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Abstract  
 

Spina bifida (SB) is a debilitating birth defect caused by multiple gene and environment 

interactions. Though SB shows non-Mendelian inheritance, genetic factors contribute to an 

estimated 70% of cases. Nevertheless, identifying human mutations conferring SB risk is 

challenging due to its relative rarity, genetic heterogeneity, incomplete penetrance and 

environmental influences that hamper GWAS approaches to untargeted discovery. Thus, SB 

genetic studies may suffer from population substructure and/or selection bias introduced by typical 

candidate gene searches. We report a population based, ancestry-matched whole-genome sequence 

analysis of SB genetic predisposition using a systems biology strategy to interrogate 298 case-

control subject genomes (149 pairs). Genes that were enriched in likely gene disrupting (LGD), 

rare protein-coding variants were subjected to machine learning analysis to identify genes in which 

LGD variants occur with a different frequency in cases vs. controls and so discriminate between 

these groups.  Those genes with high discriminatory potential for SB significantly enriched 

pathways pertaining to carbon metabolism, inflammation, innate immunity, cytoskeletal regulation 

and essential transcriptional regulation, indicating their impact on the pathogenesis of human SB. 

Additionally, interrogation of conserved non-coding sequences identified robust variant 

enrichment in regulatory regions of several transcription factors critical to embryonic 

development. This genome-wide perspective offers an effective approach to interrogation of 

coding and non-coding sequence variant contributions to rare complex genetic disorders. 
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Introduction 
 

The neural tube defect (NTD) Spina Bifida (SB), among the debilitating but survivable 

malformations in live births, is due to failed embryonic neural tube closure. SB and the non-

viable NTD, anencephaly, together have a global prevalence ranging from one in 3,000 to one in 

100[73]. Decades of clinical and animal model investigations have indicated that SB comprises a 

complex genetic disorder, requiring at least one (and probably several) of many genetic 

alterations and/or gene-environment interactions for neurulation to fail[72, 84]. NTD-causing 

mutations have been reported in more than 250 mouse genes[29, 36], which has since grown to 

over 400 mutant genes currently listed in the Mouse Genome Informatics (MGI) database, 

further underscoring the complex genetic origins of the disorder. Genetic heritability of human 

SB, or the proportion of cases that are attributable to inherited genetic alteration, is estimated to 

be as much as 70%[44]. 

 

Maternal periconceptional supplementation with folic acid (vitamin B9) can reduce the 

occurrence of SB in offspring by as much as 70% in some populations[12, 21, 63]. Despite folate 

supplementation campaigns and fortification of the US food supply since 1998, SB prevalence 

rates have only dropped 30%, suggesting maximal benefit for folic acid has been achieved.  

Other agents such as vitamin B12, methionine or inositol show some promise for effective 

prevention[87]. However, the mechanisms through which these agents influence SB occurrence 

remains elusive and, based on mouse models, responses to supplements like folic acid vary with 

the genetic context [34, 84][17, 58, 61]. Although powerful, the mouse is an imperfect surrogate 

for humans on several counts, among them intergenic regions that differ significantly from the 

human genome, with less species conservation than protein coding regions. At present, it is not 

possible to identify maternal-fetal genotypes indicating vulnerability to a teratogenic drug or 

toxin or to predict which preventive therapy will best ensure healthy pregnancy outcomes for 

individual couples. There is a pressing need to identify patterns of human SB genetic 

predisposition, that could lead to better understanding individual prognosis, improved care of SB 

afflicted infants and enhanced capabilities for birth defect prevention.  
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Next-generation sequencing offers increasing insight into risk factors for common complex 

genetic disorders including type II diabetes (1 in 10 in the US[32], schizophrenia (1 in 100) [7, 

76] and autism spectrum disorders (1 in 59) [77, 88]. However, less prevalent complex genetic 

disorders are particularly challenging as they affect relatively small and globally diverse 

populations (e.g., in the US, 1 in 3000 for NTDs, 1 in 700 for orofacial clefts (OFC) [8] and 1 in 

140 for congenital heart disease (CHD) [66]), which requires pooling genetically diverse cohorts 

that may confound downstream analyses. Genetic studies of the more prevalent structural birth 

defects like CHD have indicated that, while sequence variants that are common in human 

populations probably contribute to birth defects, they account for only a small proportion of 

genetic risk [66], so that genome wide association studies (GWAS) will require thousands of 

subjects to identify factors. Nevertheless, NTD cases display significant enrichment in rare 

variants [16, 86], suggesting these changes have greater effect sized and may be identifiable in 

smaller cohorts,  This is the first multicenter SB case-control study to mount a comprehensive, 

ancestry-matched whole genome sequence (WGS) analysis from a systems biology perspective. 

This study seeks to identify pathways and biological functions that are disrupted in SB as 

reflected in their enrichment with genes or regulatory regions harboring rare, likely damaging 

mutations. 

 

Results 
 

We obtained WGS data on 310 individuals encompassing 157 SB cases and 153 controls. After 

quality control screening, remaining samples were analyzed to ensure that no population 

substructure bias was present.  Genetic ancestry was examined and only cases and controls with 

paired-matched ancestry were selected for further analysis (see Methods for details). 

Downstream computations were carried out on 298 individuals including 149 cases and 149 non-

malformed controls. The mean sequencing depth of the samples was >30X, regardless of their 

origin (i.e., venipuncture or newborn blood spots) (Suppl. Table S1, Fig. S1). Admixture 

proportions of the selected individuals are shown in Figure 1A. Variants were called using a 

standard pipeline (see Methods). 
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Decades of clinical and animal model investigations have led to the consensus that genetic 

contributions to SB predisposition are most likely due to rare variants, and only a few examples 

are cited here[15, 41, 52, 87, 89].  However, since some relatively common alleles may 

contribute to SB genetic risk, we used a somewhat relaxed definition of rare, including for 

further analysis those variants with an allele frequency (AF) < 0.01 in any population from 1000 

Genomes[1], NHLBI GO Exome Sequencing Project (ESP) [80], and the Genome Aggregation 

Database (gnomAD) [45]. Hence, from a total of 41,005,720 variants at the cohort level, 

22,502,019 variants were retained for subsequent steps. Figure 1B outlines the workflow used 

for the genome-wide, ancestry-matched comprehensive set of analyses reported in this 

manuscript. Figure 1C provides a breakdown of the different types of variants found in the study 

cohort. 

 

Coding variant analysis supports existing literature and identifies new pathways involving 

inflammation, innate immunity and cytoskeletal regulation 

We previously reported an increased burden of non-recurrent loss-of-function variants in 

genomes of NTD patients compared to controls, which was consistent across cohorts with 

different ancestry[16]. Herein, we extended the analysis of coding regions to include all rare 

likely-gene disrupting (LGD) variants (i.e., frameshift, nonsense, splice donor/acceptor, stop 

gain/loss and missense predicted deleterious). Thus, 56,210 rare LGD single nucleotide variants 

(SNVs) and InDels at the cohort level were included in the current analysis. Traditional 

approaches typically involve finding an association between a variant (or a gene) and the 

disorder. However, with a limited sample size, this study was underpowered to carry out typical, 

rare variant association analysis that involves aggregating the effect of rare variants within a 

gene. More specifically, over 3,000 cases will be required to reach statistical significance at the 

gene level at 80% power, assuming minor allele frequencies of 5% (see Methods). Accordingly, 

rare variant aggregate association tests such as SNV-set (Sequence) Kernel Association Test 

(SKAT-O) [49] did not render any statistically significant results at the single gene level after 

multiple testing correction. 

 

In view of the complex genetic nature of SB and its relatively low prevalence, systems biology 

approaches are more appropriate to find statistically significant results after correcting for 
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multiple hypothesis testing. Since the rare (or even private), potentially deleterious variants 

found in cases are likely to affect different genes within several common pathways or biological 

processes and functions, we surmised that a machine learning approach can help reduce the 

genome search space. To test this assumption, the number of rare, LGD protein-coding variants 

per gene and subject was used as input to determine which of the 13,526 genes harboring these 

variants were relevant to distinguish between cases and controls (i.e., had high discriminatory 

potential). Embedded feature selection was employed to perform this process. From the total 

number of genes used as input to the feature selection step, 6,002 harbored variants in multiple 

individuals. Random Forests[13] (RFs) were used to build a predictive model of SB, achieving 

an area under the receiver operating characteristic curve (AUROC) [35]of 0.78 on a completely 

separate subset of the data (hold-out dataset) never used for training (see Methods). A list of 439 

genes was obtained from the full model using embedded feature selection (see Methods, Suppl. 

Table S2). The gene list was then used for enrichment analyses in order to identify  pathways, 

biological processes, molecular functions and cellular components that were overrepresented.  

 

Genes were classified into broad annotation categories as an overview of the biological processes 

that were affected (shown in Suppl. Fig. S2). Interestingly, out of the 439 genes with high 

discriminatory potential between cases and controls, nine were differentially expressed in a 

previous transcriptome analysis of fetuses with NTDs[65]. That small study performed genome 

microarray-based transcription profiling of human fetal amniocyte-derived mRNA from pregnant 

women at 17-19 weeks’ gestation, comprising seven NTD-affected pregnancies compared to five 

healthy controls[65] (Table 1). Next, we sought to determine whether any of the fetal cortical 

clusters of genes (“gene modules”) identified in a previously published analysis based on human 

midgestational (weeks 14-21) RNAseq data[83] were enriched in SB discriminative genes (see 

Methods). We found that the human fetal gene expression cluster referred to as the “turquoise 

module” by Walker et al. was the only module of six that was significantly enriched in genes 

with high discriminatory potential in our SB cases (adj. p<0.02) (Figure 2A). This turquoise 

module was described[83] as enriched for specific brain cell types or brain-relevant GO terms 

involving mitotic progenitors and cell division, and therefore represents an early progenitor class. 
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Twenty relevant pathways were overrepresented in genes with the potential to discriminate 

between SB cases and controls (Table 2). Importantly, the pathways with greatest significance 

were those related to central metabolism (Carbon Metabolism, and Cobalamin Transport & 

Metabolism, adjusted p-value < 0.001). The variant-enriched genes within these pathways 

suggest lipid (fatty acid) and glucose metabolism as the aspects most affected in our cohort. This 

is particularly interesting in that epidemiological data arising after the introduction of folic acid 

fortification into the US food supply has indicated the persistent risks for NTD may be largely 

attributable to the rise in obesity and diabetes [40, 56, 62]. This finding provides strong evidence 

that the proposed approach is pinpointing relevant pathways. 

 

Additional pathways associated with human SB encompass genes linked to innate immunity and 

inflammatory response cascades. For example, the Herpes Simplex Virus 1 Infection pathway 

(Table 2, adj. p=0.00685 and Figure 2B) includes Cyclic GMP-AMP Synthase (CGAS), whose 

expression was increased in fetal cells from human NTD cases (Table 1). Interestingly, this gene 

is interferon-inducible and part of innate immunity[14]. The rare LGD variants of the analysis 

cohort impact genes linked to three critical cascades: RIG-I-like receptor signaling, JAK-STAT 

signaling and p53 signaling (Figure 2B). Another relevant pathway implicated in human SB is 

associated with response to DNA damage (adj. p=0.00885) and includes USP2, a ubiquitin 

specific peptidase required for TNF-alpha induced NF-kB signaling. USP2 was also 

differentially expressed in the fetal cells from NTD cases shown in Table 1. Together, these 

pathways are consistent with previous data implicating immune responses in SB 

pathogenesis[25] and suggest fetal contributions beyond maternal factors in utero produce SB. 

 

The Extracellular Matrix (ECM)-receptor Interaction (Table 2, adj. p=0.01062), cytoskeletal 

regulation (RhoGDI Pathway, Table 2, adj. p=0.01321 and Figure 2C), and cell-cell signaling 

(Sertoli-Sertoli Cell Junction Dynamics, Table 2, adj. p=0.01605) pathways were also 

significantly impacted by rare, LGD variant-enriched genes in SB cases. Among these cascades, 

genes such as Laminin Subunit Gamma 2 (LAMC2) and Myosin Heavy Chain 11 (MYH11) 

were also found to be differentially expressed in NTD fetal cells (Table 1). 
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Gene Ontology (GO) enrichment analysis showed similar biological processes to be statistically 

significant (Suppl. Table S3). Among these are processes related to cellular/molecular transport 

(Intraciliary Anterograde Transport, adj. p=0.00008; Amino Acid Transmembrane Transport, 

adj. p=0.00612), cell migration and morphogenesis (Lateral Motor Column Neuron Migration, 

Positive Regulation of Trophoblast Cell Migration and Auditory Receptor Cell Morphogenesis, 

adj. p<0.01), response to stress (EiF2alpha Phosphorylation in Response to Endoplasmic 

Reticulum Stress, adj. p=0.00081; Negative Regulation of Translational Initiation in Response to 

Stress, adj. p=0.00315), mitochondrial and nuclear DNA (Mitochondrial DNA Repair and 

Mitochondrial DNA Metabolic Process, DNA Replication, and Regulation of DNA-dependent 

DNA Replication Initiation, adj. p<0.005), and one-carbon metabolism (Cobalamin Metabolic 

Process, adj. p=0.00099; Response to Methotrexate [a folate analog], adj. p=0.00486). 

Additional results can be found for GO enrichment analysis of cellular components and 

molecular functions (Suppl. Table S4 and S5). LGD variant-enriched genes related to the ciliary 

base were overrepresented (adj. p=0.03580, Suppl. Table S4), consistent with our previous 

identification of SB-associated variants in the primary ciliary G Protein-Coupled Receptor 161 

(GPR161) that caused mislocalization of the receptor and disrupted downstream signaling[46]. 

 

Non-coding variant analysis points to perturbed core signaling pathways due to the 

dysregulation of transcription factor genes 

When assessing the impact of rare variants in intergenic, non-protein-coding regions it is critical 

to identify those variants likely to have a deleterious impact on gene regulation, as well as to 

determine which gene(s) may exhibit altered expression. Enhancers are cis-regulatory elements 

well-known to modulate gene expression by binding transcription factors (TFs) to facilitate or 

suppress transcription. Within these enhancer regions, transcription factor binding sites (TFBSs) 

– short motifs demonstrated to bind TFs – can be affected by single nucleotide changes[71]. 

Nevertheless, when bound by TFs, enhancers can loop long distances to contact and regulate 

specific genes; therefore, it cannot be assumed that a rare SNV in a specific enhancer will impact 

the closest gene. Recent studies elucidate the constraints that restrict each of the ~1 million 

documented enhancers in the human genome to specific target gene interactions[3, 42]. Several 

studies have observed that chromatin loops mediated by CTC-Factor (CTCF) and cohesin bound 

on both anchors at the loop ends isolate genes from active enhancers, thus leading to a 
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dysregulation of gene transcription units partially or fully within the loop when disrupted[26, 33, 

38, 42, 79] 

 

Based on the potential of SNVs to abrogate binding of cognate factors, the non-coding portion of 

the genome was interrogated, which included 17,548,500 rare non-coding SNVs at the cohort 

level. Regulatory regions of 106 TF genes previously identified as relatively conserved 

throughout evolution[6] were analyzed for enrichment in rare non-coding SNVs. Two 

complementary approaches were used to determine the regulatory region coordinates for these: a 

more traditional one based on curated enhancer regions (obtained from GeneHancer data 

available through GeneCards[30]) and a state-of-the-art approach based on CTCF loops 

(conserved across tissues[55] and mapped during early and later differentiation stages in human 

embryonic stem cells[42]) (see Methods). Our use of CTCF loop maps to infer the gene being 

regulated by a rare variant enriched transcription enhancer region is a strategy that leverages 

critical insights into the 3-D configuration of human ES genomes. This is highly relevant to SB 

as the neurulation defect arises in or proximal to germinal epithelium within the first 30 to 40 

days of gestation, within the typical staging of the maps to which we refer. 

 

The (a) panels in Suppl. Fig. S3-S6 show the distribution of rare variants in non-coding regions 

for cases normalized to controls for the coordinates corresponding to each set of coordinates. In 

this analysis, we identified four TF genes that were enriched for rare SNVs in their regulatory 

regions in cases compared to controls (Table 3). Quantile-quantile (Q-Q) plots, cumulative 

distribution function (CDF) plots and probability-probability (P-P) plots are also included in 

supplementary materials (Suppl. Fig. S3-S6). Figure 3A shows a schematic of the CTCF loops 

and the distribution within them of those rare non-coding SNVs present only in cases for two TF 

genes: MAX (myc-associated factor X) and JUND (JunD Proto-Oncogene, AP-1 Transcription 

Factor Subunit). The CTCF loop associated with MAX contains specifically the cis-regulatory 

regions in the 3’ end, including the 3’ UTR. Disruption of the 3’ UTR could affect localization, 

stability, export and translation efficiency of mRNA. On the other hand, JUND’s CTCF loop 

isolates both the TF and its regulatory regions; hence, disrupting this loop could affect its 

transcription interactions. In both cases, disruption of regulatory loci within MAX and JUND 
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specific CTCF loops positions the variants to affect expression of these TF genes, in turn to 

impact the genes those TFs regulate and, ultimately, the pathways in which they are involved. 

 

Finally, pathway enrichment analysis was carried out using the TF genes identified in the 

previous analysis (see Table 3) as input. Results encompassed several overrepresented signaling 

pathways pertaining to immunity and the regulation of essential cellular processes, such as cell 

growth, differentiation and proliferation (Suppl. Table S6). As expected, GO enrichment 

analysis involved biological processes predominantly related to transcription (Suppl. Table S7). 

Nonetheless, it is worth highlighting that terms pertaining to the central nervous system were 

overrepresented (Response to Axon Injury, adj. p=0.00615; Neuron Apoptotic Process adj. 

p=0.00807). Additional results can be found for GO enrichment analysis of cellular components 

and molecular functions (Suppl. Tables S8 and S9). 

 

Discussion 
 
This study comprises a multicenter, population-based, ancestry-matched genome-wide analysis 

of SB WGS data. Due to the multifactorial nature of SB, our genomic interrogations were 

stringent, seeking rare changes that produce potentially damaging mutations in protein-encoding 

sequences or non-coding transcription factor regulatory regions. The strategy pursued here has 

yielded significant results that stand up to multiple testing correction. Furthermore, the validity 

of our pathway analysis was supported by two sources of transcriptomic data from human 

neurodevelopment.  First, nine of the genes with discriminatory potential and found in enriched 

pathways in our study were also differentially expressed in a small survey of differentially 

expressed mRNAs from mid-gestation fetal amniocytes of NTD affected pregnancies. Second, 

using our data in a gene module enrichment method (weighted gene co-expression network 

analysis, WGCNA), we found that variant enriched genes from our SB data overlapped with a 

gene co-expression module from a study[83] of mid-gestation human cortex, a module that was 

classified as representing an early progenitor network. This result is appropriate for a structural 

birth defect that involves germinal epithelium over the first gestational month and supports the 

relevance of the SB associations detected here. 
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Among the pathways, defined by PathCards and Gene Ontology, that were most highly enriched 

with genes that were discriminative for SB were ‘Carbon Metabolism’ and ‘Cobalamin (Cbl, Vit 

B12) Transport and Metabolism’. It is interesting that the carbon metabolism-related genes found 

to discriminate SB cases from controls in our cohort are not core players in folate, 1-carbon 

metabolism, but instead relate to lipid and glucose metabolism. This is particularly relevant in 

that post-folate fortification epidemiological data has suggested that persistent risks for NTD 

may be attributable to concomitant population increases in obesity and diabetes [40, 56, 62]. 

Obesity, metabolic syndrome and diabetes are rising public health concerns both in the US and 

Qatar populations [5, 62, 74, 81]. This systems biology approach may be particularly suited to 

detection of physiologically relevant pathways contributing to SB, and may be less subject to 

ascertainment bias than candidate gene approaches more common in the field. 

 

Another intriguing pathway emerging in this study highlights processes of innate immunity 

(HSV1 infection and DNA Damage). Among their SB-discriminatory genes, CGAS is known as 

a sensor of viral dsRNA and DNA damaged dsDNA, it participates in the RIGI-like signaling 

pathway, and CGAS was differentially expressed in NTD affected human fetal amniocytes [65]. 

Pathways involving ECM and cytoskeletal regulation mechanisms may illuminate folate resistant 

mechanisms at work in human NTD, as Frem2 mutant mice are not protected by folic acid 

supplementation [58]. The RhoGDI pathway is enriched in several unconventional myosin 

family members known as regulators of actin-based molecular motors. In particular, MYO1D is 

necessary for the asymmetric localization of planar cell polarity protein Vangl1[37]. MYO1C 

serves actin transport to the leading edge of motile cells, while MYO9B is a RhoGTPase 

activator. Along with the myosin heavy chain MYH gene products, these molecules regulate cell 

junction dynamics and cytoskeletal contractile elements modulating cell morphologies, and so 

are positioned to facilitate morphogenetic changes in neural tube cells. 

 

This SB study reaches beyond protein coding sequences to examine nucleotide variation in 

intergenic functional domains of SB patients. The approach presented here identified four TF 

genes whose regulatory regions are enriched in variants and are likely contributors to SB risk. 

Among these, MAX, JUND, and ZNF274 (Zinc Finger Protein 274) stand out (Table 3). 

ZNF274 is a transcriptional repressor involved in epigenetically modified chromatin complexes 
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with SETB1-TRIM28[31] (Figure 3C[78]) and has been associated with p75 neurotrophin 

mediated signaling (Suppl. Table S6), which participates in key events in spinal cord neuron 

survival and plasticity[11, 18]. MAX is a bHLH protein a transcriptional repressor acting via the 

recruitment of a chromatin remodeling complex with histone methylase activity. Among the 

over-represented pathways encompassing these two TF genes, the MAPK Signaling Pathway 

(Suppl. Table S6) is of particular interest in view of its critical role in brain function[75] and 

immunity[39]. Both MAX and JUND, through changes in the p38 and JNK Signaling pathways 

respectively, could disrupt inflammation processes, as well as cell proliferation and 

differentiation through the cell cycle and induction of apoptosis (Sup. Table S6, Figure 3B). 

 

The strength of this approach is in its genome-wide search to identify significant SB associated 

pathways for hypothesis generation in a manner that avoids cherry picking among genes and 

pathways already implicated through mouse genetic studies. If limited to SNVs and Indels, our 

results indicate WGS on some 3,300 SB cases will be needed to establish significance to 

individual genes. Greater power may be gained from combining gene enrichment by deleterious 

variants along with damaging structural variation (e.g. CNVs [86]), demanding new 

computational approaches to accomplish. It is unlikely that a single variant or gene would greatly 

impact non-syndromic SB risk. However, it is entirely possible that a single pathway could be 

predisposing if it contained variants affecting multiple genes in the pathway. And only a few 

LGD containing genes may be necessary to result in SB in an individual, as there are examples in 

the mouse of NTDs caused by digenic mutations within a pathway. For example, NTDs have 

been seen in mice heterozygous for mutations in pairs of planar cell polarity pathway genes 

Vangl2/Ptk7 [57, 85], Cobl/Vangl2, Vangl2/Scrb, and Vangl2/Celsr1 [64], or digenic mutations 

in cytoskeletal regulators Enah/Vasp [60], or cell adhesion genes Itga1/Itga6 [22]. A case-control 

study limitation is that it can only illuminate components of SB risk for the affected individual. 

Determining the recurrence risk for a couple will require WGS investigations of case-parent 

trios, and these efforts are ongoing. Trio analyses will enable identification of inherited vs. de 

novo variants. Further computational approaches are needed to find potential genetic interactions 

in individual cases. And genomics will only provide one piece of the complex puzzle that 

undoubtedly includes epigenetic modifications of genomic DNA and chromatin, often in 

response to maternal nutrition and/or environmental exposures. As we build population-based 
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genome investigations, it will be important to gather gene expression data from the same 

subjects—for example from amniocytes of SB affected and control pregnancies. 

 

Hypotheses generated using systems biology-based computational strategies will require 

functional validation, likely utilizing genome editing in mouse and human stem cell biological 

systems. These animal and human stem cell models will also offer opportunities to test 

environmental stressors that mimic toxic exposures and intrauterine conditions that undoubtedly 

interact with the genome and impact the epigenome to tip the epistatic load toward SB [8]. The 

approach demonstrated here represents an important step toward an integrated systems view of 

genetic factors underpinning human neural tube defects. These efforts will undoubtedly have to 

be combined with investigation of epigenetic, multi-omic, and environmental factors to obtain a 

full picture required for precision medicine [24]. Importantly, identification of recurrence risk 

toward new avenues for prevention is only one use of precision medicine. Knowledge of the 

genetic risk of an individual SB infant—even which pathways are most likely impacted in that 

individual--could inform prognosis and allow for devising novel early interventions toward 

optimizing the developmental potential of the child. Systems biology approaches will enable 

inclusion of relatively rare, complex genetic disorders like spina bifida in this future of 21st 

century disease prevention and improved individualized healthcare. 

 

 

Materials and Methods 

 

Study subjects  

For this case/control study, subjects with non-syndromic SB who displayed myelomeningocele 

were selected[50, 51]. The initial cohort comprised 310 subjects from different ancestries. Of the 

157 SB-affected individuals, 85 were collected in the US and 72 in Qatar. Among the 153 

remaining controls are 45 unrelated subjects from the US and 108 unrelated individuals living in 

Qatar[47]. 

 Human subjects research protocols were approved by Institutional Review Boards (IRBs) 

in the US (state of California and Stanford University, the University of Texas at Austin, Weill 

Cornell Medical College-NY), and the Middle Eastern population receiving their healthcare in 
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Qatar (Hamad Medical Corporation and Weill Cornell Medical College-Qatar), including 

informed consent documentation provided in both English and Arabic. 

 

Whole genome sequencing 

Subject material included genomic DNA extracted specifically for this project from de-identified 

infant blood spot cards collected from the California Genetic Diseases Screening Program and 

referred from the California Birth Defects Monitoring Program (CBDMP[20]. Genomic DNA 

was also derived from venipuncture samples collected from subjects participating in the national 

Spina Bifida Clinic at Hamad Medical Corporation (Doha, Qatar). Genomic DNA was extracted 

either from newborn screening bloodspots or infant/child venipuncture samples using the 

Puregene DNA Extraction Kit (Qiagen, Valencia, California). Input amounts of DNA from 

infant blood spots were 200-500 ng and inputs from venipuncture samples were 2-3 ug. All DNA 

samples were whole genome sequenced using Illumina chemistries (v3) on HiSeq2500 

instruments to yield short insert paired end reads of 2x100 bp. 

 

Population structure analyses and case-control matches 

Genomic ancestry was calculated from the genotype data by analyzing a set of 130,000 Ancestry 

Informative Markers reported by Elhaik et al. [28]. Using supervised ADMIXTURE [4], we 

calculated the ancestry of each individual in relation to nine gene pools representing geographic 

regions around the world (e.g., South Africa) [28]. The output was the admixture proportions of 

each individual corresponding to those gene pools. To avoid stratification bias due to differences 

in genetic background, the Pair Matcher (PaM) algorithm was used to genomically match the 

cases with the controls by their genomic distances [27]. Briefly, PaM calculates the genetic 

distances as the sum of differences between admixture components. The pairing assignments are 

optimized to maximize the numbers of ancestry matched pairs and ensure that a genetic ancestry-

balanced cohort was used in the analysis. 

The final study cohort included 298 human subjects. Of the 149 SB-affected individuals, 

77 were from the US and 72 from Qatar. Among the 149 ancestry-matched controls were 43 

unrelated subjects from the US and 72 unrelated individuals living in Qatar. The remaining 34 

controls matching the ancestry of US subjects were selected from the Pan-Cancer Analysis of 
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Whole Genomes (PCAWG) study[19], all of which were germline samples obtained from 

Caucasian subjects. 

 

Read mapping, variant calling and annotation 

The sequence data were processed using standard pipelines, as described in the Broad Institute’s 

GATK Best Practices[82]. Reads were aligned to the hg38 reference provided as part of the 

GATK Bundle using BWA[53]. Variant calling was performed with GATK4[69] and joint 

genotyping was carried out on the whole cohort, followed by Variant Quality Score 

Recalibration (VQSR). Quality control (following standard practices such as obtaining 

sequencing metrics, per sample missing rate and level of heterozygosity), was done to check for 

DNA contamination and identify outliers, removing those samples with poor quality. Per-variant 

quality was also assessed and only variants with a “PASS” in the filter column were retained and 

annotated utilizing Ensembl Variant Effect Predictor (VEP) v.95[59]. 

 

Rare coding variant analysis 

Variants in coding regions were filtered to retain only those that are rare (MAX_AF<0.01, as 

provided by the VEP annotation) in any given population part of 1000 Genomes[1], NHLBI GO 

Exome Sequencing Project (ESP) [80], and the Genome Aggregation Database (gnomAD) [45]. 

Next, likely gene-disrupting (LGD) variants were identified as SNVs and Indels, including: 1) 

loss-of-function variants (LOF; i.e., nonsense, frameshift, splicing, stop gain or stop lost), and 2) 

missense variants predicted deleterious (by SIFT[67] and/or PolyPhen[2]). Variants meeting the 

previous criteria (from now on qualifying variants) were collapsed by gene, that is, a matrix with 

the number of qualifying variants per gene per subject was obtained. A power calculation for 

individual gene association was obtained using the Genetic Association Study (GAS) Power 

Calculator[43]. This tool was used to determine the minimum number of subjects required to 

reach statistical significance at the gene level (p-value=0.0000025). Therefore, assuming a power 

of 80% and a minor allele frequency (MAF) of 5%, at least 3,300 cases are necessary. 

Since the sample size necessary to achieve statistically significant single gene association 

using rare variant association analysis was well above the available number of cases, an 

alternative approach was proposed. The matrix of qualifying variants was used as input to a 

machine learning classifier for embedded feature selection. Hence, genes were selected as part of 
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the learning algorithm, using as class label the group to which each individual belongs (i.e., case 

or control). A Random Forest (RF) classifier[13] was built for this purpose, using Python’s 

scikit-learn library[68]. Hyperparameter tuning was performed utilizing random search and grid 

search with cross-validation. The final model was further tested on a separate (hold-out) dataset 

for validation purposes encompassing 20% of the input data. As an additional quality control 

check, we created RF models on ten sets that were generated by randomly shuffling the group 

(case/control) labels. This analysis sought to ensure that the model was not learning the noise 

existing in the data and, as a consequence, would not generalize well. 

Features (i.e., the 439 genes with high discriminatory potential) were ranked according to 

importance, based on the Gini impurity metric. Gini impurity provides a measurement of the 

likelihood of incorrect classification of a new instance of a random variable, if that new instance 

was randomly classified according to the distribution of class labels from the dataset) and those 

with an importance value > 0 were selected for subsequent steps. Genes were next broadly 

categorized based on GO Slim using WebGestalt[54]. The same genes with high discriminatory 

potential were used as input to GeneAnalytics[9] for pathway and Gene Ontology (GO) 

enrichment analyses. Within GeneAnalytics, p-values are calculated assuming an underlying 

binomial distribution and corrected for multiple comparison using False Discovery Rate (FDR) 

[10]. Finally, gene module enrichment was carried out as described by Walker et al.[83]. Briefly, 

clusters (gene modules) were obtained by these authors as a result of applying weighted gene co-

expression network analysis (WGCNA) [48] to bulk RNA-seq data from mid-gestational (weeks 

14-21) human cortex. In the present work, gene module enrichment was calculated employing 

the same logistic regression model described by Walker and colleagues: is.disease ~ is.module + 

gene covariates. P-values were adjusted to correct for multiple testing, applying a Bonferroni 

correction (as described in the same publication). 

 

Rare non-coding variant analysis 

Variants in non-coding regions were filtered to retain only those single nucleotide variants 

(SNVs) that are rare (MAX_AF<0.01, as provided by the VEP annotation) in any given 

population part of 1000 Genomes, ESP, and gnomAD. Regions regulating 106 transcription 

factor (TF) genes previously identified as relatively relevant during development[6] were 

obtained. These regulatory regions were defined using data pertaining to curated enhancer 
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GeneHancer data[30] and within CTC-Factor (CTCF) loops spanning each TF gene of interest. 

Three different sets of coordinates – or catalogs – were used to determine the region coordinates 

for the CTCF loops, including a dataset of conserved loops across multiple tissues[55], and loops 

mapped in human embryonic stem cells (hESCs) at an earlier (naïve) and later (primed) 

developmental stage[42]. CTCF maps from these sources are highly appropriate for this purpose 

as many CTCF loops are conserved across tissues and developmental stages, and we specifically 

interrogated those that are known to be conserved. Furthermore, SB arises early in 

development—before 35 days gestation—and the neural tube is a germinal epithelium, so SB is 

closely related to hESCs at early (naïve) and more differentiated (primed) progenitor stages. 

The subsequent steps were performed for each catalog. First, BEDTools[70] was 

employed to identify those rare non-coding SNVs that fell within regulatory regions. Similar to 

the coding variant analysis, variants were summarized following a “regulatory region collapsing” 

strategy. To identify regions with high discriminatory potential, regulatory regions associated to 

a TF gene were tested for enrichment in cases vs. controls. For this purpose, the proportion of 

SNVs in cases divided by controls was calculated and the fitdist function within the fitdistrplus R 

package[23]  was used to determine which regulatory regions were significantly enriched. P-

values were FDR adjusted to correct for multiple comparisons.  

Finally, the list of TF genes whose regulatory regions were significantly enriched with 

SNVs (FDR<0.05) in at least one of the catalogs was used as input to pathway and GO 

enrichment analysis. Similar to the coding variant analysis, this was carried out employing 

GeneAnalytics. 
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Figures and Tables 
 

 
 
Figure 1. Whole genome sequence analysis overview. (A) Admixture composition of the ethnically diverse 
cohort of 149 spinal bifida cases and 149 ancestry-matched controls used in the analysis. For brevity, the nine 
gene pools were collapsed by continent. Corresponding gnomAD designations: (B) Strategy used to interrogate 
whole genome sequence data. (C) Proportion of variants found in the cohort by type. 
 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.02.450913doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450913


 

26 

 
Figure 2. Genes with greatest potential to discriminate between SB cases and non-SB controls and their 
relationships in pathways. (A) Genes with high discriminatory potential to distinguish spina bifida (SB) cases 
and controls significantly enrich an early progenitor class, gene co-expression module identified in a 
transcriptome WGCNA study of mid-gestation human cortex[83]. Modules most highly enriched in rare 
variants found in individuals with developmental delay (DD, neuronal regulation module) or autism spectrum 
disorder (ASD, neuronal regulation and neurobehavior modules) (Walker et al.) are distinct from SB (this study, 
early neural progenitor proliferation module). (B) Pathways related to immunity are enriched with genes that 
contain likely gene disrupting (LGD) mutations in SB cases and impact the interferon arm of the HSV-1 
pathway. (C) SB risk genes affect cytoskeletal regulation. Genes enriched with LGD variants in SB cases 
disrupt RhoGDI signaling and actin-myosin components of the cytoskeleton. Red stars in B and C indicate 
LGD-enriched genes.  
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Figure 3. Transcription factor genes whose regulatory regions are enriched with rare non-coding SNVs 
and their interactions. (A) Location of rare non-coding variants within the CTCF loops spanning MAX and 
JUND in cases. (B) Pathways regulating cell processes are impacted by rare non-coding variants. The 
regulatory regions of MAX and JUND are enriched in rare SNVs, impacting the JNK and p38 signaling 
pathways. Red stars indicate TF binding site rare variant enrichment in SB cases. (C) Interaction partners of 
ZNF274 based on data from STRING.   
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Table 1. Genes found in this machine learning strategy to have high discriminatory potential 
between SB cases and controls that were previously found to be differentially expressed in 
human fetal NTD vs. healthy control amniocytes §. 
 

Gene Expression 
Up/Down 

Fold change 
(log2) 

Adjusted  
p-value 

CGAS* + 2.82 0.02 

GRIN2D** + 3.15 0.00 

MYH11* + 2.92 0.01 

ODF3B + 2.69 0.04 

IVL - 2.96 0.01 

LAMC2* - 2.37 0.02 

SLITRK6** - 2.69 0.02 

USP2* - 2.81 0.00 

ZNF750 - 2.23 0.04 
 
 
*=these differentially expressed genes are also found in significantly overrepresented pathways 
obtained in our analysis 
**=these differentially expressed genes have been associated with neuronal synapse assembly 
and axon pathfinding 
§=amniocyte data (log2 fold changes and adjusted p-values) reported by Nagy et al., 2006 (ref. 
[65]) 
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Table 2. Pathways enriched with genes of high discriminatory potential between SB cases and 
healthy controls 
 

Pathway Adjusted 
p-value Genes 

Carbon Metabolism 0.00081 ADPGK, EHHADH, ACAT2, ASNS, ENO4, 
MDH2, H6PD, MMUT, PGD, TKTL2 

Cobalamin (Cbl, Vitamin B12) Transport 
and Metabolism 0.00099 ABCD4, CTRB2, MMUT, TCN1 

Glyoxylate and Dicarboxylate Metabolism 0.00358 ACAT2, HYI, MDH2, MMUT 
Propanoate Metabolism 0.00449 EHHADH, ACAT2, LDHAL6B, MMUT 

Herpes Simplex Virus 1 Infection 0.00685 

HLA-A, EIF2AK3, EIF2AK4, ZNF439, CGAS, 
ZNF283, ZNF160, ZNF616, ZNF8, ZNF790, 
ZNF233, ZNF850, TP53, ZNF708, ZNF273, 
ZNF682, ZNF814, ZNF562, ZNF736 

DNA Damage 0.00885 
CIP2A, CAD, CDT1, BRCA1, PKMYT1, CCP110, 
POLR2A, MUTYH, CENPF, USP2, TTK, TDP1, 
TP53 

ECM-receptor Interaction 0.01062 FREM2, COL18A1, LAMC2, SV2C, ITGA8, TNR, 
RELN 

RhoGDI Pathway 0.01321 FGFR3, MYO3A, MYH11, MYH15, MYO1C, 
MYH4, MYO9B, MYO1D, PARP1 

Codeine and Morphine Metabolism 0.01358 ABCC2, CYP2D6, SLCO1B3 

Sertoli-Sertoli Cell Junction Dynamics 0.01605 
EPN3, MYO3A, MYH11, MYH15, MYO1C, 
MYH4, NPR1, SPTBN1, STX5, MYO9B, ITGA8, 
MYO1D, CGN, SPTB, CLDN6 

Homologous DNA Pairing and Strand 
Exchange 0.01793 EXO1, BRCA1, POLD3, RAD51D, RAD9B 

NAD Metabolism, Sirtuins and Aging 0.02171 FOXO1, PARP1 
Pentose Phosphate Pathway 0.02427 H6PD, PGD, TKTL2 
PERK Regulates Gene Expression 0.02427 EXOSC5, ASNS, EIF2AK3 
Interaction Between L1 and Ankyrins 0.02427 SPTBN1, SCN5A, SPTB 

Cell Cycle Checkpoints 0.02468 EXO1, BRCA1, PKMYT1, PSMA8, MCM10, 
RAD9B, MCM6, HIST3H3, TP53 

Valine, Leucine and Isoleucine Degradation 0.02575 ACSF3, EHHADH, ACAT2, MMUT 
Amino Acid Transport Across The Plasma 
Membrane 0.02638 SLC7A7, SLC6A6, SLC6A12 

Aurora A Signaling 0.02638 DLGAP5, BRCA1, TP53 
Oncogene Induced Senescence 0.02860 ETS2, TNRC6B, TP53 
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Table 3. Transcription factor genes whose regulatory regions are significantly enriched with rare 
variants 
 

TF Full name Adjusted p-value Coordinates 

ZNF274 Zinc finger protein 274 1.64E-11 GeneHancer 

RFX5 Regulatory factor X5 5.25E-05, 7.56E-08 hESC CTCF loops (naïve and primed) 

MAX MYC associated factor X 6.37E-05, 0.018 CTCF loop conserved across tissues 
and hESC (naïve) 

JUND JunD proto-oncogene, 
AP-1 transcription factor 0.026 hESC CTCF loops (primed) 
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