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Abstract 21 
Human brains are capable of modulating innate activities to adapt to novel 22 
environmental stimuli; for sensorimotor cortices (SM1) this means acquisition of 23 
a rich repertoire of motor behaviors. We investigated the adaptability of human 24 
SM1 motor control by analyzing net neural population activity during the learning 25 
of brain-computer interface (BCI) operations. We found systematic interactions 26 
between the neural manifold of cortical population activities and BCI classifiers; 27 
the neural manifold was stretched by rescaling motor-related features of 28 
electroencephalograms with model-based fixed classifiers, but not with adaptive 29 
classifiers that were constantly recalibrated to user activity. Moreover, operation 30 
of a BCI based on a de novo classifier with a fixed decision boundary based on 31 
biologically unnatural features, deformed the neural manifold to be orthogonal to 32 
the boundary. These principles of neural adaptation at a macroscopic level may 33 
underlie the ability of humans to learn wide-ranging behavioral repertoires and 34 
adapt to novel environments. 35 
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1 Introduction  42 
Neural plasticity underlies behavioral adaptation to the external environment by 43 
changing properties of neural circuitries involved in, for example, dexterous motor 44 
behaviors, such as sports, musical performance, tool-use, or brain-computer 45 
interface (BCI) operations (Imamizu et al., 2000; Nudo et al., 1996; Quallo et al., 46 
2009). The adaptation processes to achieve purposeful physical movement have 47 
been examined by electrophysiology, neuroimaging, and behavioral approaches 48 
(Karni et al., 1995; Kleim et al., 2004; Kording et al., 2007; Nudo et al., 1996; 49 
Shadmehr & Mussa-Ivaldi, 1994). 50 

In sensorimotor studies leveraging neural activity recordings, local neuronal 51 
circuitries display repertoires of firing patterns that reliably represent ongoing 52 
behavior (Gallego et al., 2018; Shenoy & Kao, 2021). This representation of 53 
covariance structure has been referred to as the neural manifold, and intriguing 54 
findings suggest that the brain is capable of rapidly learning patterns of spike 55 
activities inside the manifold but not those outside of it (Sadtler et al., 2014). 56 
These constraints to learning, which are putatively due to the microscopic 57 
configuration of neurons, illustrate realistic behavior as well as the BCI control on 58 
which neural activities and behavioral consequences are directly mapped. 59 

While a neural manifold describes the constraints on the ensemble of local 60 
neural activities in which hundreds of neurons are implicated, what is less 61 
investigated are the constraints on the macroscopic neural system. Because the 62 
brain exerts information processing via not only local circuitry but also the inter-63 
regional coupling by which macroscopic neural populations selectively 64 
communicate (Bassett et al., 2015), those implicated in coherent communication 65 
might also be constrained similarly to the local circuitries (Fries, 2005, 2015).  66 

To characterize the constraints on cortical population activities during 67 
adaptation, we used BCIs based on scalp electroencephalograms (EEG) with a 68 
variety of incorporated classifiers (Figure 1).  69 

Figure 1 70 

 71 
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Users attempted to move a virtual object using mental actions that modulated 72 
EEG signals. For each user, one of three classifiers determined the movement of 73 
objects based on a different set of rules. The model-based classifier required 74 
voluntary attenuation of sensorimotor rhythm (SMR) power derived from 75 
sensorimotor cortex (SM1). This fixed BCI operation rule is consistent with 76 
physiological findings, as the attenuation of SMR reflects SM1 excitability (Naros 77 
et al., 2019; Pfurtscheller & Lopes Da Silva, 1999; Takemi et al., 2013), as well 78 
as functional coupling among sensorimotor-related regions (Hayashi et al., 2020; 79 
Schulz et al., 2014; Tomassini et al., 2020; Wander et al., 2013). The adaptive 80 
classifier based on machine learning algorithms was configured based on recent 81 
whole-head EEG activity patterns to achieve maximum BCI controllability. This 82 
data-driven classifier configuration entails adaptive weighting on signaling 83 
features implicated in not only sensorimotor, but also attentional or cognitive 84 
functions in which the front-parietal network is implicated (Corsi et al., 2020). 85 
Lastly, the de novo classifier had a fixed configuration based on a biologically 86 
unnatural feature – desynchronized alpha oscillations derived from parietal 87 
regions. Due to the absence of prior knowledge to control this feature, users were 88 
encouraged to explore mental actions to control a visual object in the given BCI 89 
framework (Fujisawa et al., 2019). 90 

As the decision boundaries between resting and motor attempts for each of the 91 
three classifiers (classifier plane) differed in their configurations, cortical 92 
adaptation processes were investigated by t-distributed stochastic neighbor 93 
embedding (t-SNE) algorithms, a nonlinear dimensionality reduction to visualize 94 
the distinct geometric changes of a whole-head EEG signal during 95 
operating/learning BCI tasks (Van Der Maaten & Hinton, 2008).   96 
 97 
2 Results  98 
 99 
2.1 Score acquisition during brain-computer interfacing 100 
Twenty-one participants operated BCIs with one of three randomly allocated 101 
classifiers that provided scores contingent on BCI performance (Figure 2, 102 
Figure 2–supplement 1, 2). While BCI performance scores from the model-based 103 
and adaptive classifier generally increased over sessions, those for the de novo 104 
classifier did not. Statistical tests for coefficient of linear regression acquired from 105 
each participant revealed significant differences from zero for BCIs based on the 106 
model-based and adaptive classifiers (model-based: p = 0.0078, adaptive: p = 107 
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0.023, de novo: p = 0.055, Wilcoxon rank-sum test, FDR corrected). Note that 108 
direct comparison of the coefficients among classifiers is not possible because 109 
scores from each classifier were computed based on different classifiers. 110 
 111 
Figure 2 112 

 113 
 114 
 115 
Figure 2 Supplement 1 116 

 117 

 118 
Figure 2 Supplement 2 119 

 120 
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2.2 Quantification of cortical adaptation process to classifier's separating 122 
plane 123 
To examine differences in cortical adaptation processes, we next investigated 124 
changes in whole-head EEG signals (Figure 3A). Using band-power features as 125 
a representation of brain state, all data acquired from a single experiment were 126 
subjected to the t-SNE algorithm to evaluate geometric relationships among two 127 
brain states (i.e., resting and attempted movement) and the classifier plane in the 128 
embedded space. 129 
 130 
Figure 3 131 

 132 
 133 

An example of data from the model-based classifier BCI is shown in Figure 3B. 134 
As the participant performed the BCI operation, data during attempted movement 135 
(blue points) moved across the classifier plane, where the sign of relative SMR 136 
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power flips (Figure 3C). In this case, the defined metrics 𝑡𝑁𝑜𝑟𝑚!  and 𝜃! 137 
(Figure 3D) increased and decreased, respectively.  138 

Figure 4A depicts changes in 𝑡𝑁𝑜𝑟𝑚! and 𝜃! between the first and last four 139 
sessions in the experiment. For participants trained with the model-based 140 
classifier, 𝑡𝑁𝑜𝑟𝑚! values significantly increased (p = 0.016, d = 0.71, two-tailed 141 
Wilcoxon signed-rank test) and the change was specific to participants who 142 
operated with model-based classifiers (Figure 4–supplement 1A, p = 0.81, 0.047). 143 
At the same time, 𝜃! values decreased significantly for participants trained with 144 
both the model-based and de novo classifiers (p = 0.016, d = 0.77, p = 0.016, d 145 
= 1.0, respectively, Figure 4–supplement 1B), but not with the adaptive classifiers 146 
(Figure. 4C; p = 0.58).  147 

 148 
Figure 4 149 

 150 
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Figure 4 Supplement 1 151 

 152 
 153 
Figure 4 Supplement 2 154 
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Figure 4 Supplement 3 156 

 157 

The identical evaluation was conducted for the de novo classifier plane. 158 
Figure 4B depicts changes in	𝑡𝑁𝑜𝑟𝑚!  and 𝜃!  against the de novo classifier. 159 
While no significant differences were confirmed for 𝑡𝑁𝑜𝑟𝑚!  values over 160 
sessions (p = 0.078), 𝜃!values decreased significantly (p = 0.016, d = 1.3). 161 
Neither 𝑡𝑁𝑜𝑟𝑚!  nor 𝜃! changed with respect to the other two classifiers 162 
(Figure 4–supplement 2, model-based: p = 0.047, 0.031, adaptive: p = 1, 0.58, 163 
𝑡𝑁𝑜𝑟𝑚! and 𝜃!, respectively). 164 

As the classifier planes changed from one session to the next for the adaptive 165 
classifiers trained with the data from the previous sessions, each metric was 166 
calculated against the classifier plane determined with the dataset from the 167 
previous session. No significant differences were confirmed for comparison 168 
between the early and late period for the adaptive classifier (Figure 4C, 169 
supplement 3). 170 
 171 
3 Discussion 172 
In the present study, participants performed BCI operations with one of three 173 
classifiers: model-based, adaptive, or de novo. Each classifier elicited a different 174 
cortical adaptation process consistent with their characteristics. t-SNE analyses 175 
in embedded space revealed increases in 𝑡𝑁𝑜𝑟𝑚! for the model-based classifier, 176 
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indicating rescaling of the neural manifold with respect to the axes orthogonal to 177 
the fixed decision boundary. Meanwhile, changes in population activities were not 178 
induced by the adaptive classifiers; decreases in 𝜃! indicated that the manifold 179 
was deformed, resulting in a reconfiguration orthogonal to its classifier plane by 180 
the de novo classifier that was based on biologically unnatural features. 181 
 182 

3.1 Tuning classifiers to a brain induced by adaptive algorithm 183 
Both the model-based and adaptive classifiers elicited short-term learning of the 184 
BCI operations as evidenced by the increases in performance scores; however, 185 
these two processes were distinct from one another. While model-based 186 
classifiers elicited changes in 𝑡𝑁𝑜𝑟𝑚! and 𝜃!, the adaptive classifiers did not. 187 
Such a difference might be attributed to the design of the classifiers, as the mental 188 
actions that users were instructed to perform were identical. During BCI 189 
operations with a constant classifier plane, participants honed their abstract 190 
ability to control sensorimotor activity by minimizing error between the current 191 
classified result and their intended mental action; however, in the case of the 192 
adaptive classifiers, adaptation of users to the classifier was putatively limited 193 
due to the session-by-session recalibration. 194 

Despite the absence of cortical adaptation to the classifier plane for users of 195 
the adaptive classifiers, performance scores did increase incrementally 196 
throughout the experiment. Accordingly, we can only posit that the adaptation of 197 
classifiers to users systematically progressed across sessions. It should be noted 198 
that implementing the adaptive algorithm might induce suboptimal results when 199 
the objective of the BCI operation is the induction of a specific neural activity, 200 
such as changes in excitability, activity patterns, or connectivity of targeted 201 
regions (Ramot et al., 2017; Ruddy et al., 2018; Shibata et al., 2011). 202 

 203 
3.2 Cortical adaptation process during de novo brain-computer interfacing 204 
Although significant increases in performance scores and 𝑡𝑁𝑜𝑟𝑚!  were not 205 
confirmed for the de novo classifiers, cortical adaptations towards the classifier 206 
plane were partly observed, as evidenced by the decreases in 𝜃!. The de novo 207 
task was defined as one that participants work on to improve their performance 208 
without any prior knowledge or strategy (Choi et al., 2020; Fujisawa et al., 2019; 209 
Radhakrishnan et al., 2008; Telgen et al., 2014). To achieve this during brain-210 
computer interfacing, neurofeedback was provided via an illustrated tail. Because 211 
movement of a tail is not inherent for humans, participants were instructed to 212 
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explore possible mental actions that might be suitable for operation. As such an 213 
exploratory strategy might require more extensive training than recalibrating the 214 
existing control configuration, performance scores did not tend to progress within 215 
a single-day experiment (Choi et al., 2020; Telgen et al., 2014). 216 

The neural adaptation process was visualized via the t-SNE-based analysis. 217 
Deforming effects, that is rotational changes in the geometric relationship of two 218 
brain states towards the classifier plane, were confirmed in participants using the 219 
de novo classifier. However, the absence of a significant scaling effect suggested 220 
that the dissection of the two conditions (resting and motor imagery) did not 221 
systematically progress; this observation might reflect the reassociation of 222 
existing activity patterns to adapt to the BCI classifier by exploring a strategy to 223 
control the object. The result is consistent with the time course of the performance 224 
score and possible necessity of multi-day training to affect substantial behavioral 225 
improvement in de novo learning (Choi et al., 2020; Fujisawa et al., 2019). 226 
Although the flexibility of the human brain enabled partial adaptation to the de 227 
novo classifier planes, the adaptive classifier did not elicit brain-side adaptation. 228 
These findings collectively suggest that fixation of the classifier plane is an 229 
essential element for inducing neural plasticity via a brain-computer interaction 230 
based on macroscopic neural population activity.  231 

 232 
4 Material and Methods 233 
 234 
4.1 Participants 235 
Twenty-one neurologically healthy adults (9 females, 12 males, mean age: 22.6 236 
± 3.23) who had never operated a BCI participated in this experiment. The 237 
appropriate sample size for this study was determined by an a-priori power 238 
analysis (α = 0.05, 1-β = 0.8, two-sided Wilcoxon signed-rank tests) focusing on 239 
the deforming effect induced by de novo BCI. The statistical package G*Power 3 240 
(Faul et al, 2007) was used to estimate the sample size that shows large Cohen's 241 
d = 0.90 reported in the previous EEG-based neurofeedback literatures (Hayashi 242 
et al., 2020; Soekadar et al., 2015). We calculated that 7 participants were 243 
needed. 244 

All participants had normal or corrected-to-normal vision and were asked to 245 
provide written informed consent before participating in the experiment. This 246 
study was conducted according to the ethics of the Declaration of Helsinki. The 247 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.28.450263doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.450263


experimental protocol was approved by the ethical committee of the Faculty of 248 
Science and Technology, Keio University (Approval Number: 2020-36, 31-23). 249 
 250 
4.2 Experimental setup 251 
Participants were seated on a comfortable chair in a quiet room. A display was 252 
placed about one meter in front of the chair to provide task instructions and visual 253 
feedback from BCIs.  254 

EEG signals during the experiment were acquired with a 128-channel 255 
HydroCel Geodesic Sensor Net (HCGSN, EGI, Eugene, OR, USA.). The layout 256 
of channels followed the international 10-10 electrode positions shown in 257 
Figure 2–supplement 1A (Luu & Ferree, 2005). The reference channel was set to 258 
Cz. The impedance of all channels was maintained below 50 kΩ throughout the 259 
experiment. The EEG data were collected with a sampling rate of 1 kHz and 260 
transmitted via the Ethernet switch Gigabit Web Smart Switch (Black Box, 261 
Pennsylvania, USA) to EEG recording software Net Station 5.2 manufactured by 262 
EGI and MATLAB R2019a (The Mathworks, Inc, Massachusetts, USA). 263 

4.3 Online processing of EEG signals 264 
Analytical pipelines for online signal processing were implemented with a 265 
combination of MATLAB and Unity (Ver. 2019.2.4f1, Unity Technologies, USA). 266 
While the real-time status of brain states was determined from EEG signals 267 
processed by a custom MATLAB script, Unity presented the visual neurofeedback 268 
objects. EEG signals were processed with a 1651-point, minimum-phase, FIR 8-269 
30 Hz bandpass temporal filter and then processed with one of the three types of 270 
BCI classifiers. Online processed EEG signals were used to classify brain-states 271 
as either presence or absence of attempted movement with one of the three types 272 
of classifiers: model-based, adaptive, or de novo. Each classifier was designed 273 
with different rules, and electrodes of interest were defined as shown in Figure 2–274 
supplement 1A.  275 

The model-based classifier was constructed based on those used in common 276 
SMR-based BCIs (Buch et al., 2008; Kraus et al., 2016). EEG signals around the 277 
left SM1 (i.e., channel C3) were only used to detect the attempted movement, 278 
because accumulated evidence suggests that event-related desynchronization of 279 
SMR (SMR-ERD) contralateral to the hand that attempted to move reflects the 280 
excitability of SM1 (Hummel et al., 2002; Naros et al., 2019; Takemi et al., 2013). 281 
In online processing, a large Laplacian filter was applied to EEG signals from 282 
channel C3 to extract sensorimotor activity (McFarland et al., 1997; Tsuchimoto 283 
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et al., 2021). Subsequently, the band power of SMR (SMR-power; 8-13 Hz) was 284 
extracted by Fourier transform with a 1-s window and Hamming window function. 285 
The magnitude of SMR-ERD [dB] was computed from the obtained SMR-power 286 
with the following formula:  287 

	289 
ERD(𝑡) = −10 log"#(P(𝑡) /P$%&) 290 

 288 
where P(𝑡) denotes the power of interest, here the SMR-power, at time point 𝑡, 291 
and P$%& denotes the reference power (Pfurtscheller & Lopes Da Silva, 1999). 292 
The reference power was calculated from the middle 3-s period of “Rest” time 293 
from the previous trial. The online calculated magnitude of SMR-ERD was then 294 
used as the index of neurofeedback for the model-based classifier. Movements 295 
of the illustrated hand in the display and performance scores were defined to be 296 
linearly related to the SMR-ERD value in the range of 0 to 10 dB. 297 

The adaptive classifier was constructed using whole-head scalp EEG signals 298 
based on a common spatial pattern (CSP) algorithm and a support vector 299 
machine (SVM) (Blankertz et al., 2007). CSP components were extracted to 300 
maximize the separability of the two conditions Rest and Imagine, and were 301 
quickly trained at the end of each session to adapt to the current activity patterns 302 
of users. Specifically, the CSP was generated from the spatial covariance 303 
matrices of all EEG electrodes to find linear combinations of electrodes to form 304 
spatial filters that maximized the variance difference between the two conditions. 305 
The corresponding variances of spatially filtered EEG data were then divided into 306 
time windows and log-transformed to transform their distribution into a normal 307 
distribution. The SVM classifier was constructed to perform a binary classification 308 
of the two conditions. The posterior probability for a data point classified as 309 
presence of motor attempt was used as an index for neurofeedback; the index 310 
for the adaptive classifier was defined to be linearly related to the posterior 311 
possibility in the range of 50% to 100%. Note that the rules for object movement 312 
were identical to those of the model-based classifier, only the feedback was 313 
different. 314 

Lastly, the de novo classifier had a fixed classifier plane as did the model-based 315 
classifier; however, its characteristics were biologically unnatural; the de novo 316 
classifier was based on EEG signals around the parietal region (i.e., channel Cz) 317 
that are associated with attentional features but not with sensorimotor activity 318 
(Benedek et al., 2014; Misselhorn et al., 2019). During the BCI task, users 319 
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attempted to move their body or a visual object on the display; however, spectral 320 
power in the alpha-band (8-13 Hz) was increased by the motor attempt of moving 321 
the feet or by internal attention at the targeted channel (Benedek et al., 2014; 322 
Pfurtscheller et al., 2006). Such intrinsic responses did not contribute to the BCI 323 
operation, as the de novo classifier discriminated motor attempts with ERD values 324 
(i.e., power attenuation) in the alpha-band from the Cz channel, calculated with 325 
the procedure identical to that from channel C3 in the model-based classifier. 326 
Online computed ERD magnitude was exploited to decode the absence/presence 327 
of attempted movement and index for neurofeedback. Note that the rules for 328 
object movement and for obtaining scores were identical to those in the other two 329 
types of classifiers.  330 
 331 
4.4 Experimental procedure 332 
Participants underwent 16 BCI operation sessions, each consisting of 20 trials. 333 
All experimental procedures were conducted within 2 hours to guarantee the 334 
reversibility of any potentially unnaturally induced neural plasticity and to 335 
investigate the initial phase of learning to operate the BCIs. After every two 336 
sessions, participants were given a break of up to 5 min. Participants were 337 
randomly allocated to one of the three classifiers without knowledge of their 338 
existence or configuration and used the allocated type of classifier throughout the 339 
entire experiment.  340 

A trial began with a 5-s “Rest” period. This was followed by a 5-s “Imagine” and 341 
a 3-s “Break” period (Figure 2 – supplement 1B). During the “Rest” period, 342 
participants were instructed to relax without having any specific thoughts and with 343 
opened eyes. In the “Imagine” period, participants were instructed by the 344 
experimenter to perform motor imagery tasks based on the allocated classifier. 345 
Participants with the model-based and adaptive classifiers were instructed to 346 
imagine extending the right-hand throughout the experiment, matching the 347 
imagined movement with the object on display. Participants with the de novo 348 
classifier were instructed to imagine moving a tail, also matching the movement 349 
of the object on display. As tail moving is not intuitive for humans, at the beginning 350 
of the session, participants were encouraged to exploratorily find a strategy that 351 
achieved the best control of the BCI. The strategy adopted in each session was 352 
freely determined by each participant, but they were instructed to try to use the 353 
same strategy throughout one session to acquire sufficient data during a specific 354 
strategy.    355 
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The performance of each trial was quantified by a score, which participants 356 
were encouraged to make as high as possible. Scores were determined by the 357 
predicted presence/absence of the attempted movement. Both the absence of 358 
attempted movements during “Rest” periods and the presence of attempted 359 
movements during “Imagine” periods resulted in higher scores, while scores were 360 
reduced if movements contrary these predictions were detected. The changing 361 
rates of these scores were pertinent to the metrics used for feedback by each 362 
classifier and were regulated linearly to fit the score range from minus one 363 
hundred to plus one hundred. After each session, participants were asked to 364 
verbally describe the strategies they had adopted. 365 

For the adaptive classifier, the CSP-SVM model was re-trained with “Rest” and 366 
“Imagine” period data from the previous session to use in the next session. Note 367 
that the first session of the adaptive classifier task was identical to that of the 368 
model-based one, so as to collect a dataset for constructing the adaptive classifier. 369 
Detailed procedures for classifier training are described in the supplementary 370 
materials. 371 
 372 
4.5 Evaluation of BCI performance 373 
Online-calculated scores were subjected to linear regression analysis (Gruzelier, 374 
2014; Kober et al., 2018; Witte et al., 2018). The score obtained during a given 375 
session was used as a dependent variable and session number was used as a 376 
predictor valuable. If scores increased during the experiment, the regression 377 
coefficient for the predictor valuable was positive. To test whether the obtained 378 
regression coefficients were significantly different from zero, they were subjected 379 
to a group-by-group Wilcoxon rank-sum test with a false discovery rate correction 380 
(Benjamini-Hochberg method; Benjamini & Hochberg, 1995).  381 
 382 
4.6 Offline EEG preprocession 383 
The recorded EEG signals were first preprocessed with EEGLAB (Delorme & 384 
Makeig, 2004) to reject artifacts and enhance the computational efficiency via 385 
downsampling (Bigdely-Shamlo et al., 2015). The raw EEG data were filtered with 386 
a zero-phase 1-45 Hz FIR bandpass filter and down sampled to 100 Hz. Channels 387 
classified as “Bad” by the EEGLAB plugin: Christian's clean_rawdata (Bigdely-388 
Shamlo et al., 2015) were removed from further analysis. The removed channels 389 
were interpolated spherically to minimize a potential bias when re-referencing the 390 
electrodes to a common average reference. Subsequently, large-amplitude 391 
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artifacts caused by blinking or head displacement were removed via Artifact 392 
Subspace Reconstruction (Kothe & Makeig, 2013). The electrodes were then re-393 
referenced to the common average reference to extract activity specific to the 394 
electrodes (McFarland et al., 1997). 395 

The continuous EEG data were then segmented into trials to evaluate the 396 
middle 8-s periods of the online BCI training trials (i.e., the last 4 s of the “Rest” 397 
period and the first 4 s of the “Imagine” period). To obtain the independent EEG 398 
components of the segmented dataset, we used adaptive mixture independent 399 
component analysis (AMICA; Palmer et al., 2011). Finally, an automatic artifact 400 
rejection was applied using ICLabel that distinguished brain–originated EEG 401 
components from artifacts induced by eye, muscle, heart, line noise, and channel 402 
noises (Pion-Tonachini et al., 2019). 403 

To investigate cortical adaptation processes during brain-computer interfacing, 404 
the band-power features were used as a raw-vector that represents 405 
instantaneous overall brain state. Computed band-power from each EEG channel 406 
was subdivided into five functionally distinct frequency bands (Delta: 1-4 Hz, 407 
Theta: 4-8 Hz, Alpha: 8-13 Hz, Beta: 13-31 Hz, Gamma: 31-45 Hz; Hayashi et al., 408 
2019). The averaged band-power was log-transformed and normalized to the z-409 
score in a trial-by-trial manner to cancel base-line drifting. Thereby, the original 410 
number of dimensions of the feature vector 𝐷  was 𝐷 = 129 × 5 = 645 . The 411 
calculated band-power signals in the alpha-band also were subjected to cortical 412 
source estimation (See also supplementary materials). 413 
 414 
4.7 Feature extraction of EEG-dataset using t-SNE algorithm 415 
The preprocessed EEG dataset (645×11520 matrix) was subjected to a subject-416 
by-subject t-SNE analysis, which converted the pairwise distances between data 417 
points in the original feature space to conditional probabilities (Van Der Maaten 418 
& Hinton, 2008). Mathematical details of t-SNE are further described in the 419 
Supplementary Materials and briefly here. First, the conditional probability that 420 
the data points 𝑥'  and 𝑥(  are neighbors was calculated from the pairwise 421 
distances of input data. Then, to maintain the probabilities in the original feature 422 
space in the embedded space, the Kullback-Leibler divergence representing the 423 
distance between the conditional probability in the original and embedded space 424 
was minimized via optimization. In this study, the number of dimensions of EEG 425 
features was reduced to three via a Barnes-Hut variation of t-SNE (Van Der 426 
Maaten et al., 2014) to speed up the computation. Perplexity, a hyperparameter 427 
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of the t-SNE algorithm, was set to 20, which was determined empirically with a 428 
parameter search of past EEG data for best separation between the “Rest” and 429 
“Imagine” periods. The hyperparameter was fixed across participants throughout 430 
the study after the determination. After applying t-SNE, the dimensionality-431 
reduced datasets were subjected to visualization and a similarity analysis. 432 

 433 
4.8 t-SNE-based dimensionality reduction and quantitative analysis in 434 
embedded space 435 
Feature extraction using dimensionality reduction is popularly conducted for high-436 
dimensional neural data across modalities (Cunningham & Yu, 2014; Lord et al., 437 
2019). The t-SNE algorithm we adopted has advantages for geometric evaluation, 438 
as it preserves original distances in the embedded space. Here, to conduct 439 
quantitative analysis beyond its general purpose for data visualization, we 440 
employed metrics that do not violate the assumption of the t-SNE algorithm. 441 
Feature extraction techniques such as ICA, principal component analysis, or 442 
factor analysis display weighted maps of extracted components so that they can 443 
be applied to newly acquired data, whereas the t-SNE algorithm does not. To 444 
enable interpretation of the dataset with reduced components, in the present 445 
study, entire datasets from individual participants were subjected to t-SNE 446 
analysis at once. 447 

Because t-SNE unfolds the nonlinear structure of a given dataset, the linear 448 
distance in the embedded space can be interpreted as an approximation of 449 
geometric distance in the original space. It illustrates how different one brain 450 
activity pattern is from another. It should be noted however that to properly 451 
interpret the results (1) distance scales in the embedded space were rearranged 452 
and were variable across iterations of t-SNE, (2) distance scales in different 453 
clusters might have differed, (3) direct comparisons of distances between clusters 454 
were not acceptable because distances within two clusters were arbitrary. To deal 455 
with the above concerns, two approaches were adopted: (1) data points were 456 
bridged to prevent the formation of multiple clusters, and (2) statistical distances, 457 
namely Hotelling's t-squared statistical values, were used instead of Euclidean 458 
metrics.  459 

Because distances between nearby points are well preserved in embedded 460 
space, the distance scale of distant points were kept similar for enough data 461 
points, which acts as a bridge and prevents the formation of sparse multiple 462 
clusters. We also adopted the concept of “short-circuiting” (Lee & Verleysen, 463 
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2005) by constructing the feature vectors with overlapped time-windows so that 464 
points were smoothly connected. Thus, distances from point to point shared the 465 
same scale across all points (i.e., only one cluster was generated in embedded 466 
space). 467 

Hotelling's t-squared statistic was adopted as the distance metrics between two 468 
group of points (Hotelling, 1992). Assume 𝑥	and 𝑦 are two groups of points lying 469 
in a p-dimensional space, 𝑛) and 𝑛* are the numbers of points,	�̅� and 𝑦A are 470 
the sample means, and ΣC)  and 	ΣC*  are the respective sample covariance 471 
matrices. The Hotelling's t-squared statistic was calculated as: 472 

 473 

𝒕𝟐 =
𝒏𝒙𝒏𝒚
𝒏𝒙 + 𝒏𝒚

(𝒙H − 𝒚H).𝜮K/𝟏(𝒙H − 𝒚H)	 474 

𝛴C =
(𝑛) − 1)ΣC) + M𝑛* − 1NΣC*

𝑛) + 𝑛* − 2
 475 

 476 
Hotelling's t-squared statistic is suitable for measurements of statistical 477 

distance in the t-SNE-embedded space, as they were invariant to the distance 478 
scale. The distribution of 𝑡1 follows an F-distribution: 479 

 480 

𝑡1~
𝑝M𝑛) + 𝑛* − 2N
𝑛) + 𝑛* − 𝑝 − 1

𝐹!,3!43"/"/! 481 

 482 
To normalize the distribution, the square root of 𝑡1 was defined as 𝑡𝑁𝑜𝑟𝑚 483 

and was used as the distance measurement in subsequent analyses: 484 
 485 

𝑡Norm = U𝑡1 486 
 487 
The vector representing the directional relationship between two classes was 488 

defined as 𝑡𝑉𝑒𝑐: 489 
 490 

𝑡Vec = 𝑡Norm ∙
�̅� − 𝑦A
‖�̅� − 𝑦A‖

 491 

 492 
Data points were divided into two classes: “Rest” and “Imagine” according to 493 

their relative times in the trials. 𝑡𝑁𝑜𝑟𝑚 and 𝑡𝑉𝑒𝑐 were calculated for these two 494 
conditions. 495 
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 496 
4.9 Classifier plane 497 
To investigate the influence of BCI classifiers on the cortical adaptation in the t-498 
SNE-embedded space, the classifier plane and classifier normal vector were 499 
linearly projected into the embedded space (See Figure 3C). The classifier vector 500 
𝑉 = [𝑣", 𝑣1, 𝑣5]6 was calculated as follows, where T denotes a matrix transpose. 501 
 502 

𝑋 = c
1
⋮
1
			𝑌f , g𝑑𝑣j = 𝑋/"	𝑋6𝑃	(2.9) 503 

𝑽 = 𝒗oo⃗ ‖𝒗oo⃗ ‖⁄  504 
 505 

Then, the equation of the classifier plane is given as follows. 506 
 507 

𝒗𝟏𝒙 + 𝒗𝟐𝒚 + 𝒗𝟑𝒛 + 𝒃 = 𝟎 508 
 509 

assuming 𝑌 ∈ ℝ8×5 are the points in the 3D embedded space, 𝑃 ∈ ℝ8×3 are 510 
the original features referred to by the classifier, where N is the number of points, 511 
and n is the number of features. 𝒃 is the intercept corresponding to the decision 512 
boundary of the classifiers.  513 

As is shown in Figure 3D, 𝑡𝑉𝑒𝑐 could be projected to the classifier vector to 514 
evaluate its positional relationship against the classifier. The lengths of projection 515 
on the classifier vector (𝑡Norm:) and the angles between 𝑡𝑉𝑒𝑐 and the classifier 516 
vector and (𝜃! ) were calculated against that of the model-based classifier to 517 
directly compare the adaptation processes across classifiers as follows:  518 

 519 
𝑡Norm: = 𝑡Vec ∙ 𝑉 520 

𝜃! = arccos
𝑡Vec ∙ 𝑉
‖𝑡Vec‖  521 

 522 
which represent the strength of scaling and deforming against the classifier plane, 523 
respectively. 524 
 525 
4.10 EEG-similarity analysis 526 
Geometry-based analysis was conducted in the embedded space, as positional 527 
relationships of the points reflected the similarities in the original space. The 528 
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transition process from one brain condition to another (i.e., absence to presence 529 
of attempted movement) was assessed by the spatial arrangement and 530 
separability of points from the “Rest” and “Imagine” periods in the t-SNE 531 
dimension. Emergence of the two temporal phenomena were defined as follows:  532 

 533 
• Scaling: The separability of the two conditions (Rest and Imagine) 534 

increases with respect to a fixed axis. Scaling is interpreted as the 535 
enhancement of specific cortical activity patterns. 536 

• Deforming: The relationship of positions in the two conditions changes 537 
direction. Deforming is interpreted as an alteration of a cortical activity 538 
pattern that is adopted. 539 

 540 
To quantify the two distinct adaptation process, the following metrics were 541 

defined. Scaling and deforming between the 𝑖th and 𝑗th sessions were quantified 542 
by 𝑡𝑁𝑜𝑟𝑚! and 𝜃!. 543 

 544 

• Scaling: Δ𝑡Norm! = 𝑡Norm!(𝑖) − 𝑡Norm!(𝑗) 545 

• Deforming: Δ𝜃! = 𝜃!(𝑖) − 𝜃!(𝑗) 546 

 547 
If adaptation progresses toward the targeted neural activity patterns required 548 

to control BCIs, the 𝑡Norm: values should be larger while those of 𝜃! should 549 
be smaller. Thus, the calculated values were subjected to the Wilcoxon sign-rank 550 
test to compare the differences between the first and last four sessions (early and 551 
late period, respectively). For adaptive classifiers, as the classifier plane was 552 
obtained from the 2nd session, the comparison was conducted from the 2nd 553 
session across all statistical tests. We then corrected the alpha-level with a 554 
Bonferroni correction. 555 
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Figure Legends 786 
 787 
Figure 1 Conceptual illustration of neural adaptation process induced by 788 
brain-computer interfacing 789 
A: Setup of a brain-computer interface. Online acquired scalp 790 
electroencephalograms were fed into a classifier to detect the presence/absence 791 
of attempted movement. Predicted brain state was shown to participants as 792 
movement of visual object on display. 793 
B: Conceptual visualization of cortical adaptation. Scaling adaptation reflects 794 
improvement in voluntary regulation of a specific component. If the centers of 795 
gravity determined from datapoints in two conditions are separated after brain-796 
computer interfacing, it suggests the separability of two conditions is enhanced 797 
by adaptation. Deforming adaptation suggests that activity patterns are allocated 798 
to a specific brain state in order to adapt to the classifier. If the geometric 799 
relationships between two conditions are deformed with respect to a specific axis, 800 
it suggests the adaptation process progressed such that the two conditions are 801 
´separated along the axis. 802 
 803 
Figure 2 Temporal changes in acquired scores 804 
Group results of performance scores from users of model-based (A), adaptive (B), 805 
and de novo (C) classifiers. Solid lines indicate mean values while shaded areas 806 
represent 1 standard deviation across participants. 807 

 808 
Figure 2 Supplement 1 809 
A: Electrode locations. The three classifiers used in the study had different 810 
channels of interest. The model-based classifier used only channel C3 indicated 811 
in blue around the left sensorimotor cortex. The adaptive classifier used whole-812 
head EEG channels (purple) to construct a common spatial pattern. The de novo 813 
classifier used only the Cz channel, shown here in green. 814 
B: Experimental protocol and time course of a trial 815 
C: Visual feedback object. For the model-based or adaptive classifiers, an 816 
illustration of a hand was shown that matched the attempted movements of the 817 
users while an illustration of a tail was used in the de novo task to encourage 818 
users to acquire novel mental actions that enhanced controllability of the BCI.   819 

 820 
Figure 2 Supplement 2 821 
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Results of source estimation analysis from representative participants. The 822 
colored regions indicate voxels where activities were significantly different during 823 
Rest and Imagine periods (p < 0.05 unc.). Areas colored with blue and green 824 
indicate those for model-based and de novo classifiers, respectively. While 825 
significant voxels were localized around the contralateral hemisphere of the 826 
imagined hand for the model-based classifier, those for the de novo classifier 827 
were located bilaterally, including in the pre/post central gyrus and supplementary 828 
motor area (peak voxel was in the postcentral gyrus, [MNI coordinates: -40, -25, 829 
45]). Note that a representative source estimation for the adaptive classifier is not 830 
shown due to variable activity patterns among participants. 831 

sLoreta analyses of statistical non-parametric mapping for estimated cortical 832 
sources of band power in the alpha band (8-13 Hz). Areas colored with blue and 833 
green indicate those from model-based and de novo classifiers, respectively. 834 
Masks superimposed on a standard brain template were visualized by MRIcroGL 835 
(https://www.mccauslandcenter.sc.edu/mricrogl/home). 836 

 837 
Figure 3 low dimensional visualization of EEG data by t-SNE 838 
A: Examples of t-SNE-based visualization of datasets from a representative 839 
participant in each classifier. Each axis represents results of the t-SNE analysis, 840 
which generates three axes from input data. Blue points represent data from the 841 
Imagine period and red ones are those from the Rest period. 842 
B: Changes in geometric relationships between dataset and classifier plane. As 843 
training progressed, the geometric relationship of points from two brain states 844 
changed with respect to the classifier plane (black plane). The large points 845 
indicate the centers of gravity of points from each brain state. The black line 846 
orthogonal to the classifier plane is the classifier normal vector (see also Figure 847 
3D) 848 
C: An example of t-SNE-based data visualization in embedded space (Model-849 
based classifier user). Each datapoint is colored with its SMR-ERD value derived 850 
from the C3 electrode around the left sensorimotor cortex. The black plane 851 
represents the classifier plane (see also equation 2.9 for mathematical details). 852 
The large points indicate the centers of gravity of points from each brain state. 853 
The black line orthogonal to the classifier plane is the classifier normal vector 854 
(see also Figure 3D). 855 
D: The t-SNE-based quantification of the adaptation process with respect to the 856 
classifier plane. 𝑡𝑁𝑜𝑟𝑚! is defined as a component of 𝑡𝑉𝑒𝑐 with respect to the 857 
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classifier vector, while 𝜃! is defined as a subtended angle between 𝑡𝑉𝑒𝑐 and 858 
the classifier vector. 859 

 860 
Figure 4 Quantitative comparison of cortical adaptation processes in 861 
embedded space 862 
Changes over time in 𝑡𝑁𝑜𝑟𝑚!  and 𝜃!  for participants operating under the 863 
model-based classifier (A), the de novo classifier (B), and the adaptive classifier 864 
(C). 865 
 866 
Figure 4 Supplement 1 Quantitative comparisons of cortical adaptation 867 
processes to the model-based classifier plane 868 
Changes over time in 𝑡𝑁𝑜𝑟𝑚! (A) and 𝜃! (B) of the model-based classifier for 869 
participants operating under the adaptive (left, purple) or de novo (right, green) 870 
classifiers. 871 
 872 
Figure 4 Supplement 2 Quantitative comparisons of cortical adaptation 873 
processes to the de novo classifier plane. 874 
Changes over time in 𝑡𝑁𝑜𝑟𝑚! (left) and θ: (right) of the de novo classifier for 875 
participants operating under the model-based (A, blue) and adaptive (B, purple) 876 
classifiers. 877 
 878 
Figure 4 Supplement 3 Quantitative comparisons of cortical adaptation 879 
processes to the adaptive classifier plane. 880 
Changes over time in 𝑡𝑁𝑜𝑟𝑚! (left) and 𝜃! (right) of the adaptive classifier for 881 
participants operating under the model-based (A, blue) and de novo (B, green) 882 
classifiers. 883 
  884 
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Supplementary Material for: De novo brain-computer interfacing deforms 885 
manifold of population activity patterns of human cerebral cortex 886 
 887 

Detailed procedure for construction of adaptive classifier 888 
In the experiments with the adaptive classifier, six spatial filters were generated 889 
via the common spatial pattern algorithm during the intervals between sessions. 890 
Filters that maximized variance differences were generated via the CSP algorithm 891 
and applied to the online EEG signals during the subsequent session. The log-892 
transformed variances of the six-channel, spatial-filtered data from the previous 893 
1-s signals were calculated and classified with a linear SVM classifier.  894 

Cross validation results of the adaptive decoder are shown in Figure S1A. Data 895 
from a single session were used for training and data from the remaining sessions 896 
were used for testing. Performance, evaluated from the coefficients of linear 897 
regression, did not show systematic improvement at the group level (p = 0.078, 898 
Wilcoxon sign-rank test). Figure S1 B shows the results of a cross validation test 899 
using a single session for training and another for testing, suggesting there was 900 
an increase in accuracy during the later period, which was confirmed by temporal 901 
changes in the acquired score (Figure 2B).  902 

 903 

 904 
Figure S1. Temporal changes in cross validation performance of adaptive 905 
decoder 906 

 907 
Cortical source estimation analysis for EEG signals 908 
For the data from participants who operated under the model-based or de novo 909 
decoders, band-power in the alpha-band was subjected to sLORETA analysis for 910 
cortical source estimation (Pascual-Marqui, 2002). Because the motivation for 911 
conducting the source analysis was to test whether the targeted region of the 912 
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classifier was successfully activated during the late period of BCI training, 913 
averaged data from across the last four sessions were subjected to a non-914 
parametric permutation test (Nichols & Holmes, 2002).  915 

 916 
Mathematical description of t-SNE algorithm 917 
In the original manuscript describing the t-SNE algorithm (Van Der Maaten & 918 
Hinton, 2008), the datapoints are described as 𝒙 = (𝑥", 𝑥1, … 𝑥3), where 𝑥𝒊 is a 919 
vector with the arbitrary number of features. Assume that 𝑥𝒊 and 𝑥𝒋 are two data 920 
points, 𝑑'( is the distance between the two points and 𝑝(|' is the probability that 921 
𝑥𝒊 . and 𝑥𝒋  are neighbors. The probabilities follow a Gaussian distribution, 922 
described by: 923 

 924 

𝒑𝒋|𝒊 =
𝐞𝐱𝐩(−𝒅𝒊𝒋𝟐 /𝟐𝝈𝒊𝟐)

𝚺𝐤?𝐢 𝐞𝐱𝐩(−𝒅𝒊𝒌𝟐 /𝟐𝝈𝒊𝟐)
, 𝒑𝒊|𝒊 = 𝟎 925 

 926 
where 𝜎'  is determined by the parameter perplexity, the value of which was 927 
calculated with	𝐻: 928 
 929 

perplexity(𝑃') = 2B(D#) 930 

𝑯(𝑷𝒊) = −�𝒑𝒋|𝒊 𝐥𝐨𝐠𝟐 𝒑𝒋|𝒊
𝒋

 931 

 932 
The value of 𝜎' is adjusted in a binary search method so that perplexity matches 933 
a value determined by the user. According to Van Der Maaten & Hinton (2008), 934 
perplexity is a smooth measure of the effective number of neighbors. The joint 935 
probability 𝑝'( is defined by symmetrizing the conditional probabilities: 936 
 937 

𝑝'( =
𝑝(|' + 𝑝'|(

2𝑁 	, 938 

 939 
where 𝑁 is the number of data points. The pairwise distances between points in 940 
low-dimensional embedding were converted to possibilities that follow a Student’s 941 
t-distribution with one degree of freedom. Assume that 𝑦' and 𝑦( are two data 942 
points in the embedded space and joint possibilities 𝑞'( are defined as: 943 
 944 
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𝒒𝒊𝒋 =
M𝟏 + 𝒅𝒊𝒋𝟐 N

/𝟏

𝚺𝒌?𝒍M𝟏 + 𝒅𝒌𝒍𝟐 N
/𝟏 945 

 946 
The Kullback-Liebler (KL) divergence between joint possibility distribution P in 947 

the original space and Q in embedded space was then calculated with: 948 
 949 

𝑲𝑳(𝑷||𝑸) =��𝒑𝒊𝒋 𝐥𝐨𝐠
𝒑𝒊𝒋
𝒒𝒊𝒋𝒋𝒊

 950 

 951 
The KL divergence was minimized via a gradient descent method by adjusting 952 

the positions of points in the embedded space. 953 
 954 
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