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4 Abstract
Healthcare is increasingly leveraging genomic data to inform diagnosis, monitor-
ing, and treatment of certain diseases with genetic predisposition. Associating
patient data such as family history and de novo status with a genomic variant
helps classify that variant as being pathogenic or benign. Indeed, many variants
are already classified by experts, but the majority of variants are very rare, have
no associated patient data, and are therefore of uncertain significance. This re-
search models the hypothetical sharing of patient data across institutions in
order to accelerate the time it takes to classify a variant. Using conservative
assumptions described in the paper, we found that the probability of classifying
a pathogenic variant which occurs at the rate of 1 in 100,000 people increases
from less than 25% to nearly 80% after just one year when sequencing centers
share their clinical data. After 5 years, the probability of classifying such a
variant is nearly 100%.

5 Introduction
Targeted gene sequencing is becoming more common for patients to determine
if they have known pathogenic variants for symptoms they present or diseases
to which they are susceptible. These pathogenic variants may inform doctors
and clinical geneticists how to manage their patients’ health. For example, a
patient with a known pathogenic variant in BRCA1 or BRCA2 should, at the
very least, be screened more often for breast, ovarian, and pancreatic cancer.
Similarly, asymptomatic patients with familial cardiomyopathy might consider
certain lifestyle choices such as losing weight, reducing stress, quitting smoking,
sleeping well, and perhaps taking ACE inhibitors and/or beta blockers. [2]
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The American College of Medical Genetics (ACMG) and the Association for
Molecular Pathology (AMP) define evidence-based guidelines for classifying ge-
nomic variants. Evidence for variant classification can come from many sources
including family history, clinical data, functional assays, and in silico predictors.
When sufficient evidence is present, a variant curation expert panel (VCEP) may
classify the variant as likely benign (LB), benign (B), likely pathogenic (LP),
or pathogenic (P). Variants with little or no evidence to support classification
are called variants of uncertain significance (VUS). The classification of VUS is
the objective of this research. [1]

Variants of uncertain significance pose problems in healthcare. One prob-
lem is the preponderance of VUS among genes implicated in disease, as VUS
by definition don’t provide any medically actionable information. Ultimately,
every variant is either physiologically benign or pathogenic, so the significance
of a VUS is only uncertain until there is sufficient evidence to classify it. Fur-
thermore, clinical data is usually needed to classify VUS [1]. A second problem
is the lack of centrally available clinical data sufficient to classify a variant.
Molecular testing laboratories and sequencing centers are the largest source of
variant data, but they hold their data privately. Yet a third problem is that
the classifications of some genetic variants may vary or even conflict between
laboratories, depending on the amount and nature of the evidence provided. [3]

One solution to all these problems is for laboratories to share their data.
The more that laboratories and clinics pool their variant data, the more likely
and more quickly a VUS may be classified.[17-19] Such pooling of data leads to
more expedient VUS classification which is of utmost importance to the ultimate
benefactors of this information: the patients with these VUS. Factors such as
maintaining market advantage and preserving privacy reasonably preclude data
sharing, but those obstacles may be overcome by, for example, leveraging fed-
erated computing.

The purpose of this research is to model how long it is expected to take and
simultaneously how likely it is for a VUS to get classified when sequencing cen-
ters pool their clinical data with other sequencing centers. This model predicts
the probability of variant classification over time given the clinical data currently
available in laboratory databases and estimates of future variant-specific data
accumulation rates. Underlying the model are factors such as prior probability
of pathogenicity and allele frequency specific to the genes of interest. Our mod-
eling approach may be applied to any gene implicated in a monogenic disease.
The output of this model can guide VCEPs in prioritizing their efforts, inform
functional assay developers on high-impact variants which cannot be classified
through patient-derived data alone, and enable healthcare providers to develop
better strategies for managing patients with VUS.

6 Materials and Methods
In this section, we define a statistical model that combines clinical information
from multiple sequencing centers to create an aggregate, pooled center so that
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VUS may be classified faster.

6.1 Combining multiple pieces of evidence to classify vari-
ants

The evidence that the ACMG/AMP uses to classify variants encompasses sev-
eral sources of data, including the type of variant (e.g. nonsense or frameshift),
in vitro functional studies, in trans co-occurrence with a pathogenic variant,
co-segregation in family members, allele frequency, and in silico predictions.
Tavtigian et al [4] showed that the ACMG/AMP variant classification guide-
lines could be modeled as a Bayesian classification framework. Specifically, the
ACMG/AMP classification criteria were translated into a Bayesian classifier,
assuming four levels of evidence and exponentially scaled odds of pathogenic-
ity. These four levels include "supporting", "moderate", "strong", and "very
strong". For example, one category of evidence is called PP1 which represents
co-segregation of the disease with multiple family members. The PP1 evidence is
considered "supporting" evidence for pathogenicity. Another example evidence
category is BS4 which represents the lack of segregation in affected family mem-
bers. The BS4 evidence is considered "strong" evidence against pathogenicity.
These odds are combined and compared to thresholds to determine the variant’s
pathogenicity.

We leverage this Bayesian framework using a frequentist approach to model
probabilities of pathogenicity conditioned on the presence of one or more pieces
of evidence for a given variant. A single piece of evidence is represented as
an odds of pathogenicity. Clinical evidence that is observed for the same vari-
ant from unrelated patients is independent, so odds from multiple observations
may be combined multiplicatively. The odds of a variant Vi being pathogenic
(belonging to the class P) given all the evidence Xj is the product of all the
evidence, expressed as odds, as shown in Equation 1.

odds(Vi ∈ P |Xj) =
∏
j

Xj (1)

The product of all the evidence may yield a very large number, causing
numerical overflow on a 64-bit machine. We convert the odds of pathogenicity
to a log scale by taking the log of both sides of equation (1), as shown in equation
(2).

log(odds(Vi ∈ P |Xj)) =
∑
j

log(Xj) (2)

For a single variant, we simply compare this sum to the thresholds for benign,
likely benign, likely pathogenic, and pathogenic in log scale, as defined in Table
4. The same logic may be applied to calculate the overall odds that the variant
is benign, as shown in equation (3).

log(odds(Vi ∈ B|Xj)) =
∑
j

log(Xj) (3)
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Our model calculates two odds of pathogenicity: the odds of a VUS being
benign and the odds of a VUS being pathogenic, both of which are conditioned
on statistically sampled evidence.

6.2 Selecting categories of benign and pathogenic variant
evidence for our model

Some sources of evidence are always available and relatively stable over time,
including information about the nature of the variant in its protein and informa-
tion from in silico predictions. Increased functional information will contribute
to variant reclassification, but there are risks to using such data without any
clinical data to classify variants. We will not use those categories of evidence
in our model, but rather we will focus on the clinical data that is available in
sequencing facilities. Several sources of case and family information will con-
tribute to variant classification over time. As clinical databases grow and data
is shared more effectively across institutions, more variants will be classified.
Increased clinical information is the major source for variant reclassification as
well. [7] We selected only those categories of pathogenic variant observations
that relate to clinical information in the development of our model, as shown in
Table 1. [1]

Category Criteria
PM6 Assumed de novo, but without confirmation of paternity

and maternity
PP1 Co-segregation with disease in multiple affected family

members in a gene definitively known to cause the disease
PS2 De novo (both maternity and paternity confirmed) in a

patient with the disease and no family history

Table 1: ACMG/AMP criteria for categories of pathogenic variant observations

We equivalently selected only those categories of benign variant observations
that relate to clinical information in the development of our model, as shown in
Table 2.

Category Criteria
BP2 Observed in trans with a pathogenic variant for a fully pen-

etrant dominant gene/disorder or observed in cis with a
pathogenic variant in any inheritance pattern

BP5 Variant found in a case with an alternate molecular basis
for disease

BS4 Lack of segregation in affected members of a family

Table 2: ACMG/AMP criteria for categories of benign variant observations

Over time, the more evidence that is gathered, the sooner and more likely a
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VUS will be classified as either benign or pathogenic. [8] However, not all the
evidence that is gathered over this time will be concordant. For example, some
patients who have a VUS which is actually pathogenic may occasionally present
evidence from one or more benign categories. This presentation of conflicting
evidence for a given variant occurs at a low, non-zero frequency. Therefore,
we use a combination of pathogenic and benign evidence in the classification of
every VUS.

6.3 Making assumptions for the model
Here we discuss the various assumptions we made about the data in order to
build our simulation.

6.3.1 Assumption 1: Frequency distribution for evidence

We made assumptions about the frequencies at which each of the ACMG/AMP
categories described in Tables 1 and 2 are observed. We derived these assump-
tions from the scientific literature. [9-15] These assumptions allowed us to simu-
late the gathering of evidence over time at different distributions of participating
sequencing centers in the effort of classifying VUS as either benign or pathogenic.
If sequencing centers were to participate and share data and we suggest here,
these frequencies would be replaced with the data provided by each of the par-
ticipating centers to build a more accurate model. This is the data that we
suggest to share across participating institutions for more accurately building
these classification timeline models.
Tavtigian et al calculated the odds of pathogenicity for each category of ACMG/AMP
evidence. Specifically, they determined that, for pathogenic evidence, the odds
for "strong" is 18.7, for "moderate" it’s 4.3, and for "supporting" it’s 2.08. For
benign evidence, the odds for "strong" is 1/18.7, for "moderate" it’s 1/4.3, and
for "supporting" it’s 1/18.7. Table 3 depicts these odds and their associated
assumed frequencies for each ACMG/AMP evidence category.

benign observations pathogenic observations
Category Frequency Odds
PM6 0.0035 4.3
BP2 1.0*frequency 1/2.08
BP5 0.07 1/2.08
PP1 0.01 2.08
PS2 0.0015 18.7
BS4 0.1 1/18.7

Category Frequency Odds
PM6 0.007 4.3
BP2 0.005*frequency 1/2.08
BP5 0.0001 1/2.08
PP1 0.23 2.08
PS2 0.003 18.7
BS4 0.0001 1/18.7

Table 3: Frequencies and odds per ACMG/AMP category for benign and
pathogenic observations

There may be pathogenic categories of evidence observed for benign variants
and benign categories of evidence observed for pathogenic variants, though these
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evidence categories which conflict with the variant pathogenicity generally occur
at a low rate. We are assuming that the frequency of BP2 evidence (in trans
co-occurrence with a known pathogenic variant) for pathogenic variants is very
rare, except in tumors or in the case of rare diseases such as Fanconi anemia.
Conversely, we assume that the frequency of BP2 evidence for benign variants
is quite common and so occurs at the same rate as the variant itself.

6.3.2 Assumption 2: Thresholds for odds of pathogenicity

Tavtigian et al, in interpreting the ACMG/AMP variant classification guidelines
as a naive Bayesian classifier, defined four threshold ranges for the odds of
pathogenicity for each of the four variant classifications (benign, likely benign,
likely pathogenic, pathogenic). These odds threshold ranges are shown in Table
4.

Classification Odds threshold range
Benign [−∞, 0.001)
Likely benign [0.001, 1/18.07]
Likely pathogenic [18.07, 100]
Pathogenic (100,+∞]

Table 4: Odds threshold ranges for naive Bayesian classifier

These odds threshold ranges are based on the guidelines set forth by the
ACMG/AMP. For example, the ACMG/AMP defined the term "likely pathogenic"
to mean > 0.90 certainty of a variant being disease-causing but below the higher
pathogenic threshold of 0.99. Translating the ACMG/AMP certainty cutoff
into Bayesian terms, 0.90 is a posterior probability which corresponds to a
pathogenicity odds of 100. Similarly, the likely pathogenic odds are between
0.90 and 0.99, the likely benign threshold is between 0.001 and 0.10, and benign
threshold is less than 0.001.

6.3.3 Assumption 3: Data from participating sequencing centers

In advance of getting real data from any sequencing centers, we made certain
assumptions about how much data each general size of sequencing center has as
well as how many new observations are added per year. Table 5 depicts these
assumptions.

Sequencing center size Initial size Tests per year
small 15000 3000
medium 150000 30000
large 1000000 450000

Table 5: Data size and rate assumptions per sequencing center size
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These sizes and test rates were inferred from experience and online public
business reports from genetic testing companies. Should a group of sequencing
centers decide to pool their data, they will be able to replace these values with
better estimates.

6.3.4 Assumption 4: Ascertainment bias

Another assumption we make relates to ascertainment bias at testing centers.
Ascertainment bias, the medical term for statistical sampling bias, describes
systematic deviations from an expected result due to the sampling processes used
to find genomic variants and estimate their population-specific allele frequencies.
People who go to testing centers are often referred there because their medical
care providers suspect they may have a genetic disease. How much more likely
is a person to present pathogenic evidence than benign evidence is captured in
our model as a real-valued variable called pathogenic selection factor (PSF). We
conservatively estimated this term to be 2 based on experience at the University
of Washington Department of Laboratory Medicine.

6.3.5 Assumption 5: Prior odds of pathogenicity

Yet another assumption we made was regarding the prior odds of a variant’s
pathogenicity. This metric comprehends all other criteria that are not clinical
and doesn’t change much, if at all, over time. For the sake of this implemen-
tation, we sampled a random odds from a uniform distribution between 0.11
and 9 (which are the odds associated with probabilities between 0.1 and 0.9,
respectively).

6.4 Implementing the simulation
The implementation is very straightforward. The simulation has only one ran-
dom variable as input which is the allele frequency of the VUS of interest. The
code iterates through the sequencing centers one year at a time to accumulate
new evidence for a variant of the input frequency, where the initial size and
yearly growth rate are depicted in Table 4. Because the variant is of uncertain
significance (i.e. we don’t know if it’s benign or pathogenic), we gather evidence
for both classifications simultaneously. So, for example, if we simulate gathering
evidence for 1,000 VUS, we would have 2,000 sets of observations - 1,000 given
the variant is benign and 1,000 given the variant is pathogenic.

Pseudo-code is shown below for simulating the gathering of evidence for a
single variant using probabilities and odds for pathogenic and benign evidence
derived from Table 3. The initial sizes and tests per year parameters are derived
from Table 5.
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years = 5
vusFrequency = 1e−05
s=10, m=7, l=3
c en t e r s = [ s ∗Center ( ’ small ’ ) ] +

[ m∗Center ( ’medium ’ ) ] +
[ l ∗Center ( ’ l a rge ’ ) ]

f o r c en te r in c en t e r s :
c en te r . i n i t i a l i z e ( vusFrequency )
a l lC en t e r s += cente r . getEvidence ( )
f o r year in range ( years ) :

c en te r . run ( vusFrequency )
a l lC en t e r s += cente r . getEvidence ( )

The initialize() method creates the initial set of evidence based on the
initial sequencing center size from Table 5. Using the getEvidence() method,
all the evidence that is initialized at each of the individual testing centers is then
added to the allCenters object which represents the comprehensive shared
data set across all the testing centers. The run() method simulates people
getting tested at a sequencing center. Here we use a Poisson distribution sam-
pling method when determining how many times variant is observed, given the
presumed vusFrequency.

We execute the run() method once for each year in the range of years pa-
rameter and accumulate simulated data discretely (as opposed to continuously)
over all the centers. The size of a center’s population from which we sample and
the number of tests per year are coded in the Center object according to small,
medium, and large sizes described in Table 5. Each year, and for each center,
we combine the odds of the pathogenic and benign observations to allCenters
to simulate the sharing of data across all the sequencing centers over time.

Running the simulation as shown in the pseudo-code generates data points
across sequencing centers over time for a single VUS of the given frequency. We
ran this simulation several times to generate data points for multiple VUS of
the same given frequency. These results are discussed in the next section.

7 Results
For each sequencing center, we simulated the gathering of evidence for 1,000
different variants with allele frequency 1e-05 over the course of 5 years. We
generated data each year and took snapshots to create histograms and scatter
plots that show the distribution and progression of the evidence over time.
We plot the probability of classifying the variant as benign (B), likely benign
(LB), likely pathogenic (LP), or pathogenic (P). Additionally, we calculated
the probability of a variant being classified at any sequencing center, assuming
that all these centers would share their variant interpretation even if they don’t
share their clinical data. Finally, we performed a sensitivity analysis to show
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the impact each of the model parameters has on the probability of being either
benign or pathogenic. We randomly selected one small, one medium, and one
large sequencing center to show in the plots.

7.1 Histogram plots show that the distributions of evi-
dence when sharing clinical data are sufficiently wide
to cross classification thresholds

Figure 1 shows the distribution of evidence gathered at particular small, medium,
and large sequencing centers as compared to the combined data across all se-
quencing centers.

benign

likely 
benign

likely 
pathogenic

pathogenic0

Figure 1: Distribution of accumulated evidence over 5 years at sequencing cen-
ters

The histogram plots in Figure 1 show that all the evidence in small-sized
sequencing centers, except for some evidence which just crosses the threshold for
pathogenic, is insufficient. Similarly, most of the evidence from medium-sized
sequencing centers is insufficient for any classification. But when taken across
all centers together, the evidence exceeds the thresholds required to classify
approximately one-half of the benign variants and over 90% of the pathogenic
variants. The distributions appear bell-shaped and are presumably normal dis-
tributions. We expect this to reflect the real distributions of evidence as the
amount of evidence increases, as described by the central limit theorem in fre-
quentist statistics.
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7.2 Scatter plots shows that evidence for a given variant
may contradict over time

Figure 2 shows the trajectory of evidence gathered at a small, medium, and
large sequencing center as compared to the combined data across all sequencing
centers. Where the thresholds were demarcated as vertical hash lines in the
previous plots, they are demarcated as horizontal hash lines in these plots.

benign

likely 
benign

likely 
pathogenic

pathogenic

0

Figure 2: Example trajectories of accumulated evidence for 10% of variants
modeled in each scenario

The scatter plots in Figure 2 show the trajectory of evidence over time. The
trend of evidence for pathogenic variants is more clearly classifiable than the
trend of evidence for benign variants. In both cases, the evidence goes in both
directions. That is, sometimes there is benign evidence for a pathogenic variant
and vice versa. Importantly, the scatter plots cross the classification thresholds
more quickly when all the variants are combined as compared to individual
sequencing centers.

7.3 Probability plots show that variants are classified sooner
and with higher probability when data is shared

Figure 3 shows the probability of classifying a variant as either benign, likely
benign, likely pathogenic, or pathogenic over time. Here we consider a small,
medium, and large sequencing center which are not sharing anything as com-
pared to two forms of sharing: centers sharing their all of their variant interpre-
tations but none of their clinical data (labeled "any"); and centers sharing all
their clinical data (labeled "all").
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Figure 3: Probability of classification over 5 years at sequencing centers

The probability plots in Figure 3 show the trend that neither a single small-
sized nor medium-sized sequencing center has sufficient evidence to classify VUS
as benign within the first five years. Even the large-sized center only classifies
about 20% and 40% of variants as benign or pathogenic, respectively. When
centers share their variant interpretations, these probabilities increase to about
40% and 80%. When centers share their clinical data, there’s almost a 60%
and 90% chance of classifying a variant as benign or pathogenic after five years.
The “any” plot showing interpretation-sharing includes discrepancies between
different laboratories, for example, the same variant could be likely pathogenic
or likely benign at different laboratories. This feature minimizes the apparent
benefit of true data sharing.

7.4 Sensitivity Analysis
We used confidence intervals (low, expected, and high values) around the fre-
quencies defined in Table 3 in order to determine how sensitive the probabilities
of classification were to each of the ACMG/AMP evidence values. We held
all other parameters constant (equal to their expected values) while changing
one frequency at a time to a low and high value in the confidence interval.
After running through each of the possible values, we arrived at the tornado
plots in Figures 4 and 5 for benign classifications and pathogenic classifications,
respectively.
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7.4.1 Sensitivity analysis shows that the BS4 and BP5 ACMG cri-
teria have highest impact on benign classification

The tornado plot in Figure 4 shows the ACMG/AMP evidence criteria that
have the most profound impact on the probability of classifying a variant as
likely benign or benign.

Figure 4: Tornado plot for benign classification

The parameters BS4 and BP5 have the highest impact on a benign classifi-
cation. The BS4 evidence category represents the non-segregation of the disease
with family members. The frequency of BS4 is 0.1 and it’s odds of pathogenicity
is 1/18.7. This is the both the highest frequency for benign observations as well
as the lowest odds of pathogenicity among the ACMG criteria we included in
our model. The probability of classifying a variant as benign is most sensitive
to this value. Similarly, the frequency of BP5 (evidence that represents having
found the disease due to another, non-genomic cause) is the second highest and
it’s odds of pathogenicity the second lowest among the ACMG criteria included
in our model.

7.4.2 Sensitivity analysis shows that BS4 and PP1 ACMG criteria
have the highest impact on pathogenic classification

The tornado plot in Figure 5 shows the ACMG/AMP evidence criteria that
have the most profound impact on the probability of classifying a variant as
likely pathogenic or pathogenic.
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Figure 5: Tornado plot for pathogenic classification

The tornado plot illustrates that the PP1 evidence criterion has the most
influence on the percentage of variants classified as pathogenic is PP1. The PP1
evidence category is derived from co-segregation of disease with multiple family
members and has the highest frequency in our model (0.2) as well as the sec-
ond highest odds of pathogenicity (2.08). Similarly, the ACMG/AMP evidence
criterion we included in our model which has the most negative influence on
the percentage of variants classified as pathogenic is BS4 (non-segregation with
disease in family members).

8 Discussion
The simulations show that classifying pathogenic variants has a higher odds and
quicker timeline than for classifying benign variants. This is because, according
to the ACMG/AMP evidence criteria and classification guidelines, more evi-
dence is required for benign classification. In terms of cost-benefit analysis in
human variant curation, having a higher evidence threshold for benign variant
classification makes sense as there is a higher cost associated with mis-classifying
a variant as benign than as mis-classifying a variant as pathogenic.

The simulations also show that evidence for a given variant can be contra-
dictory. As defined in the ACMG/AMP classification standards, evidence of
pathogenicity may be presented for benign variants (and vice versa), though
less frequently than for pathogenic variants. This is because there are other
factors besides genetic variation involved in human health, and disease is not
deterministic.

Most importantly, the simulations illustrate that sharing clinical data in-
creases the probability of and accelerates the time to classify VUS. Knowing
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how long and how likely classification is for a VUS with a particular frequency
can guide important decisions for patients and their healthcare teams. For ex-
ample, a patient with a known pathogenic variant on BRCA1 or BRCA2 may
elect to have a prophylactic mastectomy. According to the National Cancer
Institute, bilateral prophylactic mastectomy reduces the risk of breast cancer
in women who carry a BRCA1 or BRCA2 by 95% [16]. A patient with a VUS
on BRCA1 or BRCA2 may choose to wait for their VUS to get classified if
their variant is likely to be classified in the near-term (e.g. within 5 years) but
may not choose to wait if that variant will not likely get classified for another
20 years or more. The majority of variants in the BRCA1 and BRCA2 genes
are of uncertain significance, yet these are two of the most widely studied and
documented genes in the human genome. Other Mendelian diseases with highly
penetrant alleles have an even higher percentage of unclassified variants. Sim-
ilarly, having an approximation for the probability and timeline to classify a
VUS can guide functional assay developers as to which variants they should
include in order to maximize the impact of their efforts. Sharing clinical data
across institutions is critical to human health outcomes.

9 Description of Supplemental Data
The supplemental data contain other experiments we ran using the model.
Specifically, we include in the supplement results from a 20-year simulation, re-
sults from a different combination of centers, and results for a one-in-a-million
variant.
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14 Supplementary Information
In this section, we show the results of simulations for various combinations of
input parameters that are outside the main scope of the paper. First we’ll show
the results from a 20-year simulation using the same mix of sequencing centers.
Next we’ll examine results from a simulation using a very small combination of
sequencing centers (1 large, 3 medium, and 5 small). We’ll look at the results
of a simulation using a 1e-6 frequency VUS. And we conclude by examining the
results of a simulation using a 1e-7 frequency VUS.

Note that throughout this supplement, we provide the plots only for one
of the large sequencing centers in addition to the plots for the aggregated cen-
ter. By this time, we’ve adequately demonstrated what the contributions of
small and medium-sized sequencing centers look like by way of their histogram,
scatter, and probability plots.

14.1 Results from 20-year simulations
Below, we show the histogram, scatter, and probability plots using the same mix
of sequencing centers (10 small, 7 medium, and 3 large), but over the course of
20 years rather than 5 years.
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Figure 6: Distributions of accumulated evidence over 20 years

The histogram plots of the 20-year simulation in Figure 6 show the same
trend: the distributions of evidence are "skinny and tall" for smaller collections
of data and "wide and short" for larger collections of data. In fact, the vast
majority of evidence in the aggregated center are outside the extreme thresholds
required for classifying as benign or pathogenic and even exceed the horizontal
boundaries of the plot itself.
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Figure 7: Trajectory of accumulated evidence over 20 years

The vast majority of pathogenic variants are classified within 7 years, and
all of them appear classified after about 12 years. While there is conflicting
evidence for benign variants after 20 years of collecting data at the large center,
all the evidence for benign variants in the aggregated center is less than 0.

Figure 8: Probability of classification over 20 years

The probability plots of Figure 8 show that variants have only a 40% chance
of being classified as benign after 20 years for the large sequencing center. The
aggregated center, however, almost doubles that probability for benign variants.

18

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.21.449318doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.21.449318


Moreover, the probability of classifying a variant as pathogenic is nearly 1.0 after
just 12 years.

14.2 Results from a combination of 1 large center, 3 medium
centers, and 5 small centers

Below we show the results from simulations using a different combination of
center sizes to demonstrate the value of clinical and variant data sharing even
at a smaller scale. The other parameters of the model are the same as what
was used in the simulations described in the main manuscript: 1e-5 variant
frequency, 5-year time period, and 1,000 simulated variants.
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Figure 9: Distribution of accumulated evidence over 5 years at sequencing cen-
ters

The histogram plots of Figure 9 of this smaller combination of sequencing
centers points out that with just one large sequencing center, there’s not much
difference in the distributions of that large center and the aggregated center.
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Figure 10: Trajectory of accumulated evidence over 5 years at sequencing centers

The trajectory plots of Figure 10 show that while there’s not much difference
in the evidence gathered for benign variants, there is a recognizable difference
in the evidence gathered for pathogenic variants.

Figure 11: Probability of classification over 5 years at sequencing centers

The probability plots of Figure 11 show that there’s not much difference be-
tween one large center and any center in the probability of classifying a variant.
When all centers share their clinical data, there’s a remarked improvement in
the probability of classifying pathogenic variants.
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14.3 Results for a one-in-a-million variant
Below we show the results from simulations for a variant with frequency 1e-6.
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Figure 12: Distribution of accumulated evidence over 5 years

The histogram plots of Figure 12 show that all the evidence follows a "skinny
and tall" distribution, even in the aggregrated center.
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Figure 13: Trajectory of accumulated evidence over 5 years

The trajectory plots of Figure 13 show that most of evidence for pathogenic
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variants is insufficient and often contradictory to classification.

Figure 14: Probability of classification over 5 years

The probability plots of Figure 14 show that, in the best case of the aggre-
gated center, pathogenic variants have almost a 60% chance of being classified.
The probability of classifying benign or likely benign is negligible, even when
sharing data.
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