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ABSTRACT

T cells acquire a regulatory phenotype when their T cell receptors (TCRs) experience an
intermediate-high affinity interaction with a self-peptide presented on MHC. Using TCR
sequences from FACS-sorted human cells, we identified TCR features that shape affinity to
these self-peptide-MHC complexes, finding that 1) CDR3[3 hydrophobicity and 2) certain TRBV
genes promote Treg fate. We developed a scoring system for TCR-intrinsic regulatory potential
(TiRP) and found that within the tumor microenvironment clones exhibiting Treg-Tconv plasticity
had higher TiRP than expanded clones maintaining the Tconv phenotype. To elucidate drivers
of these predictive TCR features, we examined the two elements of the Treg TCR ligand
separately: the self-peptide via murine Tregs, and the human MHC Il molecule via human
memory Tconvs. These analyses revealed that CDR3 hydrophobicity promotes reactivity to
self-peptides, while TRBV gene usage shapes the TCR’s general propensity for MHC II-

restricted activation.
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79 INTRODUCTION

80

81 During T cell development, regulatory T cells (Tregs) acquire their suppressive

82  phenotype when the affinity of their TCR to the peptide-MHC complex (pMHC) is intermediate-

83  high. In most cases, randomly rearranged V, D, and J genes produce a TCR without enough

84  affinity to pMHC, and so most developing T cells do not survive positive selection in the thymus

85  (“death by neglect”). On the other hand, TCRs with too strong affinity to pMHC result in

86  apoptosis and negative selection for the expressing T cell. For the T cells that survive both

87  positive and negative selection, however, a divergence in phenotype emerges: those whose

88  TCRs have lower affinity to pMHC tend to become conventional T cells (Tconvs) and those

89  whose TCRs have higher affinity tend to gain the Treg phenotype'. Following thymic selection,

90 a crucial prerequisite for the peripheral induction of Tregs is suprathreshold affinity to pMHC,

91  though other factors such as costimulatory signals exert additional influence’?.

92 The body of evidence that regulatory versus conventional T cell phenotypes are largely

93 driven by TCR signal strength suggests that the developmental fate of CD4" T cells may be

94  influenced by sequence features of the TCR. Indeed, the degree of overlap in TCR sequence

95 between Tregs and Tconvs is minimal compared to T cell samples of the same phenotype®.

96 The distinguishing features of Treg and Tconv TCRs could shed light on the determinants of

97  TCR strength, but the majority of extant work has focused on exact sequence matching rather

98 than generalizable TCR sequence features.

99 To identify all sequence features that influence TCR strength, we examined 5.7x10’
100 TCRp chain sequences from 65 donors obtained from 6 public data sets (Table 1). First, we
101  derived a comprehensive collection of TCR features (Supplementary Table 1) and tested them
102 for differential abundance between Tregs and Tconvs in two human cohorts of TCR chains
103  from FACS-sorted T cells'"'? (Figure 1a). From these results, we developed a Treg-propensity
104  scoring system for the TCR (referred to as TCR-intrinsic regulatory potential or TiRP) (Figure
105 1b). Upon confirming its accuracy in two independent cohorts of T cells sampled from the tumor
106  microenvironment, we used TiRP to examine Treg-Tconv plasticity of tumor-infiltrating clones
107  (Figure 1b-c). Finally, to shed light on the etiology of the observed TCR sequence biases, we
108  separately examined the two elements of the Treg TCR ligand: 1) the self-peptide and 2) the
109  human MHC Il molecule by calculating TiRP in 1) murine Tregs and 2) human memory Tconvs
110  (Figure 1d). Our work reveals that CDR3[ hydrophobicity promotes reactivity to self-peptides,
111 while TRBV gene usage shapes the TCR’s general propensity for activation in the context of
112  human MHC Il restriction.
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113  Table 1. Datasets used in this study

Reference Data Tissue Size Subject Utilization
modality characteristics

datasets used to examine relationship between TCR (8 chain and T cell fate

Seay et al." TCR-targeted | PBMC, 24 donors, Transplant- Discovery dataset

(discovery gDNA spleen, 5,314,148 grade organ for identifying Treg-

dataset) sequencing pancreatic unique TCR donors; 17 with | biased TCR

lymph nodes | sequences T1D and 9 features (Figures
(including controls 2-5, Extended
pancreatic) Data Figures 1-5)

Gomez-Tourino | TCR-targeted | PBMC 16 donors, 8 healthy -Replication

etal.’? cDNA 19,098,748 donors, 8 new dataset for Treg-

(replication sequencing unique TCR onset T1D biased TCR

dataset) sequences features (Figure 5)

-Principal
components
analysis (Figure 7)
Tconv memory —
Tconv naive
comparison
(Figure 8,
Extended Data
Figure 8)

Azizi et al.’® 10x Genomics | Tumor 3 donors, Breast cancer Validation of TiRP
single cell 5 biopsy 10,540 CD4* T | patients with single cell
and VDJ cells; undergoing data; analysis of
sequencing 961 expanded | surgery for multi-fate T cell

clones primary breast clones (Figures 5-
(corresponding | cancer 6, Extended Data
to 3,807 cells) Figures 6-7)

Yost et al.'? 10x Genomics | Tumor 14 donors, Patients with Validation of TiRP
single cell 5 biopsy 17,181 CD4* T | histologically- with single cell
and VDJ cells; proven basal data; analysis of
sequencing 1,802 cell carcinoma multi-fate T cell

expanded or squamous clones (Figures 5-
clones cell carcinoma, 6, Extended Data
(corresponding | pre- and pos- Figure 7)
to 8,260 cells) anti-PD1

therapy

Thornton et al.? | TCR-targeted mesenteric 3 donors, Helios-GFP TiRP score in
gDNA lymph node | 1,753,566 Foxp3-RFP murine Tregs
sequencing unique TCR reporter mice activated without

sequences human MHC
(Figure 8,
Extended Data
Figure 8)
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Soto et al.?®, TCR-targeted | PBMC 5 donors, Healthy donors External cohort for
“memory gDNA 32,620,172 Tconv memory-
cohort” sequencing unique TCR naive comparison
sequences (Extended Data
from CD4* T Figure 8)
cells
datasets used for reference T cell information
Emerson et al.?¢ | TCR-targeted | PBMC 628 donors, Healthy donors | TCR repertoire
gDNA mean 242,461 reference for
sequencing unique TCR variation in TRBV
sequences per gene selection
donor (Extended Data
Figure 4)
Nathan et al.% 10x Genomics | PBMC 259 donors, Individuals with Reference
(single cell single cell 3’ 500,089 cells microbiologically | embedding to
reference) RNAseq -confirmed define T cell
pulmonary TB phenotypes
and their (Figure 6,
household Extended Data
contacts Figure 7)
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116  Figure 1. Study design. (a) T cell receptor (TCR) B chain in complex with antigenic peptide (red) and
117  human MHC Il molecules (brown). The TCR is colored by region: V-region (including CDR1p and CDR23
118  loops) in green, CDR3B middle region (CDR3Bmr) in orange, and J-region in pink. We considered 798
119  candidate TCR sequence features (Supplementary Table 1) and selected 612 nonredundant TCR

120 features that best explained variance in T cell state (Methods). (b) To develop a TCR-intrinsic regulatory
121 potential (TiRP) scoring system, we first split the discovery and replication cohorts into data for training,
122  calibration, and testing. Each human figure represents an individuals’ TCR repertoire sample and is

123 colored according to cohort. We fit logistic regression models for the discovery and replication cohorts
124  separately, and combined the effect sizes for each TCR feature across the two cohorts via inverse-

125  variance-weighted meta-analysis (Methods). We calibrated the P value threshold for including a TCR
126  feature in TiRP based on held-out data from both cohorts (Methods). We then tested TiRP in held-out
127  donors from both cohorts, as well as two independent cohorts of T cells sampled from the tumor

128 microenvironment. (c) We then examined TiRP in mixed clones: groups of Tregs and Tconvs with the
129  same TRB and TRA sequences observed in the same individual. These mixed clones likely represent
130 lineages of T cells that have undergone peripheral conversions between the regulatory and conventional
131 phenotypes, which include induced or iTregs (Tconv cells that have acquired a regulatory phenotype) and
132  exTregs (Treg cells that have lost the regulatory phenotype). (d) We then investigated the drivers of TiRP
133 by separately examining the two elements of the human Treg TCR ligand: the self-peptide and the human
134  MHC Il molecule.

135 Vmotif: IMGT position 104 — 106 tripeptide, AAs: amino acids, VGSR: V gene selection rate (Supplementary Note), pl: isoelectric
136 point, Jmotif: IMGT position 114-118 sequence, JGSR: J gene selection rate (Supplementary Note). Figure created with Biorender.
137
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138 RESULTS

139

140 Defining independent features of the T cell receptor sequence

141

142 The TCR is a membrane-anchored heterodimeric protein consisting of an a and a B

143  chain. Each of the two chains includes three highly variable peptide loops that protrude into the
144  TCR-pMHC complex. The most variable of these loops is the CDR3 region in the 3 chain

145  which mediates recognition of specific antigens. Because TRBV, TRBD, and TRBJ genes each
146  encode regions of CDR3[3, we anticipated that the CDR3 sequence would feature blocks of
147  strongly correlated residues. To determine the boundaries of these correlated regions, we

148  examined the mutual information structure of CDR3p peptides in a previously published cohort
149  of targeted TCR sequencing in multiple tissues and PBMCs'" (“discovery cohort”, Table 1). To
150 assess generalizability of any findings, we held out data from six randomly selected donors

151  (Figure 1b, Methods).

152 Pairwise mutual information calculations between CDR loop residues revealed three
153  distinct regions of the TCR: the V-region (IMGT position 1-107), CDR3 middle region

154  (CDR3Bmr, p108-p112), and J-region (p113—p118) (Figure 2a-b, Extended Data Figure 1).
155  While random nucleotide insertions in the highly variable CDR3Bmr obscured the identity of the
156  TRBD gene, the germline-encoded V- and J- regions demonstrated sequence conservation and
157  high inter-residue mutual information (Figure 2a). Mutual information was concentrated at the
158 flanking ends of CDR3 such that eight p104-p106 tripeptides (“Vmotifs”) and 42 p113-p118
159  pentapeptides (“Jmotifs”) accounted for >90% of observations. Upon observing minimal mutual
160 information between the three regions, we elected to undertake a three-pronged modeling

161  approach, in which we would examine the V-, middle, and J- regions independently.

162
163
164
165
166
167
168
169
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Figure 2. TCR sequence structure

CDR3B length: 12 13 14 15 16 17

V-region
p1-p107

CDR3Bmr l
p108-p112
113

115
J-region
p113-p129

-
—_ -

8L

- - a4
— - g 4
N W o0 N

TCR position

Figure 2. TCR sequence structure. (a) Probability of each amino acid in each CDR3p position depicted
by a sequence logo, with a heatmap of normalized mutual information (NMI) between each pair of CDR3f3
residues for the most frequent CDR3 length, 15 amino acids. Based on this mutual information structure,
we partitioned the CDR3p sequence into a Vmotif within a V-region, a CDR3f middle region (CDR3Bmr),
and a Jmotif within a J-region. (b) Schematic showing TCRs of multiple lengths aligned to the TCR (3
chain structure. Three complementary-determining regions within the TCR B chain protrude as loops into
the pMHC-TCR complex: CDR13, CDR28, and CDR3[3. CDR1B and CDR2 are encoded by the TRBV
gene, while CDR3p spans TRBV-encoded residues, random nucleotide insertions (CDR3pmr) and TRBJ-
encoded residues. Random nucleotide insertions from VDJ recombination occur at the V/D and D/J
junctions, creating variation in CDR3Bmr length. Regions suggested by mutual information structure are

not drawn to scale.
NMI: Normalized mutual information
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Regulatory T cells use specific amino acids within the CDR3f middle region

We first examined the middle region of CDR3pB (“CDR3Bmr”) of Tregs (CD4*CD127
CD25%) and Tconvs (CD4*CD127%) in the discovery cohort. Calculating the mean percentage of
CDR3Bmr residues occupied by each amino acid yielded strikingly consistent Treg-Tconv
differences across donors: Phenylalanine (F), Leucine (L), Tryptophan (W), and Tyrosine (Y)
were consistently enriched in Tregs, while Aspartic acid (D) and Glutamic acid (E) were
consistently enriched in Tconvs (Figure 3a, Extended Data Figure 2a). Categorization of
amino acids by physicochemical features showed that hydrophobic amino acids were enriched
in Tregs, while negatively charged amino acids were enriched in Tconvs (Extended Data
Figure 2b).

To statistically assess these differences, we used nested conditional mixed effect
logistic regression models which account for inter-individual differences such as those driven by
HLA genotype and tissue source (Methods). We observed that 15 amino acids had an
independent effect on Treg fate (Supplementary Table 2, Methods). To confirm that these
effects were consistent across donors and clinical phenotypes, we estimated them in each of
the 18 individuals and in T1D cases and controls separately. We found consistent effect sizes in
all contexts (Extended Data Figure 3a-b, Supplementary Table 2, Methods). We compared
this model to an alternative approach in which CDR3pBmr was scored by physicochemical
features (hydrophobicity, isoelectric point (pl), and volume) rather than percentages of individual
amino acid residues (Supplementary Table 3, Methods). Physicochemical features did not
capture as much information as amino acid percentages (Figure 3b, middle); hence, we
proceeded with an amino acid-based model of the CDR3pmr.

We then ran a separate mixed effects model for each CDR3pBmr position (IMGT p108 -
112), testing whether the amino acid at the given position explained variance in T cell fate
beyond that accounted for by the CDR3Bmr amino acid percentages (Methods). We found that
each position indeed conveyed additional information regarding the likelihood of Treg fate, but
these position-specific effects all together did not explain as much variance as the general

amino acid composition of the CDR3pmr (Figure 3c, Supplementary Table 4).
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218 Figure 3. Broad differences exist between the TCRs of Tregs and Tconvs
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219  Figure 3. Broad differences exist between the TCRs of Tregs and Tconvs. (a) Percentage of select
220  amino acids in the CDR3pmr, plotted as the mean for each donor sample in the discovery cohort,
221 separated by cell type and colored by amino acid groups. P values are computed by a Wald test on the
222 coefficient for each amino acid term in a mixed effect logistic regression model (Methods). (b) Incremental
223  variance explained by the addition of labeled TCR features to the V-region (left), CDR3Bmr (middle), and
224 J-region (right) mixed effect logistic regression models. For each region, the primary modeling approach
225 was compared to the alternative modeling approach, and the modeling approach that explained greater
226  variance was selected. Colored horizontal lines depict the total percent of explained variance attributable
227  to each TCR region, summing to 100%. (c) Percent of explained variance by each TCR feature type,
228  summing to 100% for each length of CDR3B. VGSR =V gene selection rate (Supplementary Note).
229  CDR3Pmr %AAs = percent composition of amino acids in the CDR3pmr.
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CDR3g V and J regions explain variance in T cell state

We then examined the V-region of the TCR. Previous studies have established that
genetic variation in the MHC locus shapes the frequency with which TR(A/B)V genes are used
in the repertoire’®. Interestingly, MHC polymorphisms explained far more variance in TRAV
gene usage compared to TRBV®, consistent with protein structure data demonstrating that
TRAV contacts MHC at polymorphic sites while TRBV contacts MHC at conserved sites™. We
hypothesized that variation in TRBV-encoded residues may alter TCR affinity to these
conserved MHC sites, and thereby influence T cell fate.

To test this hypothesis, we extracted sequence features from the V-region and tested
their association with Treg fate using mixed effects logistic regression (Methods). Through
model comparisons, we found that a joint model including TRBV gene identity and p107 best
represented the region, since the 58 TRBV genes explained far more variance than the eight
Vmotifs (Figure 3b left, Methods). To account for inter-individual variation in TRBV gene
selection, we derived a thymic selection parameter (VGSR) for each TRBV gene as a covariate
(Supplementary Note, Extended Data Figure 4). Despite controlling VGSR, TRBV gene
identity continued to explain a significant amount of variance in T cell fate, with three TRBV
genes reducing the odds of Treg fate by more than 30% compared to the reference (most
common) gene, TRBV05-01 (P = 1.3 x 10%% LRT, Supplementary Table 5). As in the
CDR3pBmr analysis, we confirmed that these associations replicated in models isolated to each
individual and to both case and control cohort subsets (Extended Data Figure 3c-d,
Supplementary Table 5). The consistency in TRBV gene effects across individuals suggests
that their influence on Treg fate indeed occurs through interactions with conserved MHC
residues, and is largely independent of MHC variability between individuals.

We then examined the J-region. In contrast to the V-region, wherein strong p104-p106
sequence conservation constrained multiple TRBV genes to the same Vmotif, variable
nucleotide editing at the D/J junction resulted in multiple Jmotifs associated with each TRBJ
gene. The 42 Jmotifs explained slightly more variance than the 13 TRBJ genes (Figure 3b,
right), and so we proceeded with a joint model containing the Jmotif and p113 residue. Across
all three regions, the most important TCR features for T cell fate determination were the TRBV

gene identity and the percent composition of amino acids in the CDR3Bmr (Figure 3c).
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Treg TCRs are enriched for CDR18 apex positive charge and CDR3p middle region
hydrophobicity

We wanted to localize physicochemical effects underlying CDR3Bmr residue
enrichments to specific sequence positions. At each CDR(1-3) loop amino acid position, we
estimated the importance of hydrophobicity, isoelectric point (pl), and volume in influencing Treg
fate using a ridge regression model (Methods, Supplementary Table 6). Intriguingly, these
results provided a physicochemical basis for some of the TRBV gene differences observed.
Tregs were enriched for positively charged amino acids at p37 of CDR1pB (Figure 4a). Seven
TRBYV genes assessed in our models harbor a negatively charged residue at p37; all seven of
these were significantly depleted for Tregs compared to the reference gene TRBV05-01, which
has a positively charged Arginine (R) at p37 (Figure 4b). As expected from our earlier findings,
CDR3Bmr featured positive coefficients for hydrophobicity in every position (Figure 4a). At each
of these positions, every standard deviation increase in hydrophobicity led to a 2.5% (L17,
p113) - 6.3% (L12, p113) increase in odds of Treg fate (OR = 1.025, 95% CI = 1.011-1.039,
Wald test P = 2.7 x 10 for L17-p113; OR = 1.063, 95% CI = 1.051-1.074; Wald test P = 5.2 x
1028 for L12-p113, Extended Data Figure 5, Supplementary Table 6).

To directly visualize the amino acids associated with Treg fate, we generated a
sequence logo representation of the CDR3Bmr based on differential amino acid usage at each
position (Figure 4c, Methods). Our results are consistent with the recent finding by Stadinksi et
al. that hydrophobicity at p109 and p110 promotes the development of T cells that recognize
self-antigens'. Importantly, we show that this principle extends beyond p109-110 throughout

the stretch of entropic CDR3[ residues.
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287  Figure 4. Tregs exhibit position-specific TCR sequence features
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289  Figure 4. Tregs exhibit position-specific TCR sequence features. (a) Estimated odds ratio (per

290  standard deviation) for each physicochemical feature at each CDRB(1-3) loop position; features with an
291 estimate > 1 are positively associated with Treg fate while features with an estimate < 1 are negatively
292  associated. Odds ratios denote the change in Treg odds per standard deviation increase in the given
293 physicochemical feature at the given TCR position. For each CDR3p length, all effects were estimated
294  jointly in an L2-regularized logistic regression with 10-fold cross-validation (Methods). Shown are the
295  odds ratio estimates for each position-feature averaged across the six CDR3p lengths. Vertical lines
296  denote the boundaries of each CDRP loop. (b) Correspondence between TRBV gene isoelectric point at
297  p37 (apex of CDR1B) and TRBV gene odds ratio for Treg fate compared to the reference gene, TRBV05-
298  01. Each TRBV gene is labeled with its amino acid residue at p37 and the 95% confidence interval for its
299  odds ratio. (¢) Sequence logo depicting the effects of amino acids in the highly entropic CDR3pmr

300 residues, sized proportionally to the associated change in Treg odds, with amino acids more frequent in
301 Tregs above the horizontal line and amino acids more frequent in Tconvs below.
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Reproducing TCR associations in an independent data set

Having identified TCR features associated with Treg identity, we next sought to validate
them in a public dataset of TCRB sequences from sorted Treg (CD4*CD25"9"CD127"%) and
Tconv (CD4*CD25"°"CD27*) cells sampled from the peripheral blood of 16 donors'? (“replication
cohort”, Table 1). Despite a different distribution of tissue sources in this data set, the CDR3Bmr
amino acid percentage effects were nearly identical (Pearson R=0.95, P =4.6 x 10, Figure
5a, Supplementary Table 2). Effects for individual TRBV genes, Jmotifs, and position-specific
amino acid effects were also consistent with discovery (Pearson R = 0.56, P=7.5x 10",
Figure 5b, Supplementary Tables 4-5, Methods). In the replication cohort, TRB sequences
were collected by reverse transcription and amplification of RNA rather than direct DNA
sequencing. Thus, relative changes in Treg likelihood induced by these TCR sequence features
are not only robust to different tissue sources, but also to technical differences in sorting and

sequencing protocols.

Developing TiRP: a Treg-propensity scoring scheme for the TCR

Having replicated the effect of a comprehensive set of TCR features in two independent
cohorts, we next developed a method to quantify the TCR-intrinsic regulatory potential (“TiRP”)
of a T cell. Briefly, for a given TCR, TiRP is the sum of Treg association effect sizes of
independent sequence features in all three TCR regions (Methods). We used meta-analytic
effect size estimates across the two cohorts and included only features with a significant effect
on T cell fate based on a Bonferroni P value threshold (Methods). As a result, TiRP is the
weighted sum of 25 TRBV genes, 23 Jmotifs, 4 CDR3p lengths, 14 CDR3Bmr amino acid
percentages, and 143 position-specific features (Supplementary Table 7).

We then tested our TiRP score on the four discovery cohort donors and two replication
cohort donors whose repertoire data had been withheld from all former analyses. We observed
that a one standard deviation increase in TiRP in these held-out data resulted in a 23% increase
in the odds of Treg status (OR: 1.231, 95% Cl: 1.227 — 1.235, LRT P = 2.4 x 10°?*8, Figure 5c,
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336 Figure 5. Treg TCR sequence biases replicate in an independent cohort
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337  Figure 5. Treg TCR sequence biases replicate in an independent cohort. (a)-(b) Correspondence
338  between the discovery and replication cohort odds ratios for all 612 nonredundant TCR features. Odds
339 ratios for CDR3Bmr percent composition amino acids are shown on the left; OR corresponds to the
340 change in Treg odds associated with one standard deviation increase in the given CDR3Bmr amino acid
341 percentage. Colors for amino acids correspond to the same categorization scheme presented in
342 Extended Data Figure 2b. All other TCR features are shown on the right; OR corresponds to the change
343 in Treg odds associated with the presence of the given TCR sequence feature compared to the reference
344  feature (Supplementary Table 1). (c) Validation of TCR-intrinsic regulatory potential (TiRP) score in held-
345  out donors of the discovery and replication dataset (n = 3,277,036 TCRs). Each standard deviation
346 increase in TiRP was associated with a 23% increase in the odds of Treg status (OR: 1.231, 95% ClI:
347  1.227 —-1.235, P=2.4 x 103248 LRT). Percentile points are colored by Treg:Tconv ratio ranging from blue
348 (lowest) to purple (highest). An example TCR from the lowest and highest percentile are given, with the
349 CDR3Bmr highlighted in bold and amino acids colored by the categorizations depicted in Extended Data
350  Figure 2b. (d) Validation of TiRP in scRNAseq of CD4* tumor microenvironment T cells'®'” (n = 27,721
351 cells). Each standard deviation increase in TiRP was associated with an 18% increase in the odds of Treg
352  status (OR: 1.18, 95% ClI: 1.15-1.21, LRT P = 2.9 x 10°%). Error bars outline 95% confidence intervals for
353  Treg/Tconv odds in each TiRP score decile, computed by bootstrap resampling (Methods). P value is
354  computed by a LRT between mixed effects logistic regression models differing only in the inclusion of
355  TiRP score as a fixed covariate, one observation per cell (Methods).
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Supplementary Table 8, Methods). TCRs in the highest-scoring decile were more than twice
as likely as TCRs in the lowest-scoring decile to belong to a Treg: 1 in every 3.9 compared to 1
in every 9.1. To ensure that this TCR-T cell state covariation was contingent on the biology of
surface-expressed TCRs, we repeated this analysis on the nonproductive TCRs in the four held-
out donors for which out-of-frame reads were available (Methods). This indeed abrogated the
association between Tregness score and Treg fate (OR: 1.00, 95% CI: 0.97 — 1.04, LRT P
=0.96).

TiRP helps to explain Treg-Tconv plasticity in the tumor microenvironment

To externally validate our scoring system, we aggregated scRNAseq data from 27,721
tumor-infiltrating CD4" T cells with paired TCR reads from two publicly available 5’ scRNAseq
datasets'®'’(Table 1). We scored the TRB chain of each cell and assessed whether the TiRP
score explained variance in T cell phenotype, as defined by the original authors for the Yost et
al. cohort and by a standard clustering pipeline for the Azizi et al. cohort (Methods, Extended
Data Figure 6a-b). Consistent with our previous observations, there was a nearly two-fold
increase in Treg likelihood in the top TiRP decile compared to the bottom TiRP decile in these
data (Figure 5d, OR for top-bottom decile comparison: 1.68, 95% CI: 1.49-1.90, P=2.3 x 10°™";
OR for all cells: 1.18 per unit increase in TiRP, 95% CI: 1.15-1.21, LRT P =2.9 x 10,
Supplementary Table 8).

We next asked whether TiRP could help to explain regulatory T cell plasticity. It is well-
recognized that naive Tconv thymic emigrants can be peripherally induced to adopt a regulatory
phenotype''®. Conversely, some Tregs have been observed to lose FOXP3 expression and

adopt a pro-inflammatory phenotype®2° (

“exTregs”, Figure 1c¢). Expanded T cell clones
(possessing the same TCR) observed as both Tregs and Tconvs within the same donor
(hereafter referred to as “mixed clones”) may represent lineages of T cells that have undergone
such peripheral conversions. We hypothesized that the TiRP of these T cells may be

intermediate, rendering them most susceptible to peripheral conversion.
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386 Figure 6. TiRP helps to explain clonal plasticity in the tumor microenvironment. (a) Reference T
387  cell dataset, colored by cell type clusters according to transcriptional and surface marker variation
388  depicted in Extended Data Figure 6¢-d. (b) Select gene expression (FOXP3, GZMB) and surface marker
389  abundance (CD25, CD127) for cells in the reference T cell dataset (low = purple, high = light green). (c)
390  Tumor microenvironment T cells of expanded clones mapped into the reference embedding by
391 Symphony. Each cell is colored by the TiRP score of its paired TRB chain, with KNN smoothing for
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visualization (Methods). TiRP is scaled such that 0 corresponds to the mean score and one unit
corresponds to one standard deviation of held-out bulk sequencing TCRs (Figure 5c). (d) Cell members
of three example mixed clones are highlighted in color according to their cell type classification by
Symphony (colors as in (a)). Within a given plot, each cell expresses the same CDR33 DNA sequence,
the same CDR3a amino acid sequence, and was found within the same donor (CDR3 amino acid
sequence listed above CDR3a amino acid sequence for each plot). (e) Same as (b), with each cell
colored according to the type of its parent clone: Treg for clones containing only Treg cells, Tconv for
clones containing only Tconv cells, and “mixed” for clones containing both Treg and Tconv cells. (f) TiRP
score distribution of purely Tconv, purely Treg, and "mixed” expanded clones from held-out bulk
sequencing data. P = 2.0 x 10*° for mixed-Tconv difference, P = 9.1 x 107'® for mixed-Treg difference. (g)
TiRP score distribution of purely Tconv, purely Treg, and mixed expanded clones in tumor-infiltrating
scRNAseq data. P = 3.0 x 10 for mixed-Tconv difference, P = 0.55 for mixed-Treg difference. For (f) and
(9), vertical bars denote mean and standard error of the mean per clone type. (h) Correspondence
between TiRP score and the composition of T cell states within each clone, quantified by the Treg:Tconv
ratio. Best fit line is shown in gray; clones are colored by Treg:Tconv ratio. B corresponds to the slope of
the regression line between the log-transform of the Treg:Tconv ratio and TiRP score. P value is
computed by the LRT between mixed effect logistic regression models (Methods).

Before testing our hypothesis, we used Symphony?* to standardize cell type definitions
across the two cohorts by mapping cells of expanded clones from both datasets (12,067 cells)
into a common reference atlas® of T cell states based on joint transcriptional and proteomic
profiling (Figure 6a-c, Table 1, Extended Data Figure 7a-d, Methods). On average, 19.2% of
expanded clones from the same donor were observed in both the Treg and Tconv state,
including a few large clones with a relatively even balance (Figure 6d-e, Supplementary Table
9).

We next tested whether the TiRP score of mixed clones was in between that of purely
Tconv and Treg clones (Methods). In the previously held-out bulk sequencing data, the TiRP
scores of mixed clones were significantly greater than those of expanded Tconv clones and less
than those of expanded Treg clones (Figure 6f, mixed-Tconv difference = 0.03, P = 2.0 x 10™°;
mixed-Treg difference = -0.29, P = 9.1 x 10, LRT, Methods). These single cell data confirmed
that Tregs of mixed clones indeed exhibited greater FOXP3 expression than Tconvs within the
same clonal expansion (Extended Data Figure 7e, Methods). As in the previously held-out
bulk sequencing data, mixed clones in single cell data had intermediate TiRP scores which were
significantly greater than the scores of expanded, pure Tconv clones (Figure 6g, mixed-Tconv
mean TiRP difference = 0.182, P = 3.0 x 10, LRT, Methods). With the limited extent of Treg
expansion, we were underpowered to detect significant differences between mixed and Treg
clones in these data (mixed-Treg mean TiRP difference = -0.005, P = 0.57, LRT). When we
quantified clone phenotypes by the proportion of Tregs and Tconvs within each clone,

increasing TiRP corresponded to more Treg-skewed clonal expansions (LRT P = 0.003, Figure
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6h, Methods). To our knowledge, TiRP is the first metric to identify TCR-intrinsic, rather than

TCR-extrinsic factors relevant to peripheral phenotypic conversion.

Separable components of TiRP: affinity to self-peptides and affinity to human MHC

We next asked whether TiRP captured the major sources of TCR sequence variation
between sorted T cell samples from diverse individuals. For this, we conducted a principal
components analysis (PCA) of TCR feature frequencies in the sorted samples of the replication
dataset, in which all T cell states of interest were available (Methods). We observed that the
major axes of TCR sequence variation corresponded to T cell state, rather than donor HLA
genotype or clinical phenotype (Figure 7a, Extended Data Figure 8a-b). While our previous
supervised modeling was designed to focus on Treg-Tconv differences, this approach
recovered the importance of T cell state in an unsupervised manner.

PCA delineated two axes of TCR-driven cell states: antigen-experienced (Treg and
memory Tconv) versus naive (PC1), and regulatory versus conventional (PC2) (Figure 7a). The
axis dividing antigen-experienced from inexperienced samples (PC1) was most reliant on TRBV
gene frequencies, while the axis dividing regulatory versus conventional samples (PC2) was
most reliant on mean percent composition of amino acids in CDR3Bmr and the CDR3pmr-
adjacent residue p113 (Figure 7b-c). Since TiRP is a weighted sum of TCR features from the
V-, J- and middle regions, the score can be divided into three score components corresponding
to these three regions. TiRP scoring by TCR region revealed that V-region-specific TiRP
(vTiRP) and CDR3pBmr-specific TIRP (mTiRP) indeed captured PC1 and PC2, respectively
(Figure 7d-e, VTiIRP —PC1 R=-0.86, P=1.5x 10%, mTiRP - PC2 R =0.85, P = 2.6 x 10%).
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Figure 7. Two axes of TCR-driven cell states
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Figure 7. Two axes of TCR-driven cell states. (a) 67 samples from the replication cohort colored by cell
type and arranged by principal component space according to variation in TCR sequence feature
frequencies (Methods). (b) Percent contribution of each type of TCR sequence feature to the first two
principal components. (c) Loadings of each of the TCR sequence features on PC1 and PC2, depicted by
arrows, separated by TCR region and colored by the same scheme as in (b). (d) Samples arranged in PC
space as in (a), colored by mean TiRP in the V-region of the TCR (VTiRP). (e) Same as in (d), colored by
mean TiRP in the CDR3Bmr (mTiRP). P values in (d) and (e) are calculated by the t-test with Fischer
transformation on Pearson’s R.
jTiRP = TiRP (Treg-intrinsic regulatory potential) of the J-region of the TCR (IMGT positions 113-118)
mTiRP = TiRP (Treg-intrinsic regulatory potential) of the middle region of the TCR (IMGT positions 105-112)
vTiRP = TiRP (Treg-intrinsic regulatory potential) of the V-region of the TCR (IMGT positions 1-104)
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We next investigated possible biological drivers for vTiRP and mTiRP. The biological
structure of the pMHC-TCR complex suggests that different regions of the TCR may promote
Treg fate via particular affinities: MHC Il mostly contacts the V-region of the TCR, while the self-
peptide is in closest contact with CDR3Bmr'*?%27 (Figure 1a). Thus, we hypothesized that
vTiRP was driven by affinity to human MHC I, while mTiRP was driven by affinity to self-
peptides. To test this idea, we examined TiRP in two complementary datasets: 1) murine Treg
TCRs?®, which recognize self-peptide but not human MHC, and 2) human memory Tconv
TCRs'?, which recognize human MHC but not self-peptide (Figure 8a, Table 1).

Applying our scoring system to murine data revealed that human TiRP was significantly
elevated in murine Tregs compared to Tconvs (Figure 8b, left). Because the self-peptide is the
only consistent element of the Treg ligand between these species, the best explanation for such
cross-species Treg TCR similarity is affinity to thymic self-peptides. Indeed, TiRP was
dramatically elevated in murine Tregs that expressed Helios, a marker of thymic Treg fate
acquisition (Figure 8b, left). Consistent with our TCR region hypothesis, the TiRP component
with the greatest increase between murine Tconvs and Tregs was mTiRP (Figure 8c, left).
CDR3Bmr amino acid percentage effect sizes replicated strongly between murine and human
data (Extended Data Figure 8c) while other TCR features did not (Pearson’s R =0.85, P =
0.00013 for CDR3Bmr amino acid percentages, Extended Data Figure 8d, Supplementary
Table 10, Methods). These results strongly suggest that CDR3Bmr features such as
hydrophobicity promote Treg fate via affinity to self-peptide.

To understand the role of human MHC, we compared TiRP in naive and memory Tconv
TCRs'?, which do not strongly recognize self-peptides® (Figure 8a, Table 1, Methods). TiRP
was significantly elevated in human memory Tconvs compared to human naive Tconvs (Figure
8b, right), indicating that affinity to human MHC Il also contributes to TiRP. Consistent with the
hypothesis of V-region-based affinity to human MHC Il molecules, vTiRP was the only TiRP
component to increase in human memory Tconvs (Figure 8c, right). As expected, large-effect
size TCR features between memory Tconvs and naive Tconvs were predominantly TRBV
genes (Figure 8d, Extended Data Figure 8e), and the extent of each gene’s enrichment in
memory Tconvs correlated with the extent of its enrichment in Tregs (Figure 8d, Pearson’s R =
0.702, P = 4.5 x 10 for TRBV genes). These effects further replicated in an entirely
independent cohort of sorted memory and naive T cells from 5 healthy donors®® (Table 1,
Extended Data Figure 8f, Supplementary Table 11). Thus, as structural interactions in the
pMHC-TCR complex would suggest, V-region features modulate affinity to MHC, thereby

shaping the T cell’s general disposition for activation.
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Figure 8. Isolating the drivers of TiRP
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Figure 8. Isolating the drivers of TiRP. (a) We investigated the drivers of TiRP by separately examining
the two elements of the human Treg TCR ligand: the self-peptide and the human MHC Il molecule. To do
so, we scored 1) murine Treg TCRs, which share an affinity to mammalian self-peptides but not to human
MHC Il molecules, and 2) human memory Tconvs TCRs, which share an affinity to human MHC I
molecules but not to self-peptides. (b) Left: mean increase in TiRP score of Helios-sorted Tregs
compared to naive Tconvs in Helios-GFP Foxp3-RFP reporter mice. Right: mean increase in TiRP score
of memory Tconvs compared to naive Tconvs from held-out donors of the replication dataset. (c) Left:
TiRP score increases in Helios-sorted murine Tregs broken down into TiRP score components by TCR
region. Right: TiRP score increase in human memory Tconvs broken down into TiRP score components
by TCR region. (d) Correspondence between TCR feature odds ratios for Treg-Tconv odds (x-axis, meta-
analytic odds between discovery and replication cohort), and memory-naive odds (y axis, replication
cohort only) with their 95% confidence intervals. TRBV genes are highlighted in green. Pearson’s R is
calculated with respect to TRBV gene odds ratios only. P values in (b)-(c) are calculated by LRT between
mixed effects models (Methods); P value in (d) is calculated by the t-test with Fischer transformation on

Pearson’s R.
jTiRP = TiRP (Treg-intrinsic regulatory potential) of the J-region of the TCR (IMGT positions 113-118)
mTiRP = TiRP (Treg-intrinsic regulatory potential) of the middle region of the TCR (IMGT positions 105-112)
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VvTiRP = TiRP (Treg-intrinsic regulatory potential) of the V-region of the TCR (IMGT positions 1-104)

DISCUSSION

The majority of regulatory T cell research to date has focused on TCR-extrinsic
determinants of T cell phenotype, such as the effect of costimulatory receptors, antigenic
peptides, and cytokines®. Though each of these elements certainly play an essential role in T
cell fate, the contribution of the TCR sequence itself has not yet been comprehensively
investigated. TCR-intrinsic factors are relevant to nearly all immunological contexts, including
the engineering of TCRs for immune therapies. The presence of TCR sequence features that
generally promote TCR signaling in engineered TCRs would similarly make T cell activation
more likely, regardless of host factors. Because TCR sequence arises from a random process
prior to T cell fate determination, TCR features must be causal for T cell fate.

In this work, we leveraged the affinity-based partition of the repertoire into Tregs and
Tconvs to uncover determinants of TCR avidity towards self-antigens. We identified robust
effects of TCR sequence that are predictive of T cell fate across six independent cohorts,
encompassing diverse genetic, clinical and tissue contexts. Our results were robust to different
sequencing protocols used across these studies, suggesting that our findings are robust to
technical factors. Using the comprehensive set of predictive TCR sequence features, we
developed and validated a score capturing the TCR-intrinsic regulatory potential (TiRP) in the V-
region, CDR3 middle region, and J-region. Excitingly, this score helped to explain the tendency
for expanded tumor-infiltrating T cell clones to adopt a regulatory phenotype.

It is important to recognize several limitations to our approach. First, the amount
variance in T cell state explained by the TCR is significant but modest considering the full
diversity of the repertoire. For any given TCR, specific antigenic contacts and costimulatory
signals are likely the major determinants of T cell phenotype. Our results show, however, that
TCR features such as hydrophobicity consistently predispose the T cell to adopt a regulatory

phenotype. Second, our analyses focused on the 8 chain of the TCR. The (3 chain is more

variable than the o chain and is largely considered to mediate antigen specificity. However, the
a chain may also play a role in determining T cell phenotype, which remains to be explored.

Furthermore, sequence features of the 3 and a chains may act synergistically and the

combination of data from both may be more highly predictive than the § chain alone. Lastly,

though our questions focused on thymic biology, the TiRP scoring system is based on TCRs
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sampled from extrathymic tissues. Since the majority of circulating Tregs are thought to be
thymically-derived®®3'32 we suspected that extrathymic Treg-Tconv phenotypes would mostly
reflect thymic T cell fate determination. Indeed, our assessment of TiRP scores in Helios-GFP
Foxp3-RFP mice argue that TiRP is specifically elevated in thymically-derived Tregs.

The broadest takeaway from our work is the hydrophobic bias of Treg TCRs, present
at each of the entropic positions of CDR3. This observation extends previous work'>3?
regarding p109 and p110 of Treg TCRs, and demonstrates that the hydrophobic bias is in fact
not position-specific. By the hydrophobic effect, hydrophobic amino acids aggregate into high
affinity hotspots, which may afford a degenerate “stickiness” to hydrophobic TCRs. By this
explanation, CDR3 hydrophobicity may increase the likelihood of Treg fate not by extreme
affinity to particular self-peptides, but rather by minimal affinity to a larger pool of cognate
antigens. Thus, via the flexibility of a hydrophobic TCR, the Treg may generalize from the self-
peptide encountered in the thymus to a larger pool of protected self-antigens. Though focused
on CD8" T cell biology, the enhanced immunogenicity of hydrophobic CD8* T cell epitopes®*
may reflect a similar underlying concept: the best attractor to a large pool of diverse cognate
ligands (in this case, the CD8+ repertoire) is the broadly-interacting feature of hydrophobicity.

Importantly, however, CDR3[ hydrophobicity is not the full picture. TRBV gene usage
explained nearly as much variance in T cell fate, and TRBV gene effects were not related to
hydrophobicity. Our work suggested instead that the isoelectric point of the CDR1p p37
encoded by the TRBV gene shapes affinity to conserved sites of MHC 1I'*. We observed TRBV
gene biases pertained to memory Tconvs as well, indicating that some TRBV genes provide
enhanced, antigen-invariant affinity to MHC Il that predisposes the TCR for activation.

These phenomena offer a new lens on the T cell immune response: though each TCR
tends to recognize a specific cognate antigen, all TCRs are subject to common processes that
shape T cell activation. Due to these common processes, not all TCRs are created equal—
those with a higher baseline for general reactivity may require a less “perfect’” cognate antigen
for activation. Existing tools provide rough annotations for “TCR strength,” but these are based
on frequently interacting residues in general protein structures®. TiRP sharpens our
understanding of high affinity amino acids in the context of the pMHC-TCR complex, providing a

crucial functional annotation for the T cell receptor.
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588 ONLINE METHODS
589

590  Bulk sequencing data
591 We downloaded the discovery cohort'", replication cohort'?, the murine cohort®® and
592  memory cohort®® sequencing data from the Adaptive Biotechnologies immuneACCESS site

593 (https://clients.adaptivebiotech.com/immuneaccess). For all data, we defined CDR3 amino acid

594  sequences with stop codons or frameshifts to be non-productive amino acid sequences. We
595 restricted all analyses to CDR3 sequences of a length within 12 and 17 amino acids,

596 representing 91.8% of observations in the discovery cohort. We aligned CDR3 amino acids to
597  positions defined by IMGT®*", wherein sequences less than 15 amino acids have mid-region
598 gaps and sequences longer than 15 amino acids have extra mid-region positions. We

599 examined only one copy of each CDR3B sequence within each individual. Unless explicitly
600 noted, we excluded CDR3p reads that were observed in both the Treg and Tconv sample of any
601  individual (0.63% of observations in the discovery cohort and 1.9% of observations in the

602 replication cohort). We excluded two individuals in the discovery cohort (donor IDs = 6174 and
603 6282) and 12 individuals in the replication cohort (donors IDs = HD9, HD10, HD11, HD12,

604 HD13, HD14, T1D1, T1D9, T1D10, T1D11, T1D12, T1D14) because these donors did not have
605  both Tregs and Tconvs available.

606

607  Single cell sequencing data

608 We downloaded scRNAseq tumor microenvironment data from the GEO through

609  accession numbers GSE114727, GSE114724, and GSE123814. For quality control, we

610  included only cells for which 1) more than 1000 genes were expressed 2) less than 25% of

611  detected UMIs were of mitochondrial origin and 3) exactly one productive TCR beta chain was
612  detected. We followed the quality control process of the original authors for the multimodal

613  memory T cell dataset®®
614  number GSE158769.

, Which is available for download from the GEO through accession

615

616  STATISTICAL ANALYSES

617

618 All mixed effects models were fit with R package Ime4. All model comparisons were

619  computed with R package anova. All significance tests on Pearson’s r were t-tests with the
620  Fischer transformation. All analyses were done with R version 3.6.1.
621
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Holding out observations for calibration and testing

To leverage both the discovery (Seay et al. 2016) and replication (Gomez-Tourino et al.
2017) cohorts in the development of TiRP, we used approximately 70% of the TCR clones from
each cohort for training, 10% for calibration, and 20% for testing. To preserve the novelty of
held-out data, we kept all TCR clone observations from the same individual together in this
process, holding out entire repertoire samples. In the discovery cohort, we held out two
individuals for TiRP calibration (donor IDs = 6279, 6196, accounting for 8.4% of TCR clones in
the discovery cohort) and four individuals (donor IDs = 6161, 6193, 6207, 6287, accounting for
20.3% of clones in the discovery cohort) for TiRP testing. In the replication cohort, we held out
one individual for TiRP calibration (T1D3) and three individuals (HD1, HD2, T1D6) for validation.
TCR sequence feature effect sizes were estimated in a separate mixed effects model for each

cohort for each independent region of the TCR.

Mutual information structure of the CDR3( sequence

We calculated the Shannon entropy®® of each CDR3 position and the mutual
information*® between all pairs of CDR3 positions with the R package DescTools. To normalize
the mutual information, we divided the mutual information by the entropy at each position, and

then took the harmonic mean of these two ‘coefficients of constraint’*®2.

Selection of random effects and model comparisons

In the discovery cohort!', T cells were sampled from four tissues: peripheral blood
(PBMC), spleen, pancreatic lymph node (pLN), and inguinal/irrelevant lymph node (iLN). We
reasoned that there were three sensible ways to model tissue as a source of CDR3 variation:

(1) as a fixed effect:

p
log (m) = fo + P1X1+ B2Xz + B3X3 + by,

where p is the probability that the CD4+ sorted CDR3 sequence belongs to a Treg, Bois an
intercept, X;is an indicator variable set to 1 if the sequence is from a PBMC sample, X:is an
indicator variable for spleen origin, X3is an indicator variable for iLN origin (pLN as reference),
and b; is a modification to the intercept fit to each individual /, normally and identically

distributed (NID) with mean 0 and variance o¢?.

(2) as a random intercept effect independent from the random intercept effect per individual,

wherein matched tissues across donors have the same (zero-centered) intercept effect:
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p
log(m) = Bo+ boi + by

where by; is a modification to the intercept fit to each tissue j, NID with mean 0 and variance 042,

and all other variables maintain previous definitions

and/or (3) as a nested random intercept effect, wherein each tissue-donor pair is modeled as a

unique batch of correlated observations within the individual-level and tissue-level variances:

p
lOg (m) = ﬁO + bOi + blj + bZi,j

where by;j is a modification to the intercept fit to each individual i - tissue j pair, NID with mean 0
and variance 02%, and all other variables maintain previous definitions. For stable numerical
results, we included the marginal random effects for donor and tissue in this nested random

intercept model.

To determine which of these models was most appropriate, we calculated the pseudo R?
by the conventional McFadden*® approach (range 0-1). All measures of variance explained in
this study were computed with this approach. For this analysis, we compared models 1-3 to a

baseline model that fit the log odds of Treg status only to a random intercept for each individual:
p
8 15 Bo 0i

These model comparisons revealed that tissue explained 1.90% of variance as a fixed effect
and 1.15% of variance as a random effect (P = 1.15 x 107"?"! fixed and P = 4.68 x 1071%2%
random, LRT). On the other hand, tissue as a random effect nested within individual explained
6.27% of variance (P = 1.32 x 10" LRT). We therefore concluded that nesting a random
tissue effect within the donor random effect was the most appropriate model for the batch
structure of these data, and proceeded with three random intercepts for each mixed effects

model: the nested donor-tissue effect, the marginal donor effect, and the marginal tissue effect.

CDR3Bmr mixed effects logistic regression
For each amino acid, we calculated the percentage of CDR3Bmr positions occupied by
this residue; a percentage of 0 means that the residue is missing for a given TCR, while a

percentage of 100 means that the residue is present at every CDR3Bmr position. We scaled this
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percentage to have a mean of 0 and variance of 1, and tested the scaled percentage in a
separate mixed effects logistic regression for each amino acid with random intercepts as
described above. We controlled for CDR3[3 sequence length by including it as a categorical
covariate, reasoning that conformational differences in the HLA-TCR complex may not scale
linearly with additional residues. To collect the relevant amino acid proportions, we did a
forward search where we iteratively added to the mixed effects model the amino acid proportion
that provided the greatest improvement in model fit. On the first round, the percentage of
CDR3Bmr positions occupied by Glutamic acid (E) in each TCR explained the most variance,
with a 9.7% fall in odds of Treg fate per additional Glu residue for CDR3ps of length 15 (pseudo
R? = 0.036%, likelihood ratio test (LRT) P = 8.37 x 10"%, OR = 0.954, 95% Cl = 0.951 — 0.957).
Conditioning on this feature revealed that the next amino acid with the greatest independent
effect was Aspartic acid (D) (pseudo R? = 0.042%, LRT P=1.01 x 10%%°, OR = 0.95, 95% CI =
0.947 — 0.953). We repeated this process until the remaining amino acid percentages no longer
passed the Bonferroni-corrected significance threshold (p=0.05/20 amino acids) (Figure 3b,
middle). We confirmed that this threshold kept the type | error rate below 0.05 by repeating this
analysis 1000 times, with Tconv and Treg labels for each TCR randomly shuffled within the data

for each donor on each run.

Position-specific mixed effects logistic regressions

To parse the TRBV-encoded region, we asked if the 5’ flanking CDR3 residues could
be represented by a handful of motifs. Indeed, the 8 p104-p106 sequences (“Vmotifs”) present
in each donor with frequency > 0.001 in every donor accounted for 96.2% of TCRs. We labeled
the remaining 3.8% of TCRs with a Vmotif of “other” and assessed the association between
Vmotif and T cell fate with a mixed effects model including p107 as a fixed covariate. We found
that the Vmotif indeed explained significant variance in Treg fate (pseudo R? = 0.02%, P = 3.57
x 10, LRT). However, because the Vmotif strongly corresponds to TRBV gene usage
(Extended Data Figure 1), we next evaluated whether Vmotif effects are in fact mediated by
their corresponding TRBV genes. Indeed, adding TRBV gene identity to the mixed effects
model as a fixed covariate abrogated the significance of the Vmotif term, but not the p107 term.
For this reason, we concluded that the TRBV-encoded region was best modeled by joint
estimation of TRBV gene and p107 residue effect sizes, with donor-individualized TRBV gene
thymic selection rate as a fixed covariate (Supplementary Note).

Similarly, to parse the TRBJ-encoded region, we asked if the 3’ flanking CDR3 residues
could be represented by a handful of motifs. Indeed, the 42 p114-p118 sequences (“Jmotifs”)
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718  presentin each donor with frequency > 0.001 in every donor accounted for 91.5% of TCRs. In
719  analogous model comparisons, donor-individualized TRBJ gene selection rates did not explain
720  a significant amount of variance in Treg fate, but the Jmotif, TRBJ gene, and the p113 residue
721 each did. In contrast to the TRBVregion, here it appeared that the motif mediated the effect of
722  the gene, with the Jmotif explaining slightly more variance than the TRBJ gene (Figure 3b,

723  right). Thus, we concluded that the TRBJ-encoded region was best modeled by joint estimation
724  of Jmotif and p113 residue effect sizes.

725 To protect against numerically unstable estimates, we report only the effect sizes of TCR
726  features with a frequency greater than 0.005 in the training data for both the discovery and

727  replication cohorts.

728

729  Estimating the effects of physicochemical features

730 To estimate the effects of physicochemical features, we represented each CDR[ loop
731 residue as a vector of length 3, corresponding to the amino acid’s hydrophobicity, isoelectric
732  point, and volume. For consistency with the closely related work by Stadinksi et al.'®, we used
733  the whole-residue interfacial hydrophobicity scale*. Isoelectric point values were obtained from
734  the CRC Handbook of Chemistry and Physics*® and volume measurements were obtained from
735  Zamayatnin 1972%. Each value was scaled to have a mean 0 and variance 1 in the discovery
736  cohort training data.

737 To localize the importance of these physicochemical features within the TCR, we

738  represented each residue belonging to a CDR[ loop as a vector of length 3 corresponding to
739  the amino acid’s hydrophobicity, isoelectric point, and volume, and modeled Treg fate as an
740  outcome of these features using multiple logistic regression. We followed IMGT positioning,
741 wherein the human CDR1 loop consists of positions 27a 38; while the human CDR2f loop
742  consists of positions 56 a 65. We used only TCR reads with a resolved TRBV gene (78.5% of
743  observations), and imputed CDR loop amino acids based on TRBV gene identity using IMGT’.
744  To enable TCR alignment, we discarded 3.6% of observations with a resolved TRBV gene for
745  which there were not exactly 5 CDR13 amino acids and 6 CDR23 amino acids, or for which
746  CDR1-2 amino acids were not available via IMGT.

747 To handle the densely correlated TCR features within these loops, we applied a ridge
748  penalty to the logistic regression using R package “glmnet.” This coefficient penalization

749  obviated the need for random effects, and so we included batch (donor and tissue source of the
750 TCR) as a fixed and penalized covariate. As in the TRBV gene analysis, we used VGSR as a
751  covariate to partial out genetic variation in TRBV-MHC affinity (Supplementary Note). All
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predictors were scaled to a have mean 0 and variance 1. We did not assume that position-wise
physicochemical effects would translate across different CDR3[3 lengths, and so fit a separate
logistic regression for each length. For each regression, we tuned the lambda shrinkage
penalty by testing the 100 values generated by the gimnet package and selecting the one that
gave the minimum mean cross-validated error across 10 folds of the training data in the
discovery cohort.

In a separate analysis isolated to the CDR3pBmr, we fit a separate mixed effects logistic
regression for each length-position combination in the discovery cohort training data (Extended
Data Figure 5b). We included all three physicochemical features as fixed covariates for each
position, and modeled donor and tissue sources as random effects as described above. Each
physicochemical feature was scaled to have a mean 0 and variance 1 for each length-position
combination.

For the Figure 4c visualization, we included only TCRs with a CDR3 length of 15
amino acids in the discovery cohort training data, and fit a separate mixed effects logistic
regression for each position. Each regression included random intercepts as described above
and one fixed covariate corresponding to the amino acid identity at the given position. We cast
the most common amino acid as the reference: Leucine for position 108, and Glycine for all

other positions.

Developing the TiRP scoring system

We defined TiRP as the sum of the TCR sequence features present in a given TCR,
reasoning that the effects of TCR features were additive provided that they were fit jointly or
derived from independent regions of the TCR. To reach a consensus effect size for each TCR
feature across the two cohorts, we used inverse-variance weighted meta-analysis (meta-
analytic effect size for feature X = average of the discovery cohort and replication cohort effect
sizes for feature X, weighted by their respective standard errors). Due to the inconsistent effect
size directions for %V in the CDR3Bmr (Figure 5a, Extended Data Figure 3b), we included
only 14 amino acid percent covariates in our final CDR3Bmr models (Supplementary Table 1,
Supplementary Table 7). To exclude potentially unreliable effect size estimates from the score
computation, we calibrated a meta-P value significance threshold above which TCR features
were excluded from the score. For this, we used a single mixed effects logistic regression for
each threshold over a range of thresholds on the pooled discovery and replication TCRs held
out for calibration (discovery cohort: 6279, 6196, replication cohort: T1D3). Each mixed effects

logistic regression estimated the fixed effect of TiRP on T cell fate, with random intercepts for
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donor source, tissue source, and each donor-tissue source pair (see “selection of random
effects and model comparisons”). We found that no threshold explained significantly greater
variance than the Bonferroni-corrected threshold, 0.05/612 TCR features, resulting in 25 TRBV
genes, 23 Jmotifs, 4 CDR3p lengths, 14 CDR3Bmr amino acid percentages, and 143 position-

specific features relevant to TiRP computation (Supplementary Table 7).

Testing TiRP in held-out donors from bulk sequencing cohorts

To test TiRP in bulk sequencing data, we scored each unique productive TCR in
donors held out from both TiRP training and calibration (discovery cohort donors 6161, 6193,
6207 and 6287, and replication cohort donors HD1, HD2, and T1D6). We then tested the
association between TiRP and T cell state by comparing the additional variance explained by a
mixed effects logistic regression model including TiRP as a fixed covariate to a baseline model
containing only donor ID, tissue source, and donor-tissue interaction as random intercepts
(likelihood ratio test). We conducted the same process for nonproductive TCRs in held-out
donors, and restricted this analysis to the discovery cohort, in which TCR gDNA was sequenced
and therefore out-of-frame reads were available (Table 1). To ascertain the difference between
high-scoring and low-scoring TCRs in these held-out data, we collected the top and bottom
decile of TCRs per donor, and compared the ratio of Tregs to Tconvs between the group of all

top decile TCRs and the group of all bottom decile TCRs.

Validating TiRP in single-cell data of tumor microenvironment

In single-cell data analyses, TCR clones were defined by a barcode consisting of their
donor ID and CDR3p DNA sequence. As in bulk sequencing analyses, CDR3 chains with a
length shorter than 12 amino acids or longer than 17 amino acids were discarded. Only cells
with exactly one productive CDR3( detected were included in analyses.

We computed the TiRP score for each clone based on its CDR3p amino acid
sequence and TRBV gene. So that TiRP scores would be comparable, percent amino acid
values were scaled by the mean and standard deviations of the TCRs held out for testing from
the discovery and replication cohorts (transformation provided in Supplementary Table 3).
TRBV gene usage was determined by MixCR alignments for the Azizi et al. cohort and RNA
expression in the Yost et al. cohort. To determine TRBV gene usage based on RNA expression
in the Yost et al. cohort, read counts were log-normalized per cell and then scaled so that each
TRBV gene had mean 0 and variance 1 within cells that had non-zero read counts for the given

gene. Each cell was then assigned the TRBV gene with the highest normalized and scaled
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expression. Cells without any TRBYV gene expression detected were given a TRBV gene value
“unresolved.”

To validate the TiRP score in these data, we tested the association between TiRP
score and regulatory or conventional cell phenotype. For the Yost et al. cohort, cell phenotypes
based on the original authors’ clustering were available. We labeled all cells in the ‘Tregs” and
“Treg” cluster as regulatory and all cells in the “Tth”, “Th17”, “CD4_T _cells”, and “Naive” to be
CD4" conventional. Because original authors’ cell phenotype labels were not available for the
Azizi et al. cohort, we applied a standard scRNAseq pipeline to infer cell phenotypes: we
excluded all cells with read counts from 1000 genes or less or at least 25% of read counts from

mitochondrial genes and then used Seurat*’

with default parameters to 1) normalize the read
counts per cell, 2) take the variance-stabilizing transform 3) scale and center gene expression,
4) compute the first 20 principal components based on the 500 most variable genes, 5)
harmonize the principal component embeddings by sample (donor_batch ID) with R package
“harmony” using default parameters, 6) construct a shared-nearest-neighbor (SNN) graph
based on these harmonized embeddings with k=30, 7) conduct Louvain clustering on the SNN
graph with resolution 0.8, and 8) run uniform maniform approximation and projection on the first

10 harmonized PCs.
Creating a CD4+ memory T cell single cell reference

To construct a reference of cellular phenotypes for CD4+ memory T cells, we used a
published dataset® of scRNAseq and CITE-seq for 500,000 memory T cells from 259 donors
(Table 1). From these quality-controlled data, we used CITE-seq values to select 430,270 CD4+
cells (normalized CD4 > 1.5 and normalized CD8 <1, consistent with the original authors’
procedure). We followed the method developed by Nathan et al. to cluster the cells based on
integrated mRNA and protein expression. First, we used Seurat*’ to normalize the read counts
per cell, take the variance-stabilizing transform and then scale gene expression to have a mean
0 and variance 1. We selected the union of the 1500 most variable genes (by mRNA

expression) in each donor, resulting in 4707 variable genes.

To integrate surface protein information, we used CCA. First, we resolved the
coefficients that maximized the correlation between linear combinations of the 4707 genes and
the 31 manually-curated surface proteins® in the CITE-seq panel (“cc” function from R package
“CCA”). We then projected the cells into the 31 canonical dimensions in mMRNA space, and used

Harmony with default parameters to harmonize the embeddings of these canonical dimensions
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by donor. For visualization, we used the R package uwot to conduct UMAP on the first 10
canonical dimensions using the cosine metric, a local neighborhood size of 30, and a minimum
distance of 0.3 between embeddings. To identify cell types, we constructed a SNN graph (k=10)
from the harmonized embeddings of the first 10 canonical dimensions, and conducted Louvain
clustering on the SNN graph with resolution 0.8, revealing one cluster (#6) with markedly
elevated FOXP3 and CD25 expression and reduced CD127 expression. We labeled cells
belonging to this cluster as Tregs and manually annotated the phenotypes of the other clusters
based on surface expression of the 31 manually-curated, immunologically relevant surface
proteins as well as MRNA expression of CCR7, IFNG, GZMK, and CTLA4 (Extended Data
Figure 6¢c-d).

Mapping tumor-infiltrating T cells with Symphony

Before ascertaining mixed clones in tumor-infiltrating cells, we standardized Treg and
Tconv definitions between the two cohorts by projecting cells from both cohorts into the
annotated low-dimensional space of the reference single cell dataset. To accomplish this
projection and simultaneously harmonize the tumor-infiltrating cells by cohort, donor and
sample, we utilized Symphony?*. Because the reference dataset consisted of only memory T
cells and our hypothesis focused on expanded clones, we mapped only the tumor-infiltrating
cells for which their paired CDR3 DNA sequence was detected on more than one cell within
their patient sample (56.1% of cells in the Azizi et al. cohort, 60.6% of cells in the Yost et al.
BCC cohort, and 73.7% of cells in the Yost et al. SCC cohort). For each cohort separately, we
used Symphony to map the query cells into the harmonized reference canonical variate
embedding space while integrating over unwanted sources of technical variation tagged by
donor and sample in the query. We used the resultant canonical variate embeddings to 1)
impute cluster membership for query cells via k-nearest-neighbors in the reference cohort (R
package “knn”, k=5), and 2) project the query cells into the reference UMAP embedding. To
visualize TiRP trends, we colored each cell by the average TiRP of its 100 nearest query

neighbors in the 31 canonical dimensions (Figure 6c).

Mixed clone analysis with bulk sequencing data

We conducted our mixed clone analysis with bulk sequencing data in the donors from
the discovery and replication cohort that were held out from the estimation of TCR feature effect
sizes and TiRP score calibration (Figure 1b, Table 1). Clones were defined by the “barcode”

consisting of their CDR3 nucleotide sequence, TRBV gene ID, and donor ID. Because clonal
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expansion is a prerequisite to mixed clone status, we compared mixed clone TiRP scores to
those of expanded Tconv and Treg clones. For the discovery cohort, TRB chains were
sequenced from gDNA, and so clonal expansion could be derived from the number of
“templates” for each clone (number of biological molecules prior to PCR amplification, inferred
by immunoSEQ via internal bias control). Because TRB chains were sequenced from cDNA in
the replication cohort, we cannot know whether identical reads within the same sample
represent TRB transcripts from one or multiple cells. However, we can deduce that identical
reads across multiple FACS-sorted samples from the same individual arose from multiple cells
and therefore an expanded clone. Therefore, for the replication cohort, we collected a sample
of the expanded clones from each donor by aggregating all CDR3p nucleotide sequences that
arose in multiple FACS-sorted samples from the same individual (Treg, naive Tconv, central
memory Tconv, and stem-cell like memory Tconv). Because there was only one Treg sorted
sample for each individual, we could only detect pure Tconv or mixed clones in the replication
cohort. We tested the effect of TiRP score on clone phenotype with mixed effects models as

designed in the single-cell analyses.

Mixed clone analysis with single cell data

To detect mixed clones in single cell data, we aggregated cells into clones based on
matching clonal “barcodes:” patient ID, TRB DNA sequence, TRBV gene, and TRA amino acid
sequence. To protect against contamination by doublets (droplets encapsulating two cells rather
than one), we excluded cells with more than one unique TRB chain detected. Since the
expression of multiple TRA chains, however, is a common biological phenomenon*®, we did not
exclude multi-TRA chain cells. To assign a clonal barcode TRA for these cells, we selected the
TRA sequence that was most often expressed by cells with a matching TRB DNA sequence in
the given patient.

To model the effect of TiRP score on clone phenotype (Tconv, Treg, or mixed), we used
mixed effects logistic regression with random intercept for the clone’s source patient and the
clone’s source cohort (BRCA, SCC, or BCC). Since clonal expansion is a prerequisite to mixed
clone status, only clones of size > 1 were included. We used the LRT to compare the model
including TiRP to a baseline model containing only the random covariates. We conducted this
process twice: first to compare mixed clones to purely Tconv clones, and second to compare
mixed clones to purely Treg clones.

We then quantified the clone phenotype by taking the natural log transform of the within-

clone Treg/Tconv ratio, with one “hallucinated” Treg and one “hallucinated” Tconv per clone to

34



919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

Lagattuta et al.

protect against numerically unstable estimates. We tested the effect of TiRP score on this
quantitative clone phenotype using mixed effects linear regression with random intercepts as
described above, and found a 0.065 increase in In(Treg/Tconv ratio) per standard deviation
increase in TiRP score (Figure 6h, P = 1.6 x 10, LRT).

To check that FOXP3 expression was significantly different between Tregs and Tconvs
within mixed clones, we conducted a Student’s paired t-test and confirmed that this was indeed

true (Extended Data Figure 7e).

Analysis of murine TCRs

T cell clones were defined by the barcode consisting of CDR3 amino acid sequence,
TRBYV gene identity, and donor ID. Due to ambiguity, clones observed in both Treg and Tconv
samples from the same donor or in both the Helios+ and Helios- Treg samples from the same
donor were excluded from the following analyses. Clones with member cells in both the naive
Tconv and memory Tconv samples from the same donor were labeled with the memory Tconv
phenotype.

To compute the TRBV gene component of the TiRP score in murine data, we assigned
each murine TRBV gene the TiRP coefficient of its human homolog according to human-mouse
TRBV correspondences listed in IMGT®. Murine and human TRBV genes were aligned for
comparison in Extended Data Figure 8d by this same correspondence scheme. Murine TRBV
genes with multiple human TRBV gene homologs were assigned the average of their human
homolog coefficients. Because the reference TRBV gene in human data, TRBV05-01, does not
have a murine homolog, comparing TRBYV gene effect sizes in mouse and human required a
change to a common reference. We encoded TRBV19-01 as the reference for murine mixed
effects logistic regression models, and translated human TRBYV gene effect sizes to those that
would be obtained from TRBV19-01 as the reference by subtracting the meta-analytic effect
size for TRBV19-01 from all TRBV gene effect sizes (including TRBV05-01, originally at 0).

TCR feature Principal Components Analysis

To contextualize the amount of T cell phenotypic variation explained by TCR features
identified in our work, we performed a principal components analysis on the matrix of samples
by TCR feature means for the replication cohort, in which sorted samples for all T cell
phenotypes of interest were available (Table 1, Figure 7a). For categorical TCR features such
as TRBV gene or Jmotif, we one-hot-encoded the variable into a binary vector equal to the

length of possible values, and took the mean of each of the positions. As this process rapidly
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expands the dimensionality of each sample, we summarized the TCR features in the CDR3Bmr
by percent composition of each amino acid only. We used the function “prcomp” from R
package “stats” to conduct singular value decomposition of the centered and scaled matrix of

samples by mean TCR features.

Memory-Naive TCR comparisons

T cell clones were defined by the barcode consisting of CDR3 amino acid sequence,
TRBYV gene identity, and donor ID. Due to ambiguity, clones observed in both Treg and Tconv
samples from the same donor were excluded from the following analyses. Clones with member
cells in both the naive Tconv and memory Tconv samples from the same donor were labeled
with the memory Tconv phenotype.

For the replication of Tconv Memory-Naive TRBV effects in the Soto et al. cohort®,
two additional steps were necessary to accommodate the deeper TCR sequencing within these
individuals. First, only TCRs with a Cysteine at position 104 and Phenylalanine at position 118
were included. Though there does exist some minor physiologic variation at these conserved
sites, such outlier sequences are not relevant to TiRP score computation. Second, though the
donor source of each TCR was modeled as a random effect in other cohorts, we modeled it
here as a fixed covariate, reducing computational burden and allowing the maximum likelihood

estimation to converge.
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