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Abstract  

The transformation of sensory inputs into behavioral outputs is characterized by an interplay 
between feedforward and feedback operations in cortical hierarchies. Even in simple 
sensorimotor transformations, recurrent processing is often expressed in primary cortices in 
a late phase of the cortical response to sensory stimuli. This late phase is engaged by 
attention and stimulus complexity, and also encodes sensory-independent factors, including 
movement and report-related variables. However, despite its pervasiveness, the nature and 
function of late activity in perceptual decision-making remain unclear. We tested whether the 
function of late activity depends on the complexity of a sensory change-detection task. 
Complexity was based on increasing processing requirements for the same sensory stimuli. 
We found that the temporal window in which V1 is necessary for perceptual decision-making 
was extended when we increased task complexity, independently of the presented visual 
stimulus. This window overlapped with the emergence of report-related activity and 
decreased noise correlations in V1. The onset of these co-occurring activity patterns was 
time-locked to and preceded reaction time, and predicted the reduction in behavioral 
performance obtained by optogenetically silencing late V1 activity (>200 ms after stimulus 
onset), a result confirmed by a second multisensory task with different requirements. Thus, 
although early visual response components encode all sensory information necessary to 
solve the task, V1 is not simply relaying information to higher-order areas transforming it into 
behavioral responses. Rather, task complexity determines the temporal extension of a loop 
of recurrent activity, which overlaps with report-related activity and determines how 
perceptual decisions are built.  
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Introduction  

During perceptual decision making, stimulus presentation triggers an early response component in 
primary sensory cortices (driven by thalamic bottom-up input1) and, often, a late component, thought 
to mostly result from recurrent activity through top-down, cross-areal interactions2–4. Traditional 
accounts of how sensory stimuli are transformed into appropriate behavioral outputs have mostly 
characterized this process in terms of feedforward architectures, where progressively higher-order 
areas extract sensory features of increasing complexity5 to eventually instruct motor output. In the 
visual cortical system, a fast-acting (<150 ms) feedforward sweep is sufficient for image 
categorization6. Accordingly, deep feedforward neural networks, inspired by this cortical hierarchical 
architecture, achieve near-human performance in image recognition7,8. The function of recurrent 
architectures has been primarily interpreted in the context of processing ambiguous or complex 
stimuli, for cognitive processes such as attention, and for consciousness9–12. For example, extra-
classical receptive field effects in the visual system, such as surround suppression, and separating 
objects from background, are thought to depend on feedback projections from higher to lower visual 
areas13–16. Perceptual decisions involving figure-ground segregation require recurrent processing13, 
the duration of which becomes longer as a function of visual scene complexity17. Recently, a form of 
late activity in rodent V1 that reflects non-sensory variables such as movement, perceptual report, 
and arousal18–23 was shown to originate in prefrontal areas and progressively involve more posterior 
areas including sensory cortices18,22.  

Many hypotheses have been proposed on the function of late, recurrent activity in sensory cortices 
(including distributed motor command generation and context-dependent sensory processing)19, but 
how it causally contributes to perception is debated. Across primates and rodents, the magnitude of 
late activity correlates with behavioral reports of perception3,4,24,25. Suppressing late activity in the 
primary somatosensory cortex impairs tactile detection25, whereas in primary visual cortex it has 
been argued that feedforward activity is sufficient for visual discrimination6,26. We hypothesize that 
the relative complexity of a task, which is captured by the set of task rules as instantiated in an 
attentional set – see e.g.27 – determines whether late activity plays a causal role in perceptual 
decision making, independently of stimulus complexity. For instance, integration with other sensory 
modalities12,28,29 may also extend the time required by frontal and pre-motor regions to converge to 
a decision. This process might reflect an evidence accumulation model30,31, i.e. a need to integrate 
information originating in V1 for longer periods in the case of complex, multisensory tasks. 
Analogously, the predictive processing framework15,32,33 posits that visual and decision-related areas 
will keep on interacting via recurrent connections to jointly represent sensory stimuli and transform 
them into appropriate motor responses, performing computations for a time interval that may depend 
on task complexity. Therefore, task complexity may extend the temporal window during which V1 
activity remains causally relevant for perception, independently of visual stimulus features.  

Results 

To address this hypothesis, we trained mice in three versions of an audiovisual change detection 
task (task A) with the same stimulus configurations, but different reward contingencies. Head-fixed 
mice were presented with a continuous audiovisual stream of inputs (Fig. 1a), with occasional 
instantaneous changes in the orientation of the drifting grating (visual trial) or the center frequency 
and harmonics of a Shepard Tone34 (auditory trial, Fig. 1b,c). We varied the amount of orientation 
(visual saliency) and frequency change (auditory saliency) across each animal’s perceptual threshold 
and fit all behavioral data according to a psychometric multi-alternative signal detection framework35. 
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We implemented three distinct task contingencies. First, for noncontingently exposed mice (NE, n=7 
mice) neither vision nor audition was predictive of reward, and these mice did not selectively respond 
to the stimuli (Fig. 1d). In a second version, only vision was associated with reward, and these 
unisensory-trained mice (UST, n=4) were thus trained to selectively respond to visual changes only, 
and ignore auditory changes (Fig. 1e). Third, multisensory-trained mice (MST, n=17) were trained to 
detect both visual and auditory changes (Fig. 1f, e.g. lick left for vision, lick right for audition). Phrased 
differently, all mice were presented with the same stimuli during training and testing, but lick 
responses to visual changes were only rewarded in UST and MST mice, and auditory changes only 
in MST mice. To compare across cohorts, we also defined (surrogate) ‘hit’ and ‘miss’ trials for NE 
mice, based on whether (unrewarded) licks were performed after stimulus change. In all cohorts, 
mice performed many trials (mean 569, range 210-1047 per session). The discriminability index (d-
prime) was high only for rewarded contingencies, in both the auditory and visual modality (Fig. 1g, 
for individual mice, see Ext. Data Fig. 1). 

Multisensory task contingencies delay reaction time 

First, we wondered if visual performance was similar in the unisensory and multisensory task variants 
(UST and MST) and whether the more complex task contingency slowed responses. There were no 
significant differences between the cohorts for either maximum d-prime (Fig. 1g), discrimination 
threshold (Fig. 1h), or sensitivity (all statistics can be found in Supplementary Table 1). Reaction 
time, however, did vary across conditions (Fig. 1i). MST mice showed shorter auditory than visual 
reaction times and visual reaction times decreased with increasing levels of orientation change for 
both UST and MST. For the same visual stimuli, reaction time was significantly longer for MST than 
for UST mice. For both vision and audition, reaction time negatively correlated with performance 
(Ext. Data Fig. 1f,g). The addition of auditory task relevance thus increases reaction times for the 
same visual stimuli. This result was expected because MST mice were trained to make binary 
decisions on whether auditory versus visual changes took place, which requires comparisons across 
sensory channels36.  

Early and late activity emerges in V1 of trained mice 

To investigate whether delayed reaction times corresponded with slower dynamics of late V1 activity, 
we performed laminar recordings and sampled single-unit activity across cohorts (Ext. Data Fig. 2a). 
In NE animals the instantaneous orientation change evoked a short transient activity in V1 (until ±200 
ms after stimulus onset) with a short-lasting tail (Fig. 2a; Ext. Data Fig. 2b). In visually trained animals 
(UST and MST), a similar transient wave occurred, but now also a late, second wave of activity was 
present (emerging ~200 ms after stimulus onset), primarily in hits and to a lesser extent in false 
alarms (Fig. 2b-f). These dynamics of early and late wave activity were seen in both threshold-level 
and maximal orientation changes, and in both narrow and broad-spiking cell types (Ext. Data Fig. 2). 

Neural coding during late V1 activity 

Recent studies have shown that late activity in V1 can reflect movement-related variables20,21,23. We 
aligned population activity to the first lick after stimulus onset and found that spiking activity across 
many neurons was indeed modulated by licking movements, specifically in UST and MST mice (Ext. 
Data Fig. 3). The amplitude of this modulation was higher in trials with correct versus incorrect licks. 
To further disentangle the contribution of stimulus variables (visual and auditory features and amount 
of change), movement variables (the timing and number of lick responses), the hit/miss distinction 
(hit, with reward, or miss, without reward), and arousal (pupil size), we built a kernel-based 
generalized linear model (GLM)22,37,38 where we included these variables as predictors of firing rate  
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Figure 1: Multisensory task contingencies delay reaction time. a) In task A, head-fixed mice were presented with auditory and 

visual stimuli and two spouts (L: left and R: right) that detected licks and delivered rewards. b) Stimuli were continuous drifting gratings 
and Shepard tones. In auditory trials, the compound frequency of the Shepard tone changed, while in visual trials the orientation 
changed. c) Auditory center tone was defined in scientific pitch and changed in partial octaves (213 Hz corresponds to C9, 213.25

 

corresponds to D9#). The amount of frequency (left, red) or orientation (right, blue) change (small vs. large) determined saliency. Two 
units of auditory change were used (see Ext. Data Fig. 1). d) We trained three cohorts of mice on different reward contingencies with 
these same stimuli. Noncontingently exposed (NE) mice were rewarded for licks during response windows that were temporally 
decorrelated from the sensory stimuli. Post-hoc, licks to the visual spout and auditory spout that happened to fall after a stimulus 
change were defined as surrogate ‘hits’ and ‘errors’ to compare conditions across cohorts (see Methods). The upper panels show 
behavioral response rates (dots) and model fits (lines) for an example session. The bottom panels show the average psychometric 
fits for each mouse obtained by averaging parameters over sessions. Each session was fit with a two-alternative signal detection 
model (black lines in upper panels, colored in lower panels). e) Same as (d), but for UST animals, i.e. trained on vision only. Note how 
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visual hit rates increase as a function of the amount of visual change, but not auditory change. The relatively high error rate to auditory 
changes arises because of licks to the visual spout, which was the only side associated with reward in this task. f) Same as (d), but 
for MST animals trained on both audition and vision (lick left for auditory, lick right for visual). Hit rates increased as a function of both 
visual and auditory change. g) The d-prime at maximum saliency for auditory (red) and visual (blue) trials across cohorts. Visual d-
prime was comparable for UST and MST (p=0.3). Auditory d-prime was significantly higher than visual d-prime (p=1.86e-6). Each dot 
is the average over sessions for each animal. h) The detection threshold for visual orientation changes was comparable for UST and 
MST (p=0.87). Each dot is the average over sessions for one animal. i) Reaction time for the same subjectively salient visual stimuli 
(see Methods) was significantly shorter for UST compared to MST for 3 out of 4 saliency levels. Saliency levels: sub=subthreshold, 
thr=threshold, sup=suprathreshold, max=maximal change. Error bars denote the median and interquartile ranges. **p<0.01, 
***p<0.001 

(Ext. Data Fig. 4). We computed the cross-validated variance of firing rate explained over time by 
each of these subsets of predictors (Fig. 2g; Ext. Data Fig. 4e-g). In NE mice, visual predictors 
explained most of the variance. In UST and MST mice, besides visual predictors, we found that, 
during the 200-1000 ms post-stimulus window, hit/miss and movement both explained a significant 
portion of the variability. In sum, late V1 activity reflected a combination of visual, movement, and 
hit/miss-related variables, but only in trained mice. 

Multisensory context delays the time course of late activity 

To identify how the delayed reaction time in MST mice was associated with coding dynamics of single 
neurons we used a receiver operating characteristic (ROC) analysis39,40. Across task versions, the 
ratio of neurons coding for visual features (grating orientation, and occurrence of a visual stimulus 
change – i.e. visual trials versus trials with no stimulus change, catch trials) was similar across 
cohorts. In UST and MST mice, however, visual report (i.e. hits vs. misses) was also encoded by a 
substantial fraction of neurons, in line with our regression model (Ext. Data Fig. 5a). To understand 
at which time points visual features and hit/miss coding could be read out, we plotted the fraction of 
neurons that significantly coded for each of these variables over time (Fig. 2h; Ext. Data Fig. 5b). 
Temporal dynamics were strikingly similar across cohorts for sensory variables, while hit/miss coding 
appeared later in V1 for MST than UST mice. Sensory and hit/miss coding were spatially segregated 
across cortical depths, suggesting that these two processes have different neural substrates. Coding 
of visual change was predominant in superficial layers, and hit/miss coding in deeper layers (Fig. 2i; 
Ext. Data Fig. 2e). We quantified the earliest moment of a significant increase in the fraction of coding 
neurons relative to baseline and found that only hit/miss-coding was delayed in MST compared to 
UST (Fig. 2j; threshold changes: 288 ms ± 36 ms versus 162 ± 28 ms, MST vs. UST, p<0.05; maximal 
changes: 249 ± 104 ms vs 92 ± 56 ms, MST vs. UST, n.s.). In relation to the delayed visual reaction 
times in MST mice, we found a strong correlation between the onset of hit/miss-coding and reaction 
time. Hit/miss-related activity preceded the first lick by ±280 ms (Fig. 2k, Methods). Therefore, at 200 
ms after stimulus onset (blue dotted line in Fig. 2k) UST mice already showed hit/miss-coding in V1, 
while MST mice did not.  

Late activity is causally required for perceptual decision making 

Next, we wondered whether V1 activity occurring after the onset of report-related activity could be 
causally linked to perception. We locally expressed ChR2 in parvalbumin-expressing interneurons in 
V1 (Fig. 3a,b, Ext. Data Fig. 6a) to achieve temporally specific optogenetic inactivation41,42. Laser 
stimulation robustly silenced multiunit activity (Fig. 3c). To determine the temporal window of V1 
involvement, we silenced it either from the moment of stimulus change onwards (Early, 0 ms) or from 
the 200 ms temporal cutoff we identified in the onset of hit/miss coding in UST and MST mice (Late, 
200 ms; Fig. 2k). Pyramidal cell activity in V1 was silenced to around 5% of spontaneous baseline 
activity in a temporally specific fashion (Fig. 3d).  
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Figure 2: Task complexity modulates 
late activity in V1 

a-c) Stimulus-evoked and report-related 
activity in three example neurons recorded 
in V1 (Task A). All three examples display 
early sensory-driven activity in visual, but 
not catch trials (Hit and Miss vs. CR and FA 
trials). Increased activity was present 
during the late phase (±200 to 1000 ms) in 
visual hit trials (c) or both hits and false 
alarms (b), based on individual neurons. 
Raster plots are grouped by trial type 
(visual or catch) and choice. Within trial 
type, trials are sorted by post-change 
orientation and response latency. Orange 
ticks show first lick and reward delivery. The 
top panel shows the firing rate averaged for 
each of these trial-type x choice 
combinations. The dotted line indicates 
stimulus change. CR = correct rejection. FA 
= visual false alarm. d-f) Averaging z-
scored firing rate over all neurons for visual 
and catch trials split by choice reveals 
biphasic activity in visual hits but not 
misses, with late activity only present in 
animals for which visual trials were 
rewarded (UST and MST). Behavioral 
responses in NE mice should be regarded 
as surrogates, as visual hits in NE mice 
were not rewarded (see Methods). Note the 
increase in firing rates in FA trials for UST 
and MST mice but not NE mice (see Ext. 
Data Fig. 3 for an in-depth analysis of the 
lick-related nature of these responses). 
Line and shading indicate mean ± s.e.m. g) 
We constructed an encoding model in 
which sensory, hit/miss, movement, and 
arousal variables simultaneously predict 
firing rates of individual V1 neurons (see 
Ext. Data Fig. 4). Each line shows how 
much firing rate variance is explained for 
each time bin across trials based on only 
including a subset of predictors. In the NE 
mice, visual predictors (orientation and 
amount of change) explain a higher fraction 
of EV than in UST and MST mice, while 
movement (licks left and right) and hit/miss 
encoding (visual trial and correct lick 
interaction) make a negligible contribution. 
For UST and MST mice both movement 
and hit/miss encoding explain variance at a 
later onset than visual variables, and visual 
information remains an important predictor 
throughout the trial in all task versions 
(Statistics in Ext. Data Fig. 4). Arousal 
(measured in terms of pupil size) is a 
generally weak predictor across task 
versions. h) We used a single-neuron 
decoding analysis (ROC) to compute the 
fraction of neurons (summed over all 
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recordings) coding for task-relevant variables over time. The coding of change occurrence and orientation (visual features) showed 
similar dynamics across cohorts, whereas hit/miss coding (visual hits vs misses) was only present in UST and MST mice (as expected) 
and started earlier in UST than MST mice (highlighted with black arrows). Each coding fraction is baseline-subtracted and normalized 
by its maximum.  i) To investigate spatiotemporal coding dynamics we created heatmaps of the fraction of coding neurons across 
cortical depth and time. We binned neurons based on their recorded depth relative to the granular layer (400-550 μm from dura, 
SG=supragranular, G=granular, IG=infragranular). Orientation coding was present across cortical layers, whereas the coding of visual 
change occurrence was confined to an early transient wave in granular and supragranular layers (0-200 ms, SG versus IG, p=0.018). 
In contrast, hit/miss coding during late activity was predominant in infragranular layers relative to the granular layer (Threshold, 200-
1000 ms, G vs IG, p=0.039; maximum, G vs IG, p=0.027). Only UST and MST cohorts were included to compare sensory and hit/miss 
coding in the same datasets. Significance (sidebars): * p < 0.05. j) The earliest increase in the fraction of significantly coding neurons 
was similar across cohorts for visual change occurrence or orientation, whereas hit/miss coding appeared later in MST than UST mice 
for threshold orientation changes (*p<0.05; maximal changes, n.s.). k) Reaction time correlated with the earliest moment of significant 
hit/miss coding (r=0.989, p=0.01). Each dot is the average of one visually trained condition. Red dotted line shows a linear regression 
fit. Blue dotted line at 200 ms marks the time point where late photostimulation was applied (see Fig. 3d). At this point, unisensory 
trained mice already showed hit/miss-coding in V1, while multisensory trained mice did not.  

Early silencing of V1 strongly reduced detection of orientation changes during both UST and MST 
task performance (Fig. 3e-g), consistent with the primary role of V1 in visual feature processing26,43,44. 
Interestingly, late silencing only affected change detection performance of MST mice (Fig. 3h). V1 
silencing did not affect auditory performance (Ext. Data Fig. 6b). Moreover, photoillumination of 
control area S1 did not affect visual or auditory performance (Ext. Data Fig. 7).  

Even though late silencing impaired visual detection in MST mice on average, results across animals 
and experimental sessions were mixed: some sessions showed robust behavioral impairment, 
whereas others showed little effect (Ext. Data Fig. 6c). Thus, we investigated whether variability in 
reaction speed – with reaction speed being a proxy for subjective task complexity (Ext. Data Fig. 
1f,g) – could underlie the divergence in the effectiveness of late silencing. We plotted the reduction 
in d-prime as a function of reaction time (Fig. 3i,j; Ext. Data Fig. 6d,e). Whereas early silencing 
invariably reduced performance, the effect of late silencing scaled with reaction time (Fig. 3j). This 
was not the case for the animal’s propensity to lick (affecting false alarms and quantified with the 
criterion parameter in our behavioral model, Ext. Data Fig. 6f), suggesting that perceptual sensitivity 
was specifically affected in slow, subjectively more complex, experimental sessions. Late silencing 
thus left performance intact in ‘fast’ (and subjectively easier) sessions in which hit/miss coding 
emerges quickly (mostly UST sessions) and reduced performance in ‘slow’ sessions where hit/miss 
coding started after 200 ms (mostly MST sessions, but note also how one slow UST session was 
affected – Fig. 3j). 

Causal involvement of late activity generalizes to visuotactile side detection 

So far, our results suggest that in the multisensory variant of the change detection task (MST), late 
V1 activity is causally involved whereas in the unisensory variant it mostly is not. However, UST and 
MST cohorts do not only differ by sensory contingencies, as UST mice were trained on a Go/No-Go 
paradigm, while MST mice learned a two-alternative choice task. Thus, the results we report could 
be due to differences in behavioral strategy rather than to changes in multisensory context. 
Furthermore, we wondered whether our results may extend to other sensory modalities. To address 
these aspects, we developed a visuotactile side detection task in which mice reported the side of 
sensory stimulation, i.e. instructing them to lick left for visual or tactile stimuli presented to the left 
and oppositely for the right side (Task B – Fig. 4a). Stimuli consisted of monocular drifting gratings 
(visual), whisker pad deflection (tactile), or a combination of both. Again, some mice were trained on 
responding only to vision to obtain reward (UST), while another cohort was trained on both vision 
and somatosensation (MST). 
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Figure 3: Late silencing of V1 
selectively impairs task 
performance of sessions with 
slow reaction time. a) Schematic of 

optogenetic strategy in Task A. Cre-
dependent ChR2 expression in 
bilateral V1 of PvCre mice allowed 
robust silencing by locally enhancing 
PV-mediated inhibition. A1 = 
auditory cortex, S1 = primary 
somatosensory cortex. b) Dorsal 
view of flattened cortical 
hemispheres sectioned 
approximately through layer 4 
showing localized viral expression in 
bilateral V1. c) High-pass filtered 
trace from an example V1 recording 
site showing robust silencing of 
multi-unit spiking activity during 
bouts of 1-second photostimulation 
(blue bars). d) Photostimulation 
silences V1 in a temporally specific 
manner. Early blue light stimulation 
(i.e. starting at the onset of stimulus 
change) reduced the activity of 
putative excitatory neurons (see Ext. 
Data Fig. 2f,g) to about 5% of their 
baseline activity. Late 
photostimulation left the initial 
sensory-driven response intact but 
silenced activity after 200 ms relative 
to stimulus onset. Traces show 
baseline-normalized firing rate 
averaged over V1 neurons from UST 
and MST mice. Control trials are 
visual hits. e) Early, but not late, 
silencing impaired threshold (Thr) 
and maximal (Max) visual change 
detection in UST mice. Behavioral 
detection rates for control, early, and 
late silencing trials follow plotting 
conventions of Fig. 1d-f. f) Both early 
and late silencing affected visual 
change detection rates in MST mice. 
For the increase in FA see Methods. 
g) Early silencing affected visual 
discrimination performance (d-
prime) for both saliencies across 
UST and MST cohorts. *p<0.05, 
**p<0.01,***p<0.001. h) Effect of late 
silencing depended on task type: 
late silencing only reduced d-prime 
in MST, but not UST mice. i) The 
effect of early silencing (quantified 
as the reduction in d-prime) was not 
significantly correlated with the 
median reaction time in control trials 
from the same session (r=0.048, 
p=0.865).  j) Same as i but for late 
silencing. The effect of late silencing 
was significantly correlated with the 
reaction time (r= 0.423 p=0.03).  
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Figure 4: Extended causal 
requirement of V1 generalizes 
to visuotactile side detection. a) 

Scheme of the visuotactile two-
sided detection task in which mice 
reported the side of visual and/or 
tactile stimulation. In this task B, 
visual and tactile information need 
to be integrated as an inclusive-
OR operation (rather than 
discriminated as in task A) to 
decide as to which side (left/right) 
was stimulated. b) Psychometric 

fits for visual and tactile detection 
for each mouse trained in the UST 
and MST version of the task. The 
horizontal axis represents 
stimulus intensity. The origin lies 
in the center, representing catch 
trials. The axes run to the left for 
stimuli presented to the left and 
right for stimuli presented to the 
right. Intensity values represent 
contrast for visual trials and 
deflection angle for tactile trials. 
They were normalized for 
rendering purposes. c) Average z-

scored firing rate of responsive V1 
neurons during visual-only and 
catch trials, split by trial outcome. 
Contralateral stimuli elicit biphasic 
activity in hits but reduced late 
activity in misses. The traces 
shown correspond to maximum-
saliency stimuli and MST mice. 
The onset of optogenetic silencing 
at 240 ms is indicated by a blue 
dotted line. Shaded area: 
bootstrapped 95% confidence 
intervals. d) Median task 

performance (d-prime) during 
early (left) and late (right) V1 
silencing for different visual 
stimulation conditions. Thr: 
threshold-level stimulus saliency; 
Max: maximum stimulus saliency. 
V1 silencing had no effect on 
performance for ipsilateral 
threshold-level stimuli nor 
contralateral maximum-level 
stimuli. It only affected the 

detection of contralateral threshold-level stimuli. While early silencing impaired visual detection performance in both UST and MST 
(p=0.031 for both), late silencing only affected MST mice (p=0.008). For ipsilateral threshold and contralateral maximal stimulation, 
early or late silencing V1 had no effect, only for contralateral threshold stimulation. Error bars: inter-quartile interval. e) Reduction in 

d-prime by late silencing correlated with the median reaction time on corresponding control trials, per session (p=0.027, r2=0.162). 

 

Importantly, this UST version still contained two response options and required responding to the 
correct lick spout (the visual stimulus could appear on the left or right). In addition to the differences 
with task A, this new task allowed us to test if our results extended to another multisensory processing 
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principle (congruent combination of modalities instead of segregation29) and the detection of a 
different stimulus dimension (contrast instead of orientation change).  

We controlled stimulus salience by varying visual contrast and whisker deflection amplitude and fitted 
the behavioral data with a psychometric model (Fig. 4b, see Methods). The visual detection threshold 
and task performance at maximum saliency were similar for both cohorts (UST and MST, Ext. Data 
Fig. 8a-b). As in Task A, we found that visual reaction time (RT) decreased for higher stimulus 
saliencies (Ext. Data Fig. 8c). In contrast with task A, however, RTs were similar between tactile and 
visual trials.  

Pursuing the comparison with task A, laminar recordings in V1 revealed similar neural dynamics, 
with a marked early stimulus-driven component visible in contralateral visual trials, and late activity 
in both contra- and ipsilateral visual hits (Fig. 4c, Ext. Data Fig. 9a-c). This late activity was also 
present in tactile hits, although only for MST mice (Ext. Data Fig. 9d). We optogenetically silenced 
unilateral V1 either from stimulus onset (early silencing) or after a delay that separated the late from 
the early wave of activity (240 ms, late silencing; Fig. 4c). Early silencing of unilateral V1 reduced 
the detection of contralateral threshold-contrast stimuli in both UST and MST mice but spared 
detection of ipsilateral stimuli and full contrast stimuli (Fig. 4d). In MST mice, tactile detection was 
not affected by V1 silencing (Ext. Data Fig. 8d). Consistently with our results for Task A, while early 
V1 silencing impaired detection of threshold-level visual stimuli for both unisensory and multisensory 
contexts, late V1 silencing only affected such detection in MST mice (Fig. 4d). As in Task A, we 
observed that the effect of silencing increased for conditions with longer reaction time (Fig. 4e). 
Overall, results obtained with task B generalize our findings and confirm that the temporal window 
for the causal involvement of V1 in perceptual decision making is extended when subjects reinstate 
the more complex, multisensory attentional set they have been trained on.  

Population decorrelation predicts late silencing effects 

The late report-related wave of activity during visual hits (Figs. 2, 4d) likely arises through an interplay 
of higher-order areas that feed back to V1, possibly including premotor or other frontal areas18,20,23,45. 
The timing of this wave predicts the behavioral effects of late V1 inactivation, but the underlying 
mechanism governing the sculpting of a behavioral decision remains unclear. One possibility is that 
late activity is predominantly related to movement variables, coded orthogonally to sensory 
representations from a population perspective21. To investigate this, we further explored the 
properties of late activity. First, we tested whether the extended causal requirement of V1 was related 
to changes in the fidelity of sensory processing, as indexed by orientation decoding. For the 
audiovisual change detection task, we examined the effect of report-related activity modulation on 
orientation-tuned neurons (Fig. 5a) at a population level and trained a random forest decoder to 
decode post-change grating orientation from V1 population activity. Orientation decoding was 
possible for hundreds of milliseconds after the orientation change with comparable performance 
across the three task versions (Fig. 5b). This suggests that in all visual trial types (regardless of task 
contingencies) information regarding the orientation of the stimulus was similarly present and that 
the extended requirement of V1 could rather be due to the interaction of this representation with the 
rest of the cortical circuit.  

Correlated firing rate fluctuations that are unrelated to signal coding (noise correlations – NCs) can 
impact information coding in populations of neurons46–48. NCs decrease as a function of various 
conditions, for instance when animals become experts at change detection49 or through attention50. 
Such changes in noise correlations may allow V1 representations to more effectively drive 
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downstream targets51. We computed pairwise firing rate fluctuations over time for visual hits and 
misses. During baseline (-500 to 0 ms) NC values were comparable to the literature52–55 (0.063 ± 
0.14 std) and decreased after stimulus change only during hits in UST and MST but not NE mice 
(Fig. 5c, Ext. Data Fig. 10a). To investigate whether the onset of the decorrelation was related to 

 

Figure 5: Drop in noise correlations predicts effects 
of late silencing. a) Average spiking rate for all 

orientation-selective neurons for preferred and non-
preferred orientations split by hits and misses (UST and 
MST neurons combined; task A). Note how orientation-
selective neurons show a late hit-modulation of firing rate. 
b) We trained decoders to discriminate post-change 
grating orientation (all visual trials) from V1 population 
activity. Decoding performance increased after stimulus 
change similarly in all cohorts. Inset shows increased 
decoding performance for post-stim (0 to +500 ms) versus 
pre-stim (-500 to 0 ms; p=0.00195, cohorts combined). c) 
Change in noise correlation (NC) relative to baseline (200 
to 1000ms compared to baseline -500 to 0 ms) for visual 
trials split by choice and cohort (for auditory trials, see Ext. 
Data Fig. 10b). Noise correlations decreased only during 
hits in UST and MST mice (p<1e-17, p<1e-18, 
respectively). Misses in NE mice were associated with a 
slight increase in noise correlations (p<1e-4).  d) Visual hit 
trials were separated into three tertiles based on reaction 
times to investigate reaction time-dependent noise 
correlation dynamics. The histograms show the reaction 
time distributions for visual hits in UST and MST cohorts 
and tertile ranges. e1) The onset of the drop in NCs in 
UST mice was related to reaction time. In the left panels, 
noise correlations (aligned to stimulus change) drop – 
relative to baseline (below 2 standard deviations of the 
baseline; -500 to 0 ms) – first in fast trials, and 
progressively later in medium and slow trials. Right panels 
show that, when aligning to lick onset, the drop in noise 
correlations precedes reaction times by a similar lag, 
independent of reaction time tertile. Horizontal dashed 
lines indicate, for each tertile, the threshold used to 
determine the onset of the drop in NCs, highlighted with 
colored arrows. e2) Same as e1, but for MST mice.  f) 
Reaction time and moment of decorrelation were 
significantly correlated (r=0.960, p=0.002). Scatterplot 
shows median reaction time and earliest time point of 
decorrelation for each tertile in the two visually trained 
cohorts. g) Firing rates just before photostimulation (100-
200 ms) were higher if the trial was a visual hit rather than 
a miss in UST mice (Thr: p=0.001; Max: p=0.029). Plot 
shows average Z-scored rate of both putative excitatory 
and inhibitory neurons during visual trials with late 
photostimulation, split by hit/miss. h) Same as g, but for 
MST mice. Firing rates just before photostimulation were 
higher for hits than misses only for threshold visual 
changes (p=0.001), but not maximal changes (p=0.34). i) 
Noise correlations for visual hit and miss trials before 
photostimulation onset (grouped across UST and MST 
cohorts and saliency levels). Black bar on top: time bins 
with significantly different noise correlation values between hits and misses (p < 0.05). Throughout the figure, lines and shading are 
mean ± SEM. j) Schematic summary of results: increased task complexity (such as through multisensory interactions) delays the onset 
of the late report-related wave of activity and drop in noise correlations and extends the causal involvement of V1. Jointly, these 
processes may enhance the effectiveness of V1 in transferring task-relevant information to downstream areas.  
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reaction time, we split all visual hits from V1 recording sessions into three tertiles based on reaction 
time (Fig. 5d). Similar to behavioral data without recordings (Fig. 1i), UST mice reacted faster than 
MST mice (p=1.8e-68). We quantified the earliest time-point where the drop in NCs reached 
significance (relative to baseline) for each tertile for UST and MST mice. NCs decreased at a latency 
that depended on reaction time, with the drop in NCs occurring later on slow compared to fast trials 
(Fig. 5e). The latency of the decrease in NCs and reaction time were significantly correlated (Fig. 5f), 
suggesting that population decorrelation is time-locked to reaction time. Indeed, noise correlations 
relative to the first lick (see Methods) dropped just preceding this first lick, irrespective of reaction 
time (Fig. 5e, right part; Ext. Data Fig. 10b), with the strongest decrease for visual hits in UST and 
MST mice and no decrease in surrogate hits in NE mice (Ext. Data Fig. 10c). Overall, this suggests 
that a late drop in NCs is not simply a correlate of (preparatory) motor activity, but may rather play a 
mechanistic role in perceptual report. 

Activity level and decorrelation predict the effect of late silencing 

If the late-onset drop in NCs contributes to perceptual report, one would expect that the variability in 
the behavioral effect of silencing (i.e. whether V1 inactivation was followed by a hit or miss) could be 
explained at the single-trial level by whether this drop had already occurred at the time of 
photostimulation. We therefore focused on V1 activity during visual trials just before late inactivation 
started (n=230 cells), and tested whether the report-related firing-rate modulation and drop in NCs 
had both already occurred before 200 ms in hits but not misses. Indeed, hits were associated with 
increased activity just before photostimulation started (100-200 ms after stimulus onset) across 
levels of stimulus change and task versions (Fig. 5g-h). Similarly, NCs showed distinct profiles for 
hits and misses (Fig. 5i) and decreased just before silencing onset during hits but not misses. 
Surprisingly, NCs were higher just before and after stimulus change for hits (-125 to +25 ms around 
stimulus change), in contrast with56. Overall, these results show that increased firing rates, and the 
temporally coinciding drop of NCs in V1, may both contribute to an improved readout and 
communication of visual activity to downstream areas (Fig. 5j).  

Discussion 

In this study, we investigated the nature and function of late, recurrent activity in V1 in perceptual 
decision-making. An increase in subjective task complexity delayed behavioral decisions and 
extended the temporal window in which V1 was causally involved in determining perceptual report, 
given the same visual stimulus. As animals in the MST tasks were trained to process behaviorally 
relevant signals in two sensory modalities rather than one, longer reaction times (compared to UST 
tasks) are likely needed to integrate and compare information from distinct sensory modalities, also 
to assess which of two modalities is most likely to present an externally (as opposed to self-) induced 
sensory change. Similarly, a specific visual stimulus under conditions of low saliency (i.e., a small 
change in grating orientation) likely requires more time to determine whether there was a change. 
Therefore, our results may not be specific to multisensory contexts (cf. Fig. 3j), as any condition 
increasing cognitive demands might delay the contribution of dorsal cortical areas to decision 
making, including an increased reliance on V157. 

We found modest differences in onset latencies and orientation coding of visually evoked V1 
responses across task contingencies and cohorts, suggesting that the dynamics of bottom-up, 
feedforward processing are mostly conserved. In contrast, striking differences were found in the late 
phase of V1 activity, and particularly in the behavioral consequence of late optogenetic inactivation. 
Late activity is thought to arise from recurrent feedback emitted by higher-order cortices32, in 
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agreement with the predominance of report-related coding in deeper cortical layers (Fig. 2i). 
Silencing late V1 activity abolished detection of orientation changes and contralateral stimuli in 
conditions of high task complexity (and consequently long reaction time). This effectiveness of late 
inactivation was most prominent for low-saliency stimuli in MST mice and linearly scaled with reaction 
times (Fig. 3j, 4g). The only exception was the detection of high contrast stimuli in MST (but also 
UST) mice in task B, which was affected neither by early nor late V1 silencing (Fig. 4d,e). This 
suggests that subcortical structures (e.g. superior colliculus) may suffice to localize highly salient 
stimuli58 in task B (in contrast to task A, which requires detecting an orientation change), although 
we cannot fully exclude that portions of V1 were not completely inactivated. Furthermore, it is unlikely 
that late V1 silencing generally impaired cortical network processing59, as it did not affect ipsilateral 
visual detection in the visuotactile detection task (task B; Fig. 4), nor tactile or auditory performance 
(Fig. 3 and Ext. Data Fig. 4d).  

We optogenetically silenced both sensory and report-related components of V1 activity, which are 
jointly present in the late window (Fig. 2g). Importantly, late V1 inactivation in the absence of an early 
sensory-related component (e.g. ipsilateral visual stimuli in task B, or non-visual hit trials) did not 
impair behavioral responses, in agreement with a recent study suggesting that the report-related 
component alone is not sufficient for perceptual task performance17,44. However, the question 
remains how sensory-evoked and report-related activity are related to each other during the late 
phase44. On the one hand, higher task complexity may prolong sensory processing of the visual 
stimulus, or at least the time downstream regions need to sample the ongoing flow of V1 activity to 
gather sufficient evidence on visual stimulus change60,61. On the other hand, recurrent interactions 
between visual cortex and connected regions during late windows may jointly influence sensory 
representation, in line with the predictive processing framework15,32,62. In other words, in subjectively 
complex task conditions V1 and downstream regions need to interact for longer periods to jointly 
construct a behaviorally conclusive representation of the modality-specific change (task A) or the 
side of stimulus presentation (task B). Notably, we increased task complexity but kept visual stimuli 
unchanged. Therefore, if V1 was merely passively transmitting information to higher-order areas, it 
is unlikely that we would have observed a task-related change in activity mode, represented by a co-
occurring increase in firing rates and drop in NCs. Conversely, we found that the increase in the 
amplitude of late activity and drop in NCs both preceded behavioral reactions by a relatively constant 
lag (Fig. 2k, 5f), and predicted the effect of late optogenetic inactivation (Fig. 5g-i). This suggests 
that, rather than being simply sampled for longer periods by downstream regions, V1 activity is 
actively modulated as a function of task complexity. Together, the temporal relationship between the 
onset of the hit-miss modulation of firing rate and the decrease in NCs (both preceding RT during hit 
trials, cf. Fig. 2k and Fig. 5f), and the trial-by-trial efficacy of late silencing, point towards a link 
between the two processes (Fig. 5j), which however remains to be causally investigated. The 
increased population activity (Fig. 2) and the co-occurring drop in NCs (Fig. 5), may jointly play a role 
in shaping information flow across the interconnected cortical network ranging from V1 to frontal 
regions45,62,63. The function of both processes may therefore be to enhance the effectiveness of V1 
in transferring task-relevant information to downstream areas64.  

In conclusion, our results show that, although all sensory information that is theoretically required to 
perform a task is available in V1 shortly after stimulus onset, transforming such sensory inputs into 
a perceptual representation requires substantial recurrent interplay between cortical areas, which is 
temporally extended by factors increasing task complexity (such as multisensory interactions). Late-
onset activity in primary visual cortex is therefore not simply involved in relaying, refining, and 
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modulating the processing of complex visual stimuli, but also provides a crucial contribution to 
perceptual decision-making. 

Our results thus dispute the classical picture of perceptual decision making: V1 is not only needed 
to relay processed visual information to higher-order areas, but continuous interactions between V1 
and downstream regions are required to solve complex perceptual tasks. 
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Methods 

Data and Code Availability 

The data and code that support the findings of this study are available from the corresponding author, 
U.O., upon reasonable request. 

Animals 

All animal experiments were performed according to national and institutional regulations. The 
experimental protocol was approved by the Dutch Commission for Animal Experiments and by the 
Animal Welfare Body of the University of Amsterdam. We used two transgenic mouse lines: PVcre 
(B6;129P2-Pvalbtm1(cre)Arbr/J, JAX mouse number 008069) and PVcre/TdTomato (C57BL/6-
Tg(Pvalb-tdTomato)15Gfng/J, JAX mouse number 027395). A total of 49 male mice (28 in task A, 
12 in task B) were used for this study. Mice were at least 8 weeks of age at the start of experiments. 
Mice were group-housed under a reversed day-night schedule (lights were switched off at 8:00 and 
back on at 20:00). All experimental procedures were performed during the dark period. This study 
did not involve randomization or blinding. We did not predetermine the sample size. Some subjects 
were unable to successfully learn to make decisions based on both modalities (MST task versions) 
within 2 months and were excluded from further experiments. 

Head-bar surgery 

Before the start of any experiments, mice were implanted with a headbar to allow head-fixation. Mice 
were subcutaneously injected with the analgesic buprenorphine (0.025 mg/kg) and maintained under 
isoflurane anesthesia (induction at 3%, maintenance at 1.5–2%) during surgery. The skull was 
exposed and one of two types of custom-made titanium circular head-bars with a recording chamber 
(version 1: inner diameter 5 mm, version 2: inner diameter 10 mm) was positioned over the exposed 
skull to include V1 and attached using C&B Super-Bond (Sun Medical, Japan) and dental cement. 
For task A in which visual stimuli were centrally presented binocular V1 was targeted based on the 
following coordinates (relative to lambda): AP 0.0, ML +/- 3.065. Whereas coordinates sufficed for 
task A, for task B, in which lateralized visual stimuli were used, V1 was targeted using intrinsic optical 
imaging (see below) to localize the retinotopic region of V1 corresponding to the region of visual 
space in which the lateralized visual stimuli were presented. The skin surrounding the implant was 
covered using tissue adhesive (3M Vetbond, Maplewood, MN, United States) to prevent post-
surgical infections. The recording chamber was covered with silicon elastomer (Picodent Twinsil). 
Mice were allowed to recover for 2-7 days after implantation, then habituated to handling and head-
fixation before starting on the training procedure. 

Behavioral training 

Mice were subjected to a water restriction schedule and minimum weight was kept above 85% of 
their average weight between P60-P90. They typically earned their daily ration of liquid by performing 
the behavioral task but received a supplement when the earned amount was below a minimum of 
0.025 ml/g body weight per 24h. 

Mice were head-fixed in a custom-built headbar holder in a dark and sound-attenuated cabinet. The 
body of the mouse was put in a small tube to limit body movements. The task was controlled in 
Octave interfacing with Arduino microcontroller boards. Licks were detected by capacitance-based 
or piezo-electric-based detectors. Upon correct licking, i.e. in hit trials, 5-8 μl of liquid reward (infant 
formula) was delivered immediately using gravitational force and solenoid pinch valves (Biochem 
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Fluidics). Reward volume was calibrated biweekly to prevent lateralized response bias due to 
unequal reward size. 

Behavioral task A: Audiovisual Change Detection 

Visual Stimuli 

Visual stimuli consisted of full-field drifting square-wave gratings that were continuously presented 
with a 60 Hz refresh rate on an 18.5-inch monitor positioned at a straight angle with the body axis 
from the mouse at 21 cm from the eyes. Gratings were presented with a temporal frequency of 1.5 
Hz and spatial frequency of 0.08 cycles per degree at 70% contrast and gamma-corrected. In trials 
with a visual change the orientation of the drifting grating was instantaneously changed (e.g. from 
90˚ to 120˚) while preserving the phase. The degree of orientation change determined the visual 
saliency and was varied across experimental conditions. 

Auditory Stimuli 

The auditory stimulus was a stationary Shepard tone, which is composed of a center frequency and 
a series of harmonics. In our case we used 5 harmonic tones with 2 lower and 2 higher harmonics 
(if f0 is the center frequency: f-2=¼*f0, f-1=½*f0, f+1=2*f0; f+2=4*f0). The total stimulus set of center 
frequencies was expressed in scientific pitch and consisted of a full octave spanning from 213 Hz 
(=8372 Hz, which corresponds to a C9) to 214 Hz (=16744 Hz, corresponding to C10) in steps of 1/256 
partial octaves. For each given Shepard tone in this stimulus set, the weight of the center and 
harmonic tones are taken from a fixed Gaussian weight distribution over all center and harmonic 
tones, in this case centered at 213.5 (=11585 Hz). Because of this fixed weight distribution, the 213 
Shepard tone is equal to the 214 Shepard tone (both are a compound of 211, 212, 213, 214, 215, 216 with 
the same fixed weights) and the total stimulus set (from 213 to 214) is therefore circular. In trials with 
an auditory change, the stimulus was changed instantaneously from one stationary Shepard tone to 
another, i.e. to a stimulus with a different center and harmonic frequencies. For example, an auditory 
change of ¼ octave would jump from 213 to 213.25 (this was as salient as 213.75 to 213, due to the 
circularity at 213=14). The degree of frequency change determined the auditory saliency and was 
varied across experimental conditions. The phase across all center and harmonics was preserved 
during auditory stimulus changes. Stimuli were presented with a sampling rate of 192 kHz. Stimuli 
were high-pass filtered (Beyma F100, Crossover Frequency 5-7 kHz) and delivered through two 
bullet tweeters (300 Watt) directly below the screen. Sound pressure level was calibrated at the 
position of the mouse and volume was adjusted per mouse to the minimum volume that maximized 
performance (average ±70 dB). 

In an earlier cohort of mice trained on task A (N=13/28), the Shepard tones (1) were expressed in 
absolute Hz (e.g. an auditory trial with Δ2kHz changed from 8 kHz to 10 kHz), (2) had 9 harmonics, 
(3) were presented with a sampling rate of 48 kHz and (4) were not phase-preserved during a change 
in auditory frequency. We observed no qualitative or quantitative differences in both neural and 
behavioral results between the cohorts (behavior between cohorts is compared in Ext. Data Fig. 1). 
The horizontal axes were normalized in Fig. 1 to accommodate all mice. 

With both auditory and visual stimulus sets being circular, the direction of change (clockwise or 
anticlockwise) was behaviorally irrelevant (isotropy), and the only relevant dimension was the 
amount of change. Given the use of the full auditory spectrum and full-field visual gratings, stimuli in 
both modalities allowed change detection based on feature selectivity while recruiting neurons 
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across the tonotopic organization of auditory cortex66 and across the retinotopic map of visual cortex 
- which in our case benefitted both neural data acquisition and interventions. 

Versions of Task A 

Animals were assigned to one of three versions of a change detection task (NE, UST, MST) in which 
the visual and auditory stimuli were identical and only the reward contingencies varied. 

NE: Noncontingent exposure (N=7/28 animals) – In this version, neither modality was associated 
with reward availability. Both the auditory and visual stimuli were continuously presented with the 
same distribution of trial types and temporal statistics as the multisensory version (see below). To 
compare intermittent licks, rewards, and stimuli across task versions, we sought to achieve similar 
rates of licking and reward delivery. Therefore, mice in this version could obtain rewards in a hidden 
‘response window’ (a 1500 ms time interval in which either left or right licks could be emitted to 
acquire reward; same duration as MST, below). This response window was temporally decorrelated 
from the stimuli67. Mice thus licked spontaneously at the two spouts and received occasional rewards. 
Mice were exposed 2-5 days to this behavioral task before any experiments. 

UST: Unisensory version (N=4/28 animals) – In this version, only visual change was associated with 
reward availability. Mice were trained to respond to the visual changes only. Continuous auditory 
stimuli and changes were presented throughout training and recording sessions with the same 
statistics as the multisensory version, but were not associated with reward and were temporally 
decorrelated from the task-relevant visual trials. Given that only one side was rewarded in this 
version, spontaneous licking to this side had a higher probability of being rewarded and therefore the 
response window was shortened to 1000 ms (i.e., in this window, licks could be produced to acquire 
reward).  

MST: Multisensory version (N=17/28 animals) – In this version visual and auditory change were both 
associated with reward availability. Mice were trained to respond in a lateralized manner to each 
modality: lick to one side to report visual changes, to the other side in case of auditory changes 
(modality-side pairing was counterbalanced across mice). Therefore, in this version, subjects had to 
simultaneously monitor both the auditory and visual modality, detect changes in a feature and 
discriminate the modality in which the change occurred. In other words, mice were required to identify 
the sensory modality in which a change occurred.  

Training stages 

For each trained modality (vision in UST, vision and audition in MST), training occurred in steps. In 
the first stage learning was facilitated by (1) only including the easiest trial type (maximally salient 
trials: 90 degrees orientation change for the visual domain68 and 4kHz or ½ octave – in earlier and 
later cohorts, respectively – for the auditory domain), (2) additional instantaneous changes to 
increase saliency, (3) a passive reward on the correct side if the animal did not respond within 900 
ms, and (4) the opportunity to correct after choosing the incorrect side. These facilitating conditions 
were phased out throughout the training procedure and trials of varying lower saliency were 
introduced. Animals were trained until their psychometric curve in the target modalities reached a 
plateau. For the MST version, animals were first trained in one modality, then the other, after which 
they were combined (the order of modalities was counterbalanced across mice).  

Trials types were pseudorandomly presented (block-shuffled per 10 trials, 10% of trials were catch 
trials, thus without a stimulus change, 41% visual trials, 41% auditory trials, 8% multimodal trials - 
see below). The inter-trial interval was taken randomly from an exponential distribution with a mean 
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of six seconds (minimum 3 and maximum 20 seconds). Directly after a stimulus change, a response 
window of 1500 ms followed in which either left or right licks could be emitted to acquire a reward. 
Licks during the first 100 ms were not counted as these occurred too early to be considered part of 
a stimulus-response sequence. The first lick after this ‘grace period’ was registered as the animal’s 
choice and correct licks were directly rewarded. To counter any bias in MST mice, if the fraction of 
licks to one spout out of all licks in the last 10 trials was above 90%, the next trial was selected with 
a 95% probability to be of the other modality. As visual and auditory feature changes were associated 
with conflicting motor actions (only in the multisensory version of the task), a multimodal trial 
(simultaneous audiovisual change) would present the animal with conflicting signals. We introduced 
these conflict trials in a subset of sessions, but these trials were not included in the current analyses.  

For each trained animal (before any recordings) we implemented three behavioral sessions in which 
we presented five levels of auditory and visual saliency that spanned the perceptual range to 
establish the perceptual sensitivity of each mouse. We fit the concatenated data of these three 
sessions with a cumulative normal distribution per modality with four free parameters69: 

𝑓(𝑥) = γ + (1 −  γ − λ) (
1

2
[1 + 𝑒𝑟𝑓

x − μ

σ√2
]) 

Here, γ describes the false alarm rate (spontaneous licks during catch trials), λ the lapse rate (misses 
at maximal saliency), μ the mean (perceptual threshold), and σ the standard deviation (sensitivity to 
variations of stimulus intensity). Having established the psychometric function per mouse, we took 
four levels of saliency per modality at fixed points along the psychometric function: subthreshold (μ-
σ; sub), threshold (μ; thr), suprathreshold (μ+σ; sup), and maximal saliency (max). The visual 
threshold ranged from 4-12 degrees, and the auditory threshold from 10-100 Hz (frequency version) 
or 1/64 - 1/16 partial octave (octave version) (see Ext. Data Fig. 1). This analysis was purely 
performed to select stimulus intensities of equal subjective saliency across mice for the experiments. 
All other analyses were based on fitting the behavioral data with a psychometric signal detection 
model (see below).  

In recording sessions, we limited conditions to sample sufficient trials per modality x feature x 
saliency x choice combination. First, we only used two levels of change: threshold and maximal 
saliency. For NE mice and auditory conditions in UST mice, we used threshold values that matched 
those from trained animals. Second, we only used four orientations or tones. Specifically, this means 
that stimuli jumped between A, B, C, and D, where distance AB and CD are around threshold and 
distance AC and BD are maximal. An example stimulus set for a mouse with a visual threshold of 7˚ 
and an auditory threshold of 1/32 octave was therefore for the visual domain: A=100˚, B=107˚, 
C=190˚, D=197˚, and for the auditory domain (in Hz): A=213.25, B=213.25+1/32, C=213.75, D=213.75+1/32.  

Behavioral task B: Visuotactile Side Detection 

As in paradigm A, mice were trained in on one of two versions of a visuotactile detection task: a 
multisensory version, where both visual and tactile modalities were informative on the side that 
needed to be chosen to acquire reward (MST) and a unisensory version, where the tactile modality 
was present as well, but only the visual modality was informative (UST).  

Visual Stimuli  

Visual stimuli consisted of square-wave drifting gratings, with a temporal frequency of 1.5 Hz, a 
spatial frequency of 0.025 cycles per degree and 30 degrees orientation. The contrast of the gratings 
was modulated per trial to control detection difficulty. Visual stimuli were generated in Octave using 
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Psychtoolbox3 and were presented monocularly at >24 degrees from azimuth on each side70 with a 
gamma-corrected 18.5-inch monitor at a frame rate of 60 Hz and a distance to the eye of 18 cm.  

Tactile Stimuli 

Tactile stimuli consisted of a single deflection of the whisker pad using a piezoelectric bender 
(PL128.10, Physik Instrumente) coupled to a 5 cm long pipette ending on a 5x5 mm patch of Velcro. 
A voltage driver (E650, Physik Instrumente) and an RC filter were used to produce a backward 
deflection of the bender with an exponentially decaying speed (τ=72 ms) during 360 ms, followed by 
a forward deflection with the same characteristics. The amplitude of the deflection was modulated to 
control detection difficulty. Elicited whisker deflection angles ranged from 0 to 3.6 degrees. For both 
visual and tactile stimuli, stimulus intensity was adjusted individually to match the desired saliency. 

Versions of task B:  

UST: Unisensory version - Visual and/or tactile stimuli were presented to either the right or left side 
of the animal. To obtain a reward, mice had to detect the side where the visual stimulus was 
presented and lick the spout at the corresponding side. In this version, only the visual modality was 
informative on reward availability. Tactile stimuli were delivered but not associated with reward and 
tactile and visual stimulus sides were decorrelated. The inter-trial interval was drawn from an 
exponential probability distribution with a mean of 4 seconds (minimum 3, maximum 7; with a 22% 
chance of catch trial (no stimulus, no reward) and a maximum of two catch trials in a row, a mouse 
could wait up to 21 seconds before another stimulus was displayed). Visual and/or tactile stimuli 
were presented for 1 second. In a multisensory trial (not analyzed here), the tactile stimulus was 
presented with a lag of 70 ms after the visual stimulus onset (similar to 42). Licks were only rewarded 
in the interval of 140-1000 ms after stimulus onset. While a correct lick triggered reward delivery, an 
incorrect lick (i.e., to the wrong side) terminated the trial and aborted stimulus presentation. Trials 
were pseudo-randomly generated by blocks of 60 with 22% catch trials, 12% tactile-only trials, 53% 
visual-only trials, and 13% multisensory trials.  

MST: Multisensory version - In this version, both visual and tactile modalities were informative on 
reward availability. In multisensory trials, visual and tactile stimuli were presented on the same side. 
Overall, task B required the mouse to follow an Inclusive-Or rule (lick to the side with either a visual 
or tactile stimulus, or a compound stimulus in both modalities). During training, mice first learned to 
detect tactile stimuli. Multisensory trials were then added and finally, visual-only trials were 
introduced so that mice could eventually detect visual and/or tactile modalities. Since tactile trials 
were rewarded, to keep the reward/no-reward balance, we increased the number of tactile trials: 
25% catch, 25% visual-only, 25% tactile-only, 25% multisensory. Otherwise, both unisensory and 
multisensory task versions had the same parameters. 

Imaging, Optogenetics, and Electrophysiology 

Intrinsic Optical Imaging 

To localize the primary visual cortex in task B experiments, we performed intrinsic optical imaging 
(IOI) under lightly anesthetized conditions (0.7-1.2% isoflurane). A vasculature image was acquired 
under white light before starting the imaging session. During IOI, the cortex was illuminated with 
monochromatic 630 nm light. Images were acquired using a cooled 50 Hz CCD camera connected 
with a frame grabber (Imager 3001, Optical Imaging Inc, Germantown, NY, USA), defocused about 
500-600 µm below the pial surface. Visual stimulation consisted of square-wave drifting gratings as 
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described in12, presented in the right visual hemifield. Image processing was carried out as described 
in12. 

Viral injection 

Mice were subcutaneously injected with the analgesic buprenorphine (0.025 mg/kg) and maintained 
under isoflurane anesthesia (induction at 3%, maintenance at 1.5–2%) during surgery. We performed 
small craniotomies (±100 μm) over V1 using an ultrafine dental drill and inserted a glass pipette 
backfilled with AAV2.1-EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGHpA (titer: 7×10¹² 
vg/mL, 20298-AAV1 Addgene). In total 50 nL was injected in V1 (bilateral binocular V1 for Task A 
and unilateral V1 for Task B) at 700 μm and 400 μm below the dura (25 nL per depth) using a 
Nanoject pressure injection system (Drummond Scientific Company, USA). 

Optogenetics 

In a random subset of trials (50% of trials for task A, 25% for task B) photostimulation started at 
stimulus onset (early inactivation) or was delayed (late inactivation). For the MST version of task B, 
early and late inactivation took place in separate sessions. Late inactivation occurred after 200 ms 
in Task A and 240 ms in Task B. Photostimulation continued until the animal made a choice. We 
interleaved sessions in which we positioned the fiber over V1 with control sessions in which we either 
positioned the optic fiber over area S1 (where no virus was injected) or at the head-bar. To locally 
photostimulate V1, a 473 nm laser (Eksma Optics, DPSS 473nm H300) was connected to one or 
two fiber-optic cannulas (ID 200 um, NA 0.48, DORIC lenses) that were positioned directly over the 
thinned skull at the area of interest (bilateral V1 for Task A and unilateral V1 in Task B). Light delivery 
was controlled by a shutter (Vincent Associates LS6 Uniblitz) with variable pulse and interpulse 
duration with an average of 20 Hz and 75% duty cycle (Task A) or with 10 ms pulses sequentially 
interleaved by 20 ms and 30 ms (~72% duty cycle, Task B). The shutter was located in a sound-
insulated box distal from the experimental setup. As we simultaneously performed extracellular 
recordings in V1 of all mice, we adjusted laser power for each animal to the minimum power that 
maximally inhibited neural activity. This was commonly 2-7 mW/mm2 at the cortical surface (2-15 
mW15mW at the tip of the fiber, placed 0.5-2 mm above the cortical surface), corresponding to an 
effective 0.5-1.8 mW/mm2 (due to 72-75% duty cycle), which is below the levels that produce 
unwanted heating in tissue17,71.  

To prevent light from reaching the eye of the mouse, the cannulae were sealed with black tape, 
leaving only the tip exposed. Furthermore, sessions with optogenetic manipulation were performed 
in an environment with ambient blue light. Even though we implemented these measures, we 
observed an increase in false alarms in some mice in task A. This suggests either that mice could 
perceive the laser, or that our manipulation evoked perceptual changes that were reported as a trial. 
We therefore verified (1) that our main effect of late silencing was not explained by a change in 
criterion (see Behavioral Analysis Task A), (2) positioned the fiber over uninfected somatosensory 
cortex (S1), and (3) performed the same optogenetic experiments in a second visuotactile paradigm 
where we did not have an increase in False Alarm responses by photoinactivation of V1.  

Extracellular recordings 

Mice were subcutaneously injected with the analgesic buprenorphine (0.025 mg/kg) and maintained 
under isoflurane anesthesia (induction at 3%, maintenance at 1.5–2%) during surgery. We performed 
small (about 200 μm) craniotomies over the areas of interest (up to 6 per animal) using a dental drill. 
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The recording chamber was sealed off with silicon elastomer and the mice were allowed to recover 
for 24h.  

Extracellular recordings were performed on consecutive days with a maximum of 4 days to minimize 
damage to the cortex. Microelectrode silicon probes (NeuroNexus, Ann Arbor, MI – 4 types of either 
32 or 64 channels were used, catalog numbers A1x32-Poly2-10mm-50s-177, A2x16-10mm-100-
500-177, A4x8-5mm-100-200-177, A1x64-Poly2-6mm-23s-160) were slowly inserted in the cortex 
until all recording sites were in contact with the tissue. V1 was approached perpendicularly to the 
cortical surface. The medial prefrontal cortex, primary auditory cortex, and posterior parietal cortex 
were also recorded, but data from these areas were not analyzed here. After insertion, the exposed 
cortex and skull were covered with 1.3-1.5% agarose in artificial CSF (125 mM NaCl, 5 mM KCl, 1.3 
mM MgSO4, 2.0 mM NaH2PO4, 2.5 mM CaCl2, pH 7.3) to prevent drying and to help maintain 
mechanical stability. The probe was left in place for at least 15 minutes before recording to allow for 
tissue stabilization. Electrodes were dipped in DiI (ThermoFisher Scientific) during the final recording 
session allowing better post hoc visualization of the electrode tract. The ground was connected to 
the head bar and the reference electrode to the agarose solution. Neurophysiological signals were 
pre-amplified, bandpass filtered (0.1 Hz to 9 kHz), and acquired continuously at 32 kHz with a Digital 
Lynx 64/128 channel system (Neuralynx, Bozeman, MT). 

Spike sorting of data acquired during task B was done as previously described42 and only units 
having less than 1% of their spikes within a 1.5 ms refractory period were kept. For task A we used 
Klusta and then manually curated with the Phy GUI72. Before spike sorting the median of the raw 
trace of nearby channels (within 400 μm) was subtracted to remove common artifacts. Each 
candidate single unit was inspected during manual curation based on its waveform, autocorrelation 
function, and its firing pattern across channels and time. Only high-quality single units were included, 
defined as having (1) an isolation distance higher than 10 (cf.73) (2) less than 0.1% of their spikes 
within the refractory period of 1.5 ms74,75, (3) spiking present throughout the session. Neurons were 
deemed stably present if they had spikes in more than 90 out of 100 time bins during the entire 
session. 

Recording depth estimation 

The estimation of the laminar depth of the electrodes in V1 was based on three aspects. First, we 
computed the power in the 500-5000 Hz range to localize layer 5 with the highest MUA spiking 
power76. Second, we showed contrast-reversing checkerboards before each recording session and 
computed the current source density profile to estimate layer 4 with the earliest current sink, as 
previously described77. Lastly, this was aligned with the depth registered when the silicon probes 
were lowered from the dura. The granular layer was taken to span from 400 to 550 μm from the dura.  

Video monitoring 

In Task A, the left eye (ipsilateral to the hemisphere of recording) was illuminated with an off-axis 
infrared light source (six infrared LEDs 850 nm) adjusted in intensity and position to yield high 
contrast illumination of both the eye and whisker pad. A frame-grabber acquired images of 752x582 
pixels at 25 frames per second through a near-infrared monochrome camera (CV-A50 IR, JAI) 
coupled with a zoom lens (Navitar 50 mm F/2.8 2/3" 10MP) that was positioned at approximately 30 
centimeters from the mouse. 

To extract pupil variables55,78 we trained DeepLabCut79 on 300 frames from 15 video excerpts of 1-
2 minutes with varying pupil size, illumination, contrast, imaging angle, and task conditions. We 
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labeled the pupil center and 6 radially symmetric points on the edge of the pupil. An ellipsoid was fit 
to these 6 outer points. The pupil center was taken as the center of the ellipsoid and the pupil area 
as the ellipsoid area from the fitted ellipse parameters. Single poorly fit frames were replaced by the 
running median (10 frames). We z-scored the total session trace. 

Histology 

At the end of each experiment, mice were overdosed with pentobarbital and perfused (4% 
paraformaldehyde in phosphate-buffered saline), and their brains were recovered for histology to 
verify viral expression and placement of silicon probes in V1. We cut coronal 50 µm sections with a 
vibratome, stained them with DAPI, and imaged the mounted sections. For flattened cortical sections 
(e.g. Fig. 3b) we first removed subcortical tissue and flattened the cortical sheet of each hemisphere 
between glass slides by applying pressure overnight before sectioning 100 µm slices with the 
vibratome (as described previously80). For coronal sections, area borders were drawn by aligning 
and overlaying the reference section from the atlas81. For flattened cortical sections, area borders 
were drawn based on cell densities aligned to reference maps82. 

Data analysis 

Unless otherwise stated, all data were analyzed using custom-made software written in MATLAB 
(The MathWorks, Natick, MA). 

Behavioral analysis - Task A 

Sessions were terminated when the animal did not respond for 20 trials and these last 20 trials were 
discarded from analyses. Sessions in which the hit rate for maximal auditory and visual changes was 
below 30% were excluded.  

Behavioral response rates in task A were fit with a multi-alternative signal detection model35. This 
model extends signal detection theory40 and aims to accurately and parsimoniously account for 
observer behavior in a detection task with multiple signals. In this model, the decision is based on a 
bivariate decision variable whose components encode sensory evidence in each modality. Decision 
space is partitioned into three regions (no response: neither evidence is strong enough; auditory 
response, and visual response). In a given trial, the observer chooses to report visual or auditory 
stimuli if the decision variable exceeds a particular cutoff value, the ‘‘criterion’’ for each signal (the 
animal’s internal signal threshold for responding, in terms of signal detection framework). We fit two 
versions of this model. In sessions with two levels of saliency (threshold and maximum), we fit the d-
prime (d’) and criterion (c) to the behavioral response rates separately for each stimulus change 
intensity. This consists of fitting four free parameters (d’ and c for each modality). In sessions with 
four or five levels of saliency per modality, we fit the behavioral response rates by fitting a criterion 
per modality and a d-prime for each saliency, which is described by a psychophysical function (three-
parameter hyperbolic function). The d-prime at each saliency level follows from: 

𝑑𝑖 = 𝑑𝑚𝑎𝑥 ∗ 𝑥𝑖
𝑛 (𝑥𝑖

𝑛 + 𝑠50
𝑛 )⁄  

where dmax is the asymptotic d-prime, s50 is the stimulus strength at 50% of the asymptotic value, n 
is the slope of the psychometric function and xi is the amount of change. This consisted of fitting a 
total of 8 free parameters: dmax, n, s50, and c for each modality. We refer the reader to Sridharan et 
al. (2014) for a detailed description of how the d-prime and criterion subsequently relate to response 
rates35. Single session fits where visual threshold was below 1 degree or above 45 degrees were 
excluded (average threshold ±6 degrees, n=3/179 sessions excluded). 
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Catch trials during the tasks served to measure baseline lick responses. As there were no stimulus 
changes during the inter-trial interval (visual and auditory stimuli continued to be presented 
throughout the session, similar to catch trials), we used long inter-trial intervals to insert additional 
artificial catch trials during offline analysis to achieve increased balance across trial type conditions. 
We controlled for temporal expectation and inserted additional catch trials only at time points 
conforming to the original inter-trial interval statistics. 

After analyzing the effects of early and late V1 silencing on audiovisual change detection on the full 
dataset, we focused in a subsequent analysis on the relationship between reaction time and the 
effect of late silencing (Fig. 3i,j, Ext. Data Fig. 6d,e,f). Here, we focused on sessions in which V1 
early silencing was effective (minimum 50% reduction in d-prime on maximal visual change, 59/81 
sessions; results were robust to variations of this criterion, 25% reduction, r=0.199, p=0.049; 75% 
reduction, r=0.511, p=0.001). This threshold was implemented to test if late silencing was effective 
specifically within those sessions in which the optogenetic manipulation demonstrably impaired 
visual detection (thus exploiting an internal control). 

Behavioral analysis - Task B 

Behavioral data in task B was fit with a multinomial logistic regression, as described in83. The 
probabilities of right choice (pright), left choice (pleft) and no choice (pno-go) were set by: 

log (
𝑝𝑟𝑖𝑔ℎ𝑡

𝑝𝑛𝑜−𝑔𝑜
) = 𝑏𝑟𝑖𝑔ℎ𝑡 + 𝑠𝐿𝑟𝑖𝑔ℎ𝑡 ∗ 𝑐𝐿𝑛 + 𝑠𝑅𝑟𝑖𝑔ℎ𝑡 ∗ 𝑐𝑅𝑛 

log (
𝑝𝑙𝑒𝑓𝑡

𝑝𝑛𝑜−𝑔𝑜
) = 𝑏𝑙𝑒𝑓𝑡 + 𝑠𝐿𝑙𝑒𝑓𝑡 ∗ 𝑐𝐿𝑛 + 𝑠𝑅𝑙𝑒𝑓𝑡 ∗ 𝑐𝑅𝑛 

Where b is a bias parameter, sL and sR are the sensitivity to stimulus evidence to the left and right 
side respectively, cL and cR are the stimulus intensity to the left and right side respectively (contrast 
for vision, deflection angle for somatosensation), n is an exponent parameter between ranging 
between 0 and 1 to allow for saturation. 

The model was fit to individual mice, with all sessions pooled together. However, per mouse, visual 
behavior (visual-only trials) and tactile behavior (tactile-only trials) were fit separately. The model 
was fit using Matlab’s mnrfit and maximum likelihood estimation. To quantify behavioral performance, 
we computed d-prime (d’) as:  

 
d’ = Φ’(%Correct response to side i) – Φ’(%False alarm to side i) 

 

Where Φ’ is the normal inverse cumulative distribution function.  

Electrophysiological data processing 

To visualize the effect of photostimulation on spiking activity at a single electrode channel the raw 
signal was high-pass filtered (500 Hz, 4th order Butterworth filter). To compute firing rates, spikes 
(following spike detection and sorting) were binned in 10 ms bins and convolved with a causal Half-
Gaussian window with 50 ms standard deviation, unless stated otherwise. Wherever firing rate was 
z-scored, the mean was subtracted and divided by the standard deviation of the baseline period (-1 
to -0.2 seconds before stimulus). For Figure 3d the firing rate was only normalized to the baseline to 
quantify the relative reduction in firing rate by optogenetic inhibition. For Figure 5g,h the standard 
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deviation of the convolutional window was reduced to 10 ms to enhance temporal resolution. For 
computing noise correlations the standard deviation of the convolutional window was increased to 
100 ms to increase noise correlation estimates. For Figure 4c and Ext. Data Fig. 9c-d, neurons with 
an average z-scored firing rate that exceeded 2 standard deviations at any point during the stimulus 
epoch of any visual trial condition were considered responsive and included. Neurons in sessions 
lacking any of the compared conditions were excluded.  

Encoding model of single neuron firing rates 

To quantify single neuron encoding of different task variables, we constructed a kernel-based 
Poisson regression model. This encoding model allowed us to model, for single neurons, the time-
dependent effects of all measured variables related to the task and the animal’s behavior 
simultaneously on single-trial neuronal activity37,38. This approach is particularly useful to disentangle 
the unique contribution of experimenter-controlled task events and self-timed behavioral events to 
variability in firing rates across the neuronal population.  

Construction - For each neuron, we constructed a design matrix based on five sets of variables; 
visual, auditory, hit/miss, movement, and arousal variables. Binary variables (all except pupil size) 
were modeled with a series of temporal basis functions (raised cosines) that spanned the relevant 
epoch of influence. The number and temporal distribution of these basis functions were selected to 
maximize the cross-validated explained variance (see below). For the sensory predictors, we used 
two kernels with 100 ms standard deviation that spanned the first 200 ms post-stimulus to capture 
the early spiking activity and 10 kernels with 200 ms standard deviation that spanned from 0 to 2000 
ms post-stimulus to capture the late, sustained response. We found that making a separate predictor 
set per combination of orientation x amount of change produced the highest quality fit as it 
simultaneously took into account the selectivity of neurons for orientation and saliency. This therefore 
resulted in (2 + 10 basis functions) x 2 (modalities) x 2 (levels of change) x 2 (grouped post-change 
features) = 96 predictors. For hit/miss variables we used 10 temporal basis functions with 200 ms 
standard deviation that spanned from 0 to 2000 ms relative to stimulus change in hit trials (visual hit, 
audio hit) and 10 predictors that spanned -500 ms to +1500 ms relative to reward (20 predictors for 
hit/miss). For movement variables, we used three basis functions that spanned -200 to +400ms 
relative to each lick, split by side (6 predictors). To capture arousal effects, the z-scored pupil area 
was included in the predictor set: with original timing and two temporal offsets (-800 ms and -400 
ms) to account for the delayed relationship of brain state to pupil size (e.g.84; this equals 3 predictors). 
We included one whole-trial variable that scaled with the within-session trial number. This full model 
summed up to 126 predictors. We compared the performance of this model to a null model, with one 
predictor (a random variable). For convenience, all predictors were normalized to their maximum 
values before being fed into the model.  

Fitting - We fitted the encoding model to each neuron’s activity individually, using the glmnet package 
in Matlab85 with elastic-net regularization and a Poisson link function, which involves setting three 
hyperparameters. First, we chose elastic net mixing parameter α = 0.95 to allow for a small number 
of uncorrelated informative predictors to be favored. Second, model performance was trained and 
tested on separate data with 5-fold cross-validation. Third, to maximally punish weights without losing 
model fit quality, regularization parameter lambda was maximized while keeping the cross-validated 
error within one standard error of the minimum (lambda_1se in glmnet). Because very sparsely firing 
neurons produced fitting difficulties, only neurons with a session-average firing rate >0.5 Hz were 
included.  
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Evaluation - We quantified the model performance by assessing the 5-fold cross-validated Explained 
Variance (EV) by the predicted firing rate based on the random or full model, or a subset of predictors 
from the full model. Explained Variance was calculated as: 

𝐸𝑉 = 1 −
var(Y − Ŷ)

var(Y)
 

where Y is the original firing rate and Ŷ the estimated firing rate. Explained Variance was computed 
in two ways. First, we computed EV over all concatenated firing rate bins (over all single trials; -0.5 
to 2.5 seconds relative to stimulus change). Second, we computed EV on the concatenated firing 
rate bins of the average firing rate for five trial-type x choice conditions that captured most trial 
counts20,38 (85% of all trials). To compute EV over time we computed the explained variance over all 
concatenated time bins at a specific moment relative to stimulus onset.  

Decoding single neuron activity 

To identify which variables were encoded in single neurons we used ROC analysis40 and identified 
how well an external observer could discriminate variables from the firing rate at single time points. 
We computed the area under the ROC curve (AUC) for the firing rate distributions between two 
selections of trials. Each class had to have at least 10 trials. AUC values are in the range of 0 to 1 
and were rectified to their corresponding values in the range between 0.5 and 1. We investigated 
three types of coding and for each of these we analyzed threshold change and maximum change 
trials separately: 

Visual Orientation: We grouped the pairs of post-change orientations that were close to each other 
(e.g. A and B oriented at 90 and 97 degrees, see above) and thus compared the firing rate 
distributions of A&B versus C&D for threshold and maximal change trials separately. 

Occurrence of visual change: We tested whether single neuron firing rates discriminated between 
visual and catch trials.  

Hit/miss: To identify significant coding of the detection of a visual stimulus we compared firing rate 
distributions within visual trials for hits and misses. 

To determine the significance of AUC values at each time bin and for each comparison, we 
performed a permutation test by shuffling the class labels across trials 1,000 times. If the unshuffled 
AUC value exceeded 99% of the shuffled distribution (P < 0.01) this was deemed significant. This 
yielded an AUC value for each neuron for each time bin for each type of coding and each of these 
values its significance by the permutation test.  

To compare coding dynamics across cohorts, we normalized the fraction of significantly coding 
neurons by subtracting the baseline fraction (average over -0.5 to 0 seconds) and dividing by the 
maximum. Each condition was only normalized to maximum if the fraction of significantly coding 
neurons increased at least 10% over baseline. 

To determine the onset of significant coding we tested when the fraction of coding neurons increased 
significantly above a multiple of standard deviations of the coding fraction during baseline. We report 
results at a threshold of 2 standard deviations (Zscore > 2), but the results were robust to variations 
in threshold (e.g. 1 or 3 standard deviations). To estimate the reliability of the onset of coding and 
the relationship of hit/miss coding to reaction time, we bootstrapped by resampling from the total 
neuronal population (n=1000 bootstraps). To investigate the relationship between the onset of 
hit/miss coding and reaction time we used a linear regression, which revealed a systematic 
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relationship between the timing of hit/miss coding and reaction time (Fig. 2k). To estimate by how 
much hit/miss coding preceded reaction time we used two measures. First, we fixed the slope of the 
regression fit at 1 and found an offset of 278 ms. This was similar across variations of threshold (Z 
> 1: 288 ms, Z > 3: 250 ms). Second, for each bootstrap, we computed the onset of hit/miss-coding 
according to the fit parameters for the average reaction time, which was on average 266 ms before 
the reaction time. 

For laminar depth localization of coding dynamics, neurons were binned according to their recorded 
depth in 50 μm bins spanning from 0 to 1150 μm below the dura. The fraction of neurons coding for 
each variable at this depth was computed for each time point (25 ms temporal bins). This heatmap 
was convolved for display purposes with a two-dimensional Gaussian (standard deviation of 1.3 bins 
– temporal and spatial). For statistical comparison across laminar zones, the fraction of coding 
neurons was computed for each session (if at least 10 neurons were recorded at this depth to 
estimate coding fraction reliably) in supragranular, granular, or infragranular layers (granular layer: 
400-550 μm from dura). As sensory and hit/miss-coding was present in different temporal epochs 
these were included for statistical comparison (Orientation 0-1000 ms, Visual occurrence: 0-200 ms, 
Hit/miss: 200-1000 ms, relative to stimulus change). 

Population coding analysis 

To decode visual stimulus orientation, we departed from the four orientations and grouped the two 
pairs of orientations close to each other to obtain a two-class classification problem (AB vs CD, see 
above). Decoding was performed on recordings that contained at least 15 neurons and in which at 
least 20 trials per orientation pair were available. We equalized the number of neurons across 
sessions by randomly drawing 10 neurons from all sessions with more than 10 units. Spikes were 
binned using a sliding window of 200 ms with 50 ms increments, excluding time bins that contained 
both pre and post-stimulus spikes. Decoding was performed using a random forest classifier with 
200 trees, as implemented in Scikit-learn86, and we employed a 5x5 cross-validation routine with 
stratified folds (cf. Bos et al. 2020). The average accuracy obtained in the cross-validation routine 
was corrected by subtracting the average accuracy on 50 surrogate datasets in which the orientation 
labels were permuted across trials to obtain the improvement in decoding accuracy beyond chance 
level.  

Noise Correlations 

To investigate correlated activity across the population we computed pairwise correlations on the 
binned spike counts (10 ms bins, time range: -1000 to +1500 ms relative to stimulus change) after 
subtracting the average stimulus-driven response. First, for each neuron the trial-mean firing rate 
over time was subtracted for all subsets of trials of interest (per orientation). Next, the Pearson's 
correlation coefficient was computed between the residual rates for each simultaneously recorded 
neuronal pair for each time bin. Neuronal pairs for a given condition were included if they were 
sampled in more than 10 trials. We also computed pairwise correlations aligned to lick onset and 
thus subtracted mean activity related to lick-related modulation of firing rate. We note, however, that 
the term ‘noise correlations’ is conventionally reserved for the correlations on residual rates after 
subtracting the mean stimulus-evoked activity (rather than movement-evoked activity). Note also that 
drop in noise correlations was not a direct result of overall increased firing rates as we observed no 
such reduction of noise correlations during early sensory-evoked activity (0 – 200 ms). Neurons were 
only included if their session average firing rate was above 1 Hz. 
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Statistics 

All relevant statistical analyses, p values, and n sizes are reported in Supplementary Table 1. Data 
were analyzed using non-parametric tests as a default unless mentioned otherwise. Results with a 
p-value lower than 0.05 were considered significant.  
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