). 1166 
 1167 
h) Performance for Cross and Iso conditions on baseline and test day (Cross, p = 0.3; Iso, p = 0.97; rank 1168 
sum test). 1169 
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Extended Data Figure 3: Mean time courses of responses across the population to figure, ground, 1171 
and border in areas V1, LM, and RL. Conventions as in Fig. 4.  1172 
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Extended Data Figure 4: Modeling orientation-dependent surround interactions. 1173 
 1174 
a) Standard feedforward LN model used to model simple cell responses. 1175 
 1176 
b) Model for divisive normalization that we used to model orientation dependent surround interactions [66]. 1177 
The neuron's feedforward response was modulated by a divisive term that took into account the mean 1178 
response of all neurons of a given Gabor type with RF centers within 2σ of a given receptive field's center 1179 
(𝑉⃗ 𝑖𝑛) and those that lay > 2σ and < 5σ outside of the receptive field (𝑉⃗ 𝑜𝑢𝑡). From these two vectors (each 1180 
100 elements long), we computed a Pearson correlation, 𝑝𝑒𝑎𝑟𝑠𝑜𝑛(𝑉⃗ 𝑖𝑛 , 𝑉⃗ 𝑜𝑢𝑡), which ranged from -1 to 1, 1181 
leading to suppression when the orientation energy in 𝑉⃗ 𝑖𝑛 and 𝑉⃗ 𝑜𝑢𝑡 matched and facilitation when  𝑉⃗ 𝑖𝑛 and 1182 
𝑉⃗ 𝑜𝑢𝑡 were orthogonal. 1183 
 1184 
c) Schematic representation of the zones for 𝑉⃗ 𝑖𝑛 and 𝑉⃗ 𝑜𝑢𝑡, each defined relative to a cell's receptive field 1185 
center. 1186 
 1187 
d) Row 1: Schematic of six stimulus conditions. Row 2: Figure maps for an example feedforward LN neuron 1188 
for each of the 6 conditions. Row 3: Map of the modulation term value at each position; note that whether 1189 
there is suppression or facilitation is a function of the stimulus condition, figure position, and receptive field 1190 
position. Row 4: Figure maps for an example surround-model neuron; for the Cross condition, adding 1191 
surround modulation results in general facilitation, while for Iso and Nat conditions, it results in depression 1192 
or no modulation. 1193 
 1194 
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Extended Data Figure 5: The effect of noise on position decoding for feedforward LN and surround 1197 
models. 1198 
 1199 
Top row: Position decoding performance for Cross, Iso, and Nat conditions in a population of feedforward 1200 
LN neurons across noise conditions (columns). Note that positional decoding for Cross is high across noise 1201 
conditions, while for Iso and Nat it remains low. The noise levels indicate the ratio between the noise 1202 
variance and the network-level firing rate (see Methods). 1203 
 1204 
Bottom row: Same as top row, for a population of feedforward LN neurons with orientation-dependent 1205 
surround interactions. Including this extra-classical receptive field modulation had no effect on the relative 1206 
decoding performance for Iso versus Nat conditions. Error bars represent sem. 1207 
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Extended Data Figure 6: The effect of noise on position decoding for intermediate layers of VGG16. 1210 
 1211 
Position decoding performance for Cross, Iso, and Nat conditions as a function of neural network layer 1212 
(rows) and increasing population response noise (columns). Note that across various noise conditions, the 1213 
separation of Cross, Iso, and Nat conditions remains prominent. Error bars represent sem. 1214 
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