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ABSTRACT 13 

Host temperature and gut chemistry can shape resistance to parasite infection. Heat and acidity 14 

can limit trypanosomatid infection in warm-blooded hosts, and could shape infection resistance in 15 

insects as well. The colony-level endothermy and acidic guts of social bees provide unique opportunities 16 

to study how temperature and acidity shape insect-parasite associations. We compared temperature 17 

and pH tolerance between three trypanosomatid parasites from social bees and a related 18 

trypanosomatid from poikilothermic mosquitoes, which have alkaline guts.   19 

Relative to the mosquito parasites, all three bee parasites had higher heat tolerance that 20 

reflected levels of endothermy in hosts. Heat tolerance of the honey bee parasite Crithidia mellificae 21 

was exceptional for its genus, implicating honey bee endothermy as a filter of parasite establishment. 22 

The lesser heat tolerance of the emerging Lotmaria passim suggests possible spillover from a less 23 

endothermic host. Whereas both honey bee parasites tolerated the acidic pH's found in bee intestines, 24 

mosquito parasites tolerated the alkaline conditions found in mosquito midguts, suggesting that both 25 

gut pH and temperature could structure host-parasite specificity. Elucidating how host temperature and 26 

gut pH affect infection—and corresponding parasite adaptations to these factors—could help explain 27 

trypanosomatids’ distribution among insects and invasion of mammals.  28 

Keywords: thermal performance curve, metabolic theory of ecology, infectious disease ecology, 29 

thermoregulation, Apis mellifera, Leishmania   30 
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INTRODUCTION 31 

Infection by parasites depends on their ability to survive and proliferate under the conditions 32 

found in their hosts [1]. Two defining characteristics of this environment are temperature and pH. Host 33 

body temperature can profoundly affect host-parasite interactions [2]. In particular, elevated host body 34 

temperature due to physiological or behavioral fever limits parasite growth and reduces infection-35 

related morbidity in diverse animals, including insects [3–5]. pH is another driver of microbial 36 

establishment [6]. Gut pH contributes to sterilization of food and limits proliferation of opportunistic 37 

pathogens [7,8], shaping species-specific resistance to parasites in the insect gut [9]. Knowledge of how 38 

host temperature and pH affect host specificity of insect parasites could help to identify host niches and 39 

parasite adaptations that affect infection of beneficial insects and potential for insect-vectored, zoonotic 40 

spillover to warm-blooded mammals.  41 

The trypanosomatid gut parasites of insects infect a diverse range of hosts—comprising a variety 42 

of thermal niches and gut physiologies—with apparently loose host-parasite specificity that remains 43 

incompletely understood [10]. The invasion of mammals by a subset of these insect-associated species—44 

the Leishmania and Trypanosoma—is thought to be limited by mammals’ high body temperatures [11], 45 

which can confine infections to (cooler) peripheral body sites even in established mammalian pathogens 46 

[12]. In Leishmania, where the mammalian stage is intracellular, the low pH of the phagocyte lysosome 47 

poses an additional barrier to infection [12]. Nevertheless, putatively monoxenous (i.e., insect-48 

restricted) parasites in the Leishmaniinae sub-family occasionally infect humans [13,14]; such candidate 49 

dixenous (i.e., two-host) strains were found in retrospect to be heat-tolerant [13,15].  If temperature 50 

and pH limit the establishment of insect trypanosomatids in mammals, these same factors—which vary 51 

widely across insect geographic ranges and nutritional niches [16]—could affect the host specificity of 52 

parasites among insects as well.  53 
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The social honey and bumble bees offer unique opportunities to study parallel adaptations of 54 

trypanosomatids to high temperature and low pH in monoxenous trypanosomatids. Whereas most 55 

solitary insects have a small body size and limited ability to thermoregulate, social bees inhabit large, 56 

thermoregulated colonies with temperatures resembling those of warm-blooded mammals [17,18]. 57 

Such high temperatures increase resistance to other pathogens [19,20], and could limit infection by 58 

heat-intolerant trypanosomatids as well. Second, bee diets consist of sugar-rich nectar and 59 

polysaccharide-rich pollen, which are fermented to organic acids by characteristic gut symbionts that 60 

maintain an acidic pH in the honey bee hindgut and rectum [21,22]. This contrasts with the guts of 61 

hematophagous Dipteran insects—including mosquitoes—which obtain nitrogen from low-62 

polysaccharide animal blood and have near-neutral to alkaline gut environments [23–25]. 63 

To test whether host thermoregulation and diet-associated gut pH can function as filters of 64 

trypanosomatid infection in insects, we compared the effects of temperature and pH on growth of 65 

phylogenetically related hindgut parasites from honey bees (Crithidia mellificae and Lotmaria passim), 66 

bumble bees (four strains of Crithidia bombi, using previously published data [26,27]), and mosquitoes 67 

(two strains of Crithidia fasciculata [28]). The two major honey bee trypanosomatids—C. mellificae [29] 68 

and the emerging parasite Lotmaria passim, both in the Leishmaniinae [30]—have a global distribution, 69 

can reach >90% prevalence in managed colonies, and have been associated with colony collapse on 70 

three continents [31–35]. Both species—as well as the bumble parasite C. bombi [36]—establish in the 71 

hindgut and rectum, the most acidic regions of the intestine [21,37].  Based on the thermal strategies of 72 

their host species, we predicted that parasites of highly endothermic honey bees would have greater 73 

heat tolerance than parasites from mosquitoes, with intermediate heat tolerance in parasites of bumble 74 

bees—which thermoregulate their nests at lower temperatures than do honey bees [38]. We also 75 

predicted that parasites of pollen-eating bees would have greater tolerance to acidity than would 76 

parasites of blood-consuming mosquitoes, reflecting differences in the diets and gut pH's of their hosts. 77 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.03.447385doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.03.447385
http://creativecommons.org/licenses/by/4.0/


Palmer-Young et al.                      Thermal and pH niches of bee and mosquito parasites 5 

MATERIALS AND METHODS 78 

Cell Cultures  79 

Crithidia mellificae (ATCC 30254 [29]), L. passim (strain BRL [30]) and C. fasciculata strains 80 

“CFC1” [39] and “Wallace” (ATCC 12857) were obtained from the American Type Culture Collection and 81 

collaborators. Honey bee parasites were grown in ‘FPFB’ medium including 10% heat-inactivated fetal 82 

bovine serum (pH 5.9-6.0 [40]).  Mosquito parasites were grown in brain-heart infusion broth with 20 83 

ug/mL hemin (pH 7.4). All parasites were incubated at 20 °C in vented cell culture flasks and transferred 84 

to fresh media every 2 d.  85 

Temperature experiments 86 

Parasite growth rates were measured by optical density (OD600) at temperatures between 20 87 

and 41°C (intervals of 2°C between 23°C and 31°C) on a temperature-controlled microplate reader with 88 

0.1°C resolution (Biotek ‘Synergy’ H1). Cultures were diluted in fresh media to a net OD of 0.040 and 89 

aliquoted to 96-well plates containing 120 µL media per well.  Measurements were taken every 5 min 90 

for 24 h, with 30 s shaking before each read. Each single-temperature block consisted of one 96-well 91 

plate with 15 wells (treated as technical replicates) of each of the four parasite strains and 6 cell-free 92 

control wells—containing an equal volume of media without parasites—to control for growth-93 

independent changes in OD during incubation. At least two full blocks were conducted at each 94 

temperature, to avoid confounding the effects of experimental block and temperature treatment. 95 

pH experiments 96 

Parasite growth rates were measured between pH 2.1 and 11.3. Aliquots of the base medium 97 

for each parasite were first acidified and alkalized to extreme pH levels that inhibited growth in 98 

preliminary trials. Treatments were prepared by combining acidified and alkalized media in varying 99 

proportions to generate 12 treatments spanning a broad pH range. To initiate the assay, a 12x 100 
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suspension of cultured cells was added to each treatment for a starting OD of 0.020 in a volume of 120 101 

µL. Each experimental block contained one well per strain plus two cell-free controls of each pH 102 

treatment. Growth rates were measured at 29°C for 24 h at 5 min intervals using a microplate reader. 103 

Final pH (after addition of fresh media to 1/12 of the final volume) was measured for each treatment 104 

using a pH electrode, calibrated immediately prior to measurement. The entire experiment was 105 

performed twice, with a slightly narrower pH range in the second block to obtain more complete pH 106 

performance curves.   107 

Comparisons with previous results 108 

To compare thermal performance curves of honey bee parasites and their hosts, we used data 109 

for the temperature dependence of force generation during honey bee flight [41] (Supplementary Fig. 110 

1).  For comparison to parasites from hosts with intermediate levels of thermoregulation, we used 111 

previously published data for thermal performance of four strains of the bumble bee parasite C. bombi. 112 

For these datasets, growth rates of four strains were measured across temperatures from 17 to 42°C 113 

[26], and growth rates of one strain were measured across pH values from 5.0 to 6.2 [27] 114 

(Supplementary Fig. 2).   115 

Statistical Analysis 116 

Analyses were conducted using R for Windows v4.0.3 [42]. Models were fit using package “rTPC” 117 

[43]. Figures were made with packages “ggplot2” and “cowplot” [44,45] 118 

Growth rates. Net OD was calculated by subtracting the average OD from cell-free controls of 119 

the corresponding media, treatment, and time point. Growth rates for each well were calculated as the 120 

maximum slope of the curve of ln(OD) vs. time, obtained by fitting a rolling linear regression to each 4 h 121 

window of the growth curve [46]. The first 2 h of each run were excluded to allow OD readings to 122 

stabilize. We used only slopes with r2 values of >0.95 and >0.90 for the temperature and pH 123 
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experiments, respectively, and assigned a growth rate of zero to samples where the average slope of the 124 

growth curve was negative. For temperature experiments, we used the median growth rate among the 125 

15 replicates within each block, to avoid pseudoreplication within each implementation of the 126 

temperature treatment [47]. 127 

Temperature models. We modeled the temperature dependence of growth for each 128 

trypanosomatid strain using a Sharpe-Schoolfield equation modified for high temperatures [46,48,49]. 129 

rate =
𝑟𝑇𝑟𝑒𝑓
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In Equation (1), rate refers to the maximum specific growth rate (in h-1); rTref is the growth rate 131 

(in h-1) at an arbitrary calibration temperature Tref (fixed at 20°C); E is the activation energy (in eV), which 132 

primarily affects the upward slope of the thermal performance curve (i.e., sensitivity of growth to 133 

temperature) at suboptimal temperatures; k is Boltmann’s constant (8.62∙10-5 eV∙K−1); Eh is the 134 

deactivation energy (in eV), which determines how rapidly the thermal performance curve decreases at 135 

temperatures above Tpk; Th is the high temperature (in K) at which growth rate is reduced by 50% 136 

(relative to the value predicted by the Arrhenius equation—which assumes a monotonic, temperature-137 

dependent increase) [49]; and T is the experimental incubation temperature (in K). 138 

pH models. To describe the effects of pH on growth rates, we used a biphasic logistic model that 139 

describes sigmoidal decreases in growth rate at low and high pH. 140 

𝑟𝑎𝑡𝑒 =  
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(2) 141 

In Equation (2), rmax is the specific growth rate at the optimum pH; EL and Eh correspond to the 142 

rates of deactivation at low and high pH, respectively; and pHL and pHh represent the pH values at which 143 

growth rate is reduced by 50% relative to rmax. Due to absence of high-pH measurements for C. bombi, 144 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.03.447385doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.03.447385
http://creativecommons.org/licenses/by/4.0/


Palmer-Young et al.                      Thermal and pH niches of bee and mosquito parasites 8 

models for this species were fit using a standard (monophasic) logistic regression, which omitted the 145 

second term of the denominator in Equation (2).  146 

Models were optimized using nonlinear least squares, implemented with R packages rTPC and 147 

nls.mulstart [43]. Confidence intervals on parameter values and predicted growth rates were obtained 148 

by bootstrap resampling of the residuals (10,000 model iterations) [50]. We also used the bootstrap 149 

model predictions to estimate the following traits: temperatures of peak growth rate (Tpk) and 50% 150 

inhibition relative to the peak value (IT50); pH of peak growth (pHpk); and pH niche breadth (i.e., the 151 

number of pH units between pHL and pHh). The 0.025 and 0.975 quantiles for parameter estimates, 152 

predicted growth rates at each temperature, and traits derived from bootstrap predictions were used to 153 

define 95% confidence intervals. Strains were considered significantly different from each other when 154 

their 95% confidence intervals did not overlap. 155 

RESULTS 156 

Temperature experiments 157 

Thermal performance curves (Fig. 1) and model parameters (Fig. 2) showed higher heat 158 

tolerance in the two honey bee parasites than in the mosquito parasites.  Crithidia mellificae (peak (Tpk): 159 

35.42°C, 50% inhibition (IT50): 38.7°C) grew well throughout the temperature range found in honey bee 160 

hives during brood-rearing  (33.8-37°C [18]) and exhibited the peak growth temperature closest to that 161 

of A. mellifera (38.4°C [41]; Supplementary Fig. 1).The heat tolerance of L. passim (Tpk: 33.47°C, IT50: 162 

36.97°C) was approximately 2°C less than that of C. mellificae, with predicted growth rates reduced by 163 

>50% at the upper end of the thermal range found in colonies (Fig. 1). Thermal performance curves and 164 

parameter estimates were similar for the two strains of C. fasciculata, where temperatures of peak 165 

growth (strain CFC1: 30.92°C, strain Wallace: 31.58°C) and 50% inhibition (CFC1: 35.27°C, Wallace: 166 

35.48°C) were approximately 2°C lower than for L. passim and 4°C lower than for C. mellificae (Fig. 2). 167 
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Nevertheless, both strains had peak growth temperatures (Tpk) that exceeded the mean Tpk for a variety 168 

of traits in diverse mosquito species (28.4°C [51], Fig. 2).   169 

Thermal performance curves of C. bombi from bumble bees (Tpk: 33.67°C; IT50: 37.90°C, Fig. 2, 170 

Supplementary Fig. 2) most resembled that of L. passim. Although the coarser 5°C temperature interval 171 

for the published C. bombi data resulted in higher uncertainty, all four strains of this species appeared to 172 

have at least 2°C higher inhibitory temperatures (IT50) than did C. fasciculata (Fig. 2). Activation energies 173 

(E) ranged from 0.39 eV (C. mellificae) to 0.52 eV (C. fasciculata strain Wallace), well within the range 174 

observed across a diversity of physiological and ecological rates (median 0.55 eV [52], Supplementary 175 

Fig. 3). High-temperature deactivation energies (Eh) ranged from 5.18 eV (C. fasciculata Wallace) to 8.29 176 

eV (C. mellificae), consistent with the steep decline at high temperatures that is typical of thermal 177 

performance curves [52] (Supplementary Fig. 3).  178 

pH experiments 179 

We observed the greatest tolerance to acidity in the two parasites of honey bees, each of which 180 

grew at nearly two units’ lower pH than either C. fasciculata or the previously tested C. bombi. Both 181 

maintained strong growth at the pH of the honey bee rectum (pH 5.2 [21] (Fig. 3). Crithidia mellificae 182 

had the broadest pH niche, with the greatest tolerance of both acidity (50% low-pH inhibition (pHL): 183 

3.07, 95% CI: 2.97-3.25) and alkalinity (50% high-pH inhibition (pHh): 9.93, CI: 9.55-10.21, Fig. 4). 184 

Lotmaria passim was nearly as tolerant of acidity as was C. mellificae (pHL: 3.44, CI: 3.35-3.53) but grew 185 

weakly above pH 7 (pHh: 7.33, CI: 7.24-7.43), with peak growth pH (5.57, CI: 5.20-5.76) closely matched 186 

to that of the host rectum (Fig.’s 3-4).  187 

In contrast, both strains of C. fasciculata grew fastest at neutral to weakly basic pH (pHpk for 188 

CFC1: estimate 7.58, CI: 6.90-8.10; Wallace: estimate 7.42, CI: 7.05-7.73, Fig.’s 3-4). Although tolerance 189 

of acidity was not as great as in the honey bee parasites (pHL for CFC1: 5.01, CI: 4.71-5.24; Wallace: 5.08, 190 
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CI: 4.86-5.39), the two strains were tolerant of alkaline conditions (pHh for CFC1: 9.62, CI: 9.39-9.84; 191 

Wallace: 9.24, CI: 9.01-9.47) that approached those found in the midgut of their host Culex pipiens [25] 192 

(Fig.’s 3-4). Acidity tolerance in C. bombi (pHL 5.18, CI: 5.17-5.19) was indistinguishable from that of C. 193 

fasciculata (Fig. 4; see Supplementary Fig. 4 for full C. bombi curves). Crithidia bombi was also notable 194 

for its steep decline in growth rate between pH 6 and pH 5 [27], which was reflected in an estimate for 195 

deactivation energy (parameter El) more than 6-fold higher than that of the strains tested here 196 

(Supplementary Fig. 5).   197 

DISCUSSION 198 

Our results indicate the importance of colony-scale endothermy in social bees as a filter for gut 199 

parasites. All the parasites from endothermic social bees showed greater heat tolerance than did 200 

parasites from mosquitoes. This was particularly notable for C. mellificae, which exhibited superior heat 201 

tolerance to all previously studied, poikilothermic tropical insect-associated trypanosomatids noted for 202 

their heat tolerance. For example, growth of Crithida luciliae thermophila (since renamed C. thermophila 203 

[53]), Crithidia hutneri [54], and Leptomonas pessoai (renamed Herpetomonas samuelpessoai [55,56]) all 204 

grew faster at 28°C than at 37°C. Growth of Leptomonas seymouri—which occasionally infects humans 205 

[14]—was likewise poor at 37°C [57]. In contrast, growth of our C. mellificae was approximately 30% 206 

faster at 37°C than at 28°C. Such heat tolerance was suggested by Cosgrove and Mcghee [58], whose 207 

review stated that an unnamed trypanosomatid from Vespula squamosa (presumably ATCC strain 30862 208 

of C. mellificae) grew in avian embryos at 37°C with no prior acclimation. However, the relevant 209 

reference [59] did not mention C. mellificae.  Of note, the species that was shown to maintain strong 210 

growth in embryos at 37° was Crithidia acanthocephali [60]. Although originally isolated from a 211 

Hemipteran [60], sequences matching this species were recently amplified from honey bees in Spain 212 

[61]; the parasite’s heat tolerance could facilitate its survival in bees. 213 
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The warm-blooded mammal-like temperatures of a breeding honey bee colony [18] likely 214 

preclude infection by trypanosomatids with low heat tolerance, and could exert positive selection for 215 

heat tolerance within parasite lineages. For parasites that do establish in colonies, our results suggest 216 

that high colony temperatures might reduce infection intensities. Even growth of the most heat-tolerant 217 

parasite (C. mellificae) peaked at a lower temperature than did flight performance of honey bee hosts 218 

(38.4°C, Fig. 1). Peak performance temperatures of flight muscle [62] and respiration [63] in bumble 219 

bees are also high (>40°C). This suggests that increases in temperature could favor increases in host 220 

metabolic performance—perhaps including immune function—while inhibiting parasite growth. Honey 221 

and bumble bee gut symbionts—which enhance resistance to C. bombi [64]—are likewise heat-tolerant. 222 

Honey bee symbionts have standard culturing temperatures of 35-37°C [65], can grow at temperatures 223 

up to 44°C [66], and tolerate hour-long heat shock at 52°C [66]. A Lactobacillus species from bumble 224 

bees was similarly thermophilic, with a peak growth temperature of approximately 40°C [26]. High 225 

temperatures could therefore enhance the antiparasitic activities of these symbionts as well as 226 

performance of the bee immune system [27], harnessing the bees’ socially enabled thermoregulation 227 

and core gut microbiota for defense against infection. 228 

Our results suggest that maintenance of high, ‘social fever’-like colony temperatures would be 229 

particularly effective against the relatively heat-susceptible L. passim and C. bombi.  Growth rates of L. 230 

passim dropped by approximately 50% over the 3.2°C range found in brood-rearing honey bee colonies 231 

(Fig. 1). Similarly, infection of C. bombi was 81% lower at 37°C than at 21° [67]. Inoculations of honey 232 

bees with C. mellificae were likewise less successful at 35°C than at 29°C (albeit in separate experiments 233 

[29]). Our results also suggest that bees may become increasingly susceptible to infection as they 234 

transition from activities at the well-heated colony core to the cooler and more variable periphery, or to 235 

foraging outside (at age 10-25 d [68]). Observations of experimentally infected, colony-reared bees—236 

which showed a 10-fold increase in parasite mRNA between ages 7 and 27 d [69]—are consistent with 237 
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these predictions. However, similar age-related infection dynamics were observed in caged bees at 238 

constant temperatures [69], suggesting that other age-related factors could also contribute to this 239 

pattern.  240 

Honey bee trypanosomatid infection intensities are inversely related to temperature in field 241 

colonies as well [70]. In managed US colonies, L. passim infection intensity (originally described as C.  242 

mellificae [30,71]) peaked in mid-winter, when colony core temperatures average 14°C lower than in 243 

summer [18]. Such temperature-dependent infection dynamics could explain the associations between 244 

trypanosomatid infection and overwinter colony collapse [32]. Seasonal susceptibility of colonies to 245 

infection could be exacerbated by landscape, chemical, and nutritional factors that impair 246 

thermoregulation [72,73]. For example, colonies from agricultural areas had average winter 247 

temperatures 8°C lower than did colonies from grasslands [74], highlighting how land use changes could 248 

affect temperature-mediated resistance to an emerging infectious disease.  249 

Lotmaria passim’s low heat tolerance relative to C. mellificae, susceptibility to the high 250 

temperatures found in honey bee colonies, and apparently recent global emergence in A. mellifera [30] 251 

all invite speculation of a recent host shift from a less endothermic bee species. The Asian honey bees  252 

Apis cerana [75] and A. dorsata [76] have ~2°C lower brood temperature optima relative to A. mellifera 253 

[18]—matching the ~2°C difference in optimal and inhibitory temperatures between C. mellificae and L. 254 

passim. Apis cerana harbored an L. passim haplotype basal to the strains found on other continents [77], 255 

providing circumstantial phylogenetic evidence for an Asian parasite origin. Such a host shift could 256 

parallel the worldwide dispersal of the now ubiquitous microsporidian Nosema ceranae from A. cerana 257 

[78].   258 

Our findings of acid tolerance in parasites of honey bees and alkaline tolerance in parasites of 259 

mosquitoes suggest that gut pH—itself a reflection of diet, digestive physiology, and microbiota—is also 260 
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an important driver of host specificity in trypanosomatid parasites of insects. The tolerance of acidic 261 

conditions shown by honey bee parasites—and the low optimum pH of the emerging parasite L. 262 

passim—reflect the typically acidic pH found in the honey bee rectum where these parasites establish 263 

[21,29,30]. This tolerance of acidity was noted by Langridge and McGhee in their isolations of C. 264 

mellificae [29]. The honey bee's low gut pH results from fermentation of pollen polysaccharides by the 265 

characteristic bee gut microbiota [21,22]. In humans, acidic intestinal and fecal pH’s likewise reflect the 266 

intake and subsequent fermentation of dietary polysaccharides [79], with consequences for microbiome 267 

composition and growth of opportunistic pathogens [7,80]. The pH of the bee rectum—which at pH 5.2 268 

is over a full pH unit more acidic than the already pathogen-inhibiting feces of humans consuming fiber-269 

rich vegan diets (pH 6.3 [80])—may likewise provide protection against opportunistic invaders including 270 

non-specialist trypanosomatids.   271 

Although standard trypanosomatid culture media is neutral to weakly basic (e.g., brain heart 272 

infusion broth, pH 7.4), enhancement of growth under acidic conditions has been reported before. For 273 

example, growth of H. samuelpessoai occurred between pH 4 and pH 9 [56]. In addition to C. 274 

mellificae—described as 'acidophilic', with optimum growth at pH 5 [29]—McGhee described enhanced 275 

growth under acidic conditions (pH 5 vs. pH 8) in three additional trypanosomatids and found growth 276 

exclusively at low pH in two others [81]. All these acidophilic species were isolated from hemipteran 277 

hosts; two were from the giant milkweed bug Oncopeltus fasciatus, whose gut pH (4.6-5.4 [82]) 278 

resembles that of honey bees— suggesting potential for bee-hemipteran parasite exchange.  279 

In contrast—and concordant with our results—the parasite species that thrived under basic 280 

conditions (including C. fasciculata) were from Dipterans [81], where gut pH is typically extremely 281 

alkaline. For example, the original host of our C. fasciculata (Culex pipiens) has a midgut pH greater than 282 

10 in larvae [25]—yet this life stage can still be infected by C. fasciculata [28]. Similarly high pH's occur in 283 
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the larval guts of other Diptera (e.g., midgut pH of 11 in Bibionid larvae [24]. In mosquito adults, the 284 

midgut is near pH 6 in sugar-fed adults [83], but is alkalized to pH 8.5-9.5 following ingestion of blood 285 

[23]. Adaptations to these conditions are reflected in our results, with both C. fasciculata strains growing 286 

fastest near neutral pH (6-8) and remaining viable up to pH 10 (Fig. 3), consistent with previous 287 

characterizations [84]. Intriguingly, the difference in pH optima between the honey bee parasite L. 288 

passim and the mosquito parasite C. fasciculata matched almost exactly the differences between the 289 

optima for the mammalian tissue (amastigote, pH 5.5) and insect (promastigote, pH 7-7.5) stages of 290 

Leishmania [12]. This raises the question of whether differences in pH tolerance among species of 291 

monoxenous taxa and between life stages of dixenous taxa can be explained by similar mechanisms, and 292 

whether tolerance of acidity is correlated with tolerance of high temperature (as in Leishmania [12]). 293 

Contrary to predictions, the bumble bee parasite C. bombi did not exhibit the high tolerance of 294 

acidity found in the honey bee parasites. The single report of bumble bee gut hindgut pH that we could 295 

locate (pH 6.25 from Bombus fervidus [16]) is substantially higher than the pH <5.2 measured in honey 296 

bees [21,37], but a close match to the pH 6.0-6.2 that yields optimal growth of C. bombi (Supplementary 297 

Fig. 4, [27]). Although honey and bumble bees have similar pollen- and nectar-based diets and gut 298 

microbial communities [85]—which might be expected  to result in similar gut pH—they exhibit marked 299 

differences in physiology and behavior. Bumble bees have a more rapid intestinal transit time than do 300 

honey bees [86], leaving less time for acid-generating fermentation. In contrast, honey bees not only 301 

have slower baseline transit times, but also fastidiously refrain from defecation in the colony—a 302 

behavior not exhibited by bumble bees [87]. As honey bees spend the first 10-25 d in the colony before 303 

they forage outdoors [68], the pollen-rich rectal contents have considerable time to acidify. During the 304 

winter, honey bees commonly retain rectal contents for several months while confined in the colony 305 

[88]. Meanwhile, they continue to ingest pollen, with their distended guts exhibiting increases in 306 
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populations of fermentative hindgut bacteria [89]. We hypothesize that these behaviors result in lower 307 

gut pH—and greater selection on parasites for tolerance of acidity—in honey bees than in bumble bees.  308 

The same heat tolerance that allows insect trypanosomatids to infect endothermic bees could 309 

also pre-adapt parasites for infection of warm-blooded mammals. Several supposedly monoxenous 310 

species have been found in humans—often together with the expected Leishmania [13,14,58]—and 311 

proven infectious in the glands of opossums and the skin and organs of mice [13,90], demonstrating the 312 

ability to proliferate at 37°C. Intriguingly, trypanosomatids with 100% GAPDH sequence identity to C. 313 

mellificae were recently isolated from the blood of numerous wild mammals in Brazil [91,92]. The 314 

viability of these parasites at 37°C [92]–consistent with our findings—would permit survival in the 315 

mammalian bloodstream, perhaps additionally aided by parasite acclimation to high temperatures in 316 

honey bee colonies. Given that L. seymouri—one of the closest known relatives of  C. mellificae [30]—317 

occasionally infects humans [14] despite minimal growth at 37°C [57], corresponding infection of 318 

mammals by C. mellificae seems plausible. Although pathways of transmission remain unclear, we have 319 

shown that C. mellificae from honey bees can proliferate in bees of other families—including halictids, 320 

which are attracted to mammalian perspiration [93]. The impressive range of pH tolerance shown here 321 

could also support its survival in other, possibly hematophagous hosts with diverse gut physiologies.  322 

CONCLUSIONS 323 

Our interspecific comparisons—including the first tests of temperature and pH tolerance in the 324 

emerging parasite L. passim—implicate colony-level endothermy and diet- and microbiome-related 325 

changes in gut acidity as drivers of host specificity in insect trypanosomatids. Our results also provide a 326 

mechanistic explanation for the relative resistance of honey bees to trypanosomatids from other insects 327 

[94] and the recent findings of C. mellificae—a presumed monoxenous parasite—in a variety of warm-328 

blooded mammals [91,92]. Escape from parasites could be one factor that favors the evolution of 329 
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energetically costly social endothermy and maintenance of gut symbiont communities in insects, 330 

providing infection-related benefits that parallel those found in homeothermic vertebrates while 331 

exerting parallel selective pressures on parasites. 332 
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 596 
Figure 1. Thermal performance curves for trypanosomatid parasites from honey bees (Crithidia 597 

mellificae, Lotmaria passim) and mosquitoes (Crithidia fasciculata). The right-most facet label indicates 598 

the strain’s host of origin. Each point represents the median specific growth rate (h-1) from one 15-599 

replicate experiment, with color and shape corresponding to the parasite’s host. Lines and shaded bands 600 

show predictions and 95% bootstrap confidence intervals from Sharpe-Schoolfield models [43,49]. 601 

Vertical lines show optimum temperatures for honey bees (estimated from force production during 602 

flight [41]) and mosquitoes (mean of 88 traits [51]).  Vertical band (in yellow) shows temperature range 603 

for honey bee brood incubation [18]. See Supplementary Figure 1 for full thermal performance curve of 604 

honey bee force production. 605 
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  607 

 608 

Figure 2. Temperatures of peak growth and 50% inhibition of growth rate for parasites of honey bees 609 

(Crithidia mellificae, Lotmaria passim), bumble bees (C. bombi, tested in [26]), and mosquitoes (C. 610 

fasciculata). Points and error bars show estimates and 95% bootstrap confidence intervals for 611 

predictions from Sharpe-Schoolfield models. See Supplementary Figure 2 for full thermal performance 612 

curves for C. bombi. Estimates for additional model parameters are shown in Supplementary Figure 3.  613 

 614 
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 620 

Figure 3. Effects of pH on growth of trypanosomatid parasites from honey bees (Crithidia mellificae, 621 

Lotmaria passim) and mosquitoes (Crithidia fasciculata). The right-most facet label indicates the strain’s 622 
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host of origin. Each point represents the specific growth rate (h-1)) from one sample. The experiment 623 

was conducted over two experimental blocks (Round 1: circles; Round 2: triangles). Lines and shaded 624 

bands show predictions and 95% bootstrap confidence intervals from biphasic logistic models. Vertical 625 

lines and shaded regions show pH of the rectum (primary site of parasite infection) and range of the gut 626 

overall, as measured previously in honey bees [21,37] and Culex mosquitoes [25].  627 

 628 
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630 

Figure 4. Estimates for pH of peak growth, 50% inhibition of growth rate due to low and high pH, and 631 

pH niche breadth (i.e., difference between estimates of 50% inhibition due to low and high pH) for 632 

parasites of honey bees (Crithidia mellificae, Lotmaria passim), bumble bees (C. bombi strain IL13.2, 633 

tested in [27]), and mosquitoes (C. fasciculata). Points and error bars show estimates and 95% bootstrap 634 

confidence intervals for predictions from biphasic logistic models. Colors and shapes correspond to host 635 

of origin. See Supplementary Figure 4 for full model predictions for C. bombi. Estimates for additional 636 

model parameters are shown in Supplementary Figure 5.  637 
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 639 

MEDIA PROMOTION 640 

High body temperature and acidic gut pH are two factors that inhibit parasitic infection. The high colony 641 

temperatures and acidic guts of social bees relative to other insects provide unique opportunities to test 642 

how temperature and acidity shape insect-parasite associations and potential for spillover into warm-643 

blooded mammals.  We show that parasites of honey bees have greater tolerance of heat and acidity 644 

than do related parasites of mosquitoes, which lack both temperature regulation and gut acidity. This 645 

suggests that honey bees’ colony-enabled temperature regulation and gut chemistry provide resistance 646 

to non-specialist parasites, favoring the same parasite traits needed for mammalian infection. 647 
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