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Abstract 1 

Tissue microarrays (TMAs) have been used in thousands of cancer biomarker studies. To what extent batch effects, 2 

measurement error in biomarker levels between slides, affects TMA-based studies has not been assessed 3 

systematically. We evaluated 20 protein biomarkers on 14 TMAs with prospectively collected tumor tissue from 4 

1,448 primary prostate cancers. In half of the biomarkers, more than 10% of biomarker variance was attributable to 5 

between-TMA differences (range, 1–48%). We implemented different methods to mitigate batch effects (R package 6 

batchtma), tested in plasmode simulation. Biomarker levels were more similar between mitigation approaches 7 

compared to uncorrected values. For some biomarkers, associations with clinical features changed substantially after 8 

addressing batch effects. Batch effects and resulting bias are not an error of an individual study but an inherent feature 9 

of TMA-based protein biomarker studies. They always need to be considered during study design and addressed 10 

analytically in studies using more than one TMA.  11 
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Introduction 12 

Tissue microarrays (TMAs) were first developed in the 1990s as an efficient way to examine tissue-based 13 

biomarkers (1). Since then, TMAs have been used in thousands of studies to evaluate histologic and molecular 14 

biomarkers, mostly in cancer tissue. Even when biomarker assays are well standardized and run conditions are 15 

diligently kept fixed, some TMA slides (batches) may have measurements systematically too low or too high, and 16 

some batches may have wider spread around the true values of the biomarker than others. In general, such batch 17 

effects can have a profound impact on the validity of biomarker studies, such those using RNA microarrays (2, 3). 18 

Contrary to popular belief, whether such measurement error induces upward or downward bias in results is not 19 

guaranteed to follow simple heuristics (4).  20 

Whether and to what extent TMAs are affected by batch effects has not been empirically assessed. TMAs 21 

pose unique challenges. For example, when tumor tissue is collected prospectively for inclusion on TMAs, tumor 22 

characteristics may differ between batches due to nonrandom assignment of cases, as well as temporal trends in tumor 23 

risk factors, screening, and diagnosis. Differences in tissue processing or storage across tissue specimens may have 24 

differential impact on biomarkers. Including calibration samples for quality control is also more challenging for TMAs 25 

than, for example, assaying of blood samples, because repeat sections from a tumor may differ due to intratumoral 26 

heterogeneity rather than only batch effects. 27 

In this study, we assess batch effects in a large set of centrally constructed TMAs from prostate cancer tissue 28 

from 1,448 men in two nationwide cohort studies. We quantify the extent to which protein biomarker variation could 29 

be explained by batch effects. We probe different methods for mitigating batch effects while maintaining true, 30 

“biological,” between-TMA variation, including in a plasmode simulation. Finally, we demonstrate the impact of 31 

handling batch effects on commonly performed biomarker analyses. 32 

 33 

Results 34 

Extent and type of batch effects. To evaluate the presence of batch effects in studies using TMAs, we studied tumor 35 

tissue from 1,448 men with primary prostate cancer on 14 TMAs, each including multiple tumor cores from 47 to 158 36 

patients per TMA (Figure 1). Multiple cores from the same tumor (usually 3) were always located on the same TMA. 37 

TMAs were used to quantify 20 protein biomarkers (Figure 2). Biomarker values showed noticeable between-38 

TMA variation. We estimated that across the 20 biomarkers, between-TMA variation explained between 1% and 48% 39 

of overall variation in biomarker levels (intraclass correlation coefficient, ICC), with half of the biomarkers having 40 

ICCs greater than 10% (Figure 2).  41 

In an example biomarker, estrogen receptor alpha in nuclei of stromal cells (Figure 3), the means of the most 42 

extreme TMAs differed by 2.2 standard deviations in intensity of expression and variances differed up to 9.3-fold. 43 

Other biomarkers showed similar between-TMA variation by magnitude and by which TMAs had the most extreme 44 

values (Figure 4A). Likewise, we observed that not only means, but also variances of biomarker levels differed 45 

between TMAs, although patterns of heteroskedasticity appeared weaker than for means (Suppl. Figure 1). In contrast, 46 

we found little evidence for more complex patterns of batch effects, such that tumors with specific grade, stage, or 47 

year of diagnosis would have been particularly affected by between-TMA differences (Suppl. Table 1). Nevertheless, 48 

observations from the same TMAs tended to be clustered together when projected onto the first two principal 49 

components, capturing 27% of variance in all biomarkers (Figure 4B).  50 

The method of scoring, including human (eye) scoring and computer-assisted quantification, differed between 51 

biomarkers, as did the main quantitative score, typically a measure of staining intensity, a proportion of cells above an 52 

intensity threshold, or a combination of both (Figure 2). Notably, between-TMA differences were present with any of 53 

these approaches. For example, batch effects were not only present when considering intensities of biomarker staining, 54 

as for the estrogen receptor alpha and beta example. Even when setting cut-offs for staining visible by eye and 55 

quantifying the number of stain-positive cells, 8% (95% CI, 2 to 15) of variance in estrogen receptor alpha positivity 56 

and 27% (95% CI, 11 to 42) of estrogen receptor beta positivity were attributable to between-TMA variation (Suppl. 57 

Figure 2).  58 
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In summary, we observed a large and concerning degree of between-TMA variation for several biomarkers 59 

that were quantified using different approaches, suggesting that addressing batch effects could significantly impact 60 

scientific inference. 61 

 62 

Source of batch effects. The noticeable proportion of variance attributable to TMAs could have two possibly co-63 

existing explanations. First, that between-TMA differences in biomarkers reflect different patient and tumor 64 

characteristics that need to be retained. Second, that between-TMA differences are artifacts due to systematic 65 

measurement error that need to be removed (batch effects).  66 

In support of the first hypothesis, there were noticeable differences in patient and tumor characteristics 67 

between TMAs that are likely associated with biomarker levels (Figure 1). Along with a 14-year range between the 68 

per-TMA medians of cancer diagnosis year, there were differences in the proportion of tumors with a Gleason score of 69 

8 or higher (between 11% and 33%) and rates of lethal disease (between 2 and 16 events per 1000 person-years of 70 

follow-up). 71 

In support of the second hypothesis, we observed that certain TMAs had consistently higher or lower 72 

biomarker values for the majority of tested biomarkers (Figure 4A). For example, the same batches that showed 73 

higher-than-average biomarker values for stathmin also had higher-than-average values for PTEN. This example is 74 

noteworthy because both markers were assayed together on the same section of each TMA using multiplex 75 

immunofluorescence, and stathmin would be expected to be expressed in more aggressive tumors with activation of 76 

the PI3K signaling pathway while PTEN expression would be expected to be low in the same tumors (5). 77 

Further supporting the second hypothesis, we did not observe any meaningful reduction in ICCs when we 78 

considered tumors that had the same clinical features in terms of Gleason score and stage (Suppl. Figure 3). Moreover, 79 

the association between Gleason score and biomarker levels (Figure 2D) was considerably lower than between TMAs 80 

and biomarker levels, as underscored by less pronounced visual separation of principal components by Gleason score 81 

(Figure 4C) than by TMA (Figure 4B). Gleason score differences explained no more than 13% of variance in 82 

biomarker levels (for prostate-specific membrane antigen, PSMA; 95% CI for ICC, 0.02 to 0.29), and 13 of the 20 83 

biomarkers had ICCs by Gleason score of 1% or less (Suppl. Figure 4). 84 

To directly disentangle both hypotheses, we further examined data on 10 tumors with a total of 53 tumor 85 

cores for which some cores were included on different TMAs (Figure 4D). These were not included in the previous 86 

analyses and had estrogen receptor scoring data. This design allowed us to estimate biomarker differences directly 87 

attributable to between-TMA variability within the same tumors while controlling for the between-core variability 88 

expected due to intratumoral heterogeneity. Of the total variance in estrogen receptor alpha levels, 30% (95% CI, 0 to 89 

67) was explained by between-TMA variation; for estrogen receptor beta, 24% (95% CI, 0 to 60) was explained by 90 

between-TMA variation. For comparison, between-tumor variation explained 37% (95% CI, 4 to 68) of the variance 91 

of estrogen receptor alpha levels and 26% (95% CI, 0 to 57) of the variance of estrogen receptor beta levels.  92 

Collectively, while these observations highlighted moderate differences in clinical and pathological 93 

characteristics between TMAs, they suggested that between-TMA differences were largely due to batch effects. 94 

 95 

Mitigation of batch effects. We implemented six different approaches for batch effects mitigation and compared 96 

these to the uncorrected biomarker levels (Figure 3, Suppl. Figure 5). Two mitigation approaches, batch means 97 

(approach 2) and quantile normalization (approach 6), assumed no true difference between TMAs is arising from 98 

patient and tumor characteristics, while all other approaches attempted to retain such differences between TMAs. 99 

Overall, correlations between values adjusted by different approaches were higher (mean Pearson r, 0.97 to 1.00) than 100 

between uncorrected values and corrected values (r, 0.90 to 0.95), regardless of mitigation approach (Figure 4E). 101 

Approaches 2–7 reduced visible separation by batch on plots of the first two principal components (Suppl. 102 

Figure 6). Variance attributable to between-TMA differences decreased to ICCs of <1% for all markers (Suppl. 103 

Table 2). An exception was the quantile regression-based approach 5; the ICCs after this approach remained up to 104 

10%. This method does not explicitly address differences in means between batches but allows associations between 105 

clinical and pathological factors and biomarker levels to differ at high and low quantiles (Suppl. Figure 7).  106 
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The differences between uncorrected values and batch effect-corrected values were remarkably similar 107 

between the mean-based approaches using approaches 2 (simple means), 3 (standardized batch means), and 4 (inverse 108 

probability-weighted batch means; Suppl. Figure 8). Consequently, batch effect-corrected values by approaches 2–4 109 

were highly correlated (Figure 4E). All mean-only batch effect mitigations also gave the same results when fitting 110 

outcome models stratified by batch (Suppl. Figure 9). However, batch-specific results differed for approaches that 111 

targeted between-batch differences in the variance of biomarkers. 112 

 113 

Validating batch effect mitigation in plasmode simulation. To compare the performance of the different batch 114 

mitigation approaches in a time-to-event analysis, we applied plasmode simulation (6) to fix the expected strength of 115 

the biomarker exposure–outcome relationship a priori before artificially introducing batch effects. The correlation 116 

structure between biomarker and confounders and between confounders and batches from the actual data (Suppl. 117 

Figure 10A, C) was preserved in the plasmode-simulated data. Likewise, across a range of hazard ratios for the 118 

biomarker–outcome association, confounder–outcome associations remained unchanged (Suppl. Figure 10B, D). 119 

We first evaluated a setting in which we did not introduce batch effects (Figure 5A). Here, the observed 120 

hazard ratios without batch effect mitigation equaled the expected. When performing (unnecessary) batch effect 121 

mitigation, observed hazard ratios were still comparable with the expected hazard ratios (Figure 5D; see Suppl. 122 

Table 3 for confidence intervals).  123 

We then introduced batch effects by adding batch-specific mean differences to the observed biomarker levels, 124 

yet without introducing differences in variance by batch (Figure 5B). Without batch effect mitigation, for a true hazard 125 

ratio of 3.0, the observed hazard ratio, averaged over simulations, was 2.17 (95% CI, 1.86 to 2.53), an underestimate 126 

by 28% (Figure 5E; Suppl. Table 3). In contrast, all mitigation approaches produced CIs that covered the expected 127 

hazard ratio (e.g., approach 6 quantile normalization: hazard ratio, 3.03; 95% CI, 2.48 to 3.69).  128 

When we introduced batch-specific differences in both means and in variances (Figure 5C), the observed 129 

hazard ratio without batch effect mitigation decreased to 1.90 (95% CI, 1.66 to 2.16) compared to the expected hazard 130 

ratio of 3.0 (Figure 5F; Suppl. Table 3). Batch effect mitigation methods that only focus on means (approaches 2–4) 131 

reduced but did not fully eliminate bias, with hazard ratios ranging between 2.67 and 2.70. Methods that address 132 

differences in both mean and variance resulted in less bias, with an observed hazard ratio of 3.11 (95% CI, 2.54 to 133 

3.81) for approach 6 (quantile normalization).  134 

We also included two stratification-based approaches. Fitting survival models separately by batch, followed 135 

by inverse-variance pooling (approach 8) resulted in approximately unbiased estimates but was less efficient than 136 

other approaches, comes with a risk of sparse-data bias, and resulted in considerably wider confidence intervals in our 137 

simulation. Including batch as a stratification variable in a single Cox model (approach 9) was unbiased and efficient. 138 

A drawback of both stratification-based approaches is that they do not explicitly estimate batch effect-adjusted 139 

biomarker values that could be visualized directly. 140 

Scenarios evaluated thus far were based on the actual, modest imbalance of confounders between batches and 141 

at most weak associations between the biomarker and confounders, resulting in weak confounding overall. We 142 

additionally introduced both modest and strong associations between biomarker and confounders and created more 143 

severe imbalance between batches (Suppl. Figure 11). In all scenarios, the ranking of mitigation methods was 144 

preserved (Suppl. Figure 12, Suppl. Tables 3 and 4), with the least bias obtained through quantile normalization 145 

(approach 6). Bias occurred when using uncorrected biomarker levels in the presence of any batch effects, except if 146 

there was no association between biomarker and outcome (i.e., a hazard ratio of 1), and with mean-only approaches 2–147 

4 if variance was also affected by batch effects. In no situation, except possibly with the quantile regression-based 148 

approach 5, were estimates after batch effect mitigation farther from the expected values than results based on 149 

uncorrected biomarker levels. 150 

 151 

Impact of batch effects. To illustrate how batch effect mitigations alter the results of commonly conducted tumor 152 

biomarker analyses, we estimated how uncorrected and corrected biomarker levels were associated with Gleason 153 

score and with rates of lethal disease. For markers with little between-TMA variability (low ICCs) such as beta-154 

catenin, there were no noticeable differences in associations between using unadjusted and adjusted biomarker levels 155 
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irrespective of adjustment model, as expected from plasmode simulation. However, for markers with higher between-156 

TMA variability (higher ICC) and stronger associations with the outcome, adjustment approaches led to noticeable 157 

differences (Figure 6). For example, uncorrected stathmin expression levels were not associated Gleason score 158 

(difference, 0.00 standard deviations per 1 grade-group increase; 95% CI, –0.05 to 0.05), while the difference in levels 159 

corrected according to approach 6 was 0.04 (95% CI, 0.00 to 0.07), suggesting a potentially qualitatively different 160 

interpretation (Figure 6A; Suppl. Table 5). In models for lethal disease (Figure 6B), the otherwise unadjusted hazard 161 

ratio for the highest quartile of the vitamin D receptor, compared to the lowest quartile, was 0.44 (95% CI, 0.23 to 162 

0.86); after mitigation using approach 6, the hazard ratio was 0.19 (95% CI, 0.09 to 0.40), suggesting that unadjusted 163 

biomarker levels could underestimate the prognostic association by 2.3-fold (Suppl. Table 6 and 7). 164 

 165 

Discussion 166 

The key strength of using TMAs is their utility in parallelizing the assessment of biomarkers on a large number of 167 

tissue specimens (1). Similar to other high-throughput platforms, batch effects have to be considered in every TMA 168 

biomarker study. As we demonstrated, for some of the biomarkers, batch effects can be of substantial magnitude. We 169 

show that batch effect mitigation is possible and can enhance study findings. 170 

In our study of prostate tumor specimens, between-TMA differences explained 10% or more of the variance 171 

in biomarker levels for half of the included biomarkers, considerably more than one of the strongest pathological 172 

features in prostate cancer, Gleason grade. All analytical mitigation approaches to reduce batch effects, whether they 173 

attempted to retain real differences between tumors from different TMAs or not, led to corrected biomarker levels that 174 

were more similar to each other than they were, in general, to the uncorrected biomarker levels. In drawing from a 175 

large set of protein tumors biomarkers in prostate cancer, we show how appropriately mitigating batch effects 176 

strengthens results and their validity for biomarkers affected by batch effects. 177 

Ideally, batch effects between TMAs are minimized when designing a study. Standardizing how tumor 178 

samples are obtained, stored, processed, and assayed is critical, as are stratified or random allocation of tumor samples 179 

to different TMAs (2) when possible. However, the batch effects that we observed occurred despite all feasible 180 

standardization efforts. Moreover, samples will be collected sequentially, and TMAs may be constructed sequentially 181 

in large-scale prospective studies over time. There were modest differences in the clinical and pathological 182 

characteristics between our TMAs, an issue that may be inevitable in larger-scale biobank studies. Allocation schemes 183 

of tumors to TMAs that appear ideal retrospectively, for example by matching “cases” of lethal tumors with 184 

“controls” of non-lethal tumors, may not be feasible prospectively. Likewise, in few of the thousands of studies using 185 

TMAs will it be possible to reallocate tumors to different TMAs and repeat all pathology work merely to reduce 186 

implications of batch effects.  187 

An additional challenge in the design phase is that tissue samples are inherently heterogeneous and cannot 188 

simply be diluted, like blood samples. “Quality control” tumor samples that could serve as a quantitative calibration 189 

series suitable for all future biomarkers do not exist. One potential strategy is to include cell lines that have been 190 

formalin-fixed and paraffin-embedded on each TMA. While cell lines address issues of heterogeneity, the cell lines 191 

are often genomically unique and as such may not be relevant for all biomarkers. Another potential approach is to 192 

include samples from the same tumor case across TMAs, which would allow for direct estimation of batch effects. For 193 

these reasons, a principled approach that anticipates batch effects and addresses them analytically is critical. 194 

Beyond efforts to prevent batch effects during the study design phase, we suggest the following best practices 195 

when undertaking TMA-based tissue biomarker studies (Figure 7). First, the extent of potential batch effects should be 196 

explored and reported in any study of cancer tissue using TMAs. Inspecting TMA slides and plots (Figure 3) (7) is 197 

important. Between-TMA variation should be quantified, for example by calculating ICCs, i.e., to contrast variation of 198 

biomarker levels between TMAs compared to that between or within tumors (8). In our study, for half of the 199 

biomarkers, ICCs for between-TMA variation were low, at less than 10%, although the proportion of tolerable batch 200 

variation should be chosen based on the context. Whether TMAs differ in terms of average biomarker levels, low 201 

levels (possibly reflective of background), or variability between tumors will also inform what impact of between-202 

TMA differences to expect. 203 
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Second, the source of between-TMA differences should be elucidated. Ideally, including multiple cores from 204 

the same tumors in more than one TMA will help estimating, again using ICCs, how biomarker levels vary between 205 

TMAs, between tumors, and within tumors. Alternatively, ICCs between TMAs can be estimated by restricting to or 206 

adjusting for tumor features associated with differences in the biomarker, if known. In our study, both approaches 207 

indicated that the largest share of between-TMA differences was likely due to batch effects rather than due to true 208 

differences between tumors on different TMAs. In multidisciplinary team discussions (9), it may be possible to 209 

directly pinpoint the source of batch effects and eliminate its cause. For example, if immunohistochemical staining 210 

was performed separately for each TMA, then immunohistochemistry and quantification should be repeated using new 211 

sections from all TMAs at once. Imaging of pathology slides can also be a source of batch effects (10). In other cases, 212 

particularly if such obvious reasons for batch effects were avoided through standardized processing, as in our 213 

examples, it may remain elusive whether batch effects were induced through subtle differences in how tumors were 214 

cored and embedded during TMA construction, how long they had been stored, how they were sectioned, how well 215 

the staining process was standardized, or how successfully background signal was eliminated during software-based 216 

quantification. Yet even biomarkers scored by manual quantification were not free from batch effects. 217 

Third, if a biomarker is affected by batch effects and no “physical” remediation is possible, then analytical 218 

approaches should be used to reduce bias in results (2, 3). We demonstrate that in all plausible or exaggerated real-219 

world scenarios, estimates after applying batch effect mitigations were consistently closer to the true underlying 220 

values than they were without. If batches do not only differ in terms of mean values, but also in terms of their 221 

variances, then methods that focus solely on means may be insufficient. A simple quantile-normalization-based 222 

approach was successful in reducing bias in real-world scenarios and could be preferred for its simplicity. It is 223 

important to note that any method tested in this study is preferable over not addressing batch effects, and thus the 224 

choice between methods should be secondary to the choice to address batch effects altogether. Only results for 225 

biomarkers that are affected by batch effects and that are associated with the outcome of interest will show large 226 

changes in estimates, as the vitamin D receptor in our example. In contrast, for the majority of our example 227 

biomarkers, results did not change appreciably because batch effects were low, associations with the outcome were 228 

close to null, or both (Figure 6). 229 

We recommend that researchers openly address batch effects in their TMA-based studies: they are not an 230 

error of an individual study, but an inherent feature of TMA-based studies. Batch effects have long been recognized in 231 

studies of the transcriptome using microarrays and next-generation sequencing, where batch effect mitigations are a 232 

component of standard workflows (3, 11). Our data strongly suggest that protein biomarker studies using multiple 233 

TMAs are at risk of batch effects just like any other biomarker study. The extent of batch effects is difficult to predict, 234 

and empirical evaluation is necessary each time. Future studies should quantify between-TMA differences and, if they 235 

deem batch effect mitigations to be unnecessary, provide evidence for absence of batch effects, rather than merely 236 

assuming their absence. The methods that we provide facilitate appropriate migration of batch effects between TMAs 237 

and help strengthen scientific inference. It may be prudent to extend this approach to in-situ tissue biomarkers other 238 

than proteins, such as RNA in-situ hybridization, even if our study only demonstrated batch effects for proteins. 239 

Having mitigated batch effects will allow researchers to focus on increasing study validity by addressing other sources 240 

of measurement error (4), selection bias (for example, from tumor biospecimen availability) (12), and confounding. 241 

 242 

Methods 243 

TMAs and biomarkers. Tumor tissue in this study was from men who were diagnosed with primary prostate cancer 244 

during prospective follow-up of two nationwide cohort studies. The Health Professionals Follow-up Study is an 245 

ongoing cohort study that enrolled 51,529 male health professionals across the United States in 1986. The Physicians’ 246 

Health Study 1 and 2 were randomized-controlled trials of aspirin and dietary supplements, starting in 1982 with 247 

22,071 male physicians. Participants were diagnosed with and treated for prostate cancer at local health care providers 248 

across the United States. The study team collected formalin-fixed paraffin-embedded tissue specimens from radical 249 

prostatectomy and transurethral resection of the prostate (TURP), and study genitourinary pathologists performed 250 

central re-review, including standardized Gleason grading of full hematoxylin–eosin-stained slides from the tumor 251 
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blocks (13). The study protocol was approved by the institutional review boards of the Brigham and Women’s 252 

Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required. 253 

TMAs were constructed using 0.6-mm tissue cores of the primary nodule or the nodule with the highest 254 

Gleason score (14), including three or more cores of tumor tissue per participant (tumor). For a subset of tumors, 255 

additional cores of tumor-adjacent, histologically normal-appearing prostate tissue were included. TMAs were 256 

constructed at the same laboratory across a 10-year period, as tissue from cohort participants became available, 257 

without matching on patient or tumor characteristics and without randomization. Cores from the same participant 258 

were generally included on the same TMA, with exceptions noted below, and summarized as the mean. We include 259 

information from 14 prostate tumor tissue microarrays.  260 

Immunostaining was generally performed separately for individual biomarkers yet always for all TMAs at the 261 

same time. Detailed immunohistochemistry staining and quantification procedures for each marker have been 262 

published (5, 15-25) or are in preparation for estrogen receptor alpha (antibody SP1; Thermo Scientific, Waltham, 263 

MA) and an antibody (PPG5/10; Bio-Rad Laboratories, Herkules, CA) widely used to measure estrogen receptor beta. 264 

If batch effect mitigation approaches had been applied in the original studies, the uncorrected levels were retrieved. 265 

Right-skewed biomarker scores (Ki-67, pS6, TUNEL) were loge transformed. All biomarkers were scaled to mean 0 266 

and standard deviation 1 solely to facilitate comparisons of batch effects across markers; batch effect mitigation does 267 

not necessitate scaling and preserves absolute biomarker values. 268 

 269 

Extent and type of batch effects. To visualize the extent of biomarker variation between TMAs, we plotted 270 

uncorrected biomarker values by tumor, biomarker, and TMA. We summarized biomarker variation using the first two 271 

principal components. We calculated between-TMA mean differences and ratios of variances versus the first TMA. 272 

We tested if tumors with different clinical/pathological characteristics had higher biomarker levels in TMAs with 273 

higher means (i.e., multiplicative effect modification). For each biomarker and each clinical/pathological feature 274 

(ordinal Gleason score, ordinal stage, or calendar year of diagnosis), let Zij be the within-TMA z-score (mean 0, 275 

standard deviation 1) for tumor i from TMA j; Ai, the clinical/pathological feature of tumor i; Bj, the TMA-specific 276 

biomarker mean, rj, the TMA-specific random effect, and eij, residual error. In the regression model  277 

𝑍𝑖𝑗 =  𝛽0 + 𝛽1𝐴𝑖 + 𝛽2𝐵𝑗 + 𝛽3𝐴𝑖𝐵𝑗 + 𝑟𝑗 + 𝑒𝑖𝑗, we evaluated the β3 term to assess for multiplicative effect measure 278 

modification. 279 

We calculated the proportion of variation in biomarker levels attributable to TMA using intra-class 280 

correlations (ICCs, also “repeatability” (8)) based on one-way random effects linear mixed models with an 281 

independent variance–covariance structure (8, 26) for Yij, the biomarker level per tumor i and TMA j; where β0 is the 282 

biomarker mean; rj, the random effect for TMA j; and eij, the residual error: 𝑌𝑖𝑗 =  𝛽0 + 𝑟𝑗 + 𝑒𝑖𝑗. The ICC was defined 283 

as the proportion of between-TMA variance in the total variance: 𝐼𝐶𝐶 =  
var(𝑟)

var(𝑟)+var(𝑒)
. 95% CIs for ICCs were 284 

obtained using parametric bootstrapping using 500 repeats (27). 285 

 286 

Source of batch effects. To directly distinguish between-TMA variation caused by batch effects from variation 287 

caused by differences in patient and tumor characteristics, we compared ICCs per biomarker overall to ICCs per 288 

biomarker when restricting analyses to a subset of tumors with the same clinical features. We also leveraged a small 289 

subset of tumors that had cores included on more than one TMA. Here, we used two-way random effects linear mixed 290 

models with independent variance-covariance structure to separate between-TMA variation from between-core 291 

variation (i.e., intratumoral heterogeneity) and residual modeling error: 𝑌𝑖𝑗𝑘 =  𝛽0 + 𝑟𝑗 + 𝑠𝑖 + 𝑒𝑖𝑗𝑘. Compared to the 292 

model described earlier, this model additionally includes tumor-specific random effects si, and thus  293 

𝐼𝐶𝐶 =  
var(𝑟)

var(𝑟)+var(𝑠)+var(𝑒)
. 294 

 295 
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Mitigation of batch effects. In addition to (1) using uncorrected values, we implemented eight different approaches 296 

to handle between-TMA batch effects: 297 

 (2) Simple means. This approach assumes that all TMAs, if not affected by batch effects, would have the 298 

same mean biomarker value. Differences in mean biomarker values per batch are corrected by estimating batch-299 

specific mean effects (differences from the overall mean level) using a linear regression model with uncorrected 300 

biomarker values as the outcome and batch indicators as predictors. Corrected biomarker values are then obtained by 301 

subtracting batch-specific effects from the uncorrected biomarker values. Mean differences can either indicate the 302 

difference of each batch mean to the overall mean, as implemented here, or be defined by comparison to a reference 303 

batch. 304 

(3) Standardized means. This approach estimates marginal means per batch using model-based 305 

standardization (in the epidemiologic sense). It assumes that batches with similar characteristics have the same means 306 

if not affected by batch effects. A linear regression model for a specific biomarker is fit, adjusting for tumor variables 307 

that differ in distribution between TMAs, similar to an approach described in the epidemiology literature by 308 

Rosner (28). Let Yij indicate the biomarker value for tumor i on TMA j; Bj, TMA j; C1 to Cm, the m covariates to be 309 

retained; and eij, the residuals. Then 𝑌𝑖𝑗 = 𝛽0 + β𝑗𝐵𝑖 + γ1𝐶1 +  … + γ𝑛𝐶𝑛 + e𝑖𝑗. Batch effect-corrected biomarker 310 

values can be obtained by subtracting batch-specific effects β𝑗 predicted from the model above from uncorrected 311 

biomarker values.  312 

We included the following clinical and pathologic variables as plausible sources of real between-TMA 313 

differences that should be retained in this approach, as well approaches 4–7: calendar year of diagnosis (linear), 314 

Gleason score (categorical: 5–6; 3+4; 4+3; 8; 9–10), and pathologic tumor stage (categorical: pT1/T2, pT3/T3a, 315 

pT3b/T4/N1, missing/tissue from transurethral resection of the prostate). 316 

(4) Inverse-probability weighted batch means. Like the preceding approach, this approach assumes that 317 

batches with similar characteristics have the same means if not affected by batch effects. While the preceding 318 

approach assumes a constant association between covariates and biomarker levels across batches, this approach allows 319 

for associations to differ between batches. We first used inverse probability weighting for marginal standardization of 320 

the distribution of clinical and pathological features per batch to the distribution in the entire study population. 321 

Stabilized weights (29), truncated at the 2.5th and 97.5th percentile, were obtained through multinomial regression 322 

models, modeling the probability of assignment to a specific batch based on same clinical and pathological variables 323 

as in (3). In the weighted pseudopopulation, we then used a marginal linear model to estimate batch-specific mean 324 

differences, which were further used as in approaches 2 and 3. 325 

(5) Quantile regression. This approach assumes that batches with similar characteristics have the same values 326 

for a selected set of batch-specific quantiles, in this application the upper and lower quartile. The lower quartile may 327 

be particularly affected by background noise, while the upper quartile may more likely reflect differences in batches 328 

due to covariates. A corollary of separately modeling the two differently is that clinical and pathological variables are 329 

allowed to have different effects on these quartiles (30). These assumptions contrast with approaches 2–4 that focus on 330 

mean levels only. We used quantile regression with the Frisch-Newton approach separately for the first and third 331 

quartile of biomarker values with batch indicators to predict adjusted batch-specific quantile values with the same 332 

confounders as above. We then used the batch-specific 25th percentiles (𝑦𝜏=0.25) as the offset and the interquartile 333 

range between the 25th and 75th percentiles (𝑦𝜏=0.75) as the scaling factor when batch-correcting biomarker levels. Let 334 

𝑦𝑖𝑗
∗  indicate the batch effect-corrected biomarker level for tumor i on TMA j; 𝑦𝑖𝑗, the uncorrected biomarker level for 335 

tumor i on TMA j; 𝑦̂𝑖
𝜏=𝑥, xth quantile of y for batch j (predicted value for yj from unadjusted quantile regression); 336 

𝑦̂𝑗
𝜏=𝑥,∗

 is 𝑦̂𝑗
𝜏=𝑥 with adjustment for confounders (predicted value for yj from adjusted quantile regression); and 𝑦̅𝜏=𝑥, 337 

the xth quantile of y overall. Then the corrected biomarker level is 338 

𝑦𝑖𝑗
∗ =

(𝑦𝑖𝑗 − 𝑦̂𝑗
𝜏=0.25) (𝑦̅𝜏=0.75 − 𝑦̅𝜏=0.25)

(𝑦̂𝑗
𝜏=0.75,∗ − 𝑦̂𝑗

𝜏=0.25,∗)
+ 𝑦̅𝜏=0.25– 𝑦̂𝑗

𝜏=0.25,∗ + 𝑦̂𝑗
𝜏=0.25 339 

(6) Quantile normalization. This approach assumes that samples on all batches, if not affected by batch 340 

effects, would not only have the same mean and variance but also the same distribution of individual biomarker 341 
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values. Uncorrected biomarker values are ranked within each batch and then ranks are replaced by the mean of values 342 

with the same rank across batches. We implemented quantile normalization using limma (31).  343 

A conceptually related approach, for example employed in molecular epidemiology (2, 9), would be to use 344 

within-batch ranks as the batch-corrected biomarker, often grouped into data-driven categories such as batch-specific 345 

quartiles. We did not further consider these derivatives because they do not retain absolute biomarker levels and can 346 

distort rank distances. 347 

 (7) ComBat. For comparison, we additionally included the ComBat algorithm, which like approach 4 348 

attempts to retain differences in batch means due to covariate differences; it is frequently applied together with 349 

approach 6. ComBat and its derivatives (11, 32, 33) were initially designed for microarray studies of gene expression, 350 

which include considerably more than one biomarker per sample. This property would typically limit their use for a 351 

protein biomarker quantified on a TMA unless a large number of biomarkers is available, as in our study. Mitigation 352 

depends on values of other biomarkers on the same batches. Even if multiple protein biomarkers were available, the 353 

non-randomly selected set of concomitantly available biomarkers may influence how batch effects are corrected. 354 

ComBat scales means and (optionally) variances while (optionally) retaining adjustment variables. ComBat is 355 

implemented using an empirical Bayes approach to achieve more favorable properties for small batches. The 356 

underlying model is similar to the regression above and has been emulated by a two-way analysis of variance (34). In 357 

using ComBat, we scaled both means and variances, adjusting for the same clinical and pathological variables as 358 

before. Because ComBat cannot handle biomarkers if they are missing on entire batches, we ran ComBat separately 359 

for groups of biomarkers measured on 8, 9, 10, or 14 TMAs. 360 

(8) Stratification with inverse-variance pooling. An alternative approach to treating batch effects is to 361 

estimate outcome regression models separately by batch. This approach can be applied for a variety of regression 362 

models but does not result in corrected values. We pooled estimates with inverse variance-weighting to obtain 363 

summary estimates. 364 

(9) Stratification in Cox proportional hazards regression. In a special case of stratification for time-to-event 365 

outcomes, Cox proportional hazards models allow for nonparametric batch effect mitigation by including batch as a 366 

stratification factor in the model specification. Comparisons are performed within batches. Unlike approach 8, only 367 

batch-specific baseline hazard functions but no batch-specific effects are estimated. 368 

For approaches 1–7, we calculated Pearson correlation coefficients between uncorrected and corrected 369 

biomarker levels. Additionally, we repeated ICC and principal components analyses with corrected levels, and we 370 

estimated associations between Gleason score and biomarker levels after batch effect mitigation, stratifying by batch 371 

using approach 8. 372 

Approaches 2–6, which result in batch effect-adjusted biomarker levels, are implemented in the R package 373 

batchtma, available at https://stopsack.github.io/batchtma. 374 

 375 

Plasmode simulation. We evaluated the impact of batch effect mitigation approaches on known, investigator-376 

determined biomarker–outcome associations using plasmode simulation, an approach used, for example, for 377 

evaluating confounding control for binary exposures in pharmacoepidemiology (6). We used observed data from all 378 

tumors included on the 14 TMAs to determine covariates (Gleason grade, pathological stage) and outcome (lethal 379 

disease), preserving the observed correlation structure (e.g., joint distribution of clinical characteristics across TMAs). 380 

The only simulated elements were the biomarker levels and the strengths of biomarker–outcome associations (hazard 381 

ratios ranging from 1
3⁄  to 3) that we fixed by simulating event times with flexible parametric survival models (35). 382 

Models used a baseline hazard function consisting of cubic splines with three knots. Group differences were based on 383 

proportional hazards for the observed confounder–outcome coefficients in the real data and the fixed biomarker 384 

(exposure)–outcome hazard ratios.  385 

First, we used plasmode simulation to generate the fixed associations of the biomarker levels with the 386 

outcome, which are unknowable outside simulation studies, generating 200 plasmode datasets for each association. 387 

Second, we introduced batch effects. Batch effects were either only for the mean or for both mean and variance, using 388 

the actual standardized between-TMA differences in means and variances for the estrogen receptor-alpha protein, a 389 
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biomarker with high ICCs. We also added batch effects for mean and variance with effect modification, making mean 390 

and variance changes due to batch effects strongly correlated with Gleason scores. Third, we calculated batch effect- 391 

adjusted biomarker levels using approaches 2–6. Lastly, we compared the expected hazard ratios for the biomarker–392 

outcome association, fixed during simulations, with the estimated hazard ratios (with normality-based 95% CIs) 393 

before and after batch effect mitigation approaches 2–6 and using the two stratification-based approaches 8 and 9. 394 

In sensitivity analyses, we simulated “moderate” associations between the biomarker and confounders 395 

(0.2 standard deviations difference in biomarker levels per Gleason grade group, 0.1 per stage category), “strong” 396 

associations (differences of 0.4 and 0.2 standard deviations, respectively; stronger than observed for any biomarker in 397 

our study), as well as “strong” associations and additional imbalance in Gleason grade and stage between TMAs (by 398 

excluding tumors with low grades from TMAs with higher-than-average means and excluding tumors with high stage 399 

from TMAs with low-than-average means), all before the four steps described above. 400 

 401 

Impact of batch effects. To quantify the impact of different approaches to batch-effect handling on scientific 402 

inference, we focused on two commonly employed types of analyses in biomarker research in prostate cancer: first, a 403 

cross-sectional analysis of Gleason score and biomarker levels, using linear regression models; second, a time-to-404 

event analysis of biomarker levels and rates of lethal disease, using Cox proportional hazards regression. For 405 

graphing, exposures were modeled in five categories (Gleason scores) or using restricted cubic splines with three 406 

knots (all biomarkers in models for lethal disease). For numeric comparisons, Gleason scores were modeled as ordinal 407 

variables and biomarkers as linear variables to obtain one single estimate per model. We also categorized biomarkers 408 

into four quartiles and compared hazard ratios for lethal disease of the extreme quartiles. Models were designed only 409 

for investigating issues of batch effects and not for subject matter inference on specific biomarkers. 410 

 411 

Data availability. The batchtma R package is available at https://stopsack.github.io/batchtma. Code used to produce 412 

results this manuscript is at https://github.com/stopsack/batchtma_manuscript. Data are available for analysis on the 413 

Harvard FAS computing cluster through a project proposal for the Health Professionals Follow-up Study 414 

(https://sites.sph.harvard.edu/hpfs/for-collaborators). 415 
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Figures 509 

 510 

Figure 1. Characteristics of men with prostate cancer with tissue included on the 14 tumor tissue microarrays. 511 

A, Calendar years of cancer diagnosis, with thick lines indicating median, boxes interquartile ranges, and whiskers 1.5 512 

times the interquartile range. B, Counts of tumors by Gleason score. C, Counts of tumors by pathological TNM stage 513 

(RP: radical prostatectomy). D, Rates of lethal disease (metastases or prostate cancer-specific death over long-term 514 

follow-up), with bars indicating 95% confidence intervals. As throughout, multiple cores are summarized per tumor. 515 

 516 

  517 
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Figure 2. Biomarkers stained, scoring methods, and intraclass correlation coefficients (ICCs). A, Tissue 518 

microarrays assessed for each marker (dark blue, yes). B, Approach to quantifying biomarkers: software-based 519 

scoring vs. eye scoring (blue, yes); biomarker quality assessed: staining intensity, proportion of cells positive for the 520 

biomarker, area of tissue positive for the biomarker (yellow, yes). C, Counts of tumors assessed for each biomarker. 521 

D, Between-tissue microarray ICCs (i.e., proportion of variance explained by between-tissue microarray differences) 522 

for each biomarker, with 95% confidence intervals. Empty symbols indicate the 97.5th percentile of the null 523 

distribution of the ICC obtained by permuting tumor assignments to TMAs; asterisks indicate between-Gleason grade 524 

group ICCs. Biomarkers are arranged by descending between-tissue microarray ICC.  525 

 526 

  527 
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Figure 3. Effect of batch effect mitigation on a biomarker with strong between-tissue microarray variation. A, 528 

The protein biomarker estrogen receptor-alpha was quantified as staining intensity in nuclei of epithelial cells, 529 

averaged over all cores of each tumor. Each panel shows processed data for a specific approach to correcting batch 530 

effects. Notes in the upper right corner indicate which properties of batch effects were potentially addressed. Each data 531 

point represents one tumor. y-axes are standard deviations of the combined data for the specific method. Thick lines 532 

indicate medians, boxes interquartile ranges, and whisker length is 1.5 times the interquartile range. B, Example 533 

photographs of tissue microarrays; brown color indicates positive staining. 534 
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Figure 4. Patterns, source, and remediation of batch effects. A, Biomarker mean levels by tissue microarray, in 536 

biomarker-specific standard deviations (y-axis). Each point is one tissue microarray. B, First two principal 537 

components of biomarkers levels on all 14 tissue microarrays, with color/shape denoting tissue microarray. Each point 538 

is one tumor. C, The same first two principal components, with color/shape denoting Gleason score. D, Per-core 539 

biomarker levels for tumors with multiple cores included on two separate tissue microarrays, for estrogen receptor 540 

(ER) alpha and beta, both in standard deviations. Each point is one tumor core. E, Pearson correlation coefficients r 541 

between uncorrected and corrected biomarker levels. Entries are averages across all markers. 542 
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Figure 5. Plasmode simulation results. A–C, Biomarker levels by tissue microarray in three simulation scenarios; 544 

D–F, true versus observed hazard ratios for the biomarker–outcome association after alternative approaches to batch 545 

effect correction, with correction methods being numbered as in the Methods section. The solid blue line indicates no 546 

correction for batch effects. A and D, no batch effects; B and E, means-only batch effects; C and F, means and 547 

variance batch effects. 548 
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Figure 6. Consequences of batch effect mitigation on scientific inference. A, Gleason score and biomarker levels 550 

(in standard deviations, per Gleason grade group). B, Biomarker levels and progression to lethal disease, with hazard 551 

ratios per one standard deviation increase in biomarker levels from univariable Cox regression models. In both panels, 552 

blue dots indicate estimates using uncorrected biomarker levels, yellow dots indicate batch effect-corrected levels, 553 

applying approach (5), quantile regression. Lines are 95% confidence intervals. Biomarkers are ordered by decreasing 554 

between-tissue microarray intraclass correlation coefficient (ICC). 555 
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Figure 7. Recommended workflow for anticipating and handling batch effects between tissue microarrays. 557 

Following prevention approaches at the design phase of a project, all tissue microarray-based studies should explore 558 

the potential for batch effects once a biomarker has been measured. Addressing batch effects should only be skipped 559 

there is no indication for their presence. Batch effect-corrected biomarker levels can easily be generated by the 560 

batchtma R package.  561 

 562 
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Legends for Supplementary Tables and Figures  564 

See separate markdown document, also available at 565 

https://stopsack.github.io/batchtma_manuscript/batchtma_manuscript_210416.html 566 

 567 

Supplementary Table 1. Interaction terms to test for multiplicative effect modification, i.e. whether batch effects 568 

more strongly affect tumors with more extreme clinical/pathological characteristics. The table shows point estimates 569 

(differences in biomarker levels), 95% confidence interval bounds, p-values, and false-discovery rates (FDR, in 570 

ascending order) for interaction terms between the within-batch normalized biomarker level and the potential effect 571 

modifier in linear models that have absolute biomarker levels in standard deviation units per biomarker as the outcome 572 

and also include main effects for the biomarker and the effect modifier (terms not shown).  573 

Supplementary Table 2. Intraclass correlation coefficient (ICC) for between-batch variance for uncorrected 574 

biomarker levels (“1 Raw”) and biomarker levels after applying different correction methods. 575 

Supplementary Table 3. Results from plasmode simulation according to type of induced batch effect, using the data 576 

correlation structure “moderate confounding.” For three fixed (“true”) hazard ratios for the biomarker–outcome 577 

association (1
3⁄ , 1, and 3), the observed hazard ratios after batch correction (with 95% confidence intervals) are shown. 578 

Supplementary Table 4. Results from plasmode simulation according to data correlation structure, using the batch 579 

effect “mean and variance.” For three fixed (“true”) hazard ratios for the biomarker–outcome association (1
3⁄ , 1, and 580 

3), the observed hazard ratios after batch correction (with 95% confidence intervals) are shown. 581 

Supplementary Table 5. Gleason grade—biomarker associations according to batch effect correction method. Point 582 

estimates from unadjusted linear regression models for biomarker values with Gleason score categories per 1 “grade 583 

group” increase as the predictor are shown (with 95% confidence intervals). For loge-transformed markers like Ki-67, 584 

estimates are differences on the loge scale. 585 

Supplementary Table 6. Biomarker levels and lethal disease according to batch effect correction method. Hazard 586 

ratios (with 95% confidence intervals) per 1 standard deviation increase in the biomarker (linear) from unadjusted Cox 587 

regression models are shown. 588 

Supplementary Table 7. Biomarker levels and lethal disease according to batch effect correction method. Unlike in 589 

the preceding table, the hazard ratios (with 95% confidence intervals) are contrasts comparing extreme quartiles 590 

(fourth compared to first quartile) from unadjusted Cox regression models. 591 

 592 

Supplementary Figure 1. Ratios of variance per tissue microarray to the mean variance for each marker. 593 

Supplementary Figure 2. Tissue microarrays and differences in % positivity, at the example of estrogen receptor 594 

alpha and beta, and variance in biomarker levels explained by between-tissue microarray differences (ICC). 595 

Supplementary Figure 3. Intraclass correlation coefficients (ICCs), quantifying the proportion of variance in 596 

biomarker levels attributable to between-tissue microarray differences, across all tumors and after restriction to those 597 

378 tumors across tissue microarrays that have the same clinical/pathological characteristics in terms of Gleason score 598 

3+4 and prostatectomy stage pT1/T2. 599 

Supplementary Figure 4. Intraclass correlation coefficients (ICCs), quantifying the proportion of variance in 600 

biomarker levels attributable to between-Gleason grade differences, by increasing ICC. 601 

Supplementary Figure 5. Uncorrected compared with batch effect-corrected biomarker levels, for estrogen receptor 602 

alpha. Symbols and color indicate the tissue microarray. 603 

Supplementary Figure 6. Principal components 1 and 2 after batch effect correction using (5) quantile regression for 604 

biomarkers available on all tissue microarrays. Symbol color and shape indicate the tissue microarray. 605 
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Supplementary Figure 7. Quantile-specific associations of confounders (clinical/pathological differences) with 606 

(uncorrected) biomarker levels of estrogen receptor alpha. Shown are regression coefficients for the 10th, 50th, and 90th 607 

percentiles as the outcomes of quantile regression models. 608 

Supplementary Figure 8. Batch corrections per tissue microarray and method. The plot shows the difference between 609 

uncorrected and corrected values per batch, averaged across all biomarkers. IGF1-R was excluded because of missing 610 

values for some correction approaches. For batch correction approaches that only address the mean (i.e., that subtract 611 

the same correction value from all biomarker values within each batch), only that difference is visible; for correction 612 

methods that address individual values within batches differently, batch-specific medians and interquartile ranges of 613 

differences between uncorrected and corrected values are visible. 614 

Supplementary Figure 9. Biomarker differences, after batch effect correction methods, for a one-unit increment in 615 

Gleason score, stratified by tissue microarray. “Pooled” indicates estimates pooled over batches (TMAs) using 616 

inverse-variance weighting. “No stratification” indicates estimates without stratification. Note that for batch effect 617 

correction approaches that only address between-batch differences in means (approaches 2–4), estimates stratified by 618 

batch (and pooled estimates thereof) are the same. 619 

Supplementary Figure 10. Data structures in the actual data and in 200 plasmode simulation datasets. A, Gleason 620 

scores and lethal prostate cancer (metastasis-free survival) in the actual data. B, Gleason scores and lethal prostate 621 

cancer in an example simulated dataset. Shaded areas indicate 95% confidence intervals. C, Pearson correlation 622 

coefficients between biomarker levels and confounders, and between confounders, across all simulated datasets. 623 

Correlation coefficients observed in the actual data are noted in the legend. D, Hazard ratios for the biomarker and the 624 

confounders in relation to lethal prostate cancer, pooling all simulated data sets. Confounder–outcome associations 625 

were simulated to correspond to their observed values in the actual data; exposure–outcome associations were 626 

simulated to a range of hazard ratios (x axis). Lines indicate medians across simulations with the same exposure–627 

outcome hazard ratio, shaded areas range from the 2.5th to 97.5th percentile. 628 

Supplementary Figure 11. The data correlation structure “confounding and imbalance.” Tumors with more extreme 629 

Gleason scores were set to be more extremely influenced by batch effects in terms of mean and variances. 630 

Supplementary Figure 12. Plasmode simulation results for all scenarios. Observed hazard ratios after different 631 

approaches to batch effect correction (y axis) are compared to true (fixed) hazard ratios for the biomarker–outcome 632 

association (x axis; solid blue line: no correction for batch effects). Columns are different batch effects that were 633 

added; rows are different data correlation structures. 634 
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