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Abstract

The rodent visual system has attracted great interest in recent years due to its experimental tractability, but
the fundamental mechanisms used by the mouse to represent the visual world remain unclear. In the
primate, researchers have argued from both behavioral and neural evidence that a key step in visual
representation is “figure-ground segmentation,” the delineation of figures as distinct from backgrounds [1-
4]. To determine if mice also show behavioral and neural signatures of figure-ground segmentation, we
trained mice on a figure-ground segmentation task where figures were defined by gratings and naturalistic
textures moving counterphase to the background. Unlike primates, mice were severely limited in their ability
to segment figure from ground using the opponent motion cue, with segmentation behavior strongly
dependent on the specific carrier pattern. Remarkably, when mice were forced to localize naturalistic
patterns defined by opponent motion, they adopted a strategy of brute force memorization of texture
patterns. In contrast, primates, including humans, macaques, and mouse lemurs, could readily segment
figures independent of carrier pattern using the opponent motion cue. Consistent with mouse behavior,
neural responses to the same stimuli recorded in mouse visual areas V1, RL, and LM also did not support
texture-invariant segmentation of figures using opponent motion. Modeling revealed that the texture
dependence of both the mouse’s behavior and neural responses could be explained by a feedforward
neural network lacking explicit segmentation capabilities. These findings reveal a fundamental limitation in
the ability of mice to segment visual objects compared to primates.

Introduction

Primates rely primarily on vision to meaningfully interact with objects in the world. Mice, in contrast, rely far
less on their visual system, though they do use visual cues for important behaviors such as hunting,
evasion, and navigation [5-9]. The field of mouse vision has attracted great excitement in recent years due
to the wealth of tools available for mouse circuit dissection, with many groups adopting the mouse as a
model for visual perception [10] and visually-guided decision making [11, 12]. Yet the fundamental ethology
of mouse vision remains poorly understood. What does the mouse perceive as a visual object?

While work has shown that visual responses in mouse visual cortex share low-level organizing principles
with those of primate visual cortex, including temporal/spatial frequency tuning [13], orientation selectivity
[14], and contextual surround effects [15, 16], it remains unclear to what extent the two species share more
abstract representations of visual objects and scenes.

In particular, it is unclear whether mice explicitly segment visual scenes into discrete surfaces.
Segmentation refers to the identification of borders of each object in a visual scene and assignment of
discrete labels to pixels corresponding to each object. In primates, segmentation is a key step in visual
processing following early feature extraction [2, 17-20]. For example, in the famous “face-vase” illusion,
human viewers inexorably segment the scene as a face or a vase, with bistable dynamics. A large body of
psychophysics suggests that the primate visual system performs segmentation by generating a surface
representation, an assignment of each retinal pixel to a distinct contiguous surface situated in 3D space
[18, 21] (Fig. 1a).

How could the brain solve visual segmentation? The key visual cue signaling a surface border is a
discontinuity, an abrupt change in features at the surface border. For example, there is often a change in
luminance, orientation, or texture at a surface border. However, this need not be the case: changes in
luminance, orientation, and texture can also occur within interior regions of a surface (Fig. 1b). Conversely,
object borders can exist without any change in luminance, orientation, or texture—a fact exploited by
animals that use camouflage [22]. Thus a key challenge of intermediate vision is to identify true object
borders using ambiguous local cues. Aiding this goal, there is one cue that is unambiguous: accretion-
deletion, the appearance or disappearance of pixels forming the background surface due to motion (or
binocular disparity) of the foreground surface (Fig. 1b). Gibson identified accretion-deletion as the single
most important cue to surface organization because it is unambiguous, invariant to texture, and locally
available [23]. Psychophysical experiments in humans demonstrate that accretion-deletion alone is able to
evoke a vivid percept of an object border [24]. Furthermore, a recent computational theory of surface
representation shows how surface segmentation can be computed using local accretion-deletion cues in a
simple way without requiring learning, top-down feedback, or object recognition [21]. Moreover, this new
theory shows how such local accretion-deletion cues can be used not only to solve segmentation, but also
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to solve invariant tracking of objects (Fig. 1¢), widely considered one of the hardest problems in vision [25,
26]. To summarize, while there are multiple cues to segmentation, accretion-deletion holds a special status
for the following reasons: (i) it is unambiguous, occurring only at true object borders and never at internal
texture borders; (ii) it is cue-invariant; (iii) it is especially computationally powerful, supporting not only
segmentation but also invariant tracking.

A variety of neural correlates of segmentation have been found in the primate brain. Neurons in primate
V1, V2, and V4 modulate their firing according to whether a stimulus is part of the foreground or background
[2-4] (Fig. 1d). Complementing figure-ground signaling, a population of neurons have been found in
macaque areas V2 and V4 that explicitly signal object borders. These “border-ownership” cells respond
selectively to figure edges and are moreover modulated by the side of the figure relative to the edge [19]
(Fig. 1e).

It remains unclear whether figure-ground and border-ownership cells provide an explicit, cue-invariant
solution to the segmentation problem, for both conceptual and experimental reasons. Conceptually, natural
vision scenes typically contain multiple objects, necessitating multiple distinct neural labels. However,
figure-ground cells seem capable of unambiguously labeling only a single figure via increased firing rate;
additional processing of figure-ground and border-ownership cell output would be necessary to generate
distinct labels for each object. Experimentally, classic studies of figure-ground segmentation in the primate
used figures composed of oriented lines on a background of orthogonally-oriented lines [2]. Such
modulation could in theory have arisen as a result of lower-level cues (e.g., neurons with receptive fields
near the edge signaling low-level orientation contrast) [27]. Hesse and Tsao investigated the consistency
in the sign of selectivity of border-ownership cells across different visual conditions. While 55% of V2/V3
cells met the criteria for border ownership selectivity when assayed with a luminance-defined square, not a
single cell showed fully consistent selectivity when assayed with figures defined by other types of cues [28].
Overall, these experimental findings raise the possibility that segmentation is solved by a population code
rather than explicit cue-invariant figure and edge detectors. Despite these uncertainties about neural
mechanism, we underscore that behavioral evidence unequivocally demonstrates that primates possess a
mechanism for explicit, cue-invariant segmentation exploiting accretion-deletion [24].

Behaviorally, mice are capable of texture-based segmentation, in which figure and background are defined
by grating patterns and have different orientation or phase [29, 30]. Consistent with this behavioral
capability, cells in mouse V1 show iso-orientation surround suppression [15, 16] and have been reported
to be modulated by figure versus ground [29-31]. However, all of these studies have used texture-based
cues, which are fundamentally ambiguous for solving segmentation (Fig. 1b). Thus it remains an open
question whether mice are capable of explicit object segmentation, or simply of texture segregation.

Here, we took advantage of the ability to record from large numbers of neurons across the mouse cortical
visual hierarchy to look for behavioral and neural correlates of visual segmentation in the mouse. We
discovered a surprising difference between mouse and human segmentation behavior, which led us to
systematically investigate segmentation behavior in three additional species: the macaque, mouse lemur,
and treeshrew. We found that the mouse, like the treeshrew and unlike the two primate species, is
behaviorally incapable of texture-invariant segmentation. In fact, mice tasked to localize objects with
naturalistic textures adopted a strategy of brute force memorization—a cognitively impressive feat.
Furthermore, we found no evidence for single neurons in mouse visual cortex modulated by figure/ground
or border ownership in a texture-invariant manner. For patterns containing orientation or phase contrast
between figure and background, we could decode figure location from population neural recordings, with
best decoding in putative ventral stream area LM, followed by RL and V1, but we could not decode figure
location for figures with naturalistic texture. A simple feedforward neural network could account for the
observed dependence of mouse behavior and neural responses on carrier pattern. Taken together, these
findings reveal a fundamental difference between primate and mouse mechanisms for object segmentation,
with the mouse relying much more on texture statistics than the primate. The findings have broad
implications for use of the mouse as a model for visual perception.

Results
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Mice fail to segment objects defined purely by opponent motion

We set out to clarify (i) whether mice are capable of invariantly segmenting figure from ground and (ii)
whether there exist texture-invariant segmentation-related signals in the mouse brain, as reported in the
macaque brain [2, 32]. To address the mouse’s ability to segment objects, we designed a two-alternative
forced choice task in which mice reported the side of a touch screen that contained a figure for a water
reward (Fig. 2a). We tested mouse segmentation behavior using three classes of stimuli: (i) “Cross” stimuli,
in which the figure consisted of a grating, and the ground consisted of an orthogonal grating; (ii) “Iso” stimuli,
in which the figure consisted of a grating, and the ground consisted of a grating at the same orientation, but
offset in phase; (iii) Naturalistic (“Nat”) stimuli, in which both the figure and the ground consisted of 1/f noise
patterns (Fig. 2b, Extended Data Movie 1). In each case, figure and ground moved in counterphase
providing a differential motion cue with accretion-deletion; this motion cue was essential for defining the
figure in the Nat condition. The logic of including these three conditions was as follows: (i) the Cross
condition has been used previously in multiple studies of figure ground segmentation [2, 3] and extra-
classical receptive field modulation [15]; (ii) the Iso condition constitutes a slightly more challenging figure-
ground segmentation problem due to lack of orientation contrast; nevertheless, the figure can be readily
segmented in static images using the phase difference between figure and ground; (iii) the Nat condition
allowed us to disambiguate true figure-ground signals from low-level orientation or phase contrast signals.

We first trained mice on four different patterns (two orientations/textures x two sides) for each of the three
stimulus conditions (Cross, Iso, Nat, Fig. 2b). Each session consisted of a single condition (see Methods).
The learning curves for the three stimulus conditions were very different (Fig. 2¢). Mice quickly learned the
Cross task, reaching 88% performance after 7 days. They were slightly slower to learn the Iso task, reaching
77% performance after 9 days. However, they struggled to effectively learn the Nat task, reaching only
around 71% performance after 13 days. We next tested two macaque monkeys on the same task. The
monkeys performed at >90% for all three conditions within the first session (Fig. 2d). This is consistent with
Gibson's original observation that accretion-deletion provides a strong cue to object borders in humans
[23], as well as previous studies showing that figures defined by differential motion cues can be readily
detected by macaque monkeys [2]. Thus, there was a clear difference between the segmentation
capabilities of the mouse and primate.

We next wondered whether through more gradual shaping, the mice could learn the Nat task. We trained
the mice in a series of stages across 26 training sessions over which the stimulus morphed from the Cross
to the Nat condition (Fig. 2e). For each stage, mice would reach good performance (> 80%), followed by a
dramatic drop when a new, more difficult stage was introduced. By the end of 26 training sessions, three
out of four mice successfully learned to detect the square in the full Nat condition (Fig. 2e, “100%”). Thus
it appeared that through this gradual shaping, mice had acquired the ability to segment figure from ground
using opponent motion.

To confirm this, we next tested the mice on seven new textures. To our surprise, the mice performed near
chance on these new textures (Fig. 2f, mean performance across three mice that had learned the task:
60%; test for significant difference between performance on new textures and performance on last day of
noise shaping: p<0.01 for each mouse, Chi-square test). This lack of ability to generalize suggests that the
mice had not in fact learned to segment figure from ground using opponent motion.

How then were they able to perform the Nat task on the trained patterns? We hypothesized that the animals
had simply learned to memorize the mapping between the noise patterns in the Nat condition and the
appropriate motor response, in effect using a lookup table from four patterns to two actions instead of relying
upon visual perception of a figure. If this was the case, we reasoned that we should be able to remove
motion from the stimulus and the animals should still perform well. Astonishingly, this turned out to be the
case: mice displayed no change in performance upon removal of motion in the stimulus, which completely
removed any way of inferring a figure (Fig. 2g, mean performance across three mice that had learned the
task: 87%; test for significant difference between performance on static textures and performance on last
day of noise shaping: p>0.01 for each mouse, Chi-square test).
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We next tested all three conditions (Cross/Iso/Nat) in a separate cohort of mice to further examine whether
the animals were indeed discarding the opponent motion cue. We tested them on a static condition of the
task after training on the motion task. As before, these mice showed no drop in behavioral performance for
any of the three conditions (Fig. 2h, Cross: p=0.67, Iso: p=0.02 (increasing), Nat: p=0.26), confirming that
the animals were not using the motion cue for figure detection. While this was not surprising for the Cross
and Iso cases, as the single static frame still had strong edge contrast due to orientation/phase differences
and thus contained a clear figure that could be detected, it was surprising for the Nat condition which had
minimal cues for the figure when static. Thus this experiment further confirmed that mice did not use the
opponent motion cue to perform the segmentation task.

For comparison, we performed the same test on two monkeys. Their performance showed a very different
pattern. Like mice, monkeys did not display a drop in performance in the Cross and Iso conditions. For the
Nat condition, however, monkeys showed a dramatic drop in performance when motion cues were removed
from the stimulus (Fig. 2h, Fisher Exact test, p-vals, Monkey 1: Cross 1.0, Iso: 0.407, Nat: 9.7e-14; Monkey
2: Cross 0.77, Iso: 0.75, Nat: 2.21e-19). This experiment reveals that monkeys and mice used
fundamentally different strategies to solve the Nat condition: monkeys used the opponent motion cue,
resulting in their dramatic drop in performance upon removal of motion, while mice used a learned lookup
table mapping patterns to responses.

Given the inability of mice to generalize to new textures for the Nat condition (Fig. 2f), we wondered whether
the same would hold true for the Cross and Iso conditions. We next trained 8 new animals on the Cross
and Iso tasks with 4 patterns (2 orientations x 2 positions), and then tested their ability to generalize to 10
new patterns from the same class (see Methods). We found that mice were able to generalize well for the
Cross condition (Fig. 2i1, left, mean performance drop = 2.47%), and moderately well for the Iso condition
(mean performance drop = 6.55%). However, for the Nat condition, performance dropped almost to chance
(mean performance drop = 20.61%; p=0.0011, ranksum test), consistent with the result of our previous
experiment (Fig. 2f). One concern may be that the mice simply could not see the motion cue. To control for
this, we trained the same four mice to perform the Nat condition in a modified situation in which the
background was static. The animals learned this modified Nat task much more quickly, indicating that they
could see the motion cue (Extended Data Fig. 1a).

Since mice showed their best generalization performance for cross-oriented gratings, this suggested that
orientation contrast is a key feature used by mice to solve the task of localizing the figure. This in turn
suggested that we might improve the animal’s performance on random textures by introducing an element
of orthogonal orientation. To test this, we generated two new sets of figure-ground stimuli starting from
random textures: (i) “Iso-tex” stimuli, in which a square was cropped from the texture and placed in either
the left or right position, and (ii) “Cross-tex” stimuli, in which the same square was rotated 90°, increasing
orientation contrast (Extended Data Fig. 2a); for both sets of stimuli, opponent motion between figure and
ground was added. To compare the generalization ability of mice on these two classes of stimuli, we first
measured baseline performance on Iso-tex and Cross-tex stimuli drawn from 7 random textures. We then
trained mice Iso-tex and Cross-tex stimuli drawn from a different set of 30 textures. Finally, we re-measured
performance on the original set of 7 textures (Extended Data Fig. 2b). While there was no difference in
baseline performance between the two conditions, a significant difference emerged during training
(Extended Data Fig. 2c-f). Animals trained on the Iso-tex condition achieved a mean performance of 57%
after 14 days of training (Extended Data Fig. 2c, d, g), whereas animals trained on the Cross-tex condition
achieved 67% correct after 14 days (Extended Data Fig. 2e, f, g), indicating that a strong orthogonal
component could aid the mice in performing the task. However, despite above chance performance on the
bank of 30 random textures, just as before, mice were largely unable to utilize any information about the
motion cue, as demonstrated by their drop back to initial performance for the original bank of 7 textures
(Extended Data Fig. 2d, f, h). Overall, our behavioral results suggest that mice adopt a strategy for object
localization that relies heavily on orientation contrast and phase differences between figure and ground and
is blind to opponent motion cues.

Comparing segmentation behavior in mouse, macaque, treeshrew, and mouse lemur

The striking difference between mouse and macaque segmentation behavior inspired us to run the
generalization test of Fig. 2i1 on two macaque monkeys (Fig. 2i4). The macaques showed a very different
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behavioral pattern compared to the mice: they were able to generalize to unseen patterns for all 3
conditions, indicating that they were capable of performing segmentation using the opponent motion cue,
and had not simply memorized the texture pattern in the Nat condition like the mice.

This clear difference between the behavioral strategies for visual segmentation used by mice versus
macaques further inspired us to perform the same pattern generalization test (i.e., train on one set of
patterns/orientations, test on a different set of unseen patterns/orientations) in two additional species: (i) a
second mammalian species of the order scadentia (Tupaia belangeri; treeshrew), and (ii) a second primate
species (Microcebus murinus; mouse lemur). The treeshrews performed similarly to mice, displaying
generalization for the Cross and Iso conditions but not the Nat condition (Fig. 2i2). In contrast, and similarly
to macaques, the mouse lemurs were readily able to generalize for all three conditions (Fig. 2i3), implying
that they, like the macaques (Fig. 2i4), were able to perform visual segmentation using the opponent motion
cue. Training curves for all four species on this task are shown in Extended Data Fig. 1b & c. Taken
together, these results provide strong evidence that primates including mouse lemurs, macaques, and
humans all use a visual segmentation strategy exploiting opponent motion cues, in contrast to mice and
treeshrews, which rely on texture cues to perform visual segmentation and are incapable of using opponent
motion cues.

Absence of texture-invariant figure signals in mouse visual cortex

Given the evident inability of mice to perform texture-invariant visual segmentation, a natural question
arises: what segmentation-related signals are available in mouse visual cortex to decode the location and
boundary of an object? To address this, we recorded responses in mouse visual cortex to figure-ground
stimuli defined by both texture and opponent motion using (i) electrophysiology with a 64-channel silicon
probe, and (ii) 2-photon calcium imaging. We compared responses across three distinct mouse visual
areas: primary visual cortex (V1), a putative ventral stream area (LM), and a putative dorsal stream area
(RL) [33].

We first localized visual areas using wide-field imaging in GCAMP®6s transgenic animals and used
vasculature maps to guide subsequent two photon and electrophysiology experiments (Fig. 3a, b) (see
Methods). We then measured the receptive field centers of neurons using either a sparse noise stimulus or
a spatially isolated flashing Gabor of varying orientations. Imaging and electrophysiology data were
generally consistent. For most analyses below (with the exception of Fig. 3f, g and Fig. 6d, f), we present
electrophysiology data, as it had better temporal resolution and gave better receptive field estimates (due
to absence of neuropil activity leading to blurring of receptive fields). The latter was critical as the analyses
depended on accuracy of receptive field estimates for single cells.

To visualize a neuron’s response to figure, ground, and borders, we computed a “figure map” consisting of
the neuron’s mean response to a figure centered at each of 128 (16 x 8) positions across the visual field
(Fig. 3c, Extended Data Movie 2). The square figure appeared for 250 ms at each position. The stimulus
closely mimicked that used for behavioral tests; in particular, the square moved in counterphase to the
background. This stimulus enabled us to measure responses of each neuron to figure, ground, and borders,
as on any given trial a particular location contained figure, ground, or borders. For example, the figure map
of an ideal figure cell would reveal a square corresponding to the figure (Fig. 3d, left), that of a border cell
would reveal stripes corresponding to the figure borders matching the orientation of the cell (Fig. 3d,
middle), and that of an ON-cell would reveal phase-dependent responses to the figure (Fig. 3d, right). As
these model units illustrate, the figure map is a function of a cell’s receptive field location, low-level stimulus
preferences (e.g., orientation selectivity, contrast polarity selectivity), and high-level stimulus preferences
(figure/ground selectivity, border selectivity). Thus the figure map yields a rich fingerprint of a cell’s visual
selectivity.

Fig. 3e1 shows the figure map for one example cell from V1 recorded with electrophysiology in the Cross
condition. Responses to a subset of four stimuli (Fig. 3e2) revealed a decreasing response as the figure
moved off the receptive field (Fig. 3e1-e3). We confirmed that these figure maps were highly stable using
two-photon imaging across multiple days. Fig. 3f shows figure response maps obtained from six example
cells across two different days. The mean correlation between maps from matched cell pairs across
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different days was very high (N = 950 cell pairs, Pearson r=0.5579 matched vs Pearson r=0.2054
unmatched, KS test p = 1e-163, Fig. 3g).

To fully characterize responses of neurons to figure, ground, and borders, we obtained figure maps using
the same three conditions as those used earlier in behavior (Cross, Iso, Nat) (Fig. 4a). We presented two
orientations/textures for each of the three conditions. In V1, we often found cells that showed orthogonal
stripes for the two different cross patterns (Fig. 4b), as expected for an ON- or OFF-cell (Fig. 3d, right). We
failed to find any cells in V1, LM, or RL that showed consistent figure maps across the different conditions
(Fig. 4a-d). To quantify this across the population, we computed distributions of the mean Pearson
correlation between figure maps across all possible pairs from the six conditions: the values were centered
around 0 (V1: 0.032, LM: 0.034, RL: 0.015) (Fig. 5a). Within each condition, the mean Pearson correlation
between figure maps was also centered around 0 (V1:0.013, LM:0.008, RL:0.007) (Fig. 5b). This shows
that across the population, selectivity to figure location within individual neurons was strongly dependent
on the specific texture of the figure.

We next quantified selectivity for figure ground and border ownership, two of the hallmark segmentation-
related signals reported in the macaque visual system, across the V1, LM, and RL cell populations. We
only analyzed neurons that had significant receptive field fits (see Methods); furthermore, we confined our
analysis to neurons with receptive fields centered within four degrees of the monitor center, to ensure that
there were an adequate number of figure, ground, and left/right trials from which to compute the neuron’s
modulation indices. For each of the three conditions, we defined a figure-ground modulation index as

Rrig—R . iy e
FGM = %, where Ry, is the mean response across the two patterns for the condition within the
FigTRBack

figure zone, i.e., the 2 x 2 (6° x 6 °) grid of locations centered on the monitor (4 locations x 10 trials = 40
figure trials) and Ry, is the mean response across the two patterns for the condition in the background
zone, i.e., the leftmost and rightmost column of locations (2 x 8 locations x 10 trials = 160 background trials)
(Fig. 5¢). We were extremely conservative in our selection of figure and ground locations to avoid any
mistakes in labeling due to uncertainties in receptive field location. Distributions of FGM indices were
centered on zero (Cross:-0.11, Is0:-0.04, Nat:-0.04) (Fig. 5d). To determine significance of FGM indices,
for each cell and condition, we estimated a bootstrapped p-value for the corresponding FGM value using
distributions of shuffled trials (see Methods); we found no neurons that showed significant figure modulation
across more than three conditions (Fig. 5e).

We quantified border ownership selectivity in a similar way. We defined a border ownership modulation

. (R —RR; ) :
index as BOM = -—teftborder “RIghDorder” \where R, o oraer IS the mean response across the two patterns
(RLeft border"‘RRight border)

for the condition within the left border zone (Column 4; 8 locations x 10 trials = 80 left edge trials), and
RRignt poraer 18 the mean response across the two patterns for the condition within the right border zone
(Column 12; 8 locations x 10 trials = 80 right edge trials) (Fig. 5f). Distributions of BOM indices were
centered on zero (Cross:-0.02, 1s0:0.01, Nat:-0.02) (Fig. 5g). We found no neurons that showed significant
border ownership modulation across more than three conditions (Fig. 5h). Thus overall, we found weak
signals for figure-ground and border-ownership modulation, which moreover depended strongly on specific
texture condition, across the three mouse visual areas surveyed.

Mean time courses of responses across the population to figure, ground, and border confirmed the strong
texture dependence of FGM and BOM signals (Fig. 5i-k). While there was clear enhancement in response
to the figure/border versus ground for the Cross condition starting at the earliest time point of response
(Fig. 5i), differences were much smaller for Iso and Nat conditions (Fig. 5j, k). Comparison of time courses
across areas revealed a more distinct response between figure and ground conditions in LM compared to
V1, and V1 compared to RL, with strong texture dependence of segmentation signals in all three areas
(Extended Data Fig. 3).

Neural decoding of figure position mirrors behavioral performance

The neural data so far shows a clear lack of texture-invariant segmentation signals in mouse visual areas
V1, LM, and RL (Figs. 4, 5). This is consistent with the mouse’s inability to generalize segmentation across
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textures for the Nat condition (Fig. 2e, f, i1). However, the mouse was behaviorally able to generalize
segmentation in the Cross and (to a lesser extent) Iso conditions (Fig. 2i1). To what extent can the neural
signals in mouse visual cortex explain this pattern of behavior?

To address this, we quantified how well we could read out the position of a figure on a given trial using a
linear decoder of neural responses. Within a single condition (Cross, Iso, Nat), decoding position would be
trivial for a single stimulus pattern: a set of ON cells with localized receptive fields like the hypothetical unit
in Fig. 3d (right) would be able to solve this task, as long as cells respond reliably and differentially to stimuli
with different figure locations. How well could a decoder trained on the mouse’s neural responses
generalize segmentation across textures within a class? For each of the three conditions, we pooled trials
for the two orientations/patterns, and then trained a least squares linear regression model using 50/50 cross
validation over trials (Fig. 6a). Fig. 6b shows decoded versus actual figure position for varying numbers of
cells; for convenience, we decoded azimuth position. Decoding improved monotonically with the number of
cells used.

We quantified decoding performance as the variance in the azimuth position explained by the linear model
(Fig. 6c). Using electrophysiology data, we found that on average neural decoding was best for the Cross
condition (r?=0.89 for 200 cells), followed by Iso (r?=0.53 for 200 cells), and then Nat (r>=0.09 for 200 cells).
This dependence of position decoding on texture condition (Cross > Iso > Nat) matched the ranking
observed in the behavioral performance of animals on the generalization stage of the figure localization
task (Fig. 2i1). In particular, variance explained was close to zero for the Nat condition.

Using imaging data, we found the same qualitative pattern, though overall decoding performance was
worse than that obtained from electrophysiology data for the same number of neurons (Fig. 6d), likely due
to the fact that the calcium signal is significantly noisier [34].

We next examined decoding performance for each of the conditions as a function of visual area. For both
the Cross and Iso conditions, decoding was best for LM followed by V1 and RL (for N = 120 cells: Cross:
LM > RL: p<10%, LM > V1: p<10+4, V1 > RL: n.s.; Iso: LM > RL: p<10+4, LM > V1: p<10-4, V1 > RL: p<104,
rank sum test) (Fig. 6e). The same relationship was observed with imaging data (Fig. 6f).

Mouse segmentation is well-modeled by a deep network

How could neural signals in the mouse support linear decoding of figure position in the Cross and Nat
conditions despite lack of explicit figure-ground and border-ownership cells? To address this, we tested
different neural encoding models for how well they could explain the observed decoding performance. We
first simulated a population of 25,000 simple cells with varied receptive field size, location, orientation,
preferred phase, and spatial frequency (see Methods). Each unit consisted of a linear filter followed by
linear rectification and additive Gaussian noise (Fig. 7a). We refer to this model as the “feedforward LN
model.” We attempted to decode figure position from this model using the same procedures as we used for
analyzing the neural data (Fig. 6a). Surprisingly, we found that we could robustly decode figure position for
the Cross condition, though not for the Iso and Nat conditions (Fig. 7b). It is widely assumed that figure-
ground segregation (i.e., detecting the location of the square in the displays in Extended Data Movie 2)
cannot be accomplished through purely local linear filters. How could a simple feedforward LN model
decode figure position when the local stimulus at the figure center is identical to that of ground after pooling
across conditions? We realized that to decode figure position, one need not rely on signals from the center
of the figure; instead, one can use signals at the edges, and simple cells can readily localize orientation
discontinuities such as those present in the Cross condition. This underscores an important point: the Cross
stimulus completely fails as a behavioral marker for a nonlinear figure-ground segmentation process (see
also [35]).

We next modeled orientation-dependent surround modulation, a previously reported non-linear interaction
in mouse visual cortex [15, 16, 33]. To simulate orientation-dependent surround modulation, we added a

divisive term such that response = responseseearorwara/(1+ B * pearson(l_/}n, Vout)) ), Wwhere
pearson(l_/}n, Vout) is the correlation between the mean orientation energy within a cell’s receptive field (17},1),


https://doi.org/10.1101/2021.07.04.451059

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.04.451059; this version posted July 5, 2021. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

compared to that in the surround (Vout). This surround model behaved similarly to our feedforward LN
model, failing to capture the texture dependence of the neural and behavioral data from the mouse (Fig.
7c). This is not surprising, since the nonlinear interaction in this model depends on an orientation
discontinuity, which was absent from the Iso condition. These results held generally across a range of noise
levels (Extended Data Fig. 5).

Finally, we hypothesized that while orientation-dependent surrounds might be an insufficient nonlinearity to
explain the mouse’s behavioral and neural data, a deep convolutional network (DCN) trained on object
recognition might develop many nonlinearities useful for performing the figure localization task. For
example, common objects in cluttered scenes can resemble either the Cross or Iso conditions. We ran our
stimuli through Vgg-16 pre-trained on ImageNet to perform object classification (Fig. 7d) and analyzed
responses in convolutional layers 1-5 (Fig. 7e) [36]. We then tested decoding performance exactly as for
the feedforward LN and surround models by randomly drawing subsamples of cells from a given layer. The
performance of the DCN matched the mouse’s neural and behavioral data well: performance was best for
Cross, followed by Iso, and then Nat, with this preference emerging in mid to late layers of the network.
These results held generally across a variety of noise levels (Extended Data Fig. 6). Thus a DCN replicated
the rank ordering of the mouse’s behavior and neural decoding performance (Cross > Iso > Nat). This
suggests the mouse visual system may use similar nonlinear interactions as in a feedforward deep network
to accomplish object detection.

Discussion

We have shown that mice and primates segment visual input using fundamentally different strategies.
Unlike primates, mice are unable to detect figures defined purely by opponent motion, and hence mouse
segmentation behavior is strongly dependent on texture cues (Fig. 7f). Indeed when mice were forced to
detect figures defined purely by opponent motion for a limited number of patterns, they adopted a strategy
of brute force pattern memorization (Fig. 2e-g). The strong texture dependence of mouse object detection
behavior was consistent with neural signals recorded in mouse visual areas V1, RL, and LM, and could be
explained by a simple feedforward deep network model lacking explicit segmentation capabilities (Fig. 7g).

When we tested three additional species, the macaque, mouse lemur, and treeshrew, using the same
paradigm, we found that only the two primate species could perform segmentation using opponent motion.
It was especially surprising that the mouse lemur, a tiny (~60-80 g) prosimian primate species [37], could
segment purely motion-defined figures well above chance, while the treeshrew (~120-200 g), an animal
with a much more highly developed visual system than the mouse [38-40], could not. Overall, our findings
reveal a fundamental difference in the computational strategy used by mice versus primates for visual
segmentation and suggest that surface perception from accretion-deletion may be a capability unique to
primates. We believe this is highly significant because visual surface representation is a fundamental step
in primate visual processing [1, 21, 41], and accretion-deletion (Fig. 1b, ¢) has been recognized since the
seminal work of J.J. Gibson as the most powerful cue supporting visual surface representation [23]. In
particular, among all cues to surface organization, accretion-deletion is unique in its (i) high reliability,
occurring only at true object borders and never at internal texture borders, (ii) robustness to object texture,
and (iii) computational power, supporting not only segmentation but also invariant tracking without requiring
any learning or prior experience [21].

We were inspired by previous rodent behavioral studies that have sought to carefully characterize the visual
capabilities of mice and rats, testing behaviors such as transformation-tolerant object recognition and
natural scene discrimination [42-47]. In particular, consistent with our finding that mice cannot detect
naturalistic figures defined by opponent motion, Keyser et al. found that rats could not learn to detect a bar
defined by a grid of Gabor patches moving counterphase to ones in the background [42] (note, however,
their stimulus did not contain accretion-deletion, the cue we were especially interested in for reasons
explained in the previous paragraph). Overall, our results add to a growing body of work showing that rodent
and primate vision differ in essential ways beyond visual resolution.

Our finding that figure-ground signals exist in mouse visual cortex (Fig. 3e, f, Fig. 4, Fig. 5d, i), but are
strongly dependent on texture (Fig. 4, Fig. 5a, b, e, i-k), is consistent with previous studies [29-31, 48].
Optogenetic perturbation studies have further demonstrated that these signals are behaviorally relevant for
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figure detection [29] and require feedback [29, 31]. Thus overall, it seems clear that mouse visual cortex
shows orientation-dependent surround modulation [15, 16] which can support texture-based figure-ground
segmentation behavior. However, importantly, our results show that mice lack a general, texture-invariant
mechanism for surface segmentation, unlike primates.

The inability of mice to detect figures defined purely by opponent motion was rather surprising, as cells
selective for local motion (distinct from global retinal image drift due to fixational eye movements) have
been reported in the retinas of both rabbits and mice [49, 50]. How could a signal present in the retina not
be used by the animal for segmentation? First, in our experiments, figure and ground moved exactly in
counterphase, a condition that the retinal object-motion cells are unable to detect [50]. Furthermore, retinal
studies have generally used sinusoidal gratings, and it remains unclear how responses of retinal object-
motion cells might generalize to arbitrary textures such as those used in our Nat task. Finally, we note that
object localization in the Nat task required perception of differential motion cues. We confirmed that mice
were readily able to detect the same moving figures against stationary backgrounds (Extended Data Fig.
1a). It is possible that retinal object-motion cells are adapted for this latter condition—whose handling may
be sufficient to ensure mouse survival-while different evolutionary pressures led to emergence of a more
sophisticated segmentation mechanism in primates.

The distinction between mouse and primate segmentation behavior has an intriguing parallel in the
difference between deep network and human object classification behavior. In recent years, deep network
models of vision have started to achieve state of the art performance on object classification tasks.
However, the lack of an explicit segmentation process in these networks leads to susceptibility to
adversarial examples in which noise patterns that lack any surface structure are classified as objects with
high confidence [51, 52]. Furthermore, recent work has shown that deep networks, unlike humans, fail to
exploit global image features such as object boundaries and shape to perform classification, instead relying
much more strongly on texture features [53, 54]. Thus it is clear that a major difference between deep
networks and the primate visual system lies in their segmentation capabilities. Our finding of strong texture-
dependence in mouse segmentation behavior suggests that mice adopt a visual strategy more similar to
deep networks than primates do (Fig. 7g; see also [55]).

Objects are the fundamental building blocks of a primate’s model of the world. An object is first and foremost
a moveable chunk of matter, i.e., a segmentable surface. The remarkable trajectory of the human species
has been variously attributed to language, tool use, upright posture, a lowered larynx, opposable thumbs,
and other traits [56]. We close with a speculation: it may not be entirely implausible that possession of
machinery for cue-invariant visual object segmentation played a role in setting the human trajectory. By
enabling creation of a rich and accurate physical model of the world inside the primate brain, this perceptual
machinery, seemingly less developed in all non-primate species tested so far including both mice and
treeshrews, may have supplied the foundation for subsequent human capabilities requiring a hyper-
accurate model of objects in the world--including tool use, causal understanding, and general intelligence.
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Methods

Animal statement

The following animals were used in this study: adult mice 2—12 months old, both male and female; adult
treeshrews 7-18 months old, both male and female; adult mouse lemurs 2-3.5 yrs, both male and female;
and adult macaques 3 and 7 yrs old, male. All procedures on mice, macaques, and tree shrews were
conducted in accordance with the ethical guidelines of the National Institutes of Health and were approved
by the Institutional Animal Care and Use Committee at the California Institute of Technology.

Mouse lemur experiments were in accordance with European animal welfare regulations and were reviewed
by the local ethics committee (“Comite d’éthique en expérimentation animale No. 68”) in Brunoy, France,
by the ethics committee of the University of Geneva, Switzerland and authorized by the French “Ministére
de I'education nationale de I'enseignement supérieur et de la recherche.”

Transgenic animals

For imaging experiments, we used a cross between a CamKIl::ttA mouse (JAX: 00310) with a
tetO:GCaMP6s (JAX: 024742) to target expression to cortical excitatory neurons. For electrophysiology
experiments we used a Thy1::GCamp6s 4.12 (JAX: 025776). Behavioral experiments were carried out with
a combination of Thy1 and C57BI6 animals. We back crossed all lines to C57bl6.

Surgical procedures
The cranial window and headplate procedures were based on Wekselblatt et al. [57] with some
modifications as described below.

Headplate surgery. For both electrophysiology and imaging experiments, a stainless steel headplate was
attached to the animal’s skull in a short procedure. Animals were anesthetized using isoflurane (3%
induction; 1.5%—-2% maintenance) in 100% 02(0.8—-1.0 I/min) and positioned in a stereotax using earbars
placed just below the ear canal for stability. The animals were given subcutaneous injections of the
analgesic Ketoprofen (5 mg/kg) and 0.2 ml saline to prevent postoperative dehydration. Body temperature
was maintained at 37.5°C by a feedback-controlled heating pad; temperature and breathing were monitored
throughout surgery. Sterilized instruments and aseptic technique were used throughout. Sterile ocular
lubricant (Puralube) was applied at the beginning of each surgical procedure. Scalp hair was removed using
an electric shaver, and the surgical site was cleaned using a combination of dermachlor and chlorohexidine.
A scalp incision was made using #3 scissors (FST) and the periosteum was pulled back using forceps. The
back neck muscles were retracted to make room for a either an 8 or 10 mm circular opening headplate
which was affixed to the skull using either metabond (Parker) or dental acrylic (OrthoJet). A combination of
vet bond and cyanoacrylate-based glue was applied to the skull to both protect the skull surface from
infection and also to provide a clear surface through which to perform widefield imaging to identify cortical
visual areas in electrophysiology experiments.

Craniotomy surgery/window implantation. After allowing the animal to recover at least 1 week from the
headplate surgery a craniotomy procedure was performed to either allow for acute implantation of an
electrode or to install a glass coverslip for chronic imaging.

Animals were anesthetized using isoflurane (3% induction; 1.5%—2% maintenance) in 100% O2 (0.8—1.0
I/min) and positioned in the stereotaxic frame affixed by the headplate attached previously. The animals
were given subcutaneous injections of the analgesic Ketoprofen (5 mg/kg) and 0.2 ml saline to prevent
postoperative dehydration. Body temperature was maintained at 37.5°C by a feedback-controlled heating
pad; temperature and breathing were monitored throughout surgery. Sterilized instruments and aseptic
technique were used throughout. Sterile ocular lubricant (Puralube) was applied at the beginning of each
surgical procedure.

For imaging experiments a 4-5 mm craniotomy was cut out centered at +0.5 mm from lambda and +2.75
mm from midline on the right hemisphere. Care was taken to minimize bleeding, and any bleeds in the skull
during drilling were covered with wet gelfoam (Pfizer) until they resolved. After careful removal of the bone
flap, a durotomy was performed and the exposed brain was covered in a 1:1 mix of artificial dura (Dow
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Corning 3-4680). A sterile 4-5 mm coverslip was then pressed into the opening and sealed in place using
a combination of cyanoacrylate-based glues. The remaining parts of exposed skull in the headplate well
were then covered with black dentral acrylic for light blocking purposes and to prevent infection.

For electrophysiology experiments, retinotopic mapping was performed prior to performing any craniotomy,
resulting a vasculature and field sign map to identify vasculature landmarks corresponding to either V1, LM,
or RL. Once such landmarks had been identified a small (<1 mm) craniotomy was performed on the morning
of each experiment. The craniotomy, was sealed with KwikSil (WPI) and animals were allowed to recover
for at least 3 hours to subsequent recording experiments.

Visual stimuli

Visual stimuli were presented on a 32 inch monitor (Samsung 32 inch Icd screen; 42 x 74 cm); linearized
by eye to correct for gamma (mean luminance 50 cd/m?2), oriented tangentially 18 cm from the mouse's left
eye (figure size: ~30°) for all experiments except those shown in Fig. 3f for quantifying reproducibility which
were carried out at 27 cm from the eye (Fig. 3b).

For all experiments (electrophysiology and imaging), attempts were made to re-center the monitor on the
general location of the receptive fields across the population to maximize the number of distinct figure and
ground trials in a given experiment.

Figure ground/border ownership stimulus. The stimuli used to characterize the figure-ground and
border-ownership modulation of each stimulus consisted of a sinusoidal grating of 0.06 cpd, oriented at
either 45 or 135°. The figure was 27° in size, and all the horizontal positions surveyed spanned 45° (~3°
shift per position). The total elevation positions surveyed varied across 23° (~3° shift per position). For the
Iso and Nat conditions where the texture defining the figure was identical within a given condition, the figure
was generated at each position using the same texture that was there in the background as a new
foreground image, thus creating a “pop out” effect for the stimulus (see Extended Data Movie 2).

RF mapping. Receptive fields were mapped for neurons under 2-photon using an isolated drifting Gabor
patch stimulus: a patch of ~6° containing a drifting Gabor appeared in one of three different orientations
(45°, 180°, 315°) and 2 directions at a random position. We repeated this procedure for 9 repeats and at
16 by 9 positions and then collapsed responses across all trial types to compute a spatial PSTH. We then
fit a 2D Gaussian to the response and classified neurons as having a significant receptive field fit if the
goodness of fit exceeded the goodness of fit for at least 99 out of 100 bootstrapped trials where spatial
location was shuffled across trials.

For electrophysiology, we used a sparse noise stimulus with light and dark spots to map receptive fields.
We computed separate PSTHs for ON and OFF subunits, fit 2D Gaussians, and determined significance
using the same procedure as above using shuffled bootstraps.

We limited our analysis for figure-ground and border-ownership modulation in Fig. 5 to neurons that had
significant receptive field fits and used the central position of that fit as the neuron’s inferred RF center. For
population neural decoding analyses, we used all neurons regardless of receptive field fits.

Mouse behavior

We trained sixteen adult mice aged 8-12 weeks (4 x C57bl/6; 12 x Thy1-Gcamp6s mice) co-housed 4 to a
cage with access to a running wheel. Mice were housed under reversed light-dark cycle (dark cycle from
10 am to 9 pm), and training was performed during the dark cycle. Mice were water restricted before, during,
and after training days. The weight of the animals was continuously monitored to make sure no mouse
dropped below 85% of their pre-water-restriction weight.

Mice were trained for 6 days/week, with a single session per day. Each mouse performed around 200 to
450 trials per day depending on the behavioral task. All training was carried out a commercially available
touchscreen operant chamber in a sound-attenuating box (Bussey-Saksida Touch Screen Operant
Chambers/Lafayette Instrument).
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Visual stimuli were presented on a touchscreen monitor (24 x 18.5 cm, W x H) (Lafayette Instrument). In all
experiments, size of figures is given in pixels as the animals were freely moving and thus no estimate can
be made of the size of the figure in visual degrees during the behavior as it will vary depending on the
animal’s position. We generated stimulus movies of size 100 pixels high x 200 pixels wide, with square
figures centered at either 50 or 150 pixels and square side of 50 pixels. Both figure and background moved
out of phase with a sine wave of amplitude 14 pixels.

One side of each chamber was a touch screen monitor, and on the other side was a reward tray with a
water spout. Mice had to touch the left or right side of the screen based on the location of the figure. The
water delivery was cued by a white light illuminating the spout. An IR sensor detected when the mouse
collected the water reward and determined the start of the next trial. For incorrect responses, a white noise
audio stimulus was played for three seconds and followed by a ten second timeout. After the time-out period,
the stimulus of the identical trial was presented again until the mouse made the correct touch. This shaping
procedure can prevent biases in the behavior. All trials following the first incorrect response were not
included in the analysis, as other similar studies have done [30, 58].

We first trained the animal to become familiar with the touch screen and the task rules through a luminance
shaping procedure. During this procedure, the mice learned to discriminate a white square moving on a
black background and touch the side of the screen that displayed the square. In this task, they also learned
that a correct touch was associated with a water reward. The mice started their subsequent training steps
after reaching 80% on this task.

Standard 2-pattern discrimination. For these experiments, there were 4 possible stimuli (2
orientations/natural noise x 2 positions) (Fig. 2b, Fig. 2i1, Extended Data Fig. 1c1). Gratings were
presented at two orientations, 45° and 135° (0.25 cycles/cm).

5-pattern discrimination. Animals were tested on this after training on the 2-pattern task (Fig. 2i1). The
stimuli were the same as for the 2-pattern discrimination, except we introduced 5 novel orientations or
naturalistic noise patterns. For gratings, the 5 novel orientations were 22.5°, 67.5°, 90°, 112.5°, 157.5°. For
the Nat condition, we used 5 new natural noise patterns that shared the same Fourier statistics.

30 natural textures. After finishing training on 2- and 5-pattern discrimination tasks, mice were trained on
30 natural textures in Iso and Cross configurations (Extended Data Fig. 2). We first tested them on 7
textures (set A) to measure the baseline performance. We then trained them on 30 Iso and Cross natural
textures (set B). After training, they were tested on 7 textures again (set A). For experiments involving
natural textures we randomly selected textures from the describable textures dataset (DTD;
https://www.robots.ox.ac.uk/~vgg/data/dtd/). We converted all textures to grayscale.

Grating to noise shaping. We generated a gradual morph stimulus that changed oriented gratings into
naturalistic noise, with the goal being to train the animals to use the motion cue (Fig. 2e). In total, there
were 10 stages in this shaping procedure. At each stage, the stimulus represented a weighted sum of the
grating and noise, and the weight was changed 10% from the previous stage for both grating (decrease)
and noise (increase). For example, in stage 3, the weight assigned to grating was 70% and the weight for
noise is 30%. By stage 10, the weight for grating was 0% and for noise was 100%. At each stage, figure
texture was flipped vertically and presented at a random height (top, middle, down) to discourage use of
local cues in the task.

Static version of tasks. We tested mice on static versions of all conditions where only a single frame of
the stimulus was presented (Fig. 2g, h). The static stimulus was the frame that had the largest phase
difference between figure and background.

New texture task. After mice learned the grating to noise task, they were tested on 7 unseen new natural
textures (Fig. 2f).

Background static natural textures. We trained the mice to detect a figure moving horizontally on a static
background (Extended Data Fig. 1a).
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Treeshrew behavior

Four adult treeshrews (3 male, 1 female; age: 7-18 months old) bred and raised at Caltech were trained to
perform the figure-ground segregation task. Animals were singly housed in a 12 hr:12 hr light:dark cycle.
They were not food or water restricted, but free access to water was limited during the 4 hours prior to
training each day. Training was performed during the light cycle in a custom-made behavioral arena (30 x
30 x 25 cm) containing three optical lickports (Sanworks) situated in a custom-built behavior box. Drops of
100% apple juice rewards were provided upon poking at the appropriate lickports and in some cases for
trial initiation. Images were presented on a Sunfounder 10.1” Raspberry Pi 4 (1280 x 800) screen and
controlled using Bpod hardware and Python software. After an initial shaping step in which animals learned
to use the lickports in a luminance detection task (2-3 days), training for Cross, Iso, and Nat conditions was
performed for 4 consecutive days (5 orientations or naturalistic textures), with generalization test sessions
on the fifth day (2 different orientations or naturalistic textures) (Extended Data Fig. 1b, c2). We reversed
the number of train/test patterns compared to what was used for the mice (Fig. 2i1) because we reasoned
that animals might be more likely to generalize if given more patterns for training.

Mouse lemur behavior

Four adult mouse lemurs (3 male, 1 female; age: 2-3.5 yrs) bred and raised in the “Mouse Lemur Platform”
(authorization number E-91-114-1) of the “Museum National d’Histoire Naturelle” in Brunoy, France (UMR
MECADEV CNRS/MNHN 7179) were trained to perform the figure-ground segregation task. Animals were
co-housed 2-3 per cage in a reversed long-day (14:10 light:dark) cycle. They were food restricted, with their
body weight maintained above 60g, but had free access to water. Training was performed during the dark
cycle in a custom-made behavioral arena (20 x 20 x 30 cm) containing three optical lickports (Sanworks)
situated in a sound-attenuating box. Drops of liquid food rewards (standard food mixture composed of
banana, cereal, milk and egg) was provided upon poking at the appropriate lickports. Images were
presented on a Dell P2414H (1920 x 1080, 60Hz) screen and controlled using Psychopy and Matlab
software. Training and testing followed the same paradigm as for treeshrews (Extended Data Fig. 1b, c3).

Macaque behavior

Two head-fixed rhesus macaque monkeys were trained to indicate whether a square was on the left or right
side of a screen. Movie stimuli were shown on an LCD screen in pseudo-random succession for 2 seconds
ON time each, without any OFF period. The stimuli were shown across the full screen (23° in height and
37° width) and contained a square of 9° length on either the left or right side. Monkeys received a juice
reward for fixating within the 9° square region for at least 1 second. Eye position was monitored using an
infrared eye tracking system (ISCAN). Each monkey performed only one or two sessions of one or two
hours each. In the beginning of the first session, behavior was shaped by training the monkeys on the
luminance squares only until they reached 90% correct performance. Prior to this, the monkeys had been
trained only to fixate. Both monkeys learned this within the first session and subsequently performed the
task with all other stimuli presented in pseudo-random succession (Extended Data Fig. 1c4). Stimuli
included static and moving luminance squares, cross-orientation and iso-orientation gratings and natural
textures.

For offline analysis, we computed the percentage of correct trials where monkeys were fixating the correct
square location for at least 1 second, including only trials where monkeys were looking at the screen and
not closing the eyes.

Wide-field imaging

Prior to all electrophysiological and imaging experiments, a reference vasculature image and field-sign map
was acquired under a custom-built widefield epi-fluorescence microscope. The microscope consisted of
two Nikon 50 mm f1.4 lens placed front to front with a dichroic, excitation, and emission filters (Semrock) in
between. Light was delivered via a blue LED light source (Luxeon Star) and images were acquired with a
CMOS camera (Basler). Images were acquired at 10 Hz and were triggered on every 3 frame of a 30 Hz
retinotopic mapping stimulus (drifting bar; trial period of 0.1 Hz) to ensure proper timing between stimulus
and acquisition. Retinotopic mapping stimulus consisted of a drifting 10° bar of binarized 1/f noise [57],
which cycled with a period of 0.1 Hz. Elevation and azimuth maps were computed using a Fourier
decomposition of the stimulus and plotting preferred phase at the stimulus frequency [59].
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Two-photon imaging

We began imaging sessions ~2 weeks after surgery. We used a resonant, two-photon microscope
(Neurolabware, Los Angeles, CA) controlled by Scanbox acquisition software (Scanbox, Los Angeles, CA).
Imaging was through a 16x water immersion lens (Nikon, 0.8 NA) at an acquisition rate of 15.6 Hz at depths
ranging from 150 to 250 uM from the surface corresponding to layer 2/3. Mice were allowed to run freely
on a spherical treadmill (styrofoam ball floated with air).

We ran a minimum of 7 stimulus conditions in all sessions (RF mapping + 6 conditions) with a short (<3
min) break between each imaging session. Most sessions lasted less than 75 minutes. For analysis, all of
the movies from each session were aligned to a common mean image using a non-rigid registration pipeline
(Suite2P). Suite2P was further used to extract cell locations and perform subsequent deconvolution to
recover spike estimates from calcium signals. Results of cell extraction were inspected manually using the
Suite2P GUI and any outliers (e.g., clearly non-neuronal or artifactual shapes) were discarded.

Matching cells across days. Cells were tracked across days by first re-targeting to the same plane by eye
such that the mean fluorescence image on a given day was matched to that on the previous day, with online
visual feedback provided by a custom software plugin for Scanbox. Then, a registration correction was
computed from one day to the other such that the two planes were aligned. After extracting cell identities

and cell filter maps for both days independently, a Jacard index J(4,B) = :282: was computed for a given

cell filter on day 1 with all extracted filters on day 2. A Jacard index > 0.5 was considered the same cell on
the next day.

Electrophysiology

Electrophysiology experiments were carried out with an acutely-inserted 64 channel silicon probe [60]
attached to a 4-axis manipulator (Siskiyou), that was amplified through a 64 channel headstage (Intan).
Signals were digitized by an open-ephys acquisition box (Open-ephys) and aligned to stimulus frames
through the use of a photodiode. The probe was lowered into the brain at 5 uM/sec and allowed to settle
for a minimum of 5 minutes before experimental stimuli were presented. Animals were head-fixed for a
maximum of 2 hours in any given experiment. Stimuli were presented as outlined in the Visual Stimuli
section of the Methods.

Analysis
All analyses were performed using custom scripts written in MATLAB (Mathworks) or Python using NumPYy,
SciPy, Pandas, seaborn, sklearn, and Matplotlib [61-65].

Trial-based response. For all trial-based analysis, we quantified the response for a given trial as the mean
spike count 50-250 ms post trial onset. For imaging experiments, we use the deconvolved calcium trace
where the response value was set to the mean across all frames of the trial.

Positional decoding using linear regression. To quantify the amount of information present about figure
position, we decoded the azimuth bin (positions 1-16) of each trial from a population of neurons using a
ridge regression model and 50/50 cross validation; results averaged across 100 iterations are reported for
all data and modeling. To quantify the extent to which a single linear model could account for position
across both orientations or textures, we pooled ftrial types within a stimulus condition (both
orientations/textures for Cross/Iso/Nat).

Beta values (penalty term) for the ridge regression were computed with a leave-one-out cross-validation
approach using the RidgeCV function from sklearn. As the beta values will be dependent on the number of
regressors (neurons) in the model, this entire procedure was repeated for varying numbers of neurons to
compute the decoding performance as a function of number of neurons in the decoder. All values reported
for decoding correspond to the mean variance explained by the model over 100 iterations of the above
procedure, and error bars correspond to 95% confidence intervals.

Computing FGM and BOM. We limited analysis of figure-ground modulation (FGM) and border-ownership
modulation (BOM) to electrophysiologically-recorded neurons that satisfied two criteria: i) they showed a
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788 statistically significant receptive field fit, and ii) the receptive field center was limited to a central portion of
789  the screen (central 15° azimuth and 10° elevation). This second receptive field position criterion was to
790 ensure a reasonable number of figure and ground or left and right trials with which to compute the FGM or
791  BOM indices.

(Rrig—RBack)
(Rpig*+RBack)’
794 Rriq is the mean response across the two patterns for the condition within the figure zone, defined as the 2
795  x2 (10° x 10°) grid of locations centered on the cell's receptive field (Fig. 5¢) and Ry, is the mean
796 response across the two patterns for the condition in the background zone, defined as all grid locations with
797  distance greater than 1.5 * the receptive field width from the receptive field center. We computed
798 bootstrapped p-values using 500 shuffles where trial identity was randomized to establish a null distribution.

793 For each of the three conditions, we defined a figure ground modulation index as FGM = where

800  We quantified border ownership selectivity in a similar way. We defined a border ownership modulation

. (R —Rp; ) :
801  index as BOM = (R”f ”"’”MMR‘*"’””"””), where Ry ¢ boraer is the mean response across the two patterns
Left border T*Right border

802  for the condition within the left border zone, and Rg; ¢ poraer is the mean response across the two patterns
803 for the condition within the right border zone (Fig. 5f). We computed the significance of the modulation
804  using a bootstrapped distribution as above.

807  Modeling

809 Feedforward model. We modeled neuronal responses using an LN model of simple cells, with the linear
810 filter modeled by a Gabor function and linear rectification. We simulated responses to 100 different cell
811 types using a classic simple cell model as a linear combination of receptive field with stimulus passed
812  through a nonlinearity.

813
814 responsesecarorwara = f (9%, ¥,0,4,v,0,w) * stimulus)
815
816  where g(x,v,0,4,y,0,w) is a Gabor function:
817
_xZyiyr? x' x' cosf  sinf (X
— 2 J— =
818 9(x,y,0,1,y,0,w) =e 202 cos (211 7 + oo) , (y') (—sine cosa) (y)

819  with parameters sampled as follows: & = rand(0, ), o = rand(2°, 7°), 1/4 = rand(0.05 cpd, 0.3cpd), w =
820 rand(0, ), y = 1. f(x) represents a linear rectification (max(0,x)) to ensure positive rates and * represents
821  the convolution operator.

823 Surround model. We added a divisive term to the neural response computed from our feedforward LN
824  model (Extended Data Fig. 4). This divisive term was not recurrent and instead can be most readily
825 interpreted as a center-surround interaction that would arise in the feedforward inputs from thalamus to
826  cortex.

827
resopnse
828 response = pnsey cedforward
1+ :8 * p(Vin ’ Vout)
829

830 where p(l?}n,Vout) represents the Pearson correlation between the mean response of all neuron types
831  within the receptive field (< 20; V,,) and all neuron types outside the classical receptive field (> 26 & < 50;
832 Vout). The term p(V)m , l_/:mt) represents the extent to which orientations inside the cell’s receptive field match
833 those outside of the receptive field for a given image. In the case of the Iso stimulus, p(l7}n,l70ut) >0,

834  yielding suppression, while in the case of Cross stimulus, p(l_/m ,Vout) < 0, yielding facilitation. We set the

835 scaling factor g to 0.95 to ensure that the denominator never reaches zero.
836
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Neural network model. We analyzed decoding performance of intermediate layers of a deep network
(VGG-16) trained for classification on ImageNet [36]. We used the mean of the response magnitude to all
14 individual frames corresponding to a given stimulus to represent a given unit’s response to a given trial
type. We extracted this response for each of the 5 max-pool layers in the network and computed decoding
curves using the same procedures as for the neural data.

Noise factor. To account for neural response variability, we added noise to all models proportional to the
mean of responses for the simulated network within each condition. To achieve this, we added zero-mean,
normally-distributed fluctuations to each ftrial with variance proportional to the mean response across
neurons followed by linear rectification to ensure positive outputs. Thus the final output of a population
would be equal to response + N(O, NoiSefqcror * POPmean)- Sweeps across various noise factors are shown
in Extended Data Figs. 5, 6.
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Links to supplemental movies:

Extended Data Movie 1: https://youtu.be/LVRxtmrT168
Extended Data Movie 2: https://youtu.be/YyJ64ngzh8k
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Figure 1: Mechanisms for segmentation.

a) Schematic representation of a hierarchy for visual perception. Figure-ground segmentation serves as a
key intermediate step preceding object recognition.

b) Accretion and deletion signals at borders induced by object motion provide a strong cue to distinguish
object vs. texture edges. As objects move differently from the background, accretion (left) and deletion
(right) of parts of the background will occur at object edges, providing local cues for object boundaries and
their owners. In contrast to accretion-deletion, texture (e.g., orientation contrast) is locally ambiguous: the
pocket does not constitute an object edge, even though it generates a sharp texture discontinuity.

c) Left column: two frames taken from a movie of three leaves descending over a bear. Accretion and
deletion signals support not only surface segmentation from a successive pair of image frames (middle
column), but also invariant object tracking across many successive image frames (right column), as
explained in detail in [21]. The key idea is that accretion-deletion enables surfaces to be correctly linked
between successive image frames, because the owner remains invariant between successive frames. In
(b), this corresponds to linking the surface of the shirt at time points t and t+7. When this process is carried
out across many successive time points, it enables correct linking of highly disparate object appearances,
such as the intact bear (top right) and the bear split into three pieces by occlusion (bottom left). Adapted
from [21].

d) Figure-ground modulation provides a neural mechanism for explicit sesgmentation. Here, a hypothetical
neuron'’s firing is selectively enhanced to a stimulus when it is part of a figure (purple) compared to ground
(green), even though the stimulus in the classical receptive field remains the same. A population of such
neurons would be able to localize image regions corresponding to objects.

e) Border-ownership modulation provides an additional neural mechanism for explicit segmentation. Here,
a hypothetical neuron’s response is modulated by the relative position of a figure relative to an object edge.
In the example shown, the neuron prefers presence of a figure on the left (green) as opposed to figure on
the right (purple). A population of such neurons would be able to effectively trace the border of an object
and assign its owner.
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Figure 2: Mouse segmentation behavior: mice use orientation contrast but not opponent motion to
distinguish figure from ground.

a) Mice were trained in a touchscreen paradigm in which they were rewarded for touching the side of the
screen containing a texture- and motion-defined figure.

b) Mice were tested on three classes of stimuli: "Cross" where foreground and background patterns
consisted of orthogonal gratings, "lIso" where foreground and background patterns consisted of the same
orientation gratings, and "Nat" where foreground and background patterns consisted of naturalistic noise
patterns with 1/f spectral content. Initially, four training stimuli were used for each condition. Figure and
background oscillated back and forth, out of phase, providing a common opponent motion cue for
segmentation across all conditions; the movement range of the figure and background is denoted by the
red bar.

c) Mean performance curve for 12 mice in the Cross (orange), Iso (violet), and Nat (green) conditions,
where the task was to report the side of the screen containing a figure; in each session, one of a bank of
four possible stimuli were shown, as in (b). Shaded error bars represent sem.

d) Performance of two macaque monkeys on the same task. Monkey behavior, unlike that of mice, showed
no dependence on the carrier pattern, displaying high performance for all three conditions (Cross, Iso, Nat).

e) Teaching a mouse the Nat condition. Mice that could not learn the Nat version of the task could be
shaped to perform well on the task by a gradual training regimen over 20+ days. Using a gradual morph
stimulus (see Methods), animals could be slowly transitioned from a well-trained condition (Cross) to
eventually perform well on the full Nat task. Each circle represents one mouse.

f) Despite high performance on the four stimuli comprising the Nat task, performance dropped when mice
were exposed to new unseen textures, suggesting that they had not learned to use opponent motion to
perform the task.

g) Mice performed just as well on the Nat task even without the opponent motion cue, suggesting that they
had adopted a strategy of memorizing a lookup table of textures to actions, rather than performing true
segmentation in the Nat condition.

h) Left: Change in performance when the motion cue was removed on a random subset of trials. Mice
experienced no drop in performance in any of the conditions when static images were displayed instead of
dynamic stimuli, indicating they were not using motion information. Right: In contrast, monkeys showed no
performance drop in conditions where the figure was obvious in static frames (Cross and Iso), but showed
a marked drop in performance for the Nat condition where the figure is not easily resolved without the
motion cue.

i1) To confirm whether mice used an opponent motion cue in the various conditions, mice were trained on
an initial set of 4 stimuli (Tr; 2 sides x 2 patterns/orientations, as in (b)). After performance had plateaued,
they were switched to 10 novel test conditions (Te; 2 sides x 5 patterns/orientations). Animals mostly
generalized for Cross and Iso conditions but failed to generalize for the Nat condition (p=0.0011, ranksum
test), suggesting they were unable to use the opponent motion in the stimulus.

i2) Same as (i1) for treeshrews. Like mice, treeshrews failed to generalize for the Nat condition (p=0.02,
ranksum test).

i3, 4) In contrast, two primate species: mouse lemurs (i3) and macaques (i4) were able to generalize in the

Nat condition, suggesting they were able to use the opponent motion cue in the task (p=1.00 mouse lemur,
p=0.99 macaque; ranksum test).
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Figure 3: Approach for measuring neural correlates of segmentation-related modulation in mouse
visual cortex.

a) Widefield imaging of GCaMP transgenic animals was used to localize visual areas prior to neural
recording. A drifting bar stimulus was used to compute azimuth (bottom-left) and elevation (bottom-right)
maps across of the visual cortex. From these maps, a field-sign map (top-left) was computed, allowing
delineation of cortical visual areas (top-right). Alignment to vasculature maps guided subsequent
electrophysiology or 2-photon recordings to V1, LM, or RL.

b) Rodents were allowed to run freely on a spherical treadmill, with a 72 cm width (32 inch diagonal) screen
centered either 18 cm or 27 cm away from the left eye, while undergoing either electrophysiology or two-
photon imaging.

c¢) The stimulus consisted of a texture- and motion-defined square that was flashed randomly across a grid
of 16 horizontal positions x 8 vertical positions (128 positions total). On any given trial, a neuron with a
given receptive field location (schematized by the green circle) was stimulated by (1) ground, (2) figure, or
(3) edge, enabling us to measure both figure-ground and border-ownership modulation.

d) Schematic response maps to the stimulus in (c). Left: a “figure cell” responds only when a part of a figure
is over the receptive field. Middle: a “border cell” responds only when a figure border falls on the receptive
field and has orientation matching that of the cell (here assumed to be vertical). Right: a simple cell with an
ON subunit responds to the figure with phase dependence.

e1) Mean response at each of the 128 figure positions for an example V1 cell. Colored boxes correspond
to conditions shown in (e2).

e2) Four stimulus conditions outlined in (e1), ranging from receptive field on the figure (left) to receptive
field on the background (right).

e3) Raster (top) of spiking responses over 10 trials of each stimulus configuration and mean firing rate
(bottom). Error bars represent sem.

f) Example response maps from V1 using 2-photon calcium imaging show reliable responses from the same
neurons on successive days. Shown are 6 example neurons imaged across two days. Neurons were
matched according to a procedure described in the Methods. Colormap same as in (e1).

g) Distribution of Pearson correlations between figure maps for all matched cell pairs (red) and a set of

randomly-shuffled cell pairs (black). Neurons displayed highly reliable responses to the stimulus (N = 950
cell pairs in each group, mean=0.5579 for matched vs. mean=0.2054 for unmatched, p = 1e-163, ks-test).
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Figure 4: Segmentation-related modulation across mouse visual cortex is pattern dependent.

a) To search for segmentation-related neural signals, we adapted the stimulus shown in Fig. 3c (a figure
switching between 128 positions) to the three conditions that we had tested behaviorally (Cross, Iso, and
Nat). As in the behavior experiments, for each condition we presented two variants (different orientations
or patterns). Rows 1 & 2: two example frames (with square at different positions) are shown for each of the
6 stimulus variants. Overlaid on these example stimuli are grids representing the 128 possible figure
positions and a green ellipse representing the ON receptive field. Row 3: example figure map from one cell
obtained for the conditions shown above. Rows 4 & 5: Example rasters when the figure was centered on
(red) or off (blue) the receptive field. Row 6: PSTHs corresponding to the rasters; shaded error bars
represent sem.

b) Figure maps for each of the 6 stimulus variants for four example neurons from V1 (responses measured
using electrophysiology).

c) Figure maps for each of the 6 stimulus variants for four example neurons from LM.

d) Figure maps for each of the 6 stimulus variants for four example neurons from RL.
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Figure 5: Mice lack consistent segmentation signals across texture conditions.
a) Distribution of Pearson correlations between figure maps across all (g) pairs of conditions. No neuron

in any area showed high correspondence (signified by non-zero mean) across all conditions tested,
indicative of a texture-invariant figure response.

b) Distribution of Pearson correlations between figure maps across the two stimulus variants for each
condition (orange: Cross, violet: Iso, green: Nat) and across visual areas (left: V1, middle: LM, right: RL).

c) A figure-ground modulation index was computed by taking the mean response on background trials
(positions outlined by dashed lines) and the mean response on figure trials (positions outlined by solid line)
and computing a normalized difference score.

d) Distribution (shown as a kernel density estimate) of figure ground modulation indices for Cross (orange),
Iso (violet), and Nat (green) conditions, pooling cells from V1, LM, and RL.

e) Fraction of cells with figure-ground modulation index significantly different from zero (p<0.05) for N
stimulus variants (out of the six illustrated in Fig. 4a). Dotted gray line represents chance level false positive
rate at p<0.05 after 6 comparisons. For this analysis, FGM was computed similarly as (d), but responses
were not averaged across orientations/patterns within each condition; thus each cell contributed 6 FGM
values.

f) A border-ownership modulation index was computed by taking the mean response on left edge trials
(positions outlined by dashed rectangle marked “L”) and the mean response on right edge trials (positions
outlined by dashed rectangle marked “R”) and computing a normalized difference score.

g, h) Same as (d), (e), but for border-ownership modulation indices.

i, j, k) Mean response time courses across all cells in V1, RL, and LM to figure, ground, and border in the

Cross (i), Iso (j), and Nat (k) conditions. Time points for which the response to the figure was significantly
greater than the response to ground are indicated by the horizontal line above each plot (p<0.01, t-test).
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Figure 6: Decoding figure position from neural responses.

a) Schematic of approach for decoding figure position from neural population responses. For each neuron,
figure response maps for both types of stimuli from a given texture condition (Cross, Iso, Nat) were pooled,
and reshaped into a 1-d vector, producing a population matrix of N neurons x N positions; the population
response matrix for the Cross condition is shown. A linear decoder for figure azimuth position was then
learned with cross validation from the population response matrix using 50% of trials for training and the
remaining 50% of trials for testing.

b) A linear readout was computed for a given random sample of N neurons, shown here for 5 (top), 20
(middle), and 100 (bottom) neurons. Each dot plots the actual azimuth bin (x-axis) against the predicted bin
(y-axis). Mean explained variance was then computed across 50 repeated samples and plotted as a
function of number of neurons (right).

c) Variance explained by decoded azimuth position as a function of number of neurons used to train the
decoder for each of the different texture conditions (electrophysiology data). The most robust position
decoding was obtained for Cross (orange), followed by Iso (violet) and then Nat (green). Error bars
represent sem.

d) Same plot as (c) but for deconvolved calcium imaging data.

e) Same data as in (c), but broken down by both texture condition and visual region. LM (red) consistently
showed better positional decoding than either V1 (blue) or RL (green). Error bars represent sem.

f) Same as (e) but for deconvolved calcium imaging data.
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Figure 7: Mid to late layers of a deep network recapitulate mouse neural and behavioral performance
on figure position decoding across texture conditions.

a) Schematic of the feedforward linear-nonlinear (LN) encoding model (see Methods). The stimulus was
passed through a Gabor filter, followed by a rectifying nonlinearity, and then a Poisson spiking model, with
noise added to responses to simulate population response variability (e.g., due to non-sensory signals such
as movement or arousal). We ran the same stimuli (128 positions x 6 conditions) through the model that
we used for electrophysiology and two-photon imaging (cf. Fig. 4a).

b) Positional decoding performance, quantified as variance explained by decoded azimuth position, as a
function of number of neurons in the feedforward LN model. Cross (orange) positional decoding was robust,
while both Iso (violet) and Nat (green) were extremely poor, in contrast to electrophysiology (Fig. 6¢) and
imaging (Fig. 6d) results. Noise variance was set to twice the network-level firing rate within a condition
here and in (c,e) below; for a full sweep across noise parameters, see Extended Data Fig. 5. Error bars
represent sem. Small random offset added for visualization purposes.

c) Adding an orientation-dependent divisive term to the LN model to mimic iso-orientation surround
suppression (Extended Data Fig. 4; LN + Surround model) yielded more robust decoding in the Cross
condition (orange), but did not improve decoding in the Iso (violet) or Nat (green) conditions. For a full
sweep across noise parameters, see Extended Data Fig. 5. Error bars represent sem. Small random offset
added for visualization purposes.

d) Architecture of a pre-trained deep neural network (VGG16) trained on image recognition [36]. Five
convolution layers are followed by three fully connected layers.

e) Positional decoding performance increases throughout the network with most robust decoding in layer
4. In mid to late layers (3-5) of the deep network, decoding performance was best for Cross (orange),
followed by Iso (violet) and then Nat (green), mirroring mouse behavioral performance (Fig. 2c, i1) and
neural data (Fig. 6c, d). For a full sweep across noise parameters, see Extended Data Fig. 6. Error bars
represent sem.

f) Schematic summary of behavioral results. Mice showed texture-dependent performance in a figure
localization task, with Cross > Iso > Nat, despite the presence of a common motion cue for segmentation
in all conditions. In contrast, primates showed no dependence on carrier texture and were able to use the
differential motion cue to perform the task.

g) Schematic summary of neural and modeling results, Positional decoding from neural populations in V1,
LM, and RL mirror the textural dependence of the behavior, with Cross > Iso > Nat. This ordering in
performance was not captured by a feedforward LN model or an LN model with surround interactions.
However, it emerged naturally from non-linear interactions in mid to late layers of a deep neural network.
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Extended Data Figure 1: Additional behavioral performance statistics.

a) Averaged learning curves for Nat condition (n=12) and Nat condition with static background (n=6). If the
task is turned into a pure local motion detection task by making the background static, mice learn
considerably faster, demonstrating that they are able to detect the motion in the Nat condition. Error bars
indicate sem.

b1) Schematic of training procedure indicating flow of stimuli within a training session.

b2) Schematic of training procedure used for Fig. 2i1-3. Animals were first trained on a luminance square.
Then they were trained on Cross, followed by Iso and then Nat. For each condition, the training period was
followed by one day of generalization testing.

c1) Individual learning curves of 12 mice for Cross, Iso, and Nat conditions.

¢2) Individual learning curves of 4 treeshrews for Cross, Iso, and Nat conditions. Animals could already
perform Cross and Iso > 70% on the first training session, displaying much faster learning than mice.

c3) Individual learning curves of 4 mouse lemurs for Cross, Iso, and Nat conditions.

c4) Learning curves of two monkeys for Cross, Iso, and Nat conditions (monkey A: solid lines, monkey B:
dashed lines). Both animals rapidly learned within a single session to perform the task (after only a brief
period of training with a luminance-defined square at the beginning of the session).
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Extended Data Figure 2: Natural texture task shows advantage for learning figures with cross-
oriented energy.

a) Examples of natural textures in Cross and Iso conditions.
b) Table summarizing the training paradigm for the natural texture task.

c) Performance on baseline day, training days, and test day in Iso condition. Solid black line indicates the
mean of training curves on training days (N=10).

d) Mean performance on baseline day, training days, and test day in Iso condition. Mice showed no
improvement in performance on novel textures after showing behavioral increases during the training
period. Error bars represent sem.

e) Same as (c) but for Cross condition.

f) Same as (d) but for Cross condition. Just as before, mice showed no improvement in performance on
novel textures after showing behavioral increases during the training period.

g) Comparing performance between Cross and Iso conditions on training days. Each point represents the
mean performance of a given texture on both Cross and Iso conditions. Most points lie above the unity line
(p = 5.9x10-5, sign test).

h) Performance for Cross and Iso conditions on baseline and test day (Cross, p = 0.3; Iso, p = 0.97; rank
sum test).
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1171 Extended Data Figure 3: Mean time courses of responses across the population to figure, ground,
1172  and border in areas V1, LM, and RL. Conventions as in Fig. 4.
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Extended Data Figure 4: Modeling orientation-dependent surround interactions.
a) Standard feedforward LN model used to model simple cell responses.

b) Model for divisive normalization that we used to model orientation dependent surround interactions [66].
The neuron's feedforward response was modulated by a divisive term that took into account the mean
response of all neurons of a given Gabor type with RF centers within 20 of a given receptive field's center
(V,,,) and those that lay > 20 and < 50 outside of the receptive field (V,,,). From these two vectors (each
100 elements long), we computed a Pearson correlation, pearson(l—/}n, Vout), which ranged from -1 to 1,
leading to suppression when the orientation energy in V}n and Vout matched and facilitation when V}n and
V’Om were orthogonal.

c) Schematic representation of the zones for V,,, and V,,,;, each defined relative to a cell's receptive field
center.

d) Row 1: Schematic of six stimulus conditions. Row 2: Figure maps for an example feedforward LN neuron
for each of the 6 conditions. Row 3: Map of the modulation term value at each position; note that whether
there is suppression or facilitation is a function of the stimulus condition, figure position, and receptive field
position. Row 4: Figure maps for an example surround-model neuron; for the Cross condition, adding
surround modulation results in general facilitation, while for Iso and Nat conditions, it results in depression
or no modulation.
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Extended Data Figure 5: The effect of noise on position decoding for feedforward LN and surround
models.

Top row: Position decoding performance for Cross, Iso, and Nat conditions in a population of feedforward
LN neurons across noise conditions (columns). Note that positional decoding for Cross is high across noise
conditions, while for Iso and Nat it remains low. The noise levels indicate the ratio between the noise
variance and the network-level firing rate (see Methods).

Bottom row: Same as top row, for a population of feedforward LN neurons with orientation-dependent

surround interactions. Including this extra-classical receptive field modulation had no effect on the relative
decoding performance for Iso versus Nat conditions. Error bars represent sem.
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Extended Data Figure 6: The effect of noise on position decoding for intermediate layers of VGG16.
Position decoding performance for Cross, Iso, and Nat conditions as a function of neural network layer

(rows) and increasing population response noise (columns). Note that across various noise conditions, the
separation of Cross, Iso, and Nat conditions remains prominent. Error bars represent sem.
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