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ABSTRACT 

Glioblastoma is the most prevalent primary malignant brain tumor in adults and is characterized by poor 

prognosis and universal tumor recurrence. Effective glioblastoma treatments are lacking, in part due to somatic 

mutations and epigenetic reprogramming that alter gene expression and confer drug resistance. Here, we 

interrogated allele-specific expression (ASE) in 43 patient-derived glioblastoma stem cells (GSCs) to identify 

recurrently dysregulated genes in glioblastoma. We identified 118 genes with recurrent ASE preferentially found 

in GSCs compared to normal tissues. These genes were enriched for apoptotic regulators, including Schlafen 

Family Member 11 (SLFN11). Loss of SLFN11 gene expression was associated with aberrant promoter 

methylation and conferred resistance to chemotherapy and poly ADP ribose polymerase inhibition. Conversely, 

low SLFN11 expression rendered GSCs susceptible to the oncolytic flavivirus Zika, which suggests a potential 

alternative treatment strategy for chemotherapy resistant GBMs.  
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INTRODUCTION 

Glioblastoma ranks among the most lethal of human malignancies with current therapies only offering palliation 

(1). Reasons for treatment failure are myriad, with tumor heterogeneity at the genetic and transcriptional levels 

contributing to the malignancy of glioblastoma (2,3). Glioblastoma displays a functional cellular hierarchy with 

stem-like, self-renewing glioblastoma stem cells (GSCs) residing at the apex (4,5). GSCs contribute to resistance 

to chemotherapy and radiotherapy, neoangiogenesis, invasion into normal brain, and escape from the immune 

system (6-8). Therefore, targeting GSCs may improve current glioblastoma management and extend the lives 

of patients.  

 

Although glioblastoma is one of the most deeply characterized solid tumors, precision medicine has not 

significantly benefited most neuro-oncology patients. Most studies and targeted therapeutic strategies have thus 

far focused on protein-coding mutations. However, many important mutations lie in non-coding DNA where they 

function by perturbing gene regulation. Non-coding mutations likely help drive glioblastoma tumorigenesis and 

drug resistance but are more challenging to identify and impact gene regulation in many different ways. Gene 

dysregulation can be caused by copy number alterations (CNAs) (9-11), as well as by mutations that affect splice 

sequences (12), untranslated regions (UTRs) (13), insulators (14,15), promoters (16,17), and enhancers (13,18). 

Moreover, genes are often regulated by multiple enhancers, which can be located hundreds of kilobases away 

from their targets (19). Regulatory mutations are, therefore, diverse, and frequently spread over very large 

regions of the genome. As a result, standard recurrence analyses that identify driver mutations in coding 

sequences are unlikely detect many important regulatory mutations in cancer genomes. Alternate approaches 

to discover regulatory mutations can by stymied by the myriad of non-coding mutations whose function is difficult 

to predict from sequence alone. Rather than relying on interpretation of non-coding mutations, unbiased 

identification of genes with altered regulation can pinpoint functionally important genes that are unlikely to be 

discovered through other methods.  

 

Here, we leveraged allele-specific expression (ASE) as a new approach to interrogate recurrently dysregulated 

genes in glioblastoma. ASE measures the difference in expression between two alleles of a gene, by utilizing 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449493doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449493
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

reads mapped to heterozygous sites (20,21). Unlike standard RNA-seq expression levels, ASE is particularly 

sensitive to cis-acting mutations because it is generally unaffected by trans-acting or environmental effects that 

impact both alleles equally. Thus, a major advantage of ASE is that it can identify genes that are dysregulated 

by cis-acting regulatory mutations, even when the specific identities of the regulatory mutations are unknown. 

However, ASE is not solely caused by somatic mutations and can also result from common germline 

polymorphisms (22,23), imprinting (24), or random monoallelic expression (25). Therefore, to discover genes 

that are dysregulated in cancer, the frequency of ASE in disease samples must be compared to a panel of normal 

samples. This approach has recently been used to identify new pathogenic genetic variants in muscle disease 

(21) and oncogenic mutations in T cell acute lymphoblastic leukemia that would be difficult to identify using 

traditional techniques (15).  

 

Based on this background, we hypothesized that a discovery effort based upon ASE could reveal novel points 

of fragility in the most resistant tumor cells, the GSCs. GSCs maintained in serum-free conditions maintain both 

genetic and transcriptional signatures found in the tumors from which they were derived, while removing the 

contaminating non-transformed cells that complicate genetic discovery. Here, we interrogated ASE in 43 patient-

derived GSCs and compare the frequency of ASE to normal tissues to reveal novel dysregulated molecular 

targets that promote drug resistance and confer therapeutic vulnerabilities.  
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RESULTS 

Glioblastoma target gene discovery leveraging recurrent allele-specific expression 

To discover genes with ASE, we implemented a statistical model to estimate allele imbalance for every gene 

(Figure 1A). Our systematic methodology utilizes RNA-seq reads overlapping heterozygous sites and reduces 

false positives by accounting for technical sources of variation, including sequencing errors, genotyping errors, 

and overdispersion of RNA-seq read counts. We quantified ASE with RNA allelic imbalance (aRNA), which is the 

difference between the reference allele proportion and the expected value of 0.5. We applied our model to RNA-

seq data from 43 patient-derived GSCs representing a diverse population of patients (age, biologic sex, etc.) 

and tumor features (genetics, transcriptional subgroups, etc.) that we had previously reported (26). We identified 

5,808 genes with significant ASE in at least one GSC under a false discovery rate (FDR) of 10% (Supplemental 

Table S1). ASE was restricted to a single sample for most genes (3,948 out of 5,808). However, 1860 genes 

showed ASE in 2 or more GSCs and 298 genes showed highly recurrent ASE that was present in 5 or more 

GSCs (Figure 1B).  

 

To discover genes that showed recurrent ASE specific to GSCs relative to normal tissues, we compared the 

frequency of ASE for each gene in GSCs to both normal whole blood and normal brain samples from the 

Genotype Tissue Expression (GTEx) project using Fisher’s Exact Test. Whole blood has, by far, the largest 

number of samples in GTEx so we used it as the initial reference tissue; however, we performed subsequent 

comparisons with ASE in 13 different brain tissues to account for tissue-specific imprinting, as described below. 

Under an FDR of 10%, 118 genes displayed significantly enriched ASE in GSCs (Supplemental Table S2). To 

illustrate the power of this approach, we examined the ASE patterns of the non-coding RNA gene H19, which is 

maternally imprinted (27), and RHOB (Ras Homolog Family Member B), which is important for glioblastoma 

tumorigenesis (28,29). As expected for an imprinted gene, H19 showed ASE in almost all normal and tumor 

samples (Figure 1C), however ASE of RHOB was restricted to GSCs (Figure 1D).  

 

Recurrent ASE in cancer genomes can be caused by frequent copy number alternations (CNAs) or loss-of-

heterozygosity (LOH). In the presence of large CNAs, many genes are expected to exhibit ASE, but these genes 
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would be clustered into the genomic regions that undergo frequent CNAs. However, in our dataset, recurrent 

ASE genes were distributed throughout the genome, suggesting that their dysregulation was not due to large-

scale CNAs, but was instead caused by localized cis-regulatory mutations or epigenetic changes (Supplemental 

Figure S1A).  

 

To examine the biological function of the 118 genes with recurrent ASE in GSCs, we performed Gene Ontology 

(GO) enrichment analysis, revealing over-representation of recurrent ASE genes involved in regulation of cell 

cycle and apoptosis (FDR ≤ 5%). 28 genes with recurrent ASE were associated with the Biological Process GO 

category “programmed cell death”, whereas only 13 genes were expected by chance (Figure 1E). These genes 

included the kinase IP6K2 (Inositol hexakisphosphate kinase 2) (30,31), which exhibited a marked enrichment 

of ASE in GSCs compared to both whole-blood (FET p-value 0.001; FDR-adjusted p-value 0.06) and brain 

tissues from GTEx (Supplemental Figure S1B).  

 

Allele-specific gene expression is associated with H3K27ac marks at distal regulatory elements 

Cis-acting pathogenic variants impact gene expression by disrupting regulatory sequences, such as enhancers 

(18,32). To illuminate the cis-acting mechanisms that underlie ASE in GSCs, we tested whether the expression 

of the 118 ASE genes was associated with the activity of nearby regulatory elements. We identified putative 

regulatory sequences within 100-kb of the ASE gene promoters using histone H3 lysine 27 acetyl (H3K27ac) 

chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) data that we previously generated for 

the GSCs (26). We divided the genome into 1-kb genomic bins and labeled bins that overlapped H3K27ac peaks 

in at least one GSC as putative cis-regulatory elements (CREs). To connect CREs with genes, we correlated 

normalized H3K27ac levels with gene expression, focusing on distal and intronic elements, which exhibit a 

greater specificity and wider range of activity across cancer samples compared to promoters (33). Of the 118 

ASE genes, 56 had a significant Spearman’s rank correlation with the activity of a distal CRE (FDR ≤ 5%). In 

many cases, a single gene was associated with the activity of multiple CREs, such that 227 CRE bins were 

associated with the expression of these 56 genes (Supplemental Table S4). Thus, gene expression of many 

ASE genes was associated with activity levels of distal regulatory elements, as measured by H3K27ac, 
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suggesting that cis-acting mutations within these CREs are a plausible and potentially common mechanism for 

the dysregulation of these genes in glioblastoma.  

 

One example of an ASE gene that is associated with multiple CREs is NOTCH1.  ASE of NOTCH1 was enriched 

in GSCs compared to both whole-blood (Fisher’s Exact Test p-value 5.09e-5; FDR-adjusted p-value 0.0094) and 

brain samples and we observed extreme biases in reference and alternate allele proportions at all heterozygous 

sites (Figures 2A and B). NOTCH1 gene expression correlated with H3K27ac levels of 29 nearby CREs (Figure 

2C; Supplemental Table S4). To confirm that these CREs were more strongly associated with NOTCH1 

expression than expected by chance, we created an empirical null distribution for each CRE by correlating 

H3K27ac levels with the expression of 1000 randomly selected genes. Using these null distributions, 22 out 29 

CREs remained significantly correlated with NOTCH1 gene expression (empirical p-value ≤ 5%) (Supplemental 

Table S5). These regions may contain cis-regulatory non-coding mutations that lead to NOTCH1 gene 

dysregulation and may be excellent targets for future regulatory screens dissecting the regulation of NOTCH1 

expression in GSCs.  

 

Promoter methylation is associated with the expression of ASE genes 

Aberrant DNA methylation of gene promoters is associated widespread gene expression changes and 

chemotherapy resistance in brain tumors. In gliomas, MGMT CpG-rich promoter methylation is associated with 

decreased expression and improved response to temozolomide (TMZ) treatment (34). To determine whether 

genes with recurrent ASE were associated with aberrant DNA methylation, we analyzed the CpG methylome of 

the GSCs (26). We estimated the promoter methylation of the 118 ASE genes (βpromoter) and computed 

Spearman’s rank correlations with normalized gene expression. We identified 30 genes that displayed correlation 

between promoter methylation and gene expression at FDR ≤ 10% (Supplemental Table S6), of which 16 were 

correlated with the H3K27ac levels of nearby CREs. Thus, 70 of the 118 ASE genes were associated with 

promoter methylation, CRE activity or both, suggesting possible mechanisms for their dysregulation.  

 

SLFN11 promoter methylation associates with its gene expression 
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One of the 30 genes with correlated gene expression and promoter methylation was SLFN11 (rho=-0.68, FDR 

corrected p-value = 0.0001) (Figures 3A-C, Supplemental Table S5). SLFN11 is notable because it inhibits DNA 

replication and promotes cell death in response to DNA damage (35,36). Loss of SLFN11 causes resistance to 

poly ADP ribose polymerase (PARP) inhibitors in small cell lung cancer, suggesting that it may be an important 

marker of chemotherapy resistance (37). ASE of SLFN11 was highly enriched in GSCs with 4 out of 10 testable 

GSCs exhibiting ASE, compared to 0 out of 159 testable normal whole blood tissues from GTEx (FET p-value 

6.4e-6; FDR-adjusted p-value 2.2e-3) (Supplemental Table S2). Although this gene showed enrichment of ASE 

in GSCs compared to whole blood samples, we detected ASE in small number of normal brain tissue samples 

(4 out of 224) (Figure 3C). This suggests that rare germline variants or somatic events, such as mutations or 

DNA methylation, may affect SLFN11 expression in some phenotypically normal individuals.  

 

Based on the promoter methylation and gene expression of SLFN11, GSCs can be divided in 3 distinct classes: 

1) GSCs with high methylation and low expression; 2) GSCs with hemi-methylation and intermediate expression; 

and 3) GSCs with low methylation and high expression (Figure 3A). Four GSC samples with ASE of SLFN11 

had detectable ASE within the class of hemi-methylated samples, in which one allele was silenced and the other 

was expressed. However, samples like GSCs 2907 and 007B had high promoter methylation levels (>60%) and 

very low expression of SLFN11 (Figures 3A and B). Under these circumstances, genes would not be found by 

ASE because the expression of both alleles is reduced. These results demonstrate that low expression of 

SLFN11 in GSCs is associated with increased promoter methylation and the samples with detectable ASE are 

consistent with hemi-methylation. 

 

SLFN11 augments chemotherapy resistance in GSCs 

SLFN11 regulates cellular responses to DNA damaging agents (35,36). Therefore, we hypothesized that 

SLFN11 expression in GSCs would be associated with chemotherapeutic resistance to an alkylating agent, TMZ, 

and a PARP inhibitor, olaparib. To test this hypothesis, we utilized four patient-derived GSCs: two with high 

SLFN11 expression and no evidence for ASE (839 and MNK1) and two with low SLFN11 expression and strong 

ASE (2012 and 1552). We confirmed both SLFN11 mRNA and SLFN11 protein abundance by RT-PCR (Figure 
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4A) and immunoblot (Figure 4B). We treated cells with drug concentrations ranging from 0 to 1000 µM for TMZ 

and 0 to 50 µM for olaparib, then measured drug effects on cell survival to generate a concentration-response 

matrix where an effect of 100% corresponds to complete killing of all cells and 0% corresponds to no difference 

in cell survival (Figures 4C and D; Supplemental Figure S1). We estimated synergy between the two drugs using 

SynergyFinder 2.0 (38). Two GSCs with low expression and ASE of SLFN11 had reduced responses to drug 

treatment compared the GSCs with high expression of SLFN11. The maximum response for both ASE GSCs 

ranged from 40-50%, whereas the GSCs with high expression of SLFN11 had responses ranging from ~70-80% 

(Figure 4D). The two ASE GSCs also had lower drug synergy scores for the combination of the drugs (Figure 

4E). 

 

To directly test whether SLFN11 expression affects chemotherapeutic drug sensitivity in GSCs, we also 

performed knockdown (KD) and overexpression (OE) experiments. Specifically, we performed KD of SLFN11 in 

MNK1 GSCs, which have high baseline expression of SLFN11 (Figure 5A), and SLFN11 OE in 2012 GSCs, 

which have low baseline expression of SLFN11 (Figure 5B). After confirming the expression of SLFN11 in MNK1 

and 2012 GSCs, we measured cell survival in response to treatment with TMZ and olaparib. SLFN11 KD in 

MNK1 cells reduced cell death in response to drug treatment, and conversely SLFN11 OE in 2012 cells increased 

cell death in response to both drugs (Figures 5C and D). Synergistic drug response to TMZ and olaparib 

treatment decreased upon SLFN11 KD and increased with OE (Figure 5E). Thus, SLFN11 expression is causally 

linked to sensitivity to the chemotherapeutic drugs TMZ and olaparib. 

 

GSCs with low expression of SLFN11 are sensitive to Zika virus 

SLFN11 may be involved in cellular response to viral infection. SLFN11 is upregulated following virus-induced 

type I interferon response and restricts flavivirus replication in human tumor cell lines (39-41). Oncolytic viruses 

that infect the central nervous system can be leveraged to treat brain tumors (42,43). We recently demonstrated 

that Zika virus, which is a member of the flavivirus genus of RNA viruses, preferentially infects and kills GSCs 

compared to differentiated tumor cells and normal neuronal cells (44). Based on this background, we 

hypothesized that tumor cells with promoter methylation of SLFN11 would be more susceptible to oncolytic 
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destruction by Zika because they are unable to increase SLFN11 expression in response to interferon stimulation 

(44). To test this hypothesis, we examined the association between SLFN11 gene expression and type I 

interferon response by analyzing gene expression data from 669 glioblastoma tumors obtained from The Cancer 

Genome Atlas (TCGA) (45). To quantify interferon response in each sample, we computed a single-sample gene 

set enrichment analysis (ssGSEA) score using the interferon alpha response hallmark gene set (46-48). 

Glioblastoma had higher gene expression of SLFN11 compared to grade II and III gliomas (Figure 6A), and 

SLFN11 gene expression correlated with the interferon alpha (IFNα) ssGSEA score (R=0.4, p-value <2.2e-16), 

consistent with induction of SLFN11 expression in response to interferon signaling (Figure 6B). Glioblastomas 

with higher expression of SLFN11 had gene set enrichment for activation of immune response, complement 

activation, defense response to virus, and response to interferon alpha compared to tumors with lower SLFN11 

expression (Figure 6C). Enrichment of these immune pathways likely reflects the constitutive activation of 

autocrine interferon signaling, which might facilitate immune escape for tumors (49). 

 

To more directly test whether interferon signaling induces SLFN11 gene expression, we treated GSCs with IFNα 

and measured the expression of SLFN11 and type 1 immune response genes, OAS1, ISG20, and IFITM 8 hours 

after treatment. All four GSCs increased expression of OAS1, ISG20, and IFITM following IFNα treatment, 

although the level of induction in the GSC 839 was modest (2-3-fold) compared to the other GSCs (Figure 6B). 

IFNα treatment also increased SLFN11 gene expression in MNK1 and 839 GSCs, which have high baseline 

expression of SLFN11 and no ASE. However, IFNα treatment did not increase expression of SLFN11 in 2012 

and 1552 GSCs, both of which showed ASE of SLFN11 and high promoter methylation (>25% βpromoter). These 

results suggest that DNA methylation of the SLFN11 promoter blocks upregulation by interferon signaling (Figure 

6D). 

 

To determine if GSCs with promoter methylation and low expression of SLFN11 were more susceptible to killing 

by Zika, we treated the same four GSCs with Zika or saline control (Figure 6E). GSCs with promoter methylation 

of SLFN11 (2012 and 1552) displayed decreased viability following Zika infection compared to GSCs without 

promoter methylation (839 and MNK1). To directly test whether SLFN11 expression affects susceptibility to Zika, 

we performed SLFN11 OE in 2012 GSCs (which have low baseline expression of SLFN11) and SLFN11 KD in 
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the 839 and MNK1 GSCs (which have high baseline expression of SLFN11). SLFN11 OE decreased 

susceptibility to Zika (Figure 6F), while KD increased susceptibility to Zika (Figure 6G). These results 

demonstrate that SLFN11 expression is critical for immune response and cell viability following Zika infection. 
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DISCUSSION 

ASE analysis of tumor genomes is a new approach that can discover biomarkers and therapeutic targets by 

illuminating genes that are recurrently dysregulated, even when the identity of the mutational events that drive 

this dysregulation is unknown (50,51). In this study, we utilized ASE to identify recurrently dysregulated genes 

in GSCs derived from patient surgical specimens. Using this approach, we discovered 118 candidate disease 

genes that were recurrently dysregulated in GSCs, but not in normal tissues. Our ASE analysis revealed genes 

with an established role in tumor biology. For example, IP6K2, a pro-apoptotic protein kinase showed ASE almost 

exclusively in GSCs. IP6K2 selectively binds to HSP90, which decreases its catalytic activity and inhibits 

apoptosis (31). Disruption of this interaction by cisplatin and novobiocin, chemotherapeutic compounds that bind 

to the C-terminus of HSP90, restores its catalytic function and promote apoptosis (52). Furthermore, knockdown 

of IP6K2 in colorectal cancer cells has been demonstrated to selectively impair p53-mediated apoptosis, instead 

favoring cell-cycle arrest (53). These observations from previous studies suggest that IP6K2 may be an important 

tumor suppressor in glioblastoma. 

 

NOTCH1 also exhibited ASE that was specific to GSCs. NOTCH1 regulates neural stem cell fate during 

neurogenesis and high expression of NOTCH1 has been reported in many high-grade gliomas (54-57). Notch1 

signaling promotes invasion, self-renewal, and growth of GSCs (58-60); NOTCH1-KD suppresses cell 

proliferation and induces apoptosis (61). Furthermore, inhibition of the Notch1 signaling pathway sensitized 

tumor cells to apoptosis induced by ionizing radiation, the death ligand TRAIL (tumor necrosis factor-related 

apoptosis-inducing ligand), or the Bcl-2/Bcl-XL inhibitor ABT-737 (62). These studies suggest that NOTCH1 may 

help maintain the stem-cell like behavior of GSCs and promote tumor progression. The multiple CREs correlated 

with NOTCH1 expression are potentially excellent targets for subsequent studies and cis regulatory screens. 

 

Recurrent ASE of SLFN11 is an important finding because this gene has recently emerged as a biomarker of 

drug sensitivity in cancer (63). We demonstrate that in GSCs, SLFN11 gene expression is associated with DNA 

methylation of its promoter and its expression is required for the anti-tumor activities of the DNA alkylating agent 

temozolomide (TMZ) and the replication-inhibitor olaparib. The current standard-of-care for glioblastoma patients 
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is maximum safe surgical resection followed by concurrent TMZ and radiation therapy (64). Similar to MGMT 

promoter DNA methylation, SLFN11 promoter methylation may be a biomarker that predicts the efficacy of DNA 

damaging agents, such as TMZ and olaparib. In addition, promoter methylation and reduced expression of 

SLFN11 may reflect evolution of resistance to TMZ within tumor cells. In GSCs, SLFN11 gene expression was 

regulated by type 1 interferons and frequently upregulated in high-grade tumors, alongside constitutive activation 

of autocrine interferon signaling that facilitates immune evasion of GBM cancer cells (49). However, in the 

presence of promoter CpG methylation, SLFN11 is unresponsive to IFNα cytokine treatment, rendering GSCs 

vulnerable to killing by oncolytic viruses, such as Zika (44). Thus, tumors refractory to DNA damaging agents 

may be more amenable to treatment with genetically modified viruses. As GSCs with low SLFN11 expression 

are susceptible to Zika, but resistant to chemotherapy and vice-versa, the combination of oncolytic viruses and 

chemotherapy may be a powerful treatment approach (Figure 7). 
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METHODS 

Derivation and maintenance of GSCs 

Glioblastoma samples were obtained from surgical resection from patients at Duke University or Case Western 

Reserve University with informed consent in accordance with the Cleveland Clinic Institutional Review Board-

approved protocol 090401. Prior to use, all samples were reviewed and verified by a neuropathologist. All patient 

studies were conducted in accordance with the Declaration of Helsinki. GSC23 was acquired via a material 

transfer agreement from The University of Texas MD Anderson Cancer Center (Houston, TX). GSCs were 

cultured in Neurobasal media (Invitrogen) supplemented with B27 without vitamin A (Invitrogen), EGF, and bFGF 

(20 ng/mL each; R&D Systems), sodium pyruvate, and Glutamax. Short tandem repeat analyses were performed 

to authenticate the identity of each tumor model used in this article on at least yearly basis. Cells were stored at 

−160°C when not being cultured. To minimize cell culture–based artifacts, patient-derived xenografts were 

produced and propagated as a renewable source of tumor cells for study.  

 

Variant calling 

Exome-seq reads from GSCs were aligned to the GRCh37 (hg19) assembly of the reference genome using 

BWA-MEM with default parameters (65). Mapped reads were filtered for mapping quality score ≥ 30 and 

duplicate reads were removed using samtools (1.9) (66). Genotypes were generated for each individual using 

GATK’s HaplotypeCaller and jointly processed using the GenotypeGVCFs function in GATK (4.1.1). Following 

genotyping, single nucleotide variants (SNVs) were extracted and filtered using Variant Quality Score 

Recalibration (VQSR) in GATK (4.1.1). 

 

RNA-seq alignment and processing 

RNA-seq reads were aligned end-to-end to the GRCh37 (hg19) assembly of the reference genome using STAR 

(2.5.3a) (67). Mapped reads were filtered using mapping quality score ≥ 20 and duplicate reads were removed 

using samtools (1.9) (66). Read counts for GENCODE (v28) genes were computed using FeatureCounts (1.6.3) 

(68) and Fragments Per Kilobase Per Million (FPKM) values were estimated using DESeq2 (1.14.1) (69). For 
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downstream analysis, the FPKM values were quantile normalized, and then converted to z-scores by mean-

centering and standardizing across samples. 

 

Estimating allele-specific expression 

RNA-seq read alignments were corrected for mapping bias and allele-specific read counts at all heterozygous 

positions were collected using WASP (70). The filtered read counts obtained from WASP were used for modelling 

allele-specific expression (ASE) for each gene. 

 

Misclassification of heterozygous sites can occur due to incorrect genotypes. To control for genotyping errors, 

we calculate the error rate (𝜖") directly from genotype quality scores (GQ) from GATK: 

𝜖# = 10
'#(
)*  

Incorrect allele-specific read counts can be caused by sequencing errors in reads. To control for sequencing 

errors, we approximate the sequencing error rate, 𝜖", using the count of “other” reads which do not match 

reference or alternate allele, 𝑋,. To account for the fact that only 2/3 of sequencing errors will be observed in 

the “other” reads (the other 1/3 will match the alternate or reference allele), we scale the error rate estimate, by 

3/2: 

𝜖" =
3
2

∑ 𝑋,01)
2

∑ (𝑋, + 𝑋5 + 𝑋6)01)
2

 

We assume a heterozygous site is equally likely to be misclassified as homozygous reference or alternate. 

Conditional upon a genotyping error having occurred, we define the likelihood at site i as: 

𝐿9𝑋5,;, 𝑛;=𝜖", 𝑑, 𝛿#@ = 1A = 0.5𝑃EE F𝑋5,;, 𝑛;G𝑝 =
𝜖"
3 , 𝑑I + 0.5𝑃EE F𝑋6,;, 𝑛; ∨ 𝑝 =

𝜖"
3
, 𝑑I 

and conditional on no genotyping error the likelihood is: 

𝐿9𝑋5,;, 𝑛;=𝑎, 𝑑, 𝛿#@ = 0A = 𝑃EE9𝑋5,;, 𝑛;=𝑝 = 0.5 + 𝑎A 

where PBB is the Beta Binomial probability distribution function, 𝑛; is the total count of reads matching the 

reference or alternative sequence (𝑛; = 𝑋5,; + 𝑋6,;) at heterozygous site 𝑖, 𝑎 is the allelic imbalance parameter 
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defined over the range [-0.5,0.5], d is the dispersion parameter, and δGE is an indicator variable that is 1 when a 

genotyping error has occurred and 0 otherwise. We estimate d by maximum likelihood over all heterozygous 

sites overlapping exons (setting a to 0). Finally, a single gene might contain multiple heterozygous sites which 

need to be combined to estimate the allele-imbalance for a gene. We define the likelihood of the read counts for 

the first heterozygous site within a gene as: 

L9𝑋5,), 𝑛)=𝑎, 𝑑, 𝜖", 𝜖#A = (1 − 𝜖#)𝐿9𝑋5,;, 𝑛;=𝑎, 𝑑, 𝛿#@ = 0A + 𝜖#𝐿9𝑋5,;, 𝑛;=𝜖", 𝑑, 𝛿#@ = 1A 

 

For subsequent heterozygous sites in the same gene, we do not know the phase of the alleles with respect to 

the first heterozygous site. We assume that the reference and alternative alleles are equally likely to be on the 

same haplotype as the reference allele at the first site. The combined likelihood of all sites within a gene is then 

defined as:  

𝐿(𝑋5, 𝑛|𝑎, 𝑑) = 𝐿9𝑋5,), 𝑛)=𝑎, 𝑑, 𝜖", 𝜖#A +OP0.5𝐿9𝑋5,;, 𝑛;=𝑎, 𝑑, 𝜖", 𝜖#A + 0.5𝐿9𝑋5,;, 𝑛;=−𝑎, 𝑑, 𝜖", 𝜖#AQ
R

;1S

 

We estimate 𝑎 for each gene by maximum likelihood under the alternative model of allelic imbalance. Then we 

use a likelihood ratio test to compare the alternative model to the null model of no allelic imbalance (i.e. with 𝑎 

fixed to 𝑎 = 0). We correct the p-values from the likelihood ratio test for multiple testing using the Benjamini-

Hochberg method. To make it clear when we are referring to allelic imbalance in RNA instead of DNA, we 

subsequently refer to 𝑎 for RNA-seq reads as 𝑎5T6.  

 

Enrichment compared to a normal whole-blood and brain tissues from GTEx 

To generate a reference profile of ASE in normal samples, we obtained RNA-seq data for 369 whole blood and 

216 brain samples distributed across 13 brain regions from the GTEx consortium [19] and analyzed this data 

using our ASE method. To discover genes which were enriched for ASE in GSCs, we compared the frequency 

of samples with significant ASE for each gene between GSCs and whole blood using a Fisher Exact Test (FET) 

and adjusted the resulting p-values using the Benjamini-Hochberg procedure. We only analyzed genes which 

were testable for ASE (i.e., had ≥ 1 heterozygous site with ≥10 reads) in both GSCs and whole blood tissues. 
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For further analysis of ASE frequency for individual genes we also compared estimated allelic imbalance from 

our model (aRNA) between whole blood, 13 brain tissues, and GSCs. Manhattan plots for enriched genes were 

generated using ggbio (1.30). Gene ontology enrichment analysis for genes showing recurrent ASE in GSCs 

was carried out using the topGO (2.34)(71). 

 

Association between DNA methylation and gene expression 

We downloaded pre-computed genome-wide methylation data for 43 GSCs from Gene Expression Omnibus 

(GSE119774) (26). This methylation data was generated using the Illumina Infinium Epic Methylation Array. In 

this assay, DNA methylation levels at CpG sites are represented by β which is the ratio of the methylated (C) to 

unmethylated (T) signal. We annotated the CpG probe positions based on GENCODE (v28) genes and 

computed the mean β values for promoter regions (i.e. 1-kb upstream to 500-bp downstream of annotated 

transcription start sites) (βpromoter). To discover ASE genes which may be dysregulated by aberrant DNA 

methylation, we computed Spearman’s rank correlation between βpromoter and normalized gene expression. We 

corrected correlation p-values for multiple testing using the Benjamini-Hochberg procedure. For this analysis we 

only considered genes with ≥ 3 CpG probes mapping to their promoter regions.  

 

Analysis of H3K27ac chromatin immunoprecipitation and sequencing data 

We downloaded H3K27ac chromatin immunoprecipitation and sequencing (ChIP-seq) data for 35 GSCs from 

Gene Expression Omnibus (GSE119755) (26). ChIP-seq reads were aligned to the GRCh37 (hg19) assembly 

of the reference genome using BWA-MEM with default parameters (65). The mapped reads were filtered using 

mapping quality score of ≥20 and duplicate reads were removed using samtools (1.9) (66). H3K27ac peaks were 

called using MACS2 in paired-end mode with custom parameters (--nomodel --extsize 200 --qvalue 0.05) (72).  

To generate a unified set of test regions, we divided the genome in 1-kb non-overlapping genomic bins and kept 

the bins which overlapped ChIP-seq peaks in at least 1 GSC. We recounted the reads mapping to these  genomic 

bins using exomeCopy (1.28.0) and calculated fragments per kilobase per million (FPKM) using DESeq2 (1.22.2) 

(69). FPKM measurements were further quantile normalized and mean-centered for downstream analysis.  
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The 1-kb genomic bins generated from H3K27ac ChIP-seq peaks were annotated using the ChIPSeeker (1.18.0) 

package (73). To discover cis-regulatory elements (CREs), we selected all distal intergenic and intronic genomic 

bins located within 100-kb of promoters (i.e. 1-kb upstream and 500-bp downstream of transcription start sites) 

of ASE genes. We performed a Spearman’s correlation analysis between normalized coverage for bins and 

normalized expression for genes to identify CREs. We corrected the p-values for multiple testing using the 

Benjamini-Hochberg procedure. 

 

Quantitative RT-PCR 

Trizol reagent (Sigma-Aldrich) was used to isolate total cellular RNA from cell pellets and qScript cDNA Synthesis 

Kit (Quanta BioSciences) was used for reverse transcription. Quantitative real-time PCR was performed using 

SYBR-Green PCR Master Mix (Thermo Fisher Scientific) on an Applied Biosystems 7900HT cycler.  

 

Western blotting  

Cells were collected and lysed in RIPA buffer (50 mM Tris-HCl, pH 7.5; 150 mM NaCl; 0.5% NP-40; 50 mM NaF 

with protease inhibitors) and incubated on ice for 30 minutes. Lysates were centrifuged at 4°C for 15 minutes at 

14,000 rpm, supernatant was collected, and protein concentration was confirmed using a Pierce BCA protein 

assay kit (Thermo Scientific, cat #23225). Equal amounts of protein samples were mixed with SDS Laemmli 

loading buffer, boiled for 10 minutes, electrophoresed using NuPAGE Bis-Tris gels and transferred onto PVDF 

membranes. Membranes were blocked for 1 hour with TBS-T plus 5% non-fat dry milk, then incubated in primary 

antibodies overnight at 4°C. Blots were washed 3 times for 5 minutes each with TBS-T and then incubated in 

TBS-T plus 5% milk for 1 hour with appropriate secondary antibodies. Blots were imaged using BioRad Image 

Lab software and processed using Adobe Illustrator to create the figures. The following antibodies were used for 

Western blot: SLFN11 (Santa Cruz Biotechnology, cat #SC-374339) and HRP-conjugated GAPDH (Proteintech, 

cat #HRP-60004).  

 

Lentiviral transduction 
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Lentiviral constructs expressing shRNAs directed against SLFN11 (Sigma TRCN, TRCN0000152057) or a non-

targeting control shRNA (TRCN0000231489) with no targets in the human genome were obtained from Sigma-

Aldrich. The SLFN11 expression vector was obtained from VectorBuilder along with an empty vector control with 

the same lentiviral backbone. 293T cells were used to generate lentiviral particles by co-transfection of packaging 

vectors psPAX2 and pMD2.G using a standard PEI transfection method in DMEM media plus 1% 

penicillin/streptinomycin. GSCs were transduced with the lentiviral constructs, and selection was started 48 hours 

later using 1 μg/mL of puromcyin for 72 hours, at which times cells were assayed for SLFN11 expression.  

 

In vitro treatment and cell viability 

For in vitro cell viability assays, 2000 cells/well for individual or 5000 cells/well for combinatorial drug studies 

were plated in a 96-well plate. Cells were then treated 24 hours later with temozolomide (Selleck Chem cat 

#S1237), olaparib (Selleck Chem #S1060), both drugs, or DMSO at an equivalent percent volume to the highest 

drug concentration. Cell viability was assayed 4 days later following a 12-hour incubation with alamarBlue 

(ThermoFisher cat #DAL1025) and detected using a fluorescence-based plate reader. For Zika virus studies, 

5000 cells/well were infected with Dakar 41519 strain ZIKV at a multiplicity of infection of 5 (MOI 5) (74). Viability 

was assayed at 3 days of post infection using CellTiter-Glo according to manufacturer’s instructions. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449493doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449493
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

ACKNOWLEDGEMENTS 

This research was supported by the National Cancer Institute funded Salk Institute Cancer Center (NIH/NCI 

CCSG: P30 014195) by a grant from Padres Pedal the Cause/RADY #PTC2019 (G.M), by a Pioneer Fund 

Postdoctoral Scholar Award (A.S), and the following NIH grants and fellowships: CA217066 (B.C.P.); CA217065 

(R.C.G.); CA197718, CA238662, NS103434 (J.N.R.). G.M. was supported by the Frederick B. Rentschler 

Developmental Chair.  Figures 1A and 7 were created with BioRender.com. 

 

CONFLICT OF INTEREST 

None declared. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449493doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449493
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

FIGURES 

 

Figure 1: Discovery of genes with recurrent allele-specific expression in glioblastoma stem cells. A) 

Schematic of approach. Allele-specific expression (ASE) is the higher expression of one allele of a gene 

compared to the other allele and can be used the detect the effects of cis-regulatory mutations. ASE is detectable 

at genes that contain heterozygous sites. We identify genes that exhibit ASE in glioblastoma stem cells (GSCs) 

more frequently than in normal tissues.  B) Recurrence of ASE in GSCs. The histogram indicates the number of 

GSCs  with ASE (FDR corrected p-value ≤ 10%) across 42 patient-derived glioblastoma cell lines, for genes that 

have ASE in at least one sample. C) Estimated ASE (aRNA) for GSCs and normal brain and whole-blood samples 

from GTEx for a known imprinted gene, H19. Each point is a sample. Points are colored based on the significance 

of allele-specific expression (likelihood ratio test). D) Estimated ASE for RHOB. E) Gene ontology analysis of 

118 genes that are enriched for ASE in GSCs compared to normal samples.  
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Figure 2: NOTCH1 exhibits recurrent allele-specific expression and association with multiple cis-

regulatory elements. A) Allele-specific expression (ASE) estimates (aRNA) of NOTCH1 in glioblastoma stem 

cells and normal brain and whole-blood samples from GTEx. B) The proportion of NOTCH1 RNA-seq reads from 

the reference and alternate alleles at heterozygous sites in 4 GSCs with significant NOTCH1 ASE. C) The 

H3K27ac profile around NOTCH1. Samples are arranged in increasing order of gene expression with the highest 

expression samples at the bottom. Putative cis-regulatory elements that are correlated with NOTCH1 gene 

expression (empirical p-value ≤ 0.05) are highlighted in gold.  
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Figure 3: SLFN11 gene expression and allele-specific expression are correlated with promoter 

methylation. A) Scatterplot showing correlation between gene expression and mean promoter methylation 

(βpromoter) in glioblastoma stem cells (GSCs). Samples where SLFN11 allele-specific expression (ASE) could be 

estimated are colored blue if they have significant ASE and red if they do not have significant ASE. B) CpG 

methylation around promoter regions of SLFN11. Samples are arranged in increasing order of gene expression. 

C) Reference and alternate allele proportions of RNA-seq reads at heterozygous sites for the 4 GSCs with 

significant SLFN11 ASE.  D) Estimated ASE for SLFN11 in GSCs compared to normal brain and whole-blood 

samples from GTEx.  
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Figure 4: SLFN11 expression is associated with chemotherapeutic resistance in GSCs. A) qPCR of 

SLFN11 expression in GSCs without ASE of SLFN11 GSCs 839 and MNK1 (red) compared to GSCs with ASE 

of SLFN11 2012 and 1552 (blue). Gene expression is plotted as 2-DDCt, with SLFN11 expression for each sample 

normalized to GAPDH expression and then compared to MNK1. Values <1 were transformed by taking the 

negative inverse. Data are represented as mean +/- standard deviation. B) Western blot of the same non-ASE 

(red) and ASE (blue) GSCs for SLFN11 and GAPDH expression. C) Cell viability of each GSC (left: non-ASE; 

right: ASE) following treatment with temozolomide (TMZ) and olaparib. Cell viability relative to DMSO control is 

annotated on a blue-white-red scale with blue indicating high viability, or minimal drug effect, and red indicating 

low viability, or strong drug effect. Doses are scaled categorically on the x-axis (olaparib) and y axis (TMZ). D) 

Top: effect of the maximum combinatorial drug dose on cell viability for non-ASE (red) and ASE (blue) GSCs. 

Bottom: maximal effect achieved at any dose for each model. Percent effect on reduction of cell viability is 

measured on the Y-axis. E) Synergy of TMZ and olaparib for each model, with red indicating high synergy and 

green indicating antagonism. 
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Figure 5: Knockdown and overexpression of SLFN11 modulates chemotherapeutic resistance in GSCs. 

A) Left: qPCR of SLFN11 expression in MNK1 GSCs transduced with a non-targeting control shRNA (shCONT) 

or a shRNA targeting SLFN11 (shSLFN11.382). Gene expression is plotted as 2-DDCt normalized to Actin 

expression. Right: Western blot of the same samples for SLFN11 and Actin expression. An un-spliced version 

of the Western blot is provided in Supplemental Figure S3C. B) Left: qPCR of SLFN11 expression in GSC 2012 

transduced with an empty vector or a SLFN11 overexpression vector (OE). Gene expression is plotted as 2-DDCt 

normalized to GAPDH expression. Right: Western blot of the same samples for SLFN11 and GAPDH expression. 

C) Cell viability of MNK1 GSCs transduced with shCONT (top left) or shSLFN11.382 (bottom left) and of 2012 

GSCs transduced with an empty vector (top right) or OE vector (bottom right) following treatment with 

temozolomide (TMZ) and olaparib. Cell viability relative to DMSO control is annotated on a blue-white-red scale 

with blue indicating high viability, or minimal drug effect, and red indicating low viability, or strong drug effect. 

Doses are scaled categorically on the x-axis (olaparib) and y axis (TMZ). D) Left: effect of the maximum 

combinatorial drug dose on cell viability for each comparison. Right: maximal effect achieved at any dose for 

each model. Percent effect on reduction of cell viability is measured on the Y-axis. E) Synergy of TMZ and 
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olaparib for each model, with red indicating high synergy and green indicating antagonism. Error bars in panels 

A and B are mean +/- standard deviation.  
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Figure 6: SLFN11 expression affects sensitivity of GSCs to Zika virus. A) Box plot of SLFN11 expression 

in The Cancer Genome Atlas database comparing grade II, III and IV gliomas. Boxes are notched at the median 

and extend from the first to third quartile, with whiskers extending from 5%-95%. B) Correlation of SLFN11 

expression with ssGSEA score for the Hallmark IFNa geneset by tumor. Grade II and III tumors are in blue and 

glioblastoma tumors are in red. C) GSEA plot of SLFN11 expression correlation with selected immune signatures 
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from GO biological process or Reactome datasets. D) qPCR expression of IFNa-induced genes OAS1, IFITM, 

ISG20 and SLFN11 following 8 hours of treatment with 20 ng/mL of IFNa. Gene expression is plotted as 2-DDCt 

normalized to GAPDH expression. E) Cell viability following incubation with Zika virus vs empty control virus. 

Non-ASE samples are in blue, ASE samples are in red. Data were compared using two-way ANOVA for cell line 

and ASE status. F) Cell viability following incubation with Zika virus vs control in 2012 GSCs transduced with a 

SLFN11 overexpression (OE) vector (left) or empty vector (right). Student’s t test was used to test for differences 

in expression G) Cell viability following incubation with Zika virus (dark blue) vs control in SLFN11 KD vs control 

839 (left) or MNK1 (right) GSCs. Mean expression was compared using Student’s t test. Data are represented 

as mean +/- standard deviation. * <0.05; ** <0.01, *** <0.0001. 
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Figure 7: Model of SLFN11 expression and therapeutic response. A) Interferon alpha increases SLFN11 

expression when its promoter is unmethylated. Glioma stem cells (GSCs) with high SLFN11 expression are 

sensitive to temozolomide (TMZ) and olaparib because they undergo apoptosis in response to DNA damage. 

However, GSCs with high SLFN11 expression are resistant to Zika virus because SLFN11 restricts flavivirus 

replication. B) Interferon alpha fails to induce SLFN11 expression when its promoter is methylated. Glioma stem 

cells with low expression of SLFN11 are resistant to chemotherapy, but sensitive to Zika virus. 
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SUPPLEMENTAL FIGURES 

 

Supplemental Figure S1: Recurrent allele-specific expression within glioblastoma stem cells. A) 

Manhattan plot demonstrating that genes with recurrent ASE in glioblastoma stem cells (GSCs) are not localized 

to any single genomic locus. The x-axis is the gene start position for all tested genes and y-axis is the -log10 

transformed FDR corrected Fisher Exact Test p-value. Genes significant under an FDR of 10% are highlighted 

in red. B) Comparison of estimated ASE for IP6K2  for GSCs, normal brain and whole-blood samples from GTEx. 
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Supplemental Figure S2: Cellular viability assays for GSCs. A) Relative cell viability plotted on the y-axis for 

each model treated with TMZ. Non-ASE models are in red and ASE models are in blue. B) Relative cell viability 

plotted on the y-axis for each model treated with olaparib. Non-ASE models are in red and ASE models are in 

blue. C) Cell viability relative to DMSO control is annotated on a rainbow scale with blue indicating high viability, 

or minimal drug effect, and red indicating low viability, or strong drug effect. Doses are scaled logarithmically on 

the x-axis (olaparib) and y axis (TMZ). Data are represented as mean +/- standard deviation. ASE: allele-specific 

expression; GSC: glioblastoma stem cell; KD: knockdown; OE: overexpression; TMZ: temozolomide. 
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Supplemental Figure S3: Cellular viability assays for GSCs with knockdown and overexpression of 

SLFN11. A) Relative cell viability plotted on the y-axis for each model treated with olaparib. Upper panel:  MNK1 

shCONT cells are in orange and SLFN11 KD in red; Lower panel: 2012 empty vector control cells are in light 

blue and SLFN11 OE are in blue. B)  Relative cell viability plotted on the y-axis for each model treated with TMZ. 

Upper panel:  MNK1 shCONT cells are in orange and SLFN11 KD in red; Lower panel: 2012 empty vector control 

cells are in light-blue and SLFN11 OE are in blue. C) Western blot of the MNK1 GSCs for SLFN11 and Actin 

expression. D) Cell viability relative to DMSO control is annotated on a rainbow scale with blue indicating high 

viability, or minimal drug effect, and red indicating low viability, or strong drug effect. Doses are scaled 

logarithmically on the x-axis (olaparib) and y axis (TMZ). Data are represented as mean +/- standard deviation. 

KD: knockdown; OE: overexpression; TMZ: temozolomide. Data are represented as mean +/- standard 

deviation. ASE: allele-specific expression; GSC: glioblastoma stem cell; KD: knockdown; OE: overexpression; 

TMZ: temozolomide.   
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Supplemental Figure S4.  Dysfunction and Exclusion Database. A) Scatter plot showing positive interaction 

of SLFN11 expression with T cell dysfunction (x-axis) and negative correlation of SLFN11 expression with 

cytotoxic T lymphocytes (y-axis). Glioma samples are in red. B) Scatter plot demonstrating positive interaction 

of SLFN11 expression with progression-free survival (x-axis) (left) or overall survival (right) vs negative 

correlation of SLFN11 expression with cytotoxic T lymphocytes (y-axis). Glioma samples are in red. 
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SUPPLEMENTAL TABLES 

Supplemental Table S1: Results for ASE analysis for glioblastoma samples.  

Supplemental Table S2: Results for Fisher Exact Test (FET) which was used for discovering genes which show 

enrichment of ASE in glioblastoma samples compared to whole blood from GTEx.  

Supplemental Table S3: Results from Spearman’s correlation analysis between normalized gene expression 

and normalized coverage for H3K27ac ChIP-seq bins which are located within 3-100Kb of promoters of 

candidate genes.  

Supplemental Table S4: Empirical p-value estimates for 29 NOTCH1 CREs. 

Supplemental Table S5: Results from Spearman’s correlation analysis between normalized gene expression 

and mean promoter methylation (βpromoter). 
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