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Abstract 

Current high-throughput screening assay optimization is often a manual and time-consuming 

process, even when utilizing design-of-experiment approaches. A cross-platform, Cloud-based 

Bayesian optimization-based algorithm was developed as part of the NCATS ASPIRE Initiative to 

accelerate preclinical drug discovery. A cell-free assay for papain enzymatic activity was used as 

proof-of-concept for biological assay development. Compared to a brute force approach that 

sequentially tested all 294 assay conditions to find the global optimum, the Bayesian optimization 

algorithm could find suitable conditions for optimal assay performance by testing only 21 assay 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.23.448246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.448246


conditions on average, with up to 20 conditions being tested simultaneously. The algorithm could 

achieve a seven-fold reduction in costs for lab supplies and high-throughput experimentation run-

time, all while being controlled from a remote site through a secure connection. Based on this 

proof-of-concept, this technology is expected to be applied to more complex biological assays 

and automated chemistry reaction screening at NCATS, and should be transferable to other 

institutions. 

 

Introduction 

There is great interest in applying artificial intelligence (AI) and machine learning (ML) to various 

phases of preclinical drug discovery [1]. This includes chemistry reaction screening, hit selection, 

and even molecular design [2, 3]. It is anticipated that AI/ML approaches can enhance the 

efficiency of solving many of the multifactorial problems encountered in drug discovery. This 

includes biological assay development, a process that can take experienced biologists months to 

even years to develop and validate a robust, pathophysiological relevant assay [4]. 

 

One reason for the length of assay optimization is that scientists must optimize multiple and often 

competing factors, with many of the variable interactions difficult to predict a priori. This includes 

the concentration of key reagents (substrate, enzymes, cofactors), temperature, buffer/media 

composition, timing, as well as other factors. Assay optimization can utilize several strategies 

including brute force, design-of-experiment (DOE), or approaches informed from historical 

experience or fundamental principles. Brute force approaches, which test as many variable 

permutations as possible, and DOE approaches, which apply statistics to systematically 

determine the relationship between a set of variables affecting an output, and have been used in 

high-throughput screening (HTS) assay optimization [5-8]. Both suffer from a lack of feedback 

and adaptivity. This means that they each specify the entire set of experiments to be conducted 

a priori, which means they waste resources on low-performing experiments rather than 
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concentrating attention on high-performing experiments. Additionally, this means they each scale 

poorly with higher dimensions, as the number of experiments necessary increases exponentially. 

The cost of performing all these experiments can eventually become infeasible due to costs from 

reagents, time, and automated system modifications.  While valuable, relying solely on historical 

and fundamental principles has the potential for bias, and such preconceptions about how best 

to optimize an assay may not be best applicable to novel biological systems. 

 

The NCATS A Specialized Platform for Innovative Research Exploration (ASPIRE) Initiative seeks 

to combine advances in automated chemistry, high-throughput biological annotation, and AI/ML 

to accelerate preclinical drug discovery [9-11]. To assess the feasibility and utility of integrating 

AI/ML methods in our preclinical drug and probe discovery center, we developed an autonomous 

Bayesian assay optimization system. Using a facile cell-free fluorometric assay for the protease 

papain, we demonstrate that such an autonomous system can provide an efficient, robust set of 

assay conditions capable of identifying bioactive small-molecules with similar performance to 

conventional approaches. 

 

Materials and methods  

Chemicals and reagents. All general chemicals were purchased from Millipore Sigma, VWR, or 

ThermoFisher Scientific unless otherwise stated. Papain (from papaya latex; Sigma-Aldrich) was 

prepared in 50% glycerol (v/v) at a final concentration of 10 mg/mL (427 μM; 100 U/mL). The 

fluorogenic Z-FR-AMC dipeptide substrate (Bachem, cat # I-1160, HCl salt) was prepared as a 

32.1 mM stock solution in DMSO. 

 

Papain cell-free enzymatic assay. Screening was performed at the NCATS screening facility 

[12]. The effect of test compounds on papain cell-free enzymatic activity was adapted from 

published protocols (Table 1 and Supplemental Table 1) [13, 14]. Three multi-head liquid 
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dispensers were configured to facilitate autonomous and continuous experiments, including a 

microplate washing step for microplate re-use and minimization of plastics consumption 

(Supplemental Table 2). Three critical assay design parameters, based on the NCATS Assay 

Guidance Manual, were selected for optimization: reaction time, substrate concentration, and 

enzyme concentration [15, 16]. 

 

Computation. Kebotix’s Bayesian optimization software was adapted and deployed to provide 

suggested experimental conditions for the papain biochemical assay. Given the asynchronous 

quasi-batching of results, the following protocol was used: if there were any new results since the 

last suggestion made, and at least five results collected overall, a suggested assay protocol would 

be made using a sequential version of the Kebotix Bayesian optimization algorithm. Otherwise, 

such a suggestion would be generated randomly from the untested parameter choices. An assay 

optimization score was then calculated based on maximizing desirable features: sufficiently high 

Z’, reduction in reagent use, and shorter protocol time (Equation 1).  

 

(𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝟏𝟏) Assay optimization score =  
10000 ∗ min(max − (Z′ − 0.495, 0), 0.025)

25 ∗ [E] + 5 ∗ [S] + [T]  

 

[E] represents the nanomolar concentration of enzyme; [S] represents the micromolar 

concentration of substrate; [T] represents the incubation time in minutes, and Z’ is a calculated 

metric of assay quality using the positive and neutral plate controls [17]. The denominator of the 

score represents a notion of the “cost” of the experiment, where smaller costs are preferred, with 

the coefficients on the concentrations reflecting the tradeoffs between material and time costs. 

The two thresholds of 0 and 0.025 applied to the quantity Z’ – 0.495 reflect the judgment that Z’ 

values below 0.495 are all equally undesirable, Z’ values above 0.52 (0.495 + 0.025) are all 

equally desirable, and those between 0.495 and 0.52 are partially desirable. Finally, the 
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multiplicative factor of 10000 simply translated the score into the low single digits for ease of 

human understanding (with no effect on the optimization algorithm). 

 

Given the results from previous assays, the Kebotix Bayesian optimization builds a model to 

predict the scores of untested assay conditions, with uncertainty. It then identifies the conditions 

that maximize a combination of the predicted score and the uncertainty in that prediction. In 

addition, given the functional form of the assay optimization score above, the algorithm calculates 

the maximum possible score for each set of conditions and focuses on conditions whose 

maximum possible score is higher than the current maximum, performing constrained 

optimization over this narrower space. This ensures that no experiments are suggested by the 

optimizer which are known not to improve on the current optimum. 

 

Four variations in the experimental optimization runs were performed. Experiments within a run 

were started every 10 or every 20 min. For each of these intervals, a logarithmic transform was 

either applied or not applied before passing the options (concentrations and durations) to the 

optimization algorithm. The two timings were meant to illustrate performance given different 

tradeoffs between number of experiments and overall time spent: more frequent experiments 

result in fewer feedback cycles and more experiments necessary to optimize; less frequent 

experiments lead to more time spent on the optimization. Separately, the logarithmic transform 

was chosen to illustrate the value of choosing a representation of the data expected to be well-

suited for optimization: The options for both concentrations and time were roughly exponentially 

scaled (i.e., 15, 30, 60, 120 min), and we envisioned that equally spacing these options would 

make for a smoother and therefore easier to optimize objective function. 

 

Brute force and live optimization experimental parameters. A total of 512 assay optimization 

scores were experimentally generated by randomly sampling each permutation (“brute force”) 
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with the following experimental conditions: final enzyme concentration (0, 1.25, 2.5, 5, 10, 20, 40, 

and 80 nM), final substrate concentration (0, 0.125, 0.250, 0.500, 1, 2, 4, and 8 µM), and 

incubation time (5, 15, 30, 60, 120, 180, 240, and 480 min). Brute force trials with zero-value 

conditions (0 nM enzyme, 0 µM substrate, 0 min incubation) were used as experimental controls, 

but were excluded from subsequent analyses. Trials utilizing 0.250 µM substrate concentrations 

were excluded due to technical issues. For the Bayesian optimization live experiments, assay 

optimization scores were experimentally generated using the following allowable experimental 

conditions: final enzyme concentration (0.125, 0.25, 0.5, 1, 2, 4, 8, and 16 nM), final substrate 

concentration (0.125, 0.250, 0.500, 1, 2, 4, 8, and 16 µM), and incubation time (10, 15, 20, 30, 

45, 60, 90, and 120 min). 

 

System communication. The NCATS HTS system composed of an integrated, automated 

robotic platform, is based upon a dynamic and asynchronous scheduling methodology in which 

assay plates act as the input to the system, and each plate may have associated control and 

compound plates as required. A method is the set of steps each assay object will complete, with 

each step usually associated with some peripheral device on the HTS system (e.g., liquid 

dispenser, compound transfer device, plate reader, etc.). To execute an assay on a microplate 

(“trial”), the system scheduler relies on wait queues and mutexes. At the start of an experimental 

run (containing multiple microplates, or trials), all assay objects are placed in a first in, first out 

(FIFO) wait queue. A wait queue is a queue of objects waiting for a lock, which in this case 

represents control of a peripheral device on the screening system. For each peripheral device, 

when its associated lock is unlocked, the objects acquire the lock in the order of the queue. 

Objects still in the queue waiting to use a locked peripheral device are in a blocked state until the 

lock is released. Each step, or a series of linked steps, in a method has an associated lock, with 

this type of resource availability-based synchronization being called a Mutex (“mutual exclusion”).  
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This HTS system can monitor all events occurring on the platform for each assay plate and every 

associated method step, can allow multiple processes to run in parallel, and can launch new 

processes directed from external applications. To incorporate AI/ML-driven experimentation from 

extramural collaborators (i.e., collaborating organizations external to the NCATS HTS facility), a 

messaging technique was required such that an external informatics platform could initiate 

experiments to be performed on the NCATS HTS system, with the resultant data then sent back 

for analysis to the initiating platform. To enable this messaging, a RabbitMQ server was deployed 

at NCATS and was made public facing to allow external messaging. Several steps were 

implemented to ensure data security, including the deployment of the server within the NIH firewall 

demilitarized zone (DMZ), the utilization of Hypertext Transfer Protocol Secure (HTTPS) 

communication, Transport Layer Security (TLS) protocol version 1.2, and other technical controls.  

 

Advanced Messaging Queuing Protocol (AMQP) was used to provide a platform-agnostic method 

for ensuring information is safely transported between applications, among organizations, within 

mobile infrastructures, and across the Cloud. The screening platform can be considered as the 

‘query’ portion by reading an experiment while the extramural informatics platform (Kebotix) is the 

‘command’ portion issuing new experiments to be performed. In our system, this informatics 

platform produces a message that routes through the exchange to be placed within the 

experimental queue at the HTS site. This message initiates an experiment, and consists of a 

unique identifier for experiment tracking, and in this specific report, details on the desired enzyme 

concentration, substrate concentration and incubation time. Using LabView [18], the HTS system 

consumes this message from an experimental queue and generates a method specific to it based 

upon the experimental conditions requested to be programmatically launched as an assay on the 

platform. During the experiment, any plate read steps that generate data trigger the HTS system 

to generate a new message (containing the unique identifier and resultant data) that is added to 
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the results queue. Upon completion of an experiment, another message is produced by the HTS 

system and sent to the results queue to let the informatics platform know that the experiment is 

done. These messages in the results queue are then consumed by the informatics platform such 

that data generated by the experiments run on the HTS system can be analyzed and any 

respective models used to generate new experiments can be updated. The informatics platform 

could then programmatically initiate new experiments by producing another message to be sent 

to the experiment queue. This process would complete until some stop criterion is met. The entire 

system is event-driven, with commands issued by Kebotix to initiate a new experiment upon 

demand (assuming there are resources available to perform the request). Notably, an 

asynchronous operation feature was incorporated in which synchronization is not based upon 

time, but rather upon resource availability. This allows the scheduler to run multiple experiments 

in parallel in an asynchronous fashion. This means that multiple commands can be issued and 

multiple queries can be in process simultaneously without being time dependent as the duration 

of a particular experiment or time to process the results and make new predictions will be variable. 

 

Data simulations. Simulations were performed using the brute force data collected to identify 

typical behavior of variations on the optimization algorithm. In these simulations, the timings 

associated with the experimental process were mimicked, with the results of each suggestion 

being drawn from the brute force data upon completion. The following ten variations were 

considered: new experiments started every 10, 20, 30, 60 min or sequentially, and with and 

without the logarithmic transform applied to the options. Two scenarios were considered. In the 

first (‘trial simulations’), the optimization would proceed until the optimum conditions were 

suggested, immediately stopping, and approaches would be assessed by how many experiments 

they required to find the optimum. In the second (‘budget simulations’), the optimization would 

proceed for the designated budget of 40 trials and then stopped, and variations would be 

assessed according to whether the optimum was discovered and whether it was discovered within 
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the first half of the budget (20 trials). In each of these scenarios, and for each of the 10 variations 

considered, 1,000 simulations were run.  

 

qHTS data analysis and statistics. Reference papain inhibitors (Supplemental Table 3) were 

tested in 11-point serial three-fold titration (0.664 nM to 39.2 µM final concentrations). The Library 

Of Pharmacologically Active Compounds (LOPAC1280) was tested in qHTS format in 7-point serial 

four-fold titration (31 nM to 50 µM final concentrations) [19]. Data from each assay were 

normalized to intra-plate controls (neutral control, DMSO; positive control as noted). The 

fluorescence intensity difference between Read 2 (post-reaction) and Read 1 (shortly after 

substrate addition) was used to compute reaction progress. The same controls were used for the 

calculation of the Z’ factor. Concentration-response curves (CRCs) were fitted and classified as 

described previously. IC50 values were calculated using Prism software (version 9.1.0, 

GraphPad), sigmoidal dose-response (variable slope). Data was curated using the Palantir 

Technologies (Washington, DC) data integration Foundry platform (NIH Integrated Data Analysis 

Platform, NIDAP), which is configured to ingest all HTS results generated at NCATS and 

harmonized this data with other sources such as ChEMBL and OrthoMCL. All qHTS screening 

results are publicly available at PubChem (AIDs 1645873, 1645872). The chemical structures 

were standardized using the LyChI (Layered Chemical Identifier) program (version 20141028, 

github.com/ncats/lychi). P-values were one-sided and used a Bonferroni correction where 

applicable. 

 

Results 

Assay and platform overview. A cell-free assay for papain protease activity was chosen for 

proof-of-concept. This assay was ideal because its low cost and simplicity is suitable for many 

experiments (“brute force”), and previous NCATS experience would allow for historical 

comparisons [13, 14]. In this fluorescence intensity assay, papain enzymatically cleaves the 
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quenched AMC fluorophore from a dipeptide substrate to generate non-quenched free AMC 

fluorophore whose fluorescence intensity is proportional to papain activity in the absence of 

compound-mediated interferences (Figure 1). 

 

An AMQP method was developed to support secure, platform-agnostic information sharing 

between applications, among organizations, within mobile infrastructures, and across the Cloud 

(Figure 2). The entire system is event-driven, with commands issued by a command site (i.e., 

Kebotix) initiating a new experiment on-demand and asynchronously. This latter feature allows 

controllers to run multiple trials in parallel if resources allow. 

 

Brute force biological assay optimization. To help assess the effectiveness of the Bayesian 

assay optimization approach, the assay optimization parameters were tested sequentially using 

a brute force approach. Notably, this was a completely autonomous process that required no 

human intervention, and allowed for multiple other independent projects to be run on the same 

testing platform throughout the duration of the experiment. Testing each permutation required 512 

individual experiments and approximately 96 h of automated experimentation time (Figure 3A). 

Based on the assay optimization scores (Equation 1), the optimal experimental conditions were: 

variable substrate concentrations (low µM), low nanomolar enzyme concentrations (1.25 to 2.5 

nM), and intermediate incubation times (15 to 30 min; Figure 3B). 

 

Bayesian assay optimization. The Kebotix Bayesian optimization algorithm was used to 

determine the optimal assay conditions while blinded to the brute force results. To facilitate future 

improvements in the algorithm for assay optimization, the algorithm was performed in four 

independent runs each with a unique combination of parameter transformations (log or non-log) 

and interval time between trials (10 or 20 min). Not surprisingly, the runs with increased trial 

intervals required more time compared to the runs with shorter trial intervals (Figure 3C).  
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Live optimization runs illustrate the performance of the optimization algorithm in action. While the 

true optimum is unknown without all suggestions having been attempted, a simple comparison of 

the performance of the randomly generated suggestions and those generated by the optimum 

can illustrate the performance of the optimizer (Figure 3D). Across the four runs, optimized 

suggestions achieved assay optimization scores above the arbitrary threshold of 1.4 in 34 of 68 

(50%) attempts, while random suggestions achieved optimization scores above 1.4 in only 12 of 

92 (13%) attempts, four-fold less frequently. Even accounting for the arbitrariness of this 

threshold, this difference is significant (p = 3 x 10-6). This demonstrates the optimizer can enrich 

for high quality experiments and provide biologists with more viable choices for selecting final 

conditions. This might be advantageous in cases where expert knowledge is to be incorporated 

that is difficult to incorporate into an objective function. 

 

Further validation by simulation. Ground-truth data generated by the brute force approach 

enabled further validation by simulation of the overall platform, as well as individual components 

of the adaptive learning processes itself like logarithmic data transformation and the timing of 

experimental queues. Two types of simulations were performed: trial simulations and budget 

simulations. Trial simulations assessed the number of assay condition trials needed to identify 

the optimal assay condition (allowing up to the full 294 trials), while budget simulations assessed 

how often a run could identify the optimal assay condition with 40 or less trials. 

 

In trial simulations, variations of the optimizer both with and without the logarithmic transform 

found the optimum in only 11 to 21 trials on average, a 7- to 13-fold improvement on brute force, 

with the expected variation according to the frequency of experiments (Figure 4A). This illustrates 

the tradeoff between time and experiment costs: Running more frequent experiments (shorter 

intervals between consecutive trials) saves time, while running less frequent experiments requires 
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fewer to find the optimum. The improvement using log transform was minimal (mean difference 

less than 1 experiment), indicating the transform was not important for the algorithm to find the 

optimum. 

 

In budget-based simulations where each run was allotted up to 40 trials, the optimization algorithm 

was able to identify the optimum at least 99.4% of the time in all variations, seven-fold more 

frequently than the brute force approach with p-values less than 10-846 (Figure 4B). When 

simulating a more stringent budget (20 trials), all variations were able to identify the optimum at 

least 49.7 of the time, and as frequently as 99.8% for sequential trials applying the logarithmic 

transform, offering a similar 7- to 15-fold improvement on brute force (Figure 4B). In both 

simulation formats, extending the time between experiments beyond ten minutes decreased the 

number of experiments needed to find the optimum (Figure 4). These simulations demonstrate 

the efficiencies of adaptive learning for assay optimization, and should help in future experiments 

with this platform.  

 

Validation of optimized conditions with reference small molecules and pilot qHTS. Select 

compounds were tested for inhibition of papain enzymatic activity to further assess the robustness 

and applicability of the algorithm-derived solutions. At this stage, an additional compound transfer 

step was added to the assay protocol, and CRCs were automatically analyzed by an in-house 

informatics platform. A series of nearly two dozen reference papain inhibitors spanning nanomolar 

to micromolar potencies was selected based on in-house data from a papain counter-screen used 

during a qHTS campaign targeting the protease cruzain [13, 14]. These reference compounds 

were tested using the historical counter-screen conditions (Supplemental Table 1) and the 

optimal conditions determined from the algorithm. While there was some systematic bias 

observed (Bland-Altman bias = 0.3 ± 0.2), there was gross concordance for the IC50 values 

determined using the historical conditions and those identified by the algorithm (r2 = 0.93; Figure 
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5A). Notably, there were some differences in CRC shape between the two assay conditions 

(Figure 5B). 

 

The applicability of algorithm-optimized assay conditions was also assessed by a pilot qHTS using 

the LOPAC1280. The Kebotix conditions showed acceptable assay quality metrics using the  

LOPAC1280 in qHTS format (Figure 5C). This autonomously optimized method could identify 

putative small-molecule inhibitors of papain enzymatic activity using the LOPAC1280 in qHTS 

format, including a likely covalent inhibitor Z-L-Phe-chloromethyl ketone and the prototypical 

nuisance compound aurintricarboxylic acid (Figure 5D). As the pilot qHTS was intended as proof-

of-concept, additional characterization of primary hits was not pursued. Such experiments would 

ordinarily include orthogonal assays and counter-screens for common compound interferences 

such as light interference, nonspecific electrophiles, and aggregators, as outlined in the NCATS 

Assay Guidance Manual [15, 16]. 

 

Discussion 

We developed a cross-platform, Bayesian optimization system and applied it to autonomous 

biological assay optimization. As proof-of-concept, the system was able to efficiently optimize a 

papain biochemical enzymatic assay. The optimized assay conditions were then validated by 

testing a collection of reference papain inhibitors and a pilot qHTS library. These assay conditions 

provided practical solutions, as testing with the AI/ML-derived assay conditions recapitulated the 

performance of inhibition data from historical protocols, and could identify a series of inhibitions 

amongst the LOPAC1280.  

 

Several notable features can be achieved by utilization of the developed platform. First, the 

proposed approach can function continuously without human supervision once reagents were 

prepared and system checks were performed. Second, by applying the asynchronous, event-
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driven method, the screening facility was able to perform other tasks on unrelated projects at the 

same time, including other qHTS campaigns. Third, the unique messaging system implemented 

in the proposed platform allows to run the physical experiments in one place (Rockville, MD, USA) 

while being controlled by an off-site location (Cambridge, MA, USA) through a secure electronic 

connection. This last feature may be especially beneficial in situations with limited on-site 

availability (e.g., pandemic-related restrictions). 

 

There are several advantages of this Bayesian optimization methodology relative to traditional 

and brute force approaches. These algorithmic approaches can be more efficient than traditional 

assay optimization approaches such as brute force or DOE, resulting in increases in operational 

efficiency and cost savings. This is especially important for expensive reagents where the number 

of optimization experiments is cost prohibitive, and precious reagents such as difficult to expand 

or rare cell lines. Even for cheap experiments, they also do not require the involvement of the 

researcher in the optimization run itself, which provides additional savings when paired, as in this 

example, with an autonomous experimentation platform. Finally, while not demonstrated in this 

work, they offer a better scaling than traditional methods at high dimensions, which also present 

additional challenges for humans to analyze. 

 

The Bayesian optimization approach also had some notable limitations, though many of these 

limitations can likely be overcome in future iterations. We can distinguish two types of limitations: 

Those which were necessary for achieving the full comparison to demonstrate performance of 

the Bayesian optimization approach relative to brute force, and those which would apply even 

without the need to run the brute force experiments as a comparison. 

 

For examples of the first type, it was necessary to only optimize across a small number of 

dimensions (3), to allow the brute force experiments to all be run in a reasonable time frame. That 
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exhaustive search was only necessary in this case to provide an instance of the objective function 

on the complete optimization space to allow for simulations to definitively demonstrate the 

improved performance of the algorithm. In real use, we would expect a larger number of 

parameters to be varied without the need to exhaustively attempt all possible combinations merely 

for simulation purposes. A second example of this type is the limitation of the options to particular 

choices. For instance, nothing about the experiment necessitates that “30 min” and “60 min” are 

possible durations but “45 min” is not. We chose to limit the options to these choices to allow the 

brute force to exhaustively test all possibilities, but in actual use, duration could be a continuous 

variable with only lower and upper limits defined. 

 

One limitation of the second type is that the varying concentrations of substrate and enzyme were 

achieved by pre-mixing the batches of each at the selected concentrations. This aided in the 

development, but during the optimization run, some concentrations will tend to be chosen more 

frequently than others, resulting in wastage. This limitation could be overcome with dynamic 

dilution approaches, which would also allow concentrations to be varied continuously, as with 

duration as discussed above. A final limitation of the second type is that the space of all 

possibilities must be defined at the outset of the optimization. This is shared with other traditional 

approaches like DOE, but more manual optimization approaches may choose to vary a different 

set of parameters midway through the run based on the results thus far. 

 

Future work will focus on applying this technology to more complex biological systems such as 

multistep biochemical assays and cellular assays. Additional optimization parameters can include 

variables such as reaction solution composition (buffer, pH, detergent, chelation agents, reducing 

agents, salts, cofactors, decoy proteins), key reagents (enzyme batches and sources, antibodies, 

cell lines), reaction conditions (temperature), and processing steps (washes, reader settings), 

amongst others. The assay optimization score can also be improved or tailored to specific 
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applications. For example, while extremely useful for many assays, the Z’ metric threshold of 0.5 

may not be suitable for certain assays [20]. 

 

We hypothesize this approach could be rendered more efficient for assay optimization by 

including multiple experimental conditions per assay plate. If the optimization score can be 

satisfactorily estimated using only a portion of the wells on a given plate, multiple conditions could 

be combined on the same plate, although some factors (e.g., time) would need to be shared. 

Adapting this platform to reaction screening is another future endeavor, especially in the context 

of NCATS ASPIRE Initiative which includes a significant automated chemistry component. Other 

potential applications of this technology could involve hit selection for confirmatory testing and in 

iterative screening approaches. It is therefore anticipated that the continued development of this 

integrated, AI-driven autonomous system will enhance the efficiency of assay development and 

other complex tasks in early preclinical drug discovery at NCATS. Through dissemination of 

lessons learnt and best-practices, the scientific community at-large should also benefit. 
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Table 1. Standardized cell-free papain assay protocol utilized for Bayesian optimization 
algorithm.  

Step Parameter Value Description 

1a 
1b 

Reagent 
Reagent 

3 µL 
3 µL 

Papain in assay buffer 
Assay buffer 

2 Compound 20 nL Compound addition  

3 Time 15 min RT incubation  

4 Reagent 1 µL Substrate (Z-FR-AMC) in assay buffer addition, reaction 
initiation 

5 Time 15 sec, 271 g Centrifugation 

6 Detection (Ex/Em) = 340/460 nm Fluorescence (Read 1) 

7 Time Variable Incubation (RT)  

8 Detection (Ex/Em) = 340/460 nm Fluorescence (Read 2) 

 
Step Notes 

1a Medium-binding black solid-bottom Greiner plates (789176-F). Dispense 3 µL of 1.33X papain in assay 
buffer (100 mM sodium acetate, pH 5.5, 5 mM DL-cysteine, 0.01% Tween-20 v/v) to columns 1, 2, 5-48 
via Wako/Kalypsys dispenser. Papain was dispensed to produce 16, 8, 4, 2, 1, 0.5, 0.25, and 0.125 nM 
final enzyme concentrations. Optimized solution was 0.125 nM papain, final concentration. Enzyme 
solutions kept on ice during experiment. 

1b Dispense 3 µL of assay buffer (100 mM sodium acetate, pH 5.5, 5 mM DL-cysteine, 0.01% Tween-20 v/v) 
to columns 3 and 4 via Wako/Kalypsys dispenser. Assay buffer solution kept on ice during experiment. 

2 Compound addition (20 nL) using EDC ATS-100 acoustic dispenser. Compound solutions in source plate: 
169 nM to 10 mM DMSO stock solutions. Final concentrations: 0.664 nM to 39.2 µM, respectively. Final 
DMSO concentration: 0.5% (v/v). 
 
Step omitted during assay optimization. 

3 Room temperature incubation. Kalypsys lids used as microplate coverings. Protected from light. 

4 Dispense 1 µL of 4X substrate mixture in assay buffer (100 mM sodium acetate, pH 5.5, 5 mM DL-cysteine, 
0.01% Tween-20 v/v) to columns 1-48 via Wako/Kalypsys dispenser. Z-FR-AMC substrate was dispensed 
to produce 16, 8, 4, 2, 1, 0.5, 0.25, and 0.125 µM final substrate concentrations. Optimized solution was 
4 µM Z-FR-AMC, final concentration. Substrate solutions kept on ice during experiment. 

5 Centrifugation step to remove bubbles. 

6 PHERAstar optics: Excitation filter 340 nm, Emission filter 460 nm. Gain = 709. Number of flashes = 10. 

7 Room temperature incubation. Incubation times 10, 15, 20, 40, 30, 45, 60, 90, and 120 min. Optimized 
solution was 30 min. 

8 PHERAstar optics: Excitation filter 340 nm, Emission filter 460 nm. Gain = 709. Number of flashes = 10 
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Figure 1. Papain assay schematic. Papain hydrolyses the AMC fluorophore from the dipeptide 

substrate, which leads to an increase in blue fluorescence. Inhibitors of papain activity are 

expected to decrease the fluorescence intensity readout. See also Table 1 and Supplemental 

Table 1 for standardized protocols of algorithm-derived and historical protocols, respectively. 
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Figure 2. Design of autonomous assay optimization platform. The system utilizes Advanced 

Messaging Queuing Protocol (AMQP) to facilitate communication between the NCATS HTS 

system, a shared informatics resource, and the Kebotix extramural Bayesian optimization 

command platform. Producer (P): an application that sends messages; Queue (Q): a buffer that 

stores messages; Consumer (C): an application that receives messages; Exchange (X): a router 

that receives messages from P and pushes them to C; Routing Key (RK): a relationship that 

specifies that a Q is interested in messages from an X. 
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Figure 3. Optimization of papain biochemical assay by brute force and Bayesian 

optimization approaches. (A) A brute force approach determined optimal papain assay 

conditions by randomly testing each permutation of substrate concentration, enzyme 

concentration, and incubation time. Gantt chart of the brute force approach demonstrates the 

autonomous, asynchronous, event-driven system can function in a continuous fashion for over 

four days. (B) Summary of assay optimization for the brute force, scored by weighting time, Z’, 

and reagent consumption. (C) Gantt charts of the Bayesian optimization approach, performed in 

four independent runs testing each combination of slow/fast experiment queuing, and log-

transformed/non-log-transformed data. (D) Distribution of experiment quality from panel (C) for 

non-transformed and log-transformed data, and slow and fast experiment queues. 
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Figure 4. Validation of adaptive learning and optimization processes using brute force-

derived simulation data. Simulations compared adaptive learning to brute force, and the effects 

of time delays between subsequent experiments for non-transformed and log-transformed data.  

(A) Trial simulations for runs until the assay condition optimum was found (up to 294 trials per 

simulation run). Data are arithmetic mean ± SD. (B) Top; budget-based simulations (n = 1000) 

where each simulated run was allotted up to 40 trials. Bottom; analysis of first 20 trials. 
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Figure 5. Validation of the algorithm-optimized experimental conditions for a cell-free 

papain inhibition assay by small molecules. (A) Papain inhibition by a reference set of small-

molecule papain inhibitors shows general agreement between historical assay conditions and the 

algorithm-derived conditions. (B) Representative concentration-response curves of reference 

papain inhibitors. Data are three technical replicates from one of three independent experiments. 

(C) The algorithm-derived conditions showed acceptable assay quality metrics using the 

LOPAC1280 in qHTS format. Shown are representative data from one of six independent 

experiments. (D) The algorithm could identify small-molecule inhibitors of papain enzymatic 

activity using the LOPAC1280 in qHTS format. Right; representative concentration-response curves 

of papain inhibitors identified in the LOPAC1280 qHTS. Shown are representative data from one of 

six independent experiments. 
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