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Abstract

Patient-derived cellular models are a powerful approach to study human disease, especially neurode-
generative diseases, such as Parkinson’s disease, where affected primary neurons, e.g., substantia nigra
dopaminergic neurons, are almost inaccessible. Starting with a comprehensive generic reconstruction of
human metabolism, Recon3D, we generated a high-quality, constraint-based, genome-scale, in silico model
of human dopaminergic neuronal metabolism (iDopaNeuro1). It is a synthesis of extensive manual cura-
tion of the biochemical literature on neuronal metabolism, together with novel, quantitative, transcriptomic
and targeted exometabolomic data from human stem cell-derived, midbrain-specific, dopaminergic neur-
ons in vitro. Thermodynamic constraint-based modelling with iDopaNeuro1 is qualitatively accurate (92%
correct) and quantitatively accurate (Spearman rank 0.7) at predicting metabolite secretion or uptake,
given quantitative exometabolomic constraints on uptakes, or secretions, respectively. iDopaNeuro1 is also
qualitatively accurate at predicting the consequences of metabolic perturbations, e.g., complex I inhibi-
tion (Spearman rank 0.69) in a manner consistent with literature on monogenic mitochondrial Parkinson’s
disease. The iDopaNeuro1 model provides a foundation for a quantitative systems biochemistry approach
to metabolic dysfunction in Parkinson’s disease. Moreover, the plethora of novel mathematical and com-
putational approaches required to develop it are generalisable to study any other disease associated with
metabolic dysfunction.
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Part I
Introduction
Parkinson’s disease (PD) is is a complex multifactorial disease with an incidence range between 5 and 35 per
100,000 population [88]. In sporadic PD, it is well established that degeneration followed by cell loss is selective
for certain brainstem nuclei [29, 23, 100, 98]. For example, the motor symptoms of PD are mainly caused by the
dysfunction, degeneration and death of substantia nigra dopaminergic neurons [32]. A combination of intrinsic
anatomical, morphological, physiological and biochemical characteristics has been proposed to be shared by
neurons selectively vulnerable to degeneration in PD [81]. They tend to have long unmyelinated axons, large
axonal trees, a high number of synapses, autonomous pace-making activity, broad action potentials [64] and
calcium-mediated feed-forward stimulation of mitochondrial oxidative phosphorylation [97]. These features
are thought to place high material and energetic demands on such neurons for axonal trafficking, cycling of
synaptic vesicles, re-establishment of ionic gradients following firing and maintenance of cellular structural
integrity, including proteome homeostasis [96]. Therefore, it is of great interest to characterise the balance of
metabolic supply and demand in substantia nigra dopaminergic neurons, both in health and in disease.

One of the significant challenges to research neuronal disease mechanisms is the requirement for accessible
and faithful cellular models that recapitulate the main cellular features of healthy and diseased cells. Since
the publication of the seminal work describing the generation of human-induced pluripotent stem cells (iPSCs)
from human dermal fibroblasts [82], reprogramming of differentiated cells into iPSCs has become an essential
tool to study neurodegenerative diseases, such as PD [78, 35, 39, 2, 94, 86]. From iPSCs, it is possible to derive
robust, stable human neuroepithelial stem cells, which can be differentiated clonally and efficiently into neural
tube lineages, midbrain dopaminergic neurons [70], offering an accessible approach to study the normal and
abnormal metabolism of midbrain dopaminergic neurons in vitro. Therefore, genome-scale characterisation of
the metabolic status of such midbrain dopaminergic neurons is of major interest but has not yet been reported.

Constraint-based reconstruction and analysis (COBRA) is a genome-scale computational modelling approach
[63] that provides a molecular mechanistic framework for experimental design, integrative analysis of prior
biochemical knowledge with experimental data and quantitative prediction of physicochemical and biochemical
feasible phenotypic states [34]. In particular, quantitative bioanalytical chemistry [62, 80, 69] has been com-
bined with constraint-based modelling of metabolism [4] to enable context-specific biochemical interpretation
of metabolomic data, e.g., to discover differences in glycolytic versus oxidative metabolism in different lymph-
oblastic leukaemia cell lines [5], and to characterise metabolic changes influencing pluripotency and cell fate in
stem cells [13].

Constraint-based modelling of neuronal metabolism is challenging, but progress has been made. Cakir et
al. [12] developed a stoichiometric model of central metabolic interactions between astrocytes and neurons,
encompassing 217 reactions among 216 metabolites. It was further updated to include 630 metabolic reactions
and 570 genes detected in the transcriptomic data of six neurodegenerative diseases [Sertbas et al. 2014]. It
was able to predict major metabolic fluxes that were in agreement with literature data and was further used to
predict potential biomarkers for several neurodegenerative diseases, however they have yet to be experimentally
validated. Most recently, Abdik et al. has developed a mouse brain-specific genome-scale metabolic model
that allowed to study different mouse models of PD in terms of their metabolism[Abdik et al. 2021]. Lewis et
al. [45] developed a stoichiometric model of metabolism and mitochondrial function in astrocytes and either
glutamatergic, GABAergic or cholinergic neurons. The emphasis was on cerebral energy metabolism, including
central metabolism, mitochondrial metabolic pathways, and pathways relevant to anabolism and catabolism of
the neurotransmitters glutamate, GABA, and acetylcholine.

In parallel, dynamic kinetic models have been developed that focused on particular aspects of dopaminergic
neuronal function. Extending a model by Aubert & Costalat [3], Cloutier et al. [14] developed a phenomeno-
logical kinetic model of central metabolic brain energy metabolism including capillary, neuronal, astrocyte and
subcellular mitochondrial compartments. Qi et al [67] developed a model of the nigrostriatal dopamine path-
way, representing processes as products of power-law functions [72], and used it to predict key determinants of
dopamine metabolism associated with the dysregulation of dopamine homeostasis.

We present iDopaNeuro1, genome-scale constraint-based model of metabolism in midbrain-specific dopaminer-
gic neurons. Manual literature curation was used to establish the activity, or inactivity, of a core set of metabolic
genes and reactions, as well as presence, or absence of metabolites, characteristic of dopaminergic neuronal meta-
bolism. In parallel, exometabolomic and trancriptomic data was generated from midbrain-specific dopaminergic
neuronal cultures, obtained by differentiation of normal human neuroepithelial stem cells. Exometabolomic data
from four platforms, including liquid chromatography-mass spectrometry and gas chromatography-mass spec-
trometry were used to quantify energy-related metabolites including biogenic amines and organic acids, as well
as neurochemical metabolites in fresh and spent culture media.

The combined results of literature curation and omics data generation were integrated together with a stoi-
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chiometrically consistent and flux consistent derivative of a Recon3D [11], a comprehensive reconstruction of
human metabolism, using a novel model generation pipeline. An ensemble of thermodynamically flux consistent
context-specific models were generated and the model with the highest predictive accuracy, evaluated against
exometabolomic data from control dopaminergic neuronal cultures, was designated iDopaNeuro1.

The breakthrough in predictive fidelity demonstrated by the iDopaNeuro1 model was validated by comparison
with independent exometabolomic data on pharmacologically perturbed dopaminergic neuronal cultures. Fur-
thermore, we developed and applied a novel approach to predict the most informative metabolites to measure,
by future exometabolomic experiments, in order to maximally reduce uncertainty in the feasible solution space.
This iDopaNeuro1 model of dopaminergic neuronal metabolism is a quantitative, interdisciplinary characterisa-
tion of dopaminergic neuronal metabolism at genome-scale. It provides a validated platform for experimental
data-driven mechanistic computational modelling, optimal design of experiments and ultimately, provides an
objective, quantitative framework for development of drugs targeted toward the aetiopathogeneses of Parkinson’s
Disease.

Figure 1: Overview of generation, validation and application of the iDopaNeuro1 model.
Human neuroepithelial stem cells were differentiated into midbrain-specific dopaminergic neuronal cultures in vitro (A).
Transcriptomic and targeted exometabolomic data was generated from fresh and spent media samples (B). This omics
data was combined with manual curation of the literature on dopaminergic neuronal metabolism (C) to provided context-
specific information to combine with a generic metabolic model (D) derived from a comprehensive reconstruction of human
metabolism (E). An ensemble of candidate dopaminergic neuronal metabolic models were generated (F), as function of
technical parameters (G), and mathematical modelling approaches (H). The model with the highest predictive fidelity
was deemed iDopaNeuro1, the genome-scale metabolic model of dopaminergic neuronal metabolism (I). The predictive
fidelity of the iDopaNeuro1 model was validated by comparison of predictions with independent exometabolomic data
generated on perturbations to normal dopaminergic neuronal metabolism in vitro (J). Finally, the iDopaNeuro1 model
was used prospectively to design the next phase of research in order to prioritise research effort on generation of new
constraints on the variables currently most uncertain in the model (K).
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Part II
Materials and Methods
An overview of the generation, validation and application of the dopaminergic neuronal metabolic model,
iDopaNeuro1 is shown on Fig. 1. A summary of the materials and methods is provided below and all details
are provided as supplementary information.

1 Experiments

Figure 2: Experimental protocol overview.
Human neuroepithelial stem cells (hNESC) were differentiated into midbrain dopaminergic neurons. The cell number in each culture
well was counted on day 1, 13, 19 and estimated for day 23. Spent media samples for metabolomic analyses were collected at days 10,
13, 19 and 23. Samples were analysed with both GC-MS or LC-MS. At day 23, live cells were subjected to calcium imaging followed
by immunostaining assays, and collection of parallel samples for transcriptomic analysis. The media composition at the various
stages of cell culture were as follows; Maintenance stage (red): maintenance medium containing ascorbic acid, purmorphamine
(PMA) and the aminopyrimidine CHIR-99021 (CHIR). Differentiation stage (green): differentiation medium containing ascorbic
acid, Brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), Transforming Growth Factor Beta
3 (TGF𝛽3), dbcAMP and PMA. Maturation stage (blue): differentiation media without PMA.

Fig.2 provides an overview of the experimental protocol, illustrating the timing of events.

1.1 In vitro cell culture
Summary A human neuroepithelial stem cell line from a healthy human donor was maintained and differen-
tiated toward midbrain-specific dopaminergic neurons using an established protocol [70], summarised in Section
1.1.1. Cellular morphology was monitored during differentiation and after sufficient time had elapsed (23 days),
calcium imaging and automated image analysis was used to assess electrophysiological activity, using an estab-
lished pipeline [51], summarised in Section 1.1.2. Immunofluorescent staining was used to identify differentiated
cell types (Section 1.1.3). Normal cultures were also perturbed metabolically, either pharmacologically, or by
changing the fresh medium carbon source (Section 1.1.4).

1.1.1 Dopaminergic neuronal maintenance and differentiation

Generation of an in vitro culture of midbrain-specific dopaminergic neurons followed an established protocol
[70], with the following adaptions. The human neuroepithelial stem cells were cultivated in mTESR1 medium
(StemCell technologies, #05850) on 6-well dishes coated with Matrigel (Corning, #354263). The composition
of each fresh medium, to the extent that it has been defined by the manufacturer, is detailed in Table S-1.

N2B27 medium preparation The culture medium, denoted N2B27 medium, was used as the basis to
prepare both maintenance and differentiation media. 50.25 mL of culture medium was obtained by mixing
24 mL Neurobasal medium (Invitrogen/Life Technologies), 24 mL of DMEM/F12 medium (Invitrogen/Life
Technologies) supplemented with 1% penicillin and streptomycin (Life Technologies), 0.5 mL of 200 mM L-
glutamine (Life Technologies), 0.5 mL of B27 supplement without Vitamin A (Life Technologies) and 0.25 mL
of N2 supplement (Life Technologies). The final concentration of the media composition is fully detailed in
Table S4.
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Plate coating Nunc cell-culture treated 6-well plates (ThermoFisher scientific, Roskilde, Denmark) were
coated with 1% Matrigel (Discovery Labware, Inc., Two Oak Park, Bedford, MA, USA, Catalogue number
354277, lot number 3318549) in 600𝜇L of knockout DMEM (1X) medium.

Cell seeding and maintenance At the time of cell seeding, the knockout DMEM (1X) medium from the
coating step, was removed from each well and the K7 hNESC line was seeded in three replicate wells. The
medium to maintain the hNESC in culture, denoted maintenance medium (red in Fig.2), is based on N2B27
medium with 0.5 𝜇M PMA (Enzo life sciences), 3 𝜇M CHIR (Axon Medchem) and 150 𝜇M ascorbic acid (Sigma
Aldrich). The cell seeding was done by preparing 5 × 106 million cells/mL in 50% matrigel in maintenance
medium and adding 200 𝜇L of this preparation to obtain approximately 0.2 mm or 200 𝜇m thick layer of cells
in three dimensions within Matrigel, with 4 × 105cells per well. After the Matrigel and cell mixture was added
to the well, the plate was incubated for 2 min at 37 °C to gelate the matrigel layer, the plate was then taken
out of the incubator and 2.8 mL of maintenance medium was added and the plate was incubated at 37 °C and
5% CO2 for 48 h.

Neuronal differentiation and maturation The differentiation medium with PMA (green in Fig. 2) pre-
paration to induce the differentiation of hNESC towards midbrain dopaminergic neurons consisted of N2B27
medium with 200 𝜇M ascorbic acid, 0.01 ng/𝜇L BDNF (Peprotech), 0.01 ng/𝜇L GDNF (Peprotech), 0.001
ng/𝜇L TGF𝛽3 (Peprotech), 2.5 𝜇M dbcAMP (Sigma Aldrich) and 1 𝜇M PMA. This medium preparation was
completely replaced every 2 days during the next 6 days of culture in the differentiation process. For the
maturation of differentiated neurons, PMA is required to be absent from the differentiation medium. This dif-
ferentiation medium without PMA (Blue in Fig. 2) was used from day 9 onwards and 50% media replacement
every 2 days for 3 weeks. Protein concentration (mg/mL) was measured using a BCA protein assay.

1.1.2 Microscopy and calcium imaging

To monitor cellular morphology during differentiation, bright field images were acquired every 48 h for 23 days
of differentiation using a Zeiss Axiovert 40 CFL microscope equipped with a cooled charge-coupled device based
camera (Zeiss AxioCam MRm, Zeiss). At day 23 in culture, calcium imaging was done with a Fluo-4 AM
green-fluorescent calcium indicator dye. After removing the differentiation medium, 1 mL of 5𝜇M cell permeant
Fluo-4 AM (Invitrogen/Life Technologies, F-14201) in neurobasal medium, was added to selected wells of a
6-well plate at room temperature. Full frame fluorescence images, of size 2560×2160 pixels, were acquired using
an epifluorescence microscope (Leica DMI6000 B, Germany) equipped with a cooled sCMOS camera (Neo 5.5,
Andor technology, UK) and both were controlled with Micro-manager (version 1.4) [18]. Images were sampled at
a rate of approximately 10 Hz for about 2 min, stored as image stacks and analysed off-line using an established
pipeline for automated calcium image analyses [51]. For each segmented neuron, we measured fluorescence
traces as relative changes in fluorescence intensity over time.

1.1.3 Immunofluorescence staining assay

Immunostaining for a dopaminergic marker, tyrosine hydroxylase (TH) and a pan neuronal marker, Class III
𝛽-tubulin (TUBbIII) were used to identify differentiated dopaminergic neurons. Immunostaining for tyrosine
hydroxylase (TH) positive differentiated neurons was performed on wells of a 6-well plate after day 25 of
differentiation. Differentiated cells were fixed with 4 % PFA in 1× phosphate-buffered saline (PBS) (15 min),
followed by permeabilisation with 0.05% Triton-X 100 in 1× PBS (3 min on ice), and blocking with 10% fetal
calf serum (FCS) in 1× PBS (1 h). After washing with 1× PBS, the primary antibodies mouse anti-TUB𝛽III
(1:1000, Covance, Germany), rabbit anti-TH (1:1000, Santa Cruz biotechnology, Germany) and chicken anti-
GFAP (1:1000, Merck Millipore, Germany), were incubated for 90 min at 25 °C. After washing with 1× PBS,
the secondary antibodies Alexa Fluor 488 Goat Anti-Rabbit (1:1000, Invitrogen), Alexa Fluor 568 Goat Anti-
Mouse (1:1000, Invitrogen), Alexa Fluor 647 Goat Anti-chicken (1:1000, Invitrogen) and Hoechst 33342 to stain
DNA (1:10000, Invitrogen), were incubated overnight at 4 °C. After washing with 1× PBS, confocal images of
areas of selected wells were acquired, using a confocal microscope (Zeiss LSM 710).

1.1.4 Metabolic perturbations

Midbrain-specific dopaminergic neurons, at day 23 of differentiation, were exposed for 24hrs to two different
mitochondrial inhibitors, 12.5 𝜇M Rotenone (Merck) and 12.5 𝜇M Oligomycin (Abcam). Triplicate experiments,
resulted in nine samples per perturbation. Maintenance media and maintenance media containing 1% DMSO
(place) were used as control groups. After 24 hours the extracellular spent media was collected and snap-frozen
using liquid nitrogen.
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1.2 Transcriptomics
Summary A human neuroepithelial stem cell line from a healthy human donor was maintained and dif-

ferentiated toward midbrain-specific dopaminergic neurons using the same protocol [70] as described in Section
1.1. After sufficient differentiation (Fig. 2), cell culture sample RNA was extracted and sequenced (Section
1.2.1 from in vitro cell culture samples, RNA-sequencing was employed and raw data was analysed (Section
1.2.2), such that the output was quantitative expression for each gene, in units of Fragments Per Kilobase of
transcript per Million mapped reads (FPKM).

1.2.1 RNA extraction and sequencing

A kit (Ambion Magmax™-96 total RNA isolation kit, Life Sciences) was used for RNA extraction. Magnetic
beads were used to isolate nucleic acids. Afterwards, the samples were washed and purified with DNAase. The
RNA obtained was eluted in 50𝜇𝑀 elution buffer. Fragment Analyzer (Aligent Technologies Inc.) was used to
measure RNA quality and concentration.

The sequencing library preparation was done using 200 ng of total RNA input with the TrueSeq RNA Sample
Prep Kit v3-Set B (RS-122-2002, Illumina Inc, San Diego, CA) producing a 275 bp fragment including adapters
in average size. In the final step before sequencing, twelve individual libraries were normalised and pooled
together using the adapter indices supplied by the manufacturer. Pooled libraries have then been clustered on
the cBot Instrument (Illumina Inc, San Diego, CA) using the TruSeq SR Cluster Kit v3-cBot-HS (GD-401-3001,
Illumina Inc, San Diego, CA) sequencing was then performed as 78 bp, single reads and 7 bases index read on
an Illumina HiSeq3000 instrument using the TruSeq SBS Kit HS- v3  (50-cycle) (FC-401-3002, Illumina Inc,
San Diego, CA).

1.2.2 RNA sequence analysis

The raw RNA-seq data were analysed with a custom-made RNA-seq analysis pipeline, which included publicly
available software (SAMtools, version 0.1.18; FASTX-Toolkit, version 0.0.14) [47] and custom-made python
scripts. The current version of the pipeline is available at https://git-r3lab.uni.lu/zhi.zhang/rnaseqhs. The
RNA-seq analysis pipeline consists of six main steps: (i) quality control for the raw RNA-seq reads; (ii) pre-
possessing of the raw RNA-seq reads to remove adapters and low-quality sequences; (iii) alignment of the reads
to the human reference genome; (iv) assembly of the alignments into transcripts and (v) quantification of the
expression levels of each gene. Briefly, the raw RNA-seq reads (length 52 nucleotides, single-end) of each sample
were checked using FastQC (version 0.11.2) to determine the read quality. Adapter sequences and low-quality
sequences were removed using cutadapt (version 1.10) [48] with default settings. Reads with less than 25 nucle-
otides were excluded from further analysis. Next, the alignment of RNA-seq reads against the human reference
genome (NCBI build37.2, downloaded from iGenome of Illumina) was performed using TopHat2 (version 2.0.13)
[40]. Alignment results were processed using Cufflinks (version 2.2.1) [87] for assembly of transcripts with
default parameter settings. The quantification of transcript expression was estimated by normalised FPKM
(Fragments Per Kilobase of transcript per Million mapped reads) and counts at gene level by cuffnorm (version
2.2.1) [87]. In order to obtain one expression value per gene, we used the transcript with the highest average
expression as representative for the corresponding gene, since measurements for low-abundance transcripts are
less reliable.

1.3 Analytical chemistry
Summary Targeted, quantitative, exometabolomic data was generated from fresh and spent culture media

using four partially overlapping metabolomic platforms described below as AccQ-Tag, BzCl, DmPaBr, and GC-
MS [willacey_lcmsms_2019, 56, 93, 42](Section 1). Table S-9 contains a list of target metabolites analysed
with three LC-MS and one GC- MS platforms covering biogenic amines, amino acids, organic acids and glucose
with a total of 104 metabolites targeted. Where a metabolite was quantified by more than one platform, its
concentration was assumed to be that measured by the platform with the lowest relative standard deviation in
the repeated measurements of a quality control sample. Subsequently, differences in metabolite concentrations
over time were either used to generate a context-specific model (Section 3.1.5) or kept independent from the
model generation pipeline and used to test in silico model predictions (Section 3.3).

1.3.1 LC-MS profiling of biogenic amines and amino acids using the AccQ-Tag method

The analysis of 75 biogenic amines (Table S-9) was performed with an established LC-MS method [56]. Briefly, 15
𝜇L of culture medium was extracted by adding 400 𝜇L of ice-cold methanol, 55 𝜇L of ice-cold milliQ water, 10𝜇L
of tris(2-carboxyethyl)phosphine (TCEP; 1𝜇g/𝜇L) and 10 𝜇L of a mixture of stable isotope labelled internal
standards (IS; Table S-9). After centrifugation, all supernatants were transferred into 1.5 mL tubes and the liquid
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extracts were evaporated in a vacuum concentrator (Labconco, Kansas City, MO, USA) to dryness. The dried
extracts were dissolved in 80 �\𝜇 L borate buffer (pH 9) and mixed with 20 𝜇L of pure acetonitrile containing 3
𝜇g/𝜇L AccQ-Tag derivatisation reagent (Waters, Etten-Leur, Netherlands) for the chemical derivatisation of the
primary and/or secondary amine groups. The derivatisation reaction was performed at 55 °C for 30 min after
which the samples were centrifuged at 16000×g and 4 °C for 2 min and 80 𝜇L of the supernatant was transferred
into LC vials for sample injection. 1 𝜇L of the liquid extract was injected onto the analytical column for the
analysis. Measurements were performed with a Waters Acquity ultra-high pressure liquid chromatography
(UPLC) (Milford, MA, USA) hyphenated with Agilent 6460 triple-quadrupole mass spectrometer (Palo Alto,
CA, USA). Chromatographic separation was achieved on a Water Acquity HSS T3 C18 UPLC column (2.1×100
mm, 1.7𝜇m) and the metabolites were identified based on their retention time and multiple reaction monitoring
(MRM) transitions from their protonated precursor ions of the AccQ-Tag derivates into common product ion
of 171 m/z.

1.3.2 Analysis of amines and neurochemical metabolites using LC-MS/MS derivatized by ben-
zoyl chloride (BzCl)

The samples were analyzed following the protocol by [93] for the quantitative targeted analysis of amines and
neurochemical metabolites. The dried samples were reconstituted in 10 𝜇L H2O whilst maintained on ice. To
start the derivatization reaction, 10 𝜇L of 100 mM sodium carbonate (pH 9.4) was added, followed by 10 𝜇L
of 2% benzoyl chloride in ACN (v/v), and vortexed immediately for 10 seconds triggering the spontaneous Sn1
reaction at room temperature. The reaction was quenched by the addition of 20 𝜇L H2O with 1 % sulphuric
acid after 5 minutes. Isotopically labelled internal standards were synthesized by derivatizing a mixture of
all targeted metabolites using the 13C labelled BzCl reagent. The internal standard mix was added to the
quenched derivatized samples and 50 𝜇L H2O was added to reduce the organic content. Samples were analyzed
by LC-MS/MS using a Waters Acquity UPLC Class II (Milford, USA) coupled to an ABSciex QTrap 6500
series (Framingham, USA). The analytical column used was a Waters BEH-C18 column (1mm×100 mm, 1.8
𝜇m, 180 Å) with an injection of 5 𝜇L, maintained at 60°C. A gradient from 0.1% v/v formic acid and 10 mM
ammonium formate in water to 100% acetonitrile over 20 minutes with a flow rate of 100 𝜇L/min was used
for the separation of metabolites. Samples were automatically integrated using the vendor software AbSciex
MultiQuant Workstation Quantitative Analysis for QTrap 6500 series.

1.3.3 Analysis of energy-related metabolites using LC-MS/MS derivatized by dimethylaminophen-
acyl bromide (DmPABr)

The samples were analyzed following the protocol by [92] for the quantitative targeted analysis of energy-related
metabolites The dried content was reconstituted in 10 𝜇L of DMSO/DMF to dissolve the remaining content.
Then, 10 𝜇L of triethanolamine (750 mM) was added to the vial, followed by 10 𝜇L of DmPABr (82 mM). The
sealed Eppendorf vial was placed into a shaking incubator for 60 minutes at 65°C to complete the derivatization.
A total of 10 𝜇L of formic acid (30 mg/mL) was added to the vial to quench the reaction with an additional
30 minutes in the shaking incubator. Then, 5 𝜇L of DmPABr-D6-labelled metabolites were then added. Before
vortexing, 45 𝜇L of ACN was also added and transferred to an HPLC vial for analysis. Samples were analyzed
by LC-MS/MS using a Waters Acquity UPLC Class II (Milford, USA) coupled to an ABSciex QTrap 6500
series (Framingham, USA). The analytical column used was a Waters AccQ-tag column (2.1mm×100 mm, 1.8
𝜇m, 180 Å) with an injection of 1 𝜇L, maintained at 60°C. A gradient from 0.1% v/v formic acid and 10 mM
ammonium formate in water to 100% acetonitrile over 15 minutes with a flow rate of 700 𝜇L/min was used
for the separation of metabolites. Samples were automatically integrated using the vendor software AbSciex
MultiQuant Workstation Quantitative Analysis for QTrap 6500 series.

1.3.4 GC-MS profiling of polar metabolites

Twenty-four polar metabolites (Table S-9) were analysed in culture media using a modified version of an in-
house built GC-MS platform [42]. Because of the high abundance of D-glucose and L-lactic acid in culture
media, samples were diluted 1:299 (v/v) in milliQ water. Fifty microliters of both diluted and non-diluted
culture medium were extracted with 425 𝜇L of an extraction solvent (methanol/water, 94%/6%; volume/volume)
containing stable isotope labelled internal standards (Table S-9). Four hundred microliters of the supernatant
were transferred into a 1.5 mL tube and the solvent was evaporated in a vacuum concentrator (Labconco, Kansas
City, MO, USA). Dry samples were resuspended for the oximation reaction in 35 𝜇L of pyridine containing
methoxyamine hydrochloride (15 𝜇g/𝜇L) and kept at 30 °C for 90 min. After the oximation of the aldehyde
groups on reducing sugars and organic acids, samples were further derivatised with silylation reaction for 60
min in an orbital shaker (VWR, Germany). This reaction was carried out by adding 40 𝜇L of MSTFA (N-
methyl-N-trimethylsilylacetamide) into the samples. Subsequently, samples were centrifuged at 16000×g and
room temperature for 5 min and 70 𝜇L of the supernatant was transferred into silanized glass inserts. The
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GC-MS measurements were performed on an Agilent 7890A GC System coupled to a single quadruple 5975C
Mass Selective Detector. One microliter of the sample was injected with splitless injection. The analytes were
separated on an Agilent HP-5MS Ultra Inert capillary GC column (30 m, 250 𝜇m ID, 0.25 𝜇m film thickness).
Metabolite identification was carried out by using the retention time of the chemical standards and mass spectral
similarity of the fragmentation pattern with NIST MS Search Software (v2.0). The metabolite quantification
was performed based on the specific fragment ion for each polar metabolite (Table S-9). Both peak extraction
and integration were performed by using the vendor’s software (Agilent MassHunter Quantitative software v5.0).

1.3.5 Concentration determination

For the concentration determination, calibration samples were measured covering a wide concentration range.
The peak areas for all analytes measured in the samples were converted to peak area ratios by using

Peak Area Ratio = Peak Area(analyte)
Peak Area(internal standard) . (1)

The analytes were assigned an exact isotope labeled internal standard, where possible, and if the internal
standard was not available then the closest eluting peak was assigned (internal standard selection table detailed
below). The internal standard was used to correct for differences in extraction efficiency, matrix effect, ion
suppression, and instrument response (Table S-9). For absolute quantification, a linear regression was calculated
for the calibration lines by fitting a linear model 𝑦 = 𝑎𝑥 + 𝑏 in RStudio. If the intercept was not significant for
the fit, then a linear model was changed to 𝑦 = 𝑎𝑥 + 0(Table S-9).

1.3.6 Quality control assessment

To ensure that the data meets the quality standards throughout the experimental procedure, quality control
(QC - pooled samples) samples were taken through the experiment process. The quality control samples were
injected every 10 samples throughout the batch. The relative standard deviation of the quality control samples
𝑅𝑆𝐷(𝑞𝑐), was assessed for quality per metabolite by using

𝑅𝑆𝐷(𝑞𝑐) = 𝜎
𝜇 (2)

where 𝜎 is the standard deviation of the measured quality control samples, and 𝜇 is the mean of the control
samples measurements. 𝑅𝑆𝐷(𝑞𝑐) was then use as a measurement uncertainty for all the measured samples.
Furthermore, for analytes covered by more than one analytical method, measurement with the lowest 𝑅𝑆𝐷(𝑞𝑐)
value were chosen for further analysis

2 Reconstruction
Summary An established generic human metabolic reconstruction, Recon3D [11], was used as a foundation
to generate the iDopaNeuro1 model. Literature review was performed to define active and inactive reactions
and genes, transport reactions, degradation pathways and quantitative constraints necessary to represent the
requirement for molecular turnover in a non-growing, non-dividing dopaminergic neuron. When specific in-
formation on human substantia nigra pars compacta dopaminergic neurons was not present in the literature,
information from other neuronal types, cerebral tissue, or rodent data was used. Additionally, neuron-specific
biomass maintenance requirements were estimated for each biomass precursor and the first reaction in the
corresponding degradation pathway, or pathways, for each biomass precursor was identified. This enabled the
generation of turnover constraints to ensure that the material requirements for maintenance of a dopaminergic
neuron were met. The bounds on the rate of each exchange reaction, corresponding to a constituent of the
defined fresh cell culture medium, plus reversible extracellular transport reactions, for water, carbon dioxide
and oxygen, were qualitatively set to eliminate uptake of all other metabolites.

2.1 Generic human metabolic reconstruction
Recon2 [84] and its successor Recon3D [11] are increasingly comprehensive, genome-scale reconstructions of
human metabolism. They also provide information about gene-protein-reaction associations that associate each
metabolic gene with the corresponding enzyme or enzyme complex and reaction in a Boolean manner. They
are generic reconstructions formed by amalgamation and manual curation of metabolic reactions across human
metabolism occurring in many cell types. The metabolic identity of a cell is strongly influenced by its ability to
transport metabolites across its extracellular membrane. Therefore, particular emphasis was placed on curation
of dopaminergic neuronal transport reactions. Furthermore, a key characteristic of dopaminergic neurons is
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their ability to synthesise, degrade and release dopamine. Any novel neuronal reactions, that were identified
by literature review, but not present in Recon2 [84], were either incorporated into Recon3D [11], or added
subsequently prior to model generation.

2.1.1 Dopaminergic neuronal transporters

To identify transporters specific to dopaminergic neurons, we began with the 1550 human extracellular transport
reactions from the Virtual Metabolic Human database [57], which correspond to 255 genes as identified by
gene-protein-reaction associations. Extracellular transport genes were manually checked for association with
dopaminergeic neurons by manual literature curation. This primarily involved the identification of transporters
present in human substantia nigra pars compacta tissue or cell cultures of dopaminergic neurons through in
situ hybridisation, reverse transcription polymerase chain reaction, immunohistochemistry or immunoblotting.
When human data was not found, data from rat or mouse was included instead. Additionally, when data
specific for dopaminergic neurons or substantia nigra pars compacta was not found, evidence for transporters
being present in neurons in general, astrocytes or in the blood brain barrier was used instead.

2.1.2 Dopamine metabolism

In Recon2 [84], there were already 75 tyrosine related reactions. This content was extended with dopaminergic
neuronal specific information from a comprehensive literature review of dopamine metabolism [50] and additional
manual curation of the literature (Table S-2), the results of which were incorporated into Recon3D [11].

2.2 Neuronal turnover constraints
Summary Stoichiometric specification of biomass composition [20], as well as cellular synthesis and turnover
requirements is an essential component for the formulation of the objective function in constraint-based model-
ling. However, fully differentiated dopaminergic neurons do not replicate and therefore, it is sufficient if lipid,
nucleic acid, and amino acid synthesis fluxes meet their turnover demand. Therefore, we adapted an established
methodology [83] to define the minimal biomass maintenance and turnover requirements for dopaminergic neur-
ons. This required manual curation of the neurochemical literature to extract (i) neuronal biomass composition,
(ii) biomass precursor turnover fluxes, and (iii) key precursor degradation reactions in dopaminergic neurons.
This information was then combined to establish the minimum biomass precursor turnover requirements for a
dopaminergic neuron, which were then used as constraints during the dopaminergic neuronal model generation
process.

2.2.1 Biomass precursor turnover constraints

Neuronal biomass composition The fractional composition (𝜇𝑚𝑜𝑙/𝑔𝐷𝑊) of biomass constituents in a
human substantia nigra pars compacta dopaminergic neuron was obtained as follows. First, the percentage
composition of lipid and water of a human substantia nigra pars compacta dopaminergic neuron was assumed
to be the same as that reported for 55 year human cerebral cortex grey matter, that is 39.6% dry weight
of lipids, 60.4% dry weight of non-lipid residues, and 82.3% wet weight water content [59]. Furthermore, we
used the protein wet weight (WW) composition for human substantia nigra (99 mg/g WW) [6] to calculate
the protein dry weight (DW) composition. RNA and DNA dry weight fractional compositions for human
substantia nigra (grey matter) were obtained from the literature (3.29 𝜇g/mg DW of RNA and 1.81 𝜇g/mg DW
of DNA) [44]. Based on the relative concentrations of the different neuronal lipids, amino acids, and nucleic
acids, the dry weight percentage composition was estimated to be 39.60% lipid, 55.93% protein, 0.18% DNA,
0.33% RNA, and 3.96% others [58]. Using these percentages for each biomass constituent class, the percentage
of each biomass constituent was then calculated by assuming that the amount of each precursor, within each
precursor class, was the same as that stoichiometrically specified in the Recon3D [11] biomass maintenance
reaction (biomass_maintenance_noTrTr).

The fractional composition (𝜇𝑚𝑜𝑙/𝑔𝐷𝑊) of biomass constituents in vitro was calculated by assuming that in
vivo biomass composition is the same as in vitro biomass composition. The in vivo percentage of each biomass
constituent was converted into an in vitro fractional composition (𝜇𝑚𝑜𝑙/𝑔𝐷𝑊), using

fractional composition (𝜇mol/gDW) = constituent composition (%) × neuronal dry weight (gDW) × 10
molar mass (g/mol)

The neuronal dry weight (gDW) was calculated using

neuronal dry weight (gDW) ≔ in vitro protein concentration(𝑔𝐷𝑊) × 100
neuronal protein percentage
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where we measured the in vitro protein concentration using a BCA assayand a neuronal protein percentage
of 55.93% [58] was obtained from the literature. The result is a coarse-grained approximation of individual
neuronal lipid, amino acid and nucleic acid precursor composition in 𝜇mol/gDW.

Biomass precursor turnover fluxes Neuronal biomass constituent half-lives (ℎ𝑟−1) were collected from the
literature [43] and used to calculate turnover flux, defined by

turnover flux(𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟) ≔ fractional composition(𝜇𝑚𝑜𝑙/𝑔𝐷𝑊) × precursor half-life(ℎ𝑟−1)
ln(2)

where the fractional composition of key metabolites (𝜇𝑚𝑜𝑙/𝑔𝐷𝑊) was obtained from the literature [44].

Biomass precursor degradation reactions Manual literature curation of the literature was used to identify,
the degradation pathway(s), for each biomass constituent and the first reaction in each degradation pathways
was identified in Recon3D. For example, as reviewed in [41], phosphatidylserine is exclusively localised in the
cytoplasmic leaflet of neuronal and astrocytic membranes, forming protein docking sites for signalling pathways.
The phosphatidylserine decarboxylase enzyme is able to decarboxylate the serine moiety of phosphatidylserine
to form phosphatidylethanolamine. Although one of the fatty acyl groups of phosphatidylserine can also be
hydrolysed to convert phosphatidylserine into lysophosphatidylserine, this is quantitatively a minor pathway .

Biomass precursor turnover constraints Turnover fluxes (𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟) were applied as constraints
on the rate of degradation of certain key metabolic precursors. When a biomass constituent was associated
with a single degradation reaction, this reaction was set to irreversible in the direction of degradation, and
greater than 0.75 times the degradation rate 𝑑 was set as the lower bound on that degradation reaction. A
25% relaxation of the lower bounds from the estimated degradation rate was used as standard to account for
uncertainty in the data [85]. For the example of phosphatidylserine (Section 2.2.1), a lower bound was set on
the phosphatidylserine decarboxylase reaction (PSDm_hs). When a biomass constituent could be metabolised
through a reversible reaction, one direction of which corresponded to catabolism, this reaction was split into a
pair of irreversible reactions and the turnover constraint applied to the catabolic direction.

When a biomass constituent could be degraded by more than one reaction, the sum total fluxes of degradation
by all degradation reactions, was set to be greater than 0.75 times the degradation rate 𝑑, via an inequality of
the form

𝑣1 + 𝑣2 + ... + 𝑣𝑛 ≥ 0.75 × 𝑑, (3)
with due consideration of reaction directionality. Support for inequalities, such as Equation 3, within constraint-
based modelling problems, has been fully implemented within the Computational modelling used the Constraint-
Based Reconstruction and Analysis Toolbox, COBRA Toolbox [34]. This approach resulted in 21 turnover con-
straints on single degradation reactions, and a further eight turnover constraints, each on a set of degradation
reactions, when the metabolite could be degraded by more than one pathway (Table S-2 and S-3).

2.3 Active and inactive genes and reactions
A context-specific metabolic model should contain only the set of reactions active in a particular context. There-
fore, we assembled a core set of genes and metabolic reactions known to be active or inactive in dopaminergic
neurons in vivo or in dopaminergic neurons in culture. A core set of active genes (Table S-4), as well as active
and inactive reactions (Table S-2 and S-5) and present or absent metabolites (Table S-6), was obtained either
from manual curation of the literature or from transcriptomic data. Manual literature curation was focused
on the physiological and biochemical literature on dopamine metabolism, dopaminergic neuronal transporters,
central carbon metabolism, mitochondria-associated reactions and genes. In addition, manual curation of the
literature was used to determine the need for addition or deletion of external reactions that are required for mod-
elling non-equilibrium steady-state fluxes in dopaminergic neuronal metabolism. The list of genes, established
by manual literature curation to be metabolically active, was combined with the aforementioned transcriptomic
data and used to generate the context-specific model through gene-protein-reaction associations [83].

3 Modelling
3.1 Dopaminergic neuronal model generation
Context-specific models were generated from this generic model using the XomicsToModel pipeline [66], a novel,
flexible COBRA Toolbox extension enabling modular integration of context-specific data derived from literat-
ure curation and multi-omic data, including transcriptomic, metabolomic and proteomic data. A complete
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description of the XomicsToModel pipeline is provided elsewhere [66]. Briefly, the XomicsToModel pipeline
can use two model extraction algorithms, fastcore, an established and widely used algorithm for extracting
a minimal flux consistent model, and thermoKernel [66] a novel model extraction algorithm for extracting a
minimal thermodynamically flux consistent model. The XomicsToModel pipeline enables flexible specification
of technical model extraction parameters, such as the algorithm to use for model extraction, the transcriptomic
expression threshold, the magnitude of the largest anticipated flux, the tolerance beneath which a predicted
numerical flux is considered zero, whether to close or open unspecified external reactions, whether or not to
close ionic transport reactions for sodium, calcium, potassium and iron, as well as solver-specific parameters
and debugging options to enable evaluation of the intermediate results of each major consecutive step within
the pipeline. In order to identify the optimal technical parameters [60] to extract an iDopaNeuro1 model with
maximum predictive fidelity, an ensemble of context-specific models was generated, by varying all uncertain
technical parameters. The key steps are as follows.

3.1.1 Generic model generation

Given the Recon3D reconstruction, plus 21 additional reactions added by subsequent manual literature curation,
a generic model of human metabolism was generated by extracting the largest stoichiometrically and flux
consistent subset of the reconstruction [34]. This resulted in a generic model of human metabolism, with 10,621
metabolic reactions, 5,884 unique metabolites, and representing the activity of 2,248 open reading frames.

3.1.2 Integration of context-specific data

A metabolic network formed from the set of core reactions alone is not necessarily flux consistent, that is,
some reactions may not admit a non-zero steady-state flux. Therefore, we used the FASTCORE algorithm [90],
implemented in the COBRA Toolbox [73] to generate a compact, flux-consistent model. This algorithm returns a
minimal number of additional reactions, beyond the core set, which are required to ensure the flux-consistency
of the model. Therefore, the output is a context-specific, flux-consistent model.

3.1.3 Maximum metabolite uptake constraints

Only the constituents of the fresh medium, plus some reversible extracellular transport reactions including
water, carbon dioxide and oxygen, were permitted to be taken up by the model (Table S-1). That is, lower
bounds on the corresponding exchange reactions were set by assuming that the maximum uptake rate is equal
to the metabolite concentration in the fresh medium, divided by the duration of the interval being modelled
(Table S-1). This is always an overestimate of the actual metabolite uptake rate, because it effectively assumes
that the concentration of each metabolite taken up is zero at the end of the time interval. The fresh culture
medium was primarily composed of defined medium, however, certain supplements required for maintenance
of neurons in culture consist of proprietary formulations where the concentration of each metabolite is not
publicly available. Where certain supplements were known to contain unspecified amounts of key metabolites,
the corresponding exchange reactions were opened to uptake only. For example, AlbuMAX™ II Lipid-Rich BSA
(ThermoFisher Inc.) is a commercially available serum substitute which was used for maintenance of neuronal
cultures. Although its composition is a trade secret, it is known to contain triglycerides and cholesterol[22], and
therefore the corresponding exchange reactions were opened to represent growth in cell culture.

3.1.4 Model extraction

In general, a model extraction algorithm extracts a context-specific subset of a generic model given certain
context-specific input data. In our case, this input data were: (i) The set of genes, metabolites and reactions that
were identified by manual curation of biochemical literature as being active or inactive in human dopaminergic
neurons from the substantia nigra (Section 2), and (ii) RNA-sequencing data from a dopaminergic neuronal
in vitro cell culture, was mapped into the generic human metabolic model to identify the genes that should
be active or inactive in a dopaminergic neuronal reconstruction (Section 1.2), based on quantitative expression
levels above or below a user-specified threshold. (iii) Bounds on otherwise reversible exchange reactions that
were manually set to satisfy specific characteristics of a (neuronal) cell culture, e.g., the production of oxygen
and glucose were disallowed by setting the upper bound on the corresponding exchange reaction to zero, so
that only uptake became possible in the model. (iv) A set of reactions associated to dopaminergic neuronal
metabolism were qualitatively constrained to make sure that the model could produce neuromelanin, ATP,
dopamine and GABA .
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3.1.5 Exometabolomic data integration

The final step of the XomicsToModel pipeline uses quantitative exometabolomic data (Section 1.3) of fresh and
spent media to constrain external reaction fluxes in each candidate dopaminergic neuronal model (cf. Table
S2). This approach assumes that the differentiated dopaminergic neurons are (a) not growing, and (b) at a
metabolic steady state. Our justification is that, in contrast to earlier stages, the cell number does not alter
significantly in the last five days in culture (<3-4% increase, cf Supplementary Fig. 14). Also, it is known that
the rate of neuronal differentiation reaches a plateau toward the end of the period in culture [70], consistent
with our microscopic observations. Furthermore, the ratio of intracellular cell volume to extracellular media in
macroscopic cell culture is sufficiently large that metabolite concentration changes in the surrounding medium
are ameliorated.

By assuming that metabolite exchange fluxes are constant with respect to time, between replacement with
fresh medium and collection of spent medium, the measured rate of exchange is the difference between spent
and fresh medium concentrations, divided by the time interval the fresh medium was exposed to the cells before
being sampled. In the model, the unit of flux is 𝜇mol/gDW/hr, while the unit of metabolite concentration
change is 𝜇mol/L. In order to transform an extracellular metabolite concentration change into a mean exchange
reaction flux, we used

flux(𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟) = metabolite conc. change(𝜇𝑚𝑜𝑙/𝐿) × media volume(𝐿) × protein content
in vitro protein concentration(𝑔𝐷𝑊/𝐿) × assay volume(𝐿) × interval(ℎ𝑟) ,

when in vitro protein concentration (gDW/L) was measured as described in Section 1.1. Following the standard
convention, negative flux values represent uptakes and positive ones represent secretions.

The measurements of metabolite concentrations and the measurement of cell culture parameters, e.g., protein
concentration, are associated with measurement uncertainty. This measurement uncertainty was propagated
to represent each measurement with a mean and standard deviation. The result is a vector of mean measured
exchange reaction fluxes 𝑣𝑒𝑥𝑝 ∈ ℝ𝑛 accompanied by a standard deviation vector 𝜎𝑒𝑥𝑝 (cf. Eq. (5)). Both of these
vectors are incorporated into the mathematical formalism to fit model bounds to measured exchange fluxes.
However, they cannot be directly incorporated to an any subset of a generic model with arbitrary exchange
reaction bounds, because, either due to model misspecification or experimental error, 𝑣𝑒𝑥𝑝 may not be consistent
with the feasible set of steady state fluxes, as defined in Fig. 3. Specifically, it may be inconsistent with the set
defined by the steady state constraint and the reaction bounds, or the set defined by the coupling constraints
and the reaction bounds.

Therefore, we assumed that inconsistency would occur and fit the bounds of the candidate dopaminergic
neuronal model to the experimental data while allowing relaxation of the bounds on net flux in Fig. 3, using
the following quadratic optimisation problem

min
𝑣,𝑝,𝑞∈ℝ𝑛

(𝑣𝑒𝑥𝑝 − 𝑣)𝑇 diag(𝑤𝑒𝑥𝑝)−1(𝑣𝑒𝑥𝑝 − 𝑣) + 𝑝𝑇 diag(𝑤𝑙)𝑝 + 𝑞𝑇 diag(𝑤𝑢)𝑞
s.t. 𝑆𝑣 = 0,

𝐶𝑣 ≤ 𝑑,
𝑙 − 𝑝 ≤ 𝑣 ≤ 𝑢 + 𝑞,
0 ≤ 𝑝,
0 ≤ 𝑞,

(4)

where 𝑆 ≔ [𝑁, 𝐵], 𝑣 ≔ [𝑣𝑓 − 𝑣𝑟; 𝑤], 𝑙 ≔ [𝑙𝑣; 𝑙𝑤] and 𝑢 ≔ [𝑢𝑣; 𝑢𝑤] in Fig. 3 and where 𝑝 ∈ ℝ𝑛
≥0 and 𝑞 ∈ ℝ𝑛

≥0 are
non-negative variables that permit relaxation of the lower and upper bound constraints, respectively.

Problem 4 always admits a steady state flux 𝑣 ∈ ℝ𝑛 and also allows for different weights to be input as
parameters. with𝑤𝑒𝑥𝑝 ∈ ℝ𝑛

≥0 to penalise deviation from experimentally measured mean fluxes,𝑤𝑙 ∈ ℝ𝑛
≥0 to

penalise relaxation of lower bounds, and 𝑤𝑢 ∈ ℝ𝑛
≥0 to penalise relaxation of upper bounds.

For example, we set the penalty on deviation from experimental measurement to be the inverse of one plus
the variance:

𝑤𝑒𝑥𝑝 ≔ 1
(1 + 𝜎2𝑒𝑥𝑝) (5)

where 𝜎𝑒𝑥𝑝 ∈ ℝ𝑛
≥0 is the standard deviation. This approach increases the penalty on deviation from an experi-

mentally measured mean flux where the variance is lower. Note that, certain lower or upper bounds might not
be realistic to be relaxed, e.g., an essential amino acid can always be taken up but never secreted, therefore the
upper bound on the corresponding exchange reaction must be zero. This can be specified a priori, using the
technical parameters input to the XomicsToModel pipeline.
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3.2 Prediction of reaction fluxes

minimise 𝜓(𝑣𝑓 , 𝑣𝑟, 𝑤, 𝑐0, 𝑐) ≔ … Objective function
𝑞𝑇 ∥𝑣𝑓 − 𝑣𝑟∥𝑝 + … Weighted p-norm (6)

𝑎𝑇 (𝑣𝑓 − 𝑣𝑟) + … Linear objective on net flux (7)
2𝑣𝑇

𝑓 ln 𝑣𝑓 + … ♢ Forward flux entropy maximisation (8)
2𝑣𝑟

𝑇 ln 𝑣𝑟 + … ♢ Reverse flux entropy maximisation (9)
𝑐𝑇 ln 𝑐 + … ♢ Final concentration entropy maximisation (10)

𝑐𝑇
0 ln 𝑐0 + … ♢ Inital concentration entropy maximisation (11)

𝑔𝑇 (𝑐 + 𝑐0) Linear objective on concentrations (12)

subject to Ω ≔ … Constraint set
𝑁(𝑣𝑓 − 𝑣𝑟) + 𝐵𝑤 = 𝑐 − 𝑐0 Stoichiometric mass balance (13)

𝐶(𝑣𝑓 − 𝑣𝑟) ≤ 𝑑 Flux coupling constraints (14)
𝑙𝑣 ≤ 𝑣𝑓 − 𝑣𝑟 ≤ 𝑢𝑣 Net internal flux bounds (15)

𝑙𝑤 ≤ 𝑤 ≤ 𝑢𝑤 Net external flux bounds (16)
𝑙𝛿𝑐 ≤ 𝑐 − 𝑐0 ≤ 𝑢𝛿𝑐 Net concentration change bounds (17)

0 ≤ 𝑣𝑓 ≤ 𝑢𝑓 Forward internal flux bounds (18)
0 ≤ 𝑣𝑟 ≤ 𝑢𝑟 Reverse internal flux bounds (19)
𝑙𝑐 ≤ 𝑐 ≤ 𝑢𝑐 Final concentration bounds (20)

𝑙0 ≤ 𝑐0 ≤ 𝑢0 Initial concentration bounds (21)

Figure 3: Amalgamation of mathematical modelling approaches
This optimisation problem is an amalgamation of all of the objectives and constraints used on each model in the
context-specific model ensemble. The variables are forward 𝑣𝑓 ∈ ℝ𝑛 and reverse 𝑣𝑟 ∈ ℝ𝑛 internal reaction flux, external
reaction net flux 𝑤 ∈ ℝ𝑘 as well as initial 𝑐0 ∈ ℝ𝑚 and final 𝑐 ∈ ℝ𝑚 metabolite concentration. In the objective the
data are linear objective coefficients 𝑎 ∈ ℝ𝑛 on net fluxes and weights 𝑔 ∈ ℝ𝑛 on the 𝑝-norm of net fluxes. Note that
here, in a slight departure from established notation,‖⋅‖𝑝 denotes the component-wise norm, and ln the component-wise
natural logarithm. That is, when 𝑝 = 0, 1, 2 the 𝑝-norm denotes the zero-, one- and two- norm, respectively. The
entropy function is −𝑥𝑇 ln 𝑥, so entropy maximisation is minimisation of 𝑥𝑇 ln 𝑥. The ♢ denote the objective terms that
represent simultaneous maximisation of flux and concentration entropy. The constraint data are the internal 𝑁 ∈ ℤ𝑚×𝑛

and external 𝐵 ∈ ℤ𝑘×𝑛 reaction stoichiometric matrix, while the data 𝐶 ∈ ℤ𝑠×𝑛 and 𝑑 ∈ ℤ𝑠 enforce coupling between net
reaction fluxes, e.g., to represent a constraint on cumulative turnover of a metabolite by a set of degradation reactions.
The other constraint data are bounds on net internal flux, net external flux, net concentration change, and the bounds
on each of the variables.

Several mathematical modelling innovations were necessary to adapt constraint-based modelling to predict
reaction fluxes in non-replicating cells, such as neurons, where maximisation of growth rate is not appropriate.
Fig. 3 provides an amalgamation of the mathematical modelling approaches we employed when predicting
reaction fluxes. Many of these approaches were already implemented within the COBRA Toolbox, and any new
approaches were implemented within it. We generated an ensemble of flux predictions by applying a set of
different objectives (Table 1) to each model in the aforementioned ensemble of context-specific models. Also,
depending on the objective, different variables were present and different constraints were applied.
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3.2.1 Evaluation of predictive fidelity

Objective Data Objective, 𝜓 Constraints, Ω
Min.
zero-norm of
net flux

𝑝 = 0,𝑞 = 1 𝜓0 = 1𝑇 ∥𝑣𝑓 − 𝑣𝑟∥0 𝑐 = 0, 𝑐0 = 0

Min. weighted
zero norm of
net flux

𝑝 = 0,𝑞 = {𝑥𝑗 ∈ ℝ − log(𝑥)
log(sup(𝑥))

𝑥𝑗 ∉ ℝ 0 𝜓0(𝑞) = 𝑞𝑇 ∥𝑣𝑓 − 𝑣𝑟∥0 𝑐 = 0, 𝑐0 = 0

Min. one-norm
of net flux

𝑝 = 1,𝑞 = 1 𝜓1 = 1𝑇 ∥𝑣𝑓 − 𝑣𝑟∥1 𝑐 = 0, 𝑐0 = 0

Min. weighted
one-norm of
net flux

𝑝 = 1,

𝑞 =
⎧{
⎨{⎩

𝑥𝑗 ∈ ℝ, log ( sup(𝑥)
𝑥 )

𝑥𝑗 ∉ ℝ, 𝑗 ∉ □, mean(log ( sup(𝑥)
𝑥 ))

𝑥𝑗 ∉ ℝ, 𝑗 ∈ □, 0

𝜓1(𝑞) = 𝑞𝑇 ∥𝑣𝑓 − 𝑣𝑟∥1 𝑐 = 0, 𝑐0 = 0

Min. two-norm
of net flux

𝑝 = 2,𝑞 = 1 𝜓2 = 1𝑇 ∥𝑣𝑓 − 𝑣𝑟∥2 𝑐 = 0, 𝑐0 = 0

Min. weighted
two-norm of
net flux

𝑝 = 2,𝑞 = 𝑥 𝜓2(𝑞) = 𝑞𝑇 ∥𝑣𝑓 − 𝑣𝑟∥2 𝑐 = 0, 𝑐0 = 0

Max. entropy
of forward and
reverse flux

𝜓𝑣 = 2𝑣𝑇
𝑓 ln 𝑣𝑓 + 2𝑣𝑟

𝑇 ln 𝑣𝑟 𝑐 = 0, 𝑐0 = 0

Max. entropy
of flux and
concentration

𝜓𝑣𝑐 = 2𝑣𝑇
𝑓 ln 𝑣𝑓 + 2𝑣𝑟

𝑇 ln 𝑣𝑟 …
+𝑐𝑇 ln 𝑐 + 𝑐𝑇

0 ln 𝑐0

Table 1: Candidate objective functions
A set of candidate objective functions were used to predict net reaction fluxes. sup(𝑥) denotes the supremum
of 𝑥 and � denotes the set of external reactions. Note that here, in a slight departure from established notation,‖⋅‖𝑝
denotes the component-wise norm, and log the component-wise logarithm.

Each model within the ensemble of context-specific models, was generated with quantitative exometabolomic
data on metabolites taken up and secreted by midbrain-specific dopaminergic neurons in culture, represented
by constraints on a subset of external reaction fluxes. An underestimate of the predictive fidelity of each of
model was obtained by generating a pair of derived models. First, an uptake constrained model (modelUpt)
was derived by replacing quantitative constraints on secreted metabolites with arbitrarily large reversibility
constraints. Second, a secretion constrained model (modelSec) was derived by replacing quantitative constraints
on up-taken metabolites with arbitrarily large reversibility constraints.

Setting arbitrarily large reversibility constraints includes removal of constraints forcing uptake or secre-
tion of measured metabolites, which were previously applied while the models were being generated by the
XomicsToModel pipeline (Section 3.1.4). That is, these constraints were replaced by lower and upper bounds
set to the default maximum magnitude flux, e.g. [-1000,1000], before the predictive capacity of the models were
tested. To put it another way, constraining uptake or secretion during model construction ensures that a model
can uptake or secrete, but once such constraints are removed and replaced with reversibility constraints, only
the set of uptakes, or secretions, together with the chosen objective determines whether a metabolite is actually
secreted, or taken up, respectively.

Then each pair of models, modelUpt and modelSec, was combined with each objective and the predicted
flux was evaluated for its qualitative and quantitative ability to predict the fluxes of measured secretion and
uptake reactions, respectively. In a confusion matrix, qualitative accuracy is the number of correct predictions
of uptake, secretion or neither, divided by all incorrect predictions. Measured metabolites were defined as
neither taken up nor secreted if one standard deviation reached across zero, while predicted uptake rate was
considered zero if it was less than the set numerical tolerance of the solver. Quantitative accuracy was defined
by a weighted Euclidean norm

√(𝑤𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)𝑇 ( 1
1 + (𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2 ) (𝑤𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑤𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)
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where the contribution from each reaction was weighted to reflect the ~5 orders of magnitude between the
largest and smallest measured net flux. The best combination of qualitative and quantitative predictive fidelity
was used to identify the iDopaNeuro1 model within the ensemble, and this model, together with the objective
function with the highest predictive fidelity was taken forward for validation.

3.3 Model Validation
The effects of four different perturbations to the iDopaNeuro1 model were predicted: (i) inhibition of mito-
chondrial complex V, (ii) inhibition of mitochondrial complex I, (iii) replacement of glucose with galactose as
the primary sugar source and (iv) deletion of the glucocerebrosidase (GBA1) gene, the gene most commonly
associated with PD. All except the perturbation to the GBA1 gene were compared with corresponding exper-
imental data. Specifically, at day 22 of differentiation, midbrain-specific dopaminergic neurons, were exposed
to a mitochondrial complex V inhibitor, 12.5 𝜇M Oligomycin (Abcam), or a mitochondrial complex I inhibitor,
12.5 𝜇M Rotenone (Merck), for 24 hours each. Exometabolomic analyses of fresh and spent culture media was
used to measure exchange of metabolites between the media and perturbed dopaminergic neuronal cell culture,
as described previously. Measured and predicted metabolomic exchange were compared. When predicting per-
turbed exchange flux, we used the objective function with the highest predictive fidelity identified from prior
ensemble modelling. Thereby, this choice of objective function was independent of the exometabolomic data
used for validation.

3.4 Prospective research design
All reactions in the iDopaNeuro1 model are thermodynamically flux consistent, so all metabolites should be
considered as targets for future development of metabolomic platforms for characterisation of dopaminergic
neuronal metabolism. However, in practice, a prioritised list of metabolites exchanged with the environment
would enable optimal design of exometabolomic platforms targeted to a manageable subset of metabolites.
Similarly, under constrained external reactions can identify opportunities for further reconstruction efforts, or
refinement of the model generation pipeline. Therefore, we developed a novel uncertainty reduction pipeline
(Fig.13) that predicted the metabolites whose corresponding external reactions would be the most important
to constrain in future research, in order to maximally shrink the feasible set of external reaction fluxes of the
iDopaNeuro1 model.

First, uniform sampling [91] was used to obtain an unbiased assessment of the fluxes satisfying the constraints
on the solution space, 𝜓 = 0 and Ω ≔ {𝑙𝑐 = 𝑢𝑐 = 0} in Fig.3. Uniform sampling was implemented using the
Coordinate Hit-and-Run with Rounding (CHRR) algorithm [31], within the COBRA Toolbox [34], using the
parameters 𝑛𝑆𝑘𝑖𝑝 = dim(Ω)2 and 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 8 × dim(Ω), which represent the number of samples skipped
between stored samples, and the total number of stored samples obtained, respectively. This resulted in a set of 𝑧
steady state flux vectors, 𝑉 ∈ ℝ𝑛+𝑘×𝑧, from which a covariance matrix, 𝑄 ∈ ℝ𝑘×𝑘, restricted to the set of external
reactions, was computed. The first most informative external reaction was defined to be the one corresponding
to the largest Euclidean norm of this covariance matrix. Thereafter, we used a heuristic, iterative method that
greedily selects the row of the covariance matrix that has the maximum Euclidean distance to the subspace
spanned by the rows selected already. This approach ensures that the variance reduction due to cumulative
measurement of higher-ranked exchanges reactions was taken into account in the ranking of subsequent most
informative metabolites.

3.5 Implementation
Metabolomic data processing was implemented using R. Constraint-based modelling was implemented using the
COBRA Toolbox[34]. Linear and quadratic optimisation problems were solved using Gurobi 9.1 (Gurobi Inc),
and CPLEX 12.10 (IBM Inc.), respectively. Nonlinear, non-quadratic convex optimization problems were solved
using the exponential cone solver within Mosek (Mosek ApS) and an open source Primal-Dual interior method
for Convex Objectives PDCO. Each of these solvers is interfaced to the COBRA Toolbox, which is implemented
in MATLAB (MathWorks Inc.).
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Part III
Results
4 Experiments
Summary A human neuroepithelial stem cell line from a healthy donor was maintained and differentiated
into dopaminergic neurons (Section 4.1), identified by immunoreactivity for tyrosine hydroxylase indicated the
presence of neurons capable of converting tyrosine to L-DOPA (Fig. 4a), the penultimate step in dopamine
synthesis. RNA sequencing and data processing quantified the expression of 12,698 but only 1,202 corresponded
to genes present in the generic model of human metabolism. All genes expressed above a threshold were
considered active, and the rest considered inactive, unless manual curation of the literature dictated otherwise.

4.1 Cell culture

Figure 4: Immunostaining and calcium imaging.
Immunostaining of differentiated neurons and calcium imaging of spontaneously firing human neuroepithelial stem cell differentiated
into dopaminergic neurons. (A) Immunostaining of a representative well at day 23, showing neurons positive for nuclei with Hoechst
(blue), TUB𝛽III (red) and TH (green); scale bar 20𝜇m. (B) Mean frame of a field of view of representative neurons. (C) Automatic
segmentation of neurons. (D) Fluorescence traces showing the spontaneous activity of individual segmented neurons.

A human neuroepithelial stem cell line from a healthy donor was maintained and differentiated into dopamin-
ergic neurons, using an established protocol [70] (Section 1.1.1). The differentiation of human neuroepithelial
stem cells into neurons was verified by identified by immunofluorescent staining for TUB𝛽III. At 23 days of
the protocol (Fig. 2), neurons positive for tyrosine hydroxylase, the penultimate step in dopamine synthesis,
confirmed the presence of neurons capable of converting tyrosine to L-DOPA, (Fig. 4a). The percentage of
tyrosine hydroxylase positive cell was between 15-20%, depending on the well. Furthermore, analysis of calcium
imaging data revealed spontaneously electrophysiologically active neurons, that is, neurons firing without a
requirement for extrinsic electrophysiological stimulation (Fig. 4b, c, d).
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4.2 Transcriptomic analysis

Figure 5: Manually curated genes compared with transcriptomic data.
(a) Confusion matrix illustrating the performance of the transcriptomic classification into active and inactive genes. TP - True
Positive, TN - True Negative, FN - False Negative, FP - False Positive. (b) Receiver operating characteristic (ROC) curve. True
Positive Rate =𝑇 𝑃𝑅 = 𝑇 𝑃

𝑇 𝑃+𝐹𝑁 , False Positive Rate = 𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇 𝑁 .(c) Number of manually curated genes per threshold for

each condition.(d) A true positive rate of 0.9 corresponded to a threshold value of zero Fragments Per Kilobase of transcript per
Million mapped reads (FPKM), on base-two logarithmic scale (green vertical line).

In the transcriptomic data of the differentiated midbrain-specific dopaminergic neuronal culture, fragments were
detected from 18,530 genes, but only 12,698 of these were sufficiently abundant to be considered expressed.
That is, above a threshold of one Fragment Per Kilobase of exon per Million reads (FPKM)[77]. Of the
expressed genes, 1,202 could be mapped to metabolic genes in Recon3D and were considered active, unless
manual curation of the literature revealed otherwise. Finally, 755 genes were present in the iDopaNeuro1
model. Transcriptomic data contains a range of gene expression values. Some of the low expression values are
attributable to experimental noise or aborted transcripts, but for borderline expression values, it is a challenge
to divide the corresponding genes into expressed or not expressed. By default, each gene with less than zero
FPKM, on base-two logarithmic scale, was considered not expressed [77]. Each gene with FPKM higher than
this threshold was considered expressed. Out of the 18,530 unique genes with expression levels reported in the
transcriptomic data, 12,698 were considered to be expressed, based on the aforementioned threshold. However,
only 1,202 were mapped into Recon3D (metabolic genes) and therefore included in the model.

To test the viability of the selected transcriptomic data expressed in the in vitro culture and selected in
Recon3D, a receiver-operating characteristic curve [30] was generated to qualitatively compare the expressed
and not-expressed assignments from our transcriptomic data on dopaminergic neurons, against the active and
inactive assignments for manually curated dopaminergic neuronal genes (cf. Section 2.3 below), which we
assume to be a true representation of dopaminergic neuronal gene expression (Fig. 5). If a gene was considered
to be active by manual literature curation and was also found to be expressed in transcriptomic data, it was
considered a true positive. The proportion of true positives that were correctly classified as positive. The true
and false positive fluxes can vary depending on the threshold applied to distinguish between a gene that is
expressed or not. In the reconstruction, genes expressed above the threshold were assigned to be metabolically
active and genes expressed below the threshold were not included as in the model, unless the corresponding
reactions had to be included to generate a flux consistent model.
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4.3 Analytical chemistry

Figure 6: Venn diagram summarising metabolomic measurements
A total of 89 unique metabolites were targeted by the selected metabolomic platforms (blue). Of these 89, 75 could be used to
constrain the model as 14 metabolites were not present in the stoichiometrically and thermodynamically flux consistent subset of
Recon3D. Of these 75 metabolites, 24 were present in the fresh medium and 51 were synthesised by the cells and secreted into the
spent medium. The iDopaNeuro1 model contains exchange reactions for 157 metabolites (yellow), therefore there still remains 82
metabolites to target with exometabolomic platforms.

Fresh and spent cell culture media samples were analysed using four complementary mass spectrometry plat-
forms, resulting in quantification of a total of 104 metabolites. Where platforms measured the same metabolite,
the measurement from the platform with the lowest relative standard deviation was employed for comparison
with model predictions (55 from DmPABr [92], 16 from BzCl [93] 11 from GC-MS [42] and 7 from Accq-Tag
[15]). Although a further 13 metabolites were measured by these platforms, there was no stoichiometrically
and flux consistent reaction corresponding to it within the generic model of human metabolism, so they were
excluded from further analyses (Fig. 6).
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4.3.1 Metabolomic analysis of fresh medium

Figure 7: Validation of specified fresh medium concentrations.
Metabolite concentrations specified by the medium manufacturer (blue) compared to the absolute concentrations measured by
mass spectrometry (grey). Some quantified metabolite concentrations, e.g., for cysteine, pyruvic acid, valine, aspartic acid and
putrescine, appear to significantly deviate from the manufacturers specifications.

We compared measured metabolite concentrations with manufacturers specification of fresh media. The man-
ufacturers specification identifies a total of 57 different metabolites and molecules in the fresh culture medium:
24 amines, 12 vitamins, 16 inorganic salts, 1 lipid, 2 nucleotides and 2 organic acids (Table S-1). Of the fresh
medium metabolites and molecules almost all (50/57) were present in the stoichiometrically and flux consistent
subset of Recon3D. The remaining 7 molecules were omitted from further consideration as they were inorganic
salts or were not present in Recon3D, and a three others (magnesium, cyanocobalamin and selenium trioxide)
did not correspond to any stoichiometrically and flux consistent reaction. Analysis of fresh medium samples in
multiple GC-MS and LC-MS platforms enabled measurement of the absolute concentrations of glucose and pyr-
uvic acid and 22 of the 24 amines, known to be in the medium. This enabled us to test the concordance between
the specifications of the medium manufacturer and the actual concentrations (Fig.7). Reduced glutathione and
L-cystine are two amines that could not be detected by the LC-MS platform.
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5 Reconstruction

Figure 8: Classification of active reactions and genes by manual literature curation. The result is
partly a reflection of the availability of biochemical information on certain pathways, e.g., central metabolism,
and partly a reflection of the pathways that were targeted for curation, e.g., dopamine metabolism.

Following manual curation of the literature [50, 76, 52, 53, 99, 19, 16, 89, 37, 54], 9 metabolites and 49 reactions
were added to the subsystem dopamine metabolism within Recon3D. These are 11 transport, 11 exchange, 19
internal and 8 demand reactions. In Recon3D, dopamine metabolism includes 122 reactions in total (Supp.
Fig. 15). Out of these 122 reactions, we were able to collect evidence for the occurrence of 77 reactions in
dopaminergic neurons that were also specified as active reactions: 42/49 newly added reactions and 35/73
dopamine-related reactions already present in Recon 2.04. For many reactions (45/122) no clear information
was found, therefore they were not specified as active or inactive. Further information can be found in Table
S-2.

Manual literature curation established the activity of 252 genes in dopaminergic neurons. In Recon3D,
each gene is associated with one or more reactions. Out of these 252 genes, 54 were not associated with any
stoichiometric and flux consistent reaction in Recon3D, so were excluded from further analyses (Table S-4 and
Fig.8). Significant effort was made to manually curate transport reactions as their presence or absence help
to establish the idiosyncratic boundary conditions for any particular cell type. Accordingly, literature evidence
established the presence of 20 transport reactions in human, mouse, or rat substantia nigra. Manual literature
curation revealed that 440 unique reactions should be active in dopaminergic neurons of which 69 are specific for
dopamine metabolism. Nevertheless, 107 of the active reactions had to be excluded from the model generation
process as they were not associated with any stoichiometric and flux consistent reaction in Recon3D (Table S-2
and Fig.8).

Manual literature curation specified that 62 genes should be inactive in dopaminergic neurons (Table S-4).
A reaction uniquely encoded by an inactive gene was removed from the model, unless that gene participated
in a reaction that was biochemically established to be active. A total of 229 metabolic reactions were specified
to be inactive in the brain (Table S-5) and were therefore excluded from the model. Taken together, manual
literature curation revealed evidence for the activity, or inactivity, of 399 metabolic genes (Table 4 and 6) and
6669 metabolic reactions (Table S-2) in dopaminergic neurons. Manual literature curation of neuron-specific
biomass maintenance requirements resulted in 46 turnover constraints, each of which was either on a single
degradation reaction or a set of degradation reactions, when the metabolite could be degraded by more than
one pathway.
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6 Modelling
6.1 Ensemble model generation

Figure 9: Exometabolomic data driven selection of iDopaNeuro1.
A-C: The effects on predictive accuracy and model size of changing XomicsToModel pipeline parameters, av-
eraged over all candidate objectives, excluding outliers. Specifically, A: Qualitative accuracy of predictions,
given by the number of correctly predictions of secretion/uptake/neither divided by the number of incorrect
predictions. B: Quantitative accuracy of predictions, given by the Euclidean norm of the differences between
predicted and measured exchange fluxes, weighted by the inverse of the square of the measured exchange flux.
C. Average model size, given by the rank of the stoichiometric matrix (𝑆 ≔ [𝑁, 𝐵] in Fig. 3). D. iDopaNeuro1
was defined as the model that gave the joint highest qualitative predictive accuracy for two objectives, 𝜓𝑣𝑐, 𝜓2(𝑞)
in 1. Moreover, the objective to maximise entropy of fluxes and concentrations , 𝜓𝑣𝑐 in 1, gave the highest
qualitative predictive accuracy over all models. E. Depending on the objective (𝜓𝑣𝑐 ,pink, 𝜓2 green), qualitative
and quantitative accuracy of exchange flux prediction can be more or less correlated. Given the same objective,
there can be a large difference between the qualitative accuracy of the predictions, depending on the model. F.
Smaller models tend to give rise to higher qualitative predictive accuracy.

To identify the best approach to construct a dopaminergic neuronal metabolic model, an ensemble of 384
candidate dopaminergic neuronal metabolic models were generated from a generic model of human metabol-
ism, by varying the parameters of a novel model generation pipeline, XomicsToModel [66], that was supplied
with the results of manual literature curation, as well as our in vitro transcriptomic and metabolomic data
from midbrain-specific dopaminergic neurons. An underestimate of the predictive fidelity of each model was
obtained by evaluating the predictive fidelity of a pair of derived models, an uptake constrained model and a
secretion constrained model, without exometabolomically derived constraints on secretion and uptake reactions,
respectively. To identify a suitable metabolic objective to represent dopaminergic neuronal metabolism, a set of
8 candidate cellular objectives (Table 1) were optimised on each uptake constrained model and each secretion
constrained model, subject to additional constraints representing steady state mass balance, biomass turnover
and reaction directionality (Fig. 3).

The effects of changing pipeline parameters on predictive fidelity, averaged over all cellular objectives while
excluding outliers, was evaluated qualitatively and qualitatively. If a gene was specified to be active, requiring
that at least one corresponding reaction be active (1-rxn in Fig. 9A,B,C), rather than all corresponding reactions
be active (all-rxn in Fig. 9A,B,C), results in smaller dopaminergic neuronal models(Fig. 9C), with higher
qualitative accuracy (Fig. 9A) and better quantitative accuracy (Fig. 9B). Specifying an extraction algorithm
that ensures that context-specific models are thermodynamically flux consistent (thermoKernel in Fig. 9A,B,C),
rather than just flux consistent (fastCore in Fig. 9A,B,C, [90]), results in more accurate predictions (Fig. 9A,
B), as does specifying that all reactions corresponding to genes expressed below a transcriptomic threshold
should be inactive.

The effects of changing cellular objectives on predictive fidelity, averaged over all 384 models while excluding
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outliers, was evaluated qualitatively and qualitatively. Averaged over all models, the best performing objective
was minimisation of the Euclidean norm of all net fluxes (𝜓2 in 1 and Ω ≔ {𝑐 = 0, 𝑐0 = 0} in Eq. 3). However,
the highest predictive fidelity (Fig. 9) of any combination of objective and candidate model was maximisation
of the entropy of fluxes and concentrations (𝜓𝑣𝑐 in 1 and Ω ≔ {𝑙𝛿𝑐 = 𝑢𝛿𝑐 = 0, 𝑙𝑐 = 𝑙0 = 0, 𝑢𝑐 = 𝑢0 = ∞}
in Eq. 3). The corresponding model was designated iDopaNeuro1 and with entropy maximisation it achieved
a qualitative predictive accuracy of 0.91 and quantitative predictive accuracy of 5 𝜇𝑀𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟. Also with
entropy maximisation another candidate model, designated iDopaNeuro1.1, achieved a slightly lower qualitative
predictive accuracy of 0.88 and slightly less quantitative predictive accuracy of 7 𝜇𝑀𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟. However,
iDopaNeuro1.1 was almost double the size of the iDopaNeuro1 model (Fig. 9F), with the former generated with
all reactions active per active gene and the latter generated with at least one reaction active per active gene.
Therefore, both models were taken forward for further analyses.

Figure 10: Predicted versus measured exchange fluxes.
Comparison of measured fluxes of metabolite secretion (top) or uptake (bottom) with predicted fluxes of meta-
bolite exchange (diamonds), obtained with the iDopaNeuro1 model, obtained by maximisation of the entropy
of fluxes and concentrations. Measured exchange fluxes are displayed with error bars, each one standard devi-
ation in length, whose intersection with zero defines a metabolite not exchanged with the medium. Qualitative
agreement is better for prediction of uptakes, given secretion constraints, than prediction of secretions, given
uptake constraints. Measured exchange fluxes extend from −276 ± 4 𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟 for glucose to 55 ± 1
𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟 for lactate, but are significant over ~5 orders of magnitude, e.g., decanoylcarnitine is secreted
at a rate of 2.1 ± 0.3 𝑛𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟. Nevertheless, predicted exchange fluxes are broadly consistent with the
relative magnitudes of exchange fluxes, with a Spearman rank of 0.71 between predicted and measured exchange
fluxes.
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6.2 iDopaNeuro1 model characteristics

Figure 11: Minimal flux metabolic subsystems of the iDopaNeuro1 model.
Comparison of the fraction of reactions in (red) and out (blue) of the minimal flux vector in each metabolic subsystem
of the iDopaNeuro1 model, obtained by minimising the function 𝜓(𝑣) ∶= ‖𝑣‖0 subject to 𝑣 ∈ Ω, to predict the minimum
number of reactions that are required to be active to satisfy dopaminergic neuron specific constraints on the steady-state
flux space Ω.
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The iDopaNeuro1 model represents the activity of 678 metabolic genes from 59 biological pathways, comprised
of 1092 biochemical reactions that interconvert 430 unique metabolites (Table ??). The iDopaNeuro1 model
contains 167 exchange reactions, of which 27 are for metabolite uptake, 120 are for metabolite secretion and 20
are open reversible exchange reactions, e.g., for the transport of water, (Table S-3). The iDopaNeuro1 model
was constrained to only permit uptake of 47 metabolites present in the defined medium whereas the potential
to secrete metabolites is either a consequence of manual literature curation, or a novel prediction. That is,
out of the 140 metabolites with the potential to be secreted, about half (32/140) were expected based on the
assignment of corresponding transport reactions as active reactions during manual curation of the literature and
exometabolomic measurements of spent media (Table S-2). We predict that the remaining metabolites (73/140)
have the potential to be secreted by dopaminergic neurons, an important analytical chemistry consideration
when selecting, or developing, targeted platforms for future exometabolomic experiments (Tables S-2 and S-3).

26

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450562doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450562


6.3 Model validation results

Figure 12: iDopaNeuro1 validation of complex I inhibition predictions
A. Validation of the iDopaNeuro1 model predictions (diamonds) of changes in uptakes and secretions following
complex I inhibition, obtained by maximisation of the entropy of fluxes and concentrations 𝜓𝑣𝑐 in 1, with
experimental data. Metabolites predicted to be taken up are shown with negative 𝛿𝑣 values, while metabolites
predicted to be secreted are shown with positive 𝛿𝑣 values. The measured changes in uptake and secretion fluxes
in dopaminergic neuronal cultures after complex I inhibition are shown as an absolute change in flux 𝛿𝑣 ± 𝑆𝐷
(error bar is one standard deviation). Metabolites are grouped by those that were measured to be secreted
(positive dv +/- SD values, pink background), taken up (blue background) and with no significant change in
exchange (green background) following complex I inhibition. Measured exchanges that changed direction after
complex I inhibition are shown in black. B. Cytosolic ATP (atp[c]) budget in complex I inhibition predicted
by the iDopaNeuro1 model. Only reactions that carry a substantial ATP flux (>1% of total) are shown for
production (red) and consumption (blue) with the edge width corresponding to flux magnitude. Absolute
reaction fluxes together with their relative change from a control model are shown (umol/gDW/h ± %, edge
labels). The reaction "Demand for ATP, Cytosolic" is a modelling construct with invariant lower bound set to
represents demand for ATP for non-metabolic processes. The reaction "ADP/ATP Transporter, Mitochondrial"
predicts net mitochondria ATP production. C. Predicted fluxes (in umol/gDW/hr) of the core energy-related
reactions in control (blue) and complex I inhibition (red).

The iDopaNeuro1 model can predict uptakes and secretions accurately both qualitatively and quantitatively
(Fig. 9 and Fig. 10) when compared with experimental data from control dopaminergic neuronal cell cultures.
To complement this, a iDopaNeuro1 model constrained only by the control data was used to predict flux
changes in response to complex I inhibition. These predictions were then compared with data independent
of the model generation process. In the iDopaNeuro1 model the lower and upper bounds of the complex I
reaction (NADH2_u10m) were set to 0 and model fluxes were predicted by maximising the entropy of fluxes and
concentrations. Predicted changes in fluxes between the control iDopaNeuro1 model and complex I inhibition
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predictions were subsequently compared with experimentally measured changes in uptake and secretion of
metabolites in response to complex I inhibition in dopaminergic neuronal cell cultures exposed to rotenone (Fig.
12A).

The predicted changes in exchange reaction fluxes are broadly consistent with the relative changes in measured
exchange fluxes, with a Spearman 𝜌 = 0.69 between predicted and measured change in exchange fluxes between
control and complex I inhibition. The iDopaNeuro1 model was also able to correctly predict directionality
change for pyruvate N-acetylasparagine, tyrosine and malate. Furthermore, all key neurotransmitters were still
produced by both control and complex I inhibition models. Dopamine was predicted to be secreted at the
rate of 0.62 𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟 and did not change between conditions. Serotonin was predicted to be slightly
decreased in rate from 0.28 𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟 in control model to 0.22 𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟 in complex I inhibition.
On the other hand, adrenaline and norepinephrine were predicted to be increased in complex I inhibition, from
0.27 to 0.36 𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟 for adrenaline and from 0.0.28 to 0.41 𝜇𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ𝑟 for norepinephrine. However,
metabolomics platforms used to measure metabolite concentrations in the media were not sensitive enough to
detect and quantify these neurotranmitters in the cell culture media after complex I inhibition.

Since, iDopaNeuro1 model predictions show changes in secretions of multiple tricarboxylic acid cycle (TCA)
intermediates, such as fumarate, citrate, oxaloacetate, and malate, further analysis of predicted intracellular
flux changes was performed to evaluate changes in the energy metabolism following complex I inhibition. The
net cytosolic ATP budget was analysed to reveal key reactions that produce and consume cytosolic ATP (Fig.
12B). Cytosolic ATP is predicted to be produced predominantly via two glycolysis reactions catalysed by
pyruvate kinase and phosphoglycerate kinase and in mitochondria via TCA and oxidative phosphorylation
(ADP/ATP Transporter, Mitochondrial). After complex I inhibition, glycolysis reactions are predicted to
be increased (+11% and +5% respectively) and mitochondrial ATP production decreased (-24%) following
complex I inhibition. Fig. 12C predicts changes in energy metabolism following complex I inhibition n the
iDopaNeuro1 model, for the oxidative phosphorylation (complex I, II, and V), glycolysis (pyruvate kinase), and
pentose phosphate pathway (6-P-gluconolactonase). Complex V and pentose phosphate pathway reactions were
predicted to be decreased following complex I inhibition, while complex II and glycolysis reactions are predicted
to be increased.
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7 Prospective research design

Figure 13: Prospective prioritisation of model variables to constrain
A. Uniform sampling of the steady-state flux space (Ω ≔ {𝑙𝑐 = 𝑢𝑐 = 0} in 3), of the iDopaNeuro1 model.
B. Computation of the covariance matrix of sampled external fluxes. C. The Euclidean norm of each row of
the covariance matrix identifies the exchange reaction with the highest degree of freedom. D. The predicted
most informative metabolites to measure, each corresponding to one external reaction flux, the iDopaNeuro1
model. The variance reduction (to blue) due to cumulative constraints on higher-ranked metabolites (red) is
taken into account in the ranking. The metabolites already targeted by established platforms used in this study
are highlighted (purple).

Given the iDopaNeuro1 model, a novel uncertainty reduction pipeline (Fig.13A-C) predicted the metabolites
whose corresponding external reactions would be the most important to constrain in future research, in order
to maximally shrink the set of external reaction fluxes consistent with existing constraints (Ω ≔ {𝑙𝑐 = 𝑢𝑐 = 0}
in 3). Fig.13D illustrates the top 20 most informative metabolites exchange reactions to constrain to decrease
the uncertainty in the iDopaNeuro1 model (Table S-3). The most important exchange reaction to constrain
corresponds to the exchange of a pool of metabolites rather than a metabolite, that is, ’Short/medium-chain
fatty acids’ Fig.13D is the set of metabolites: butyric acid, decanoic acid, heptylic acid, hexanoic acid, nonanoic
acid, octanoic acid, undecylic acid, and valeric acid. This reflects a need for further reconstruction effort
to replace this pool with exchanges for the individual short- and medium-chain fatty acids. The next most
important variables to constrain include carbon dioxide, protons, bicarbonate, and oxygen, reflecting their
general metabolic importance. Other metabolites point to opportunities for further development of quantitative
metabolomic platforms, either inclusion as new targets for quantification, e.g., acetate, or refinement of existing
approaches to reduce the coefficient of variation associated with measurement of existing targets, e.g., glucose,
with coefficient of variation 0.0144, or 2-Oxoglutarate with coefficient of variation 0.0492.
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Part IV
Discussion
Contribution overview Degeneration and death of substantia nigra dopaminergic neurons in the midbrain is
a hallmark of PD. In this work, we present, characterise and utilise iDopaNeuro1, a comprehensive, high-quality,
thermodynamically constrained model of normal metabolism in human dopaminergic neurons. Its comprehens-
iveness reflects a synthesis of extensive manual curation of the biochemical literature on neuronal metabolism,
together with novel, quantitative, transcriptomic and targeted exometabolomic data from human midbrain-
specific dopaminergic neurons in vitro. It is qualitatively accurate at predicting secretion, uptake, or neither,
given quantitative exometabolomic constraints for a subset of metabolites (Probability = 0.92). It is accur-
ate at quantitatively predicting the rank order in magnitude of metabolite uptake, given secretion constraints
(Spearman 𝜌 = 0.7), and moderately so for prediction of secretion, given uptake constraints. Furthermore, it
can be used to predict the consequences of metabolic perturbations with good qualitative accuracy (Spearman 𝜌
= 0.69), including reaction directionality changes. The development and characterisation of iDopaNeuro1 also
illustrates the application of a novel, scalable approach to thermodynamic constraint-based modelling. All reac-
tions admit thermodynamically feasible fluxes and the practical utility of thermodynamic variational principles
[21] are demonstrated at genome-scale for the first time.

Relationship between in vivo, in vitro, and in silico. Manual curation of the literature was focused on the
assembly of neuronal molecular composition, turnover fluxes, active genes, active reactions and inactive reactions
specific to neurons, and substantia nigra dopaminergic neurons in particular (Tables S-1 and 2). In parallel, we
integrated transcriptomic and metabolomic data from an in vitro culture of midbrain dopaminergic neurons.
As such, the iDopaNeuro1 model is an in silico model that represents in vivo substantia nigra dopaminergic
neurons and in vitro midbrain-specific dopaminergic neurons, derived from human neuroepithelial stem cells
[70]. This in vitro model of a human substantia nigra dopaminergic neuron is well established. We observed
that it generates tonically firing neurons that do have extensive neuronal projections. However, in rats, a single
dopaminergic neuron emanating from the substantia nigra is characterised by a massive axonal arbour [49], much
larger than other neuronal types, and projects to ~200k terminals in the striatum [64]. Like this morphological
divergence between in vivo and in vitro, there may be a molecular divergence between in vivo neurons, on which
manual literature curation was based, and the in vitro neuronal culture used for generation of transcriptomic
and metabolomic data. As such, it will be interesting to compare this version of the iDopaNeuro1 model with
future versions generated using data from improved protocols for generation of dopaminergic neuronal cultures.

Metabolomics The quality of the metabolomic analyses was assessed by comparing the measured and supplier
reported concentration values (Fig. 7). Based on this comparison, for most of the measured metabolites, the
measurements were obtained within a similar concentration value (±20%) of that specified by the manufacturer
of the fresh culture media. However, some measurements (e.g. cysteine, pyruvic acid, valine, aspartic acid and
putrescine) demonstrated larger differences between measured and supplier’s concentrations. There could be
several explanations for the discrepancies observed. Some compounds may undergo spontaneous reactions with
other metabolites in their environment due to their reductive, or oxidative nature, or both. For example, the
thiol group of cysteine is reactive with oxidants and reductants and has high affinity for metals [65]. Therefore,
it can be very difficult to determine the quantity of free cysteine residues after protein hydrolysis unless the
thiol group of the molecule is stabilised by chemical derivatisation procedures [1]. This might explain the
observation of a lower value for the measured concentration in comparison to the manufacturer specified value
7. The discrepancy could also be due to the incomplete knowledge on the composition and concentration of
medium supplements, e.g., B21 medium supplement contains a confidential amount of putrescine which may
have contributed to the large increase in the measured concentrations.

It has been previously shown that the concentration of pyruvic acid can be reduced in blood by its reaction
with bisulphite-binding substances. This can be also true for the pyruvic acid in fresh culture medium where
there are several substances with bisulphite-binding characteristics. In general, it is challenging to determine
an overall reference point for absolute concentrations as many factors may contribute to the inaccuracy of
measurements.

Reconstruction versus model The starting point for development of the dopaminergic neuronal model was
a generic human metabolic reconstruction, Recon2 [84], and subsequently its successor Recon3D [11], which
included new reactions specific to dopaminergic neuronal metabolism. It is critical to distinguish between a
reconstruction and a model. The former is broader in coverage of metabolic pathways and may contain partially
specified reaction stoichiometry, e.g., due to missing biochemical knowledge. A model is always a subset of a
reconstruction as it must satisfy certain modelling assumptions. For example, a model is suitable for flux balance
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analysis [61] when all internal reactions are stoichiometric and flux consistent, and all external reactions are
flux consistent [25]. However, when extracting a model, certain otherwise desirable reactions may be lost. As
an example, the glutathione transferase reaction in dopamine metabolism was manually curated to be active
since it is present in dopaminergic neurons [16], but it was excluded during model generation as it was not part
of any flux consistent pathway in Recon3D model. This example illustrates that future manual curation of the
literature is required in the next iteration of the generic human metabolic reconstruction.

Model generation The generation of the iDopaNeuro1 required several advances in constraint-based re-
construction and analysis. Herein we present the first application of a novel model generation pipeline,
XomicsToModel, that enables context-specific model generation by leveraging high-fidelity data obtained by
literature curation and integration of high-throughput data obtained from multiple omics platforms (Fig.1). In
particular, we present the first application of thermoKernel, a novel model extraction algorithm that accepts
weighted inputs on molecular abundance, e.g., confidence in presence of a metabolite, as well as weighted inputs
on reaction fluxes, e.g., expression level of the corresponding gene, then simultaneously optimise these, perhaps
conflicting, inputs to generate a minimal subnetwork that is thermodynamically consistent, i.e., each reaction
admits a thermodynamically feasible net flux.

Modelling non-growing cells Constraint-based modelling is most commonly applied to biochemical sys-
tems where one predicts a steady-state flux vector that also satisfies a biologically-motivated cellular objective,
e.g., for an exponentially growing culture of bacteria maximisation of biomass production flux subject to (ex-
ternal) uptake reaction constraints [61]. However, neither substantia nigra dopaminergic neurons nor in vitro
differentiated dopaminergic neurons divide, and it is not known what the cellular objective is for such cell types.
Therefore, we added new constraints that enforce certain internal reactions, or combinations thereof, to operate
above a certain flux, e.g., lower bounds on metabolite turnover fluxes and constraints representing the energetic
requirements for maintenance of biomass and tonic electrophysiological activity. Formulating a mathematical
model that facilitates such constraints yet also admits a thermodynamically feasible net flux is an important pre-
requisite for modelling non-growing cells, such as neurons. This is because it enables the subsequent application
of novel thermodynamic constraint-based modelling approaches that enforce thermodynamic principles, such
as energy conservation, the second law of thermodynamics [68], and non-equilibrium thermodynamic force-flow
relationships [7], that act to compensate for omission of objectives such as maximisation of the rate of one or
more external reactions. Formulating such principles in terms of nonlinear constraints is important, but the
key is to approach the solution to such constraints with an optimisation approach that is mathematically and
computationally tractable [21, 17].

Ensemble modelling It was not possible to use standard constraint-based modelling methods, such as flux
balance analysis [61] to accurately predict metabolite exchanges. In part, this is because the cellular objective
of a dopaminergic neuron is not known, so it is not clear what to optimise for. Leveraging the flexibility of
the XomicsToModel pipeline, we generated an ensemble of candidate dopaminergic neuronal metabolic models,
varying model generation parameters, including those known to substantially change the computational phen-
otype of an extracted model [60]. A set of candidate objective functions was applied to predict steady state
fluxes with each of these candidate models and the best combination was used to (a) define the iDopaNeuro1
model, and (b) identify the objective employed for predicting the consequences of perturbation to dopaminergic
neuronal metabolism in vitro.

Candidate cellular objectives Candidate objectives tested included a variety of those already investigated
in the literature, such as minimising two-norm flux [75] or one-norm flux [36, 46], and weighted versions of
each, e.g., weighting one or two norm flux by the logarithm of the level of expression of the corresponding gene.
Although other cellular objectives have been proposed in the literature [74, 55], we restricted our choice to those
functions where a stationary point implies, and is implied by, attainment of a global minimum [10]. We consider
that having mathematical guarantees, even if they are probabilistic, are vital when drawing conclusions from
predictions with genome-scale models. Of the objectives tested, simultaneous maximisation of the entropy of
unidirectional fluxes and concentrations provided the most accurate prediction of metabolite exchanges. From
an information theoretic perspective, entropy maximisation is the least biased prediction one can make given
the available data [38]. This realisation came long after after entropy maximisation became established as a
central tenet of equilibrium thermodynamics, including of systems of chemical reactions [79]. Maximising the
entropy of both concentrations and fluxes is a natural extension to the theoretical consideration of flux entropy
maximisation [21] and is also consistent with parallel developments in biophysics [26].

Inhibition of mitochondrial complex I Compared to other cells, neurons have low basal mitochondrial
membrane potential, as well as low glycolytic activity, thus they rely on mitochondrial oxidative phosphorylation
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for their energy production [8]. This suggests that these neurons might be experiencing a high degree of
mitochondrial stress, and therefore, especially rely on a functional mechanism of mitochondrial quality for their
survival [24]. In a well known PD familial mutation PINK1 one of the mitochondrial quality control systems
is impaired and leads to a strong phenotype showing higher fluxes of glycolysis due to lower activity of the
electron transport chain. This in consequence leads to a higher reliability on glycolysis in order to maintain cell
viability, and a substantial increase in lactate release [71]. The loss of PINK1 function has been linked to NADH
dehydrogenase and complex I dysfunction [95]. Complex I has also been linked to the development of idiopathic
PD in people who experienced prolonged exposure to toxicants, e.g., rotenone and MPTP [9]. Therefore, we
decided to predict the consequences of complex I inhibition in the iDopaNeuro1 model and to validate them
experimentally, using rotenone to induce complex I inhibition in dopaminergic neuronal cultures. Fig. 12A
illustrates that most of the changed fluxes in uptakes and secretions were predicted with high quantiative
accuracy (Spearman 𝜌 = 0.69), including exchange flux directionality changes for pyruvate, N-acetylasparagine,
tyrosine, and malate. Quite strikingly also the magnitude of change in the lactic acid secretion, the key marker
of an increased glycolytic flux, was also predicted correctly and in line with PINK1 mutant observations [71].

Since the iDopaNeuro1 model predictions showed changes in secretions of multiple tricarboxylic acid cycle
(TCA) intermediates, such as fumarate, citrate, oxaloacetate, and malate, further analysis of intracellular flux
changes was focused on the changes in the energy metabolism as a consequence of complex I inhibition (Fig. 12B
and C). Both control and perturbed models rely on both glycolysis and mitochondrial oxidative phosphorylation
to maintain their energy needs. However, after Complex I inhibition, glycolysis reactions were predicted to be
increased by between 5-11% (Fig. 12B) and mitochondrial ATP production decreased (-24%) in line with
previous studies [71, 27]. Interestingly, the model predicted decreased flux through the pentose phosphate
pathway (6-P-gluconolactonase) as a consequence of complex I inhibition (Fig. 12C). This phenomenon has
been previously described for PINK1 mutation, where the mutation brought forth a decrease of around 45% in
the rate of the pentose phosphate pathway. The reduction in the rate of the pentose phosphate pathway due to
mitochondrial dysfunction could be interpreted as a means to save energy since the pentose phosphate pathway
is an anabolic pathway, which consumes energy for the synthesis of larger molecules. However, the pentose
phosphate pathway has an important role in protecting the cell from oxidative stress by reducing reactive
oxygen species levels in the cell. Thus, a reduction of the rate of the pentose phosphate pathway may cause
higher levels of reactive oxygen species, which further increases neuronal vulnerability and cell death [71].

Another interesting prediction is the increase of complex II flux in response to complex I inhibition (Fig.12C).
Complex II, also known as a succinate dehydrogenase (SDH) creates a unique link between the TCA cycle and
oxidative phosphorylation. Succinate dehydrogenase oxidises succinate to fumarate and transfers electrons via
FAD clusters to ubiquinone, reducing it to ubiquinol. Therefore, in healthy cells both complex I and complex II
reduce ubiquinone which donates electrons to complex III and leads to an increase in the membrane potential.
However, following complex I inhibition succinate dehydrogenase upregulation is predicted to partially restore
mitochondrial ATP production through complex V. Previously, upregulation of complex II was reported in a
PD patient with a PINK1 mutation PD patients who had an unusually late onset and a mild progression of
the disease [27, 33]. Furthermore, the iDopaNeuro1 model was able to secrete dopamine, norepinephrine, and
serotonin (Fig. 10) and predict their responses to metabolic perturbations.

To conclude, the predicted metabolic changes in response to complex I inhibition show flux re-distribution in
central energy metabolism. It shows several similarities between complex I inhibition and PD due to PINK1
mutation, and is in line with literature data. In the future, a similar methodology could be used to generate
context-specific personalised models of different PD patients to unravel underlying metabolic similarities, and
hopefully bring more insights into a PD mechanism.

Exometabolomics The iDopaNeuro1 model predicts the potential to uptake or secrete many metabolites
that are not constrained by our quantitative exometabolomic data, but may be important for dopaminergic
neurons. Of the unmeasured metabolites predicted to be secreted by the iDopaNeuro1 model, at least are
specifically associated with neuronal disorders (Table S-3), e.g., increased pyroglutamic acid is an indicator
of glutathione deficiency and is associated with brain toxicity due to formation of amino acid adducts and
dopamine quinones [28].

Algorithmic experimental design was used to propose designs that optimise the information obtained in future
exometabolomic and tracer-based metabolomic experiments. Algorithmic design of exometabolomic experiments
enables optimal selection and development of targeted mass spectrometry platforms for future analyses. This is
important as one targeted analytical platform cannot quantify the concentration of all of the metabolites within
the iDopaNeuro1 model.

The predictive fidelity of the iDopaNeuro1 model was evaluated by comparing its ability to quantitatively
predict the rate of metabolite uptake and secretion in control and metabolically perturbed conditions. Further-
more, the prospective utility of the iDopaNeuro1 model was illustrated by using it to optimally design future
research, e.g., development of targeted metabolomic platforms, on the metabolite exchanges that are currently
the least constrained in the model and therefore contributing the most to uncertainty in predictions.
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8 Conclusions
Herein, we present iDopaNeuro1, a data-driven, context-specific, genome-scale, constraint-based model of
dopaminergic neuronal metabolism. The combined results of literature curation and omics data generation were
integrated together with comprehensive reconstruction of human metabolism, using a novel model generation
pipeline to extract from a modelling ensemble, a model designated iDopaNeuro1, with the highest predictive
accuracy, evaluated against exometabolomic data from control dopaminergic neuronal cultures. Furthermore,
independent exometabolomic data from four mass spectrometry platforms established that the iDopaNeuro1
model predicts the consequences of metabolic perturbations with qualitative (0.69 probability correct) and
quantitative accuracy (Spearman 𝜌 = 0.7) that represents a breakthrough in predictive fidelity for modelling of
human metabolism in non-growing cells. The iDopaNeuro1 model provides a validated platform for experimental
data-driven mechanistic computational modelling, optimal design of experiments and ultimately, provides an
objective, quantitative framework for development of drugs targeted toward the aetiopathogeneses of Parkinson’s
Disease.

Data Availability
All data, code and models will be disseminated, coincident with journal publication.
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Figure 14: Measured and estimated cell numbers during neuronal differentiation
The cell number in each culture well was measured at day 0 (seeding, 400k cells per well.) and days 13, 19, but not day 21 or 23 in
culture. The cell number at day 21 and 23 was estimated by interpolation in order to enable normalisation of metabolic uptake and
secretion rates. Therefore, the evolution of cell number with respect to time was estimated using a cubic spline fit to the measured
cell numbers. Exometabolomic data was collected at day 9, 13, 19 and 23. However, only exometabolomic data from day 19 and
23 were used to quantitatively constrain the models. This is consistent with the established differentiation protocol used, where a
30-45% increase in cell number is observed during the first five days and therefore an assumption that there was no biomass growth
was not considered valid during the early period in cell culture.
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9 Supporting Information

A Cell number

B Reconstruction of dopamine metabolism

Figure 15: Reconstruction of dopamine metabolism
Dopamine metabolism in Recon2.04 (green, blue) was refined and updated with newly added reactions (pink).

C Constraint-based modelling: an introduction
All constraint-based modelling predictions are derived from optimisation problems, typically formulated in the
form:

min
𝑣∈ℝ𝑛

𝜓(𝑣)
s.t. 𝑆𝑣 = 0

𝑙 ≤ 𝑣 ≤ 𝑢,
(22)

where 𝑆 ∈ ℝ𝑚×𝑛 is a stoichiometric matrix of 𝑚 metabolites and 𝑛 reactions representing a biochemical
network, 𝑣 ∈ ℝ𝑛 is the vector representing the flux through all of the reactions in a network and 𝜓 ∶ ℝ𝑛 → ℝ is
an objective function, which is typically convex. In a constraint-based metabolic model of reaction fluxes, the
set of feasible steady-state flux vectors forms a polyhedral convex solution space, defined by the equality and
inequality constraints in Equation (22), enabling optimisation of a variety of convex objective functions over
this set.

The matrix 𝑆 can be split horizontally into two matrices corresponding to internal, 𝑁 ∈ ℤ𝑚×𝑘 , and external,
𝐵 ∈ ℝ𝑚×(𝑛−𝑘) , reactions, with corresponding internal and external rate vectors, 𝑧 ∈ ℝ𝑘 and 𝑤 ∈ ℝ𝑛−𝑘.
While all internal reactions are characterised by being mass and charge balanced, external reactions are, on the
other hand, imbalanced reactions. External reactions are classified in sink, demand or exchange reactions. A
demand reaction allows the accumulation of a compound. A sink reaction allows the production of a metabolite.
Finally, an exchange reaction allows the exchange of a metabolite across the extracellular boundary of a system,
providing a mechanism to transfer metabolites between the environment and the extra-cellular fluid. Such
reactions are distinct from transport reactions, which transfer metabolites between compartments within the
model, including the extracellular compartment. Exchange reactions are added to a model to allow certain
metabolites to be exchanged across the boundary of the system at variable rates.
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The linear equality, 𝑆𝑣 = 0 in Equation (22), represents mass balance for all the metabolites. This means, for
each metabolite the rate of metabolite consumption is equal to the rate of metabolite production. In Equation
(22), 𝑆𝑣 = 0 implies that 𝑁𝑧 = −𝐵𝑤 where internal production plus external input equal internal consumption
plus external output. For certain intracellular metabolites, those not exchanged across the boundary of the
system, we assume they are at a steady-state, so we have 𝑁𝑖𝑧 = 0, where 𝑁𝑖 denotes the 𝑖𝑡ℎ row of the internal
stoichiometric matrix. Additional linear inequalities keep reaction rates between lower and upper bounds, 𝑙 and
𝑢, respectively.

Bounds on reaction rates In each metabolic reaction, 𝑣𝑖, is constrained between a lower and an upper bound,
𝑙𝑏 ≤ 𝑣𝑖 ≤ 𝑢𝑏. The default reaction lower and upper bounds are commonly set based on model characteristics
and constraints value. Lower and upper bounds were set to include fluxes from metabolite concentration in
the media, e.g., glucose flux rate based on media composition (-5,430.74 𝜇mol/gDW/hr). Reactions can be
reversible or irreversible. A reaction is said to be reversible in the case where it has a negative 𝑙𝑏 and a
positive 𝑢𝑏. When the 𝑙𝑏 is set to zero and the 𝑢𝑏 is a positive number the reaction proceeds in the forward
direction. Similarly, when the 𝑢𝑏 is zero and the 𝑙𝑏 is a negative number the reaction occurs in the backward
direction. In a metabolic model, exchange of metabolites with its environment is represented by constraints
on the corresponding exchange reactions, which define the boundary conditions of the model. If a metabolite
is taken up, the corresponding exchange reaction has a negative number as 𝑙𝑏 and zero as 𝑢𝑏 , whereas if it is
secreted, the 𝑙𝑏 is set to zero and the 𝑢𝑏 is a positive number.

File name Brief description of contents
SM1.pdf Supplementary text, including supplementary methods, results and discussion.
SM2.xlsx Supplementary tables, 5 in total, each as a separate tab in an excel file. Referenced individually as

Table S-1...5 in the main and supplementary text. The first tab, S-0, provides an overview of the
contents in each of the remaining tabs.

SM3.zip A ZIP file, with MATLAB LiveScripts, and MATLAB functions enabling the reproduction of the
computational steps used for the generation and testing of the iDopaNeuro1 model, as well as the three
experimental design pipelines that employ the iDopaNeuro1 model, using the COBRA Toolbox.

SM4.pdf A portable document format (PDF) version of the MATLAB LiveScript main.mlx in SM3.zip.
SM5.xml The iDopaNeuro1 model as an Systems Biology Markup Language (SBML) formatted file.
SM6.tab Detailed results of transcriptomic analysis.
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