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ABSTRACT 11 
 12 
Animals make adaptive food choices to acquire nutrients that are essential for survival. In reinforcement 13 
learning (RL), animals choose by assigning values to options and update these values with new experiences. 14 
This framework has been instrumental for identifying fundamental learning and decision variables, and their 15 
neural substrates. However, canonical RL models do not explain how learning depends on biologically critical 16 
intrinsic reward components, such as nutrients, and related homeostatic regulation. Here, we investigated this 17 
question in monkeys making choices for nutrient-defined food rewards under varying reward probabilities. 18 
We found that the nutrient composition of rewards strongly influenced monkeys’ choices and learning. The 19 
animals preferred rewards high in nutrient content and showed individual preferences for specific nutrients 20 
(sugar, fat). These nutrient preferences affected how the animals adapted to changing reward probabilities: the 21 
monkeys learned faster from preferred nutrient rewards and chose them frequently even when they were 22 
associated with lower reward probability. Although more recently experienced rewards generally had a 23 
stronger influence on monkeys’ choices, the impact of reward history depended on the rewards’ specific 24 
nutrient composition. A nutrient-sensitive RL model captured these processes. It updated the value of 25 
individual sugar and fat components of expected rewards from experience and integrated them into scalar 26 
values that explained the monkeys’ choices. Our findings indicate that nutrients constitute important reward 27 
components that influence subjective valuation, learning and choice. Incorporating nutrient-value functions 28 
into RL models may enhance their biological validity and help reveal unrecognized nutrient-specific learning 29 
and decision computations. 30 
 31 
 32 
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INTRODUCTION 34 

According to the influential Reinforcement Learning (RL) framework, animals learn by updating reward 35 
values based on experience and chose by comparing these values between options1. The RL framework has 36 
been critical for identifying fundamental learning and decision variables that guide animals’ behaviour, 37 
including object values and action values, which provide essential decision inputs, and the reward prediction 38 
error, which updates values from experience. Direct physical implementations of these theoretical constructs 39 
have been discovered in the activity of neurons in primate dopamine neurons2-5, striatum6,7, amygdala8,9, and 40 
prefrontal cortex10-13. Despite its broad explanatory power, the RL framework does not explain how learning 41 
and choice depend on specific reward properties. For example, nutrients are biologically critical, intrinsic 42 
components of food rewards, and an animal’s survival depends on its ability to make adaptive food choices 43 
that acquire specific nutrients. Investigating how nutrient rewards influence learning and choice could not only 44 
enhance the biological validity of RL models. It may also guide the discovery of so-far unrecognized nutrient-45 
specific learning and decision computations, and their neuronal implementations.  46 

Because nutrients are mainly acquired from food intake, an animal’s ability to adapt its food choice to 47 
changing nutrient availabilities critically determines its nutrient balance and long-term health. To optimize 48 
nutrient intake, foraging animals adapt their feeding patterns in response to regional and seasonal variations of 49 
food resources14-16. For instance, monkeys spend more time in food patches associated with a high probability 50 
of nutritious foods (e.g., nuts) while ignoring more frequent low-nutrient foods (e.g., leaves). Primates, 51 
including humans, also exhibit individual subjective preferences for specific nutrients and sensory food 52 
qualities to regulate nutrient intake17-24. Thus, ecological data suggest that animals consider both the nutritional 53 
value of food and the food’s availability. However, the specific learning and decision computations underlying 54 
such nutrient-sensitive food choices remain unclear. Here, we examined the food choices of rhesus monkeys 55 
(Macaca mulatta) in a dynamic foraging task that involved choices between rewards with different nutrient 56 
(fat, sugar) components under varying reward probabilities. 57 

Previous studies examined how monkeys adapt to changing reward probabilities9-13,25-27. In probabilistic 58 
learning tasks, monkeys track the high-probability option based on past choices and reward outcomes and 59 
distribute their choices according to the reward probability of both options. This learning strategy has been 60 
modelled by linking subjectively weighted recent rewards to current choices (‘reward history’) using logistic 61 
regression25,26 and by dynamic updating of option values based on reward outcomes via RL mechanisms1. We 62 
followed these approaches and examined whether monkeys assigned higher value to more nutritious foods 63 
during learning and learned faster from high-nutrient rewards. 64 

First, we characterized monkeys’ nutrient preferences and learning during probabilistic reward-based 65 
choices. If the monkeys preferred specific nutrients, they should choose high-nutrient rewards more frequently 66 
and track their changing probability more closely to maximize intake of the specific nutrient. We recently 67 
showed in a nutrient-choice task without learning requirement that macaques’ choices reflect underlying, 68 
stable nutrient-value functions22. Accordingly, we hypothesized that nutrient-value functions also govern 69 
choices during probabilistic reward learning. 70 

Next, we examined whether monkeys demonstrated nutrient-specific learning. We followed established 71 
approaches for characterizing the integration of past reward experiences into subjective values using logistic-72 
regression and RL frameworks10,11,25,26 to examine whether nutrient preferences modulated reward learning. 73 
To account for nutrient-specific learning, influences of recent reward and choice histories on current choice 74 
should be higher for high-nutrient reward. Accordingly, the value function in a formal RL model should 75 
incorporate higher preferences for high-nutrient rewards (‘nutrient-value function’). In addition, the animals 76 
may assign higher weights to reward outcomes with particular nutrient content, as reflected by influences on 77 
learning rate (‘nutrient-specific learning rates’).  78 

Finally, based on behavioral evidence for nutrient-sensitive reinforcement learning, we propose candidate 79 
neuronal mechanisms necessary to implement nutrient-specific learning and decision computations, as a 80 
framework to guide future neurophysiological recordings. 81 
  82 
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Fig. 1. Nutrient foraging task. A) Task structure. In each trial, two visual cues appeared sequentially on a touch screen before 85 
reappearing in a left-right arrangement as choice targets. Following the touch choices, the monkeys received the liquid reward 86 
associated with the chosen cue. The amount of the delivered reward depended on a prespecified reward probability (p). B) Four types 87 
of liquids with 2 × 2 factorial fat and sugar levels were offered to the monkeys: the low-fat low-sugar (LFLS) liquid, the high-fat low-88 
sugar (HFLS) liquid, the low-fat high-sugar (LFHS) liquid, and the high-fat high-sugar (HFHS) liquid. C) Reward probabilities 89 
associated with the different reward types reversed between blocks of trials in a testing session. In block A, LFHS and HFLS were 90 
associated with a high probability (𝑝 = 0.8) of receiving the large reward, LFLS and HFHS were associated with a low probability 91 
(𝑝 = 0.2) of large reward; these probabilities reversed in block B. D) Each session started with either block A or block B and the 92 
reward probabilities reversed every 100 trials between the two block types, with typically 3-5 reversals per session. 93 
 94 
 95 
RESULTS 96 

Two monkeys performed in a dynamic foraging task to obtain different nutrient-defined liquid rewards 97 
(Fig. 1A). In each choice trial, the monkeys were presented with two visual cues from a set of four, chose 98 
between the two cues, and received either a large amount (‘rewarded’) or a small amount (‘non-rewarded’) of 99 
the cue-associated liquid reward, depending on a prespecified reward probability (𝑝). We used new, untrained 100 
visual cues in each session to avoid influences of prior experience. Session-specific visual cues were each 101 
associated with one of four different rewards; cue-reward associations were fixed within each session. To 102 
examine whether fat and sugar biased learning from reward outcomes, we used liquid rewards from a 2 × 2 103 
factorial design with fat and sugar levels as factors (Fig. 1B; LFLS: low-fat low-sugar; HFLS: high-fat low-104 
sugar; LFHS: low-fat high-sugar; HFHS: high-fat high-sugar). At the start of each session, two rewards 105 
(LFLS/HFHS or LFHS/HFLS) were associated with a high probability of obtaining a large reward (𝑝 = 0.8), 106 
and the other two rewards were associated with a low reward probability (𝑝 = 0.2) (Fig. 1C, block A or block 107 
B). We reversed the reward probabilities every 100 trials throughout the session (𝑝 = 0.2 → 0.8; 𝑝 = 0.8 →108 
0.2) to encourage continual learning from reward outcomes (Fig. 1D). Notably, this design offered the 109 
monkeys equal availability of fat and sugar in all choice trials irrespective of block type because there were 110 
always two high-probability and two low-probability options for both high-fat and high-sugar rewards. All 111 
liquids were matched in flavour (blackcurrant or peach) and other ingredients (protein, salt, etc); therefore, 112 
differential learning and choice patterns could be attributed to the nutrient content of the rewards. 113 

 114 
Nutrients bias reward learning and food choices 115 
 The behaviour in two example sessions (Fig. 2A) showed that both monkeys exhibited preferences for 116 
specific nutrients while tracking changing reward probabilities. Monkey Ya’s choices (Fig. 2A, top) were 117 
dominated by a general preference for high-sugar rewards, with a smaller impact of reward probability on 118 
choice. Specifically, monkey Ya chose the high-sugar rewards frequently even when they were associated with 119 
a lower probability of obtaining a large reward amount; in addition, choice frequencies tracked changing 120 
reward probabilities, particularly for the high-sugar rewards. By contrast, monkey Ym’s choices (Fig. 2A, 121 
bottom) reflected both a preference for high-nutrient content and a strong dependence on reward probability. 122 
Specifically, within a given trial block, monkey Ym preferred high-nutrient rewards over low-nutrient rewards 123 
with matched reward probabilities (compare red and yellow curves) but would reduce his choices for the high-124 
nutrient reward when it was associated with a relatively lower reward probability. 125 
 The patterns observed in single sessions were also observed in averaged data across sessions. Overall, the 126 
monkeys’ choice probabilities increased when reward probabilities switched from low (𝑝 = 0.2) to high (𝑝 =127 
0.8), as evident by averaged choice probabilities around probability-reversal points (Fig. 2B). Importantly, the 128 
monkeys responded differently to probability changes for rewards that differed in fat and sugar content, with 129 
more pronounced probability increases for high-nutrient rewards and specifically high-sugar rewards (Fig. 2B). 130 
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When reward probabilities were stable (between reversal points), monkey Ya showed a strong preference for 131 
the high-sugar rewards irrespective of fat level, whereas monkey Ym showed graded preferences for both high-132 
fat and high-sugar rewards over the low-nutrient option (Fig. 2C). Immediately following the probability 133 
reversals, the monkeys had shorter learning latencies for high-nutrient rewards: they adjust their choices more 134 
quickly to the changed reward probabilities when high-sugar and high-fat rewards were offered, which 135 
indicated that learning was sensitive to the nutrient content of reward outcomes (Fig. 2D). Thus, the monkeys 136 
preferred high-nutrient rewards, tracked changing reward probabilities in a nutrient-dependent manner, and 137 
learned faster from high-nutrient reward outcomes. 138 
 139 

 140 
 141 

Fig. 2. Nutrient-sensitive learning and choice in monkeys. A) Choices and reward outcomes in a single session for monkey Ya (top) 142 
and monkey Ym (bottom). Each tick mark represents a choice of a specific reward type; long marks indicate large reward outcome, 143 
short marks indicate small reward outcomes. Reward types in dark-gray blocks were associated with high reward probability (𝑝 = 0.8) 144 
and those in light-gray blocks were associated with low reward probability (𝑝 = 0.2). Choice curves showed running-average choice 145 
patterns of each reward. B) Learning curves. Mean running-averaged choice frequencies aligned to probability reversals (𝑝 = 0.2 →146 
0.8) indicate how choices depend on both reward-probability changes and nutrient content. (N: number of tested sessions). C) Reward 147 
preferences. Average choice frequencies indicate preferences among the four reward types. The choice frequencies were computed 148 
after sessions were truncated, including only probability-balanced trials for all reward types. (mean ± s.e.m.)  (N: number of trials). D) 149 
Learning latency. The number of trials from probability reversal to the first significant change point in the cumulative choice record 150 
(see Methods) indicates latency to adapt choices after probability changes. E) Monkeys’ single-session cumulative choice records 151 
deviate from the pure probability-matching strategy. PM: probability-matching choice strategy, calculated by matching choices to the 152 
past ratio of large/small rewards, irrespective of reward type. F) Direct comparisons of monkeys’ choices with probability-matching 153 
choices. Circles indicate probability reversals. G) Nutrient-sensitive matching behavior. Correlations of choice ratios with fat, sugar, 154 
and probability ratios, respectively. H) Normalized regression coefficients of probability ratios, fat ratios, and sugar ratios on choice 155 
ratios. (mean ± s.e.m.).  156 
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 157 
 158 
Fig. 3. Nutrient-specific reward and choice histories influence monkeys’ choices. A) Choice probabilities for different rewards 159 
depended on recent experience. Choice probabilities when the same reward was chosen on the previous trials (‘choice’), when a large 160 
reward was received on the previous trial (‘reward’), and irrespective of last-trial choice and reward outcomes (‘offer’). B) History 161 
model for explaining the choice. The history model included regressors for choice history and reward history, with choice history = 1 162 
(chosen) or 0 (not chosen) and reward history = 1 (rewarded) or 0 (non-rewarded) for the past 10 trials. C) Results, history model. 163 
Logistic-regression coefficients show influences of reward (left) and choice history (right) on current choices. (mean±s.e.m.; dark-gray 164 
bars: P < 0.05; light-gray bars: non-significant) D) Nutrient model for explaining choices. In contrast to the assumption of uniform 165 
history effects across reward types in the history model, the nutrient model examined nutrient-specific history effects by including 166 
additional nutrient-specific history regressors. E) Results, nutrient model. Nutrient-specific logistic regression coefficients for current 167 
choices. (P < 0.05, yellow: LFLS; green; HFLS; blue: LFHS; red: HFHS; light-gray bars: non-significant) F) Model performances and 168 
history lengths. Model performance improved with history length based onΔAIC = AIC (trial lag = 0) – AIC (trial lag = 𝑖, 𝑖 =1,2,…,10). 169 
AIC = Akaike Information Criteria. History length-matched nutrient models and history models were compared using the loglikelihood 170 
test. Higher ΔAIC values indicated that the nutrient model outperformed the history model in all history length-matched comparisons. 171 
G) Aggregated effects of reward and choice history increased with history lengths and reflected nutrient composition, indicated by the 172 
cumulative reward or choice history regression coefficients over recent trials. 173 
 174 
 The preferences for fat and sugar biased the monkeys’ choices away from a pure probability-matching 175 
(PM) strategy, which predicted distributed choices according to the relative frequency of receiving large 176 
rewards from each option. In the two example sessions, choices for the high-sugar rewards accumulated more 177 
rapidly than predicted by the PM strategy, whereas choices for low-sugar rewards accumulated more slowly 178 
(Fig. 2E). Specifically, compared to the PM strategy, monkey Ya significantly over-matched the high-sugar 179 
rewards and under-matched the low-sugar rewards, irrespective of reward-fat level. These patterns were much 180 
less pronounced in monkey Ym (Fig. 2F). Specifically, the choice ratios of monkey Ya were dominated by 181 
the sugar ratios but those in monkey Ym were jointly determined by the probability ratios and sugar ratios 182 
(Fig.2G). Multiple regression confirmed that, in addition to the probability ratios, both the fat and sugar ratios 183 
significantly influenced the choice ratios (Fig. 2H). Notably, both monkeys’ choices were explained by similar 184 
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effect sizes of the probability ratios and the fat ratios. However, the effects of sugar ratios were particularly 185 
strong in monkey Ya but slightly weaker than the influences of probability ratios in monkey Ym. 186 
 Taken together, these results suggested that the specific nutrient composition of food rewards and the 187 
animals’ individual preferences for sugar and fat biased learning and choice. 188 
 189 
Nutrient-specific reward history and choice history influence monkeys’ choices 190 

One strategy to respond to unsignaled changes in reward probabilities is to choose based on recent choices 191 
and reward outcomes. Because the choice outcomes reflect the underlying reward probability, this strategy 192 
adapts choices to the changing reward probabilities and can help to optimize reward rate and nutrient-intake 193 
levels. Consistent with these notions, we found that monkey Ym tended to repeat his choices, particularly after 194 
receiving a large reward on the previous choice; this effect was evident across all reward types (Fig. 3A, right). 195 
By contrast, the tendency to repeat choices was less pronounced for the low-sugar rewards in monkey Ya (Fig. 196 
3A, left). This result suggested that both recent choices and the reward outcomes increased choice repetition, 197 
but the influences depended on individual nutrient preferences. 198 

To formally characterize the learning from recent choices and reward outcomes, we modelled the trial-199 
by-trial choices in a logistic regression model (history model, see Method) that accounted for whether the 200 
option was chosen in previous offers (choice history) and whether the previous choices were rewarded (reward 201 
history) (Fig. 3B). The regression coefficients showed that both the choice and reward history reinforced 202 
current choices and that these effects decayed for more remote past trials (Fig. 3C). Given the monkeys’ 203 
preferences for fat and sugar, we next examined whether these reward- and choice-history effects also 204 
depended on the nutrient composition of reward outcomes and choice offers. We tested this possibility by 205 
including nutrient-history interaction regressors in the history model (nutrient model, see Method). These 206 
interaction terms would capture any additional reinforcing effects from specific nutrients by decomposing the 207 
aggregated reward and history effects into the effects of baseline low-nutrient liquid (𝛽0), high-fat content (𝛽𝐹), 208 
and high-sugar content (𝛽𝑆), depending on the fat and sugar levels of the offered reward types (Fig. 3D-E). 209 
Larger history regression coefficients for sugar compared to fat suggested that recently obtained high-sugar 210 
reward outcomes had a stronger impact on current-trial choice than recently obtained high-fat rewards in both 211 
monkeys. However, the two monkeys differed in their tendency to repeat choices for high-fat and high-sugar 212 
liquids, as indicated by the nutrient-specific choice-history coefficients. Monkey Ya repeated the high-sugar 213 
choices more frequently than choices for low-nutrient rewards and high-fat rewards. By contrast, monkey Ym 214 
repeated choices slightly less frequently for the high-sugar rewards. Importantly, although the explanatory 215 
power of both models increased with history length, the nutrient model outperformed the history model in all 216 
history length-matched comparisons (Fig. 3F). These history effects showed distinct temporal dynamics in the 217 
two monkeys although they both decayed either in the history model or the nutrient model (Fig. 3G). 218 

These results indicated that both monkeys’ choices depended on the recent histories of obtaining and 219 
choosing rewards with specific nutrient content. 220 

 221 
Reinforcement learning based on nutrient-specific values 222 
 The temporal dynamics of the nutrient-specific reward- and choice-history effects suggested that the 223 
monkeys constantly updated their choices based on recent choices and reward outcomes. RL models that 224 
update trial-by-trial reward values for each option based on the reward outcomes are well-suited to model such 225 
adaptive choices. However, canonical RL models typically do not account for the nutrient composition of food 226 
rewards, and accordingly cannot explain the presently observed nutrient preferences and nutrient-specific 227 
learning effects. Therefore, we developed a nutrient-sensitive RL model that incorporated subjective nutrient 228 
values to model how specific nutrients (fat, sugar) differentially influenced the trial-by-trial updating of 229 
expected reward values and their influence on the choice (Fig 4A). Instead of updating the value of the chosen 230 
reward with a binary reward outcome, our model updated reward values based on the nutrient composition of 231 
each reward type as given below, 232 
 233 

𝑄𝑖(𝑡 + 1) = 𝑄𝑖(𝑡) + 𝛼 ∙ [𝑉𝑖(𝑡) − 𝑄𝑖(𝑡)], 𝑉𝑖(𝑡) =

{
 

 
1/(𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆) , 𝑖(𝑡) = 𝐿𝐹𝐿𝑆

𝑉𝐹/(𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆) , 𝑖(𝑡) = 𝐻𝐹𝐿𝑆

𝑉𝑆/(𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆) , 𝑖(𝑡) = 𝐿𝐹𝐻𝑆
1 , 𝑖(𝑡) = 𝐻𝐹𝐻𝑆

 234 

, where the value for reward 𝑖, 𝑄𝑖, was updated depending on the chosen reward type on trial 𝑡, 𝑖(𝑡) and its 235 
nutrient-specific reward value, 𝑉𝑖(𝑡). 𝑉𝐹, 𝑉𝑆, and 𝑉𝐹𝑆 denoted the subjective value of high-fat content, high-236 
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sugar content, and their interaction, respectively, on the common scale of the low-nutrient reward value. 237 
Therefore, any nutrient value larger than 1 suggested a preference for the specific nutrient; values for 𝑉𝐹𝑆 238 
larger than 1 indicated supra-additive values of fat and sugar. Without loss of generality, we normalized all 239 
reward values to the highest nutrient value, (𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆), to constrain all reward values between 0 and 1. For 240 
the unchosen and unoffered rewards, we allowed the values to decay as follows, 241 
 242 

𝑄𝑗(𝑡 + 1) = 𝑄𝑗(𝑡) ∙ (1 − 𝛼
0),   ∀𝑗 ≠ 𝑖(𝑡) 243 

, where the values of the unchosen and unoffered rewards, 𝑄𝑗(𝑡), were discounted according to a forgetting 244 

rate (𝛼0), which would be 0 for perfect (but biologically implausible) value memory. 245 
 The results of fitting this nutrient-sensitive RL model to each monkeys’ choices and reward outcomes in 246 
each session confirmed that both monkeys assigned higher values to the high-sugar choice options and that 247 
monkey Ym assigned higher value to fat but monkey Ya did not (Fig. 4B). The high-fat high-sugar reward 248 
was also valued higher than the low-nutrient reference, but the fat values and the sugar values did not show 249 
supra-additive effects in monkey Ya but negative interactions in monkey Ym when determining the reward 250 
values (Fig. S1). The model-derived subjective values for fat and sugar accurately predicted the monkeys’ 251 
choices (Fig. 4C). The nutrient-sensitive RL model outperformed alternative RL models involving 252 
combinatorial differential learning rates and nutrient-specific parameters (Fig. 4D; see Methods). Notably, 253 
there was no evidence for nutrient-specific learning rates but only a significant but small forgetting rate for 254 
monkey Ym (Fig. S2). 255 
 Thus, the monkeys’ stochastic choices for rewards with specific nutrient compositions were well 256 
explained by a nutrient-sensitive RL model that assigned nutrient-specific values to reward outcomes. 257 

 258 
 259 

 260 
 261 
Fig. 4. Nutrient-sensitive reinforcement learning models. A) The nutrient-value RL model (NV-RL model). Reward values were 262 
updated based on the nutrient-specific values, 𝑉𝑖(𝑡), with 𝑉𝐹 indicating values for the high-fat content, 𝑉𝑆 for the high-sugar content, 263 
𝑉𝐹𝑆 for the high fat-sugar combination, and 1 for the low-nutrient value reference. We normalized all reward values to the highest 264 
reward value (𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆) to constrain all reward values between 0 and 1. B) Nutrient-specific reward values. The distributions of 265 
fitted nutrient-specific reward values across trials (monkey Ya: log scale; monkey Ym: linear scale). All reward values were tested 266 
against equal values for all reward types (nutrient values =1), Wilcoxon signed-rank test. C) Nutrient-value functions. Psychometric 267 
curves based on integrated values, calculated with the nutrient-value RL model, indicate that both monkeys’ choices depended on 268 
nutrient-dependent value differences between choice options. D) Model comparisons. The main nutrient-value RL model (NutVal-269 
Forget model) was systematically compared with alternative RL models involving combinations of differential learning rates (NutVal 270 
= nutrient-specific values; NutValAlpha = nutrient-specific values + learning rates, Figure S2A) and nutrient-specific parameters (Asym 271 
= independent learning rate for the non-rewarded chosen option; Forget = value-forgetting for unchosen and unoffered options). Models 272 
were compared using Akaike Information Criterion (AIC). All model AICs were subtracted from the AIC of the basic RL model 273 
(∆𝐴𝐼𝐶 = 𝐴𝐼𝐶𝑏𝑎𝑠𝑖𝑐 − 𝐴𝐼𝐶) for comparison. The higher mean ∆𝐴𝐼𝐶 indicated better model performance (red: the best fitting model). 274 
 275 
  276 
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Value updating based on distinct sugar and fat value components 277 
The nutrient-sensitive RL model implied that the animals can independently track values for specific fat and 278 
sugar nutrients, and integrate them into a scalar value that guided choices. To better understand the dynamics 279 
of this nutrient-specific value tracking and updating, we modelled the dynamic learning of individual nutrient 280 
values in a nutrient prediction error-based RL model (NPE-RL) in which the reward value on trial 𝑡, 𝑄𝑖(𝑡), was 281 
jointly determined by individual fat value and sugar value components (Fig. 5A, see Methods). 282 

The NPE-RL model characterized how fat and sugar values could (i) separately adapt to changes in reward 283 
probabilities as indicated by experienced outcomes, and (ii) flexibly determine the integrated reward values 284 
for specific choice options, based on their nutrient composition. Specifically, the fat and sugar RPEs for each 285 
reward updated the fat and sugar values, respectively, which were then combined into integrated reward values 286 
to guide choices (Fig. 5A). Decomposing the reward values into two independent nutrient components revealed 287 
each animal’s idiosyncratic sensitivity of reward values to individual nutrient constituents. To illustrate the 288 
dynamic, nutrient-specific value updating, we plotted the evolving value trajectories within a session in a space 289 
defined by the separate fat and sugar value components (Fig. 5B). These trajectories indicated that the updating 290 
of reward values in monkey Ya was primarily based on the sugar value component over the fat value 291 
component, whereas both fat and sugar value components contributed to value learning in monkey Ym (Fig. 292 
5B). 293 
 294 

 295 
 296 
Fig. 5. Dynamics of sugar and fat value components in nutrient-sensitive reinforcement learning. A) Nutrient-specific value 297 
updating. Nutrient-specific values for sugar (top) and fat (bottom) were updated based on discrepancies between previous choice 298 
outcomes and predicted nutrient rewards (nutrient prediction errors, NPE); sugar and fat values were integrated into composite reward 299 
values that guided choices. B) Trajectories of nutrient-specific values within sessions. The value trajectories tracked the evolving 300 
reward values and their nutrient components with choice trials. C) Projected reward-value trajectories and iso-value contour curves. 301 
Each segment showed the ranges and orientations of the fluctuating reward values in the nutrient value space. The diagonal line 302 
represented equal contributions of the nutrient components to the reward values. D) Nutrient sensitivities of reward values. 303 
Distributions of the rotating angles quantified the relative changes of nutrient values during reward value updating (∆𝑉𝑆 ∆𝑉𝐹⁄ ) across 304 
sessions. Wilcoxon signed-rank test.  305 
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 306 
 307 

 308 
Fig. 6. Neuronal mechanisms for nutrient-sensitive reinforcement learning and choice. A) Nutrient-sensitive reinforcement 309 
learning architecture. Fat-value neurons (F) and sugar-value neurons (S) each update the fat and sugar components of the value 310 
predictions and provide input to the reward-value neurons (R) that code integrated values for decision computations. B) Predicted 311 
neuronal responses of fat-value, sugar-value, and reward-value neurons. Fat-value neurons (F) are updated based on fat-specific 312 
reinforcement learning (fat prediction errors) from delivered rewards, with higher responses to high-fat compared to low-fat rewards. 313 
An equivalent process operates for sugar-value neurons (S). Together, these nutrient-value neurons converge onto reward-value 314 
neurons to code scalar value signals in a common currency for downstream decision computations.  C) Nutrient-sensitive decision-315 
making neural network. Sensory properties of foods are detected via multiple sensory channels and integrated into nutrient-associated 316 
feature representations that determine nutrient values depending on the internal physiological state. Nutrient values then flexibly inform 317 
reward values for decision computations, based on the nutrient composition of food rewards. 318 

 319 
 320 
The distinct sensitivities of reward values to specific nutrient components were illustrated by projections 321 

of dynamic reward value trajectories onto the nutrient value space, where ‘iso-value contours’ visualized levels 322 
of equal reward values (Fig. 5C). If reward values were equally sensitive to both the sugar and fat nutrient 323 
components, the value trajectories should fall onto the 45-degree diagonal line in nutrient value space. Because 324 
we normalized the nutrient values to the HFHS reward, the value trajectory for HFHS would be at the diagonal 325 
for both monkeys (Fig. 5C, red). However, higher sensitivity to the sugar value components compressed the 326 
low-sugar value trajectories along the sugar value axis and rotated the trajectories towards the fat value axis 327 
(clockwise); similarly, higher sensitivity to the fat value components rotated the low-fat trajectories towards 328 
the sugar value axis (counterclockwise). For example, monkey Ya showed a slight counterclockwise-rotated 329 
LFHS trajectory and marked clockwise-rotated low-sugar trajectories, indicating his weak preference for fat 330 
and the strong preference for sugar, respectively. In contrast, monkey Ym showed only mild clockwise-rotated 331 
low-sugar trajectories and negligible rotation for the LFHS value trajectory, reflecting his mild sugar 332 
preference and non-significant fat preference.  333 
 The rotating angles of the value trajectories in the nutrient value space quantified the relative changes of 334 
sugar and fat values on the value trajectories (∆𝑉𝑆 ∆𝑉𝐹⁄ ), therefore highlighting the contributions of each 335 
nutrient value to the overall reward values. Compared to the steepest 45-degree value gradient, value 336 
trajectories with rotating angles larger or smaller than 45 degrees updated reward values with distinct 337 
contributions of each nutrient value. Specifically, reward values were mostly updated from the fat values when 338 
the angles were smaller than 45 degrees, but more from the sugar values if the angles were larger than 45 339 
degrees. Across sessions, the nutrient-specific contributions of reward values, indicated by the orientations of 340 
the value trajectories, recapitulated the subjective nutrient values estimated by the nutrient-sensitive RL model 341 
(Fig. 5D). 342 
 Thus, subjective nutrient-value functions guided the dynamic updating and the integration of reward 343 
values based on individual nutrient-specific components.  344 
 345 
  346 
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DISCUSSION 347 
We investigated monkeys’ choices for different nutrient-defined rewards under varying reward 348 

probabilities. We found that the nutrient composition of rewards strongly influenced choices and learning. The 349 
animals generally preferred rewards that were high in nutrient content but also showed individual preferences 350 
for sugar and fat, consistent with the assignment of subjective values to choice options. The animals’ nutrient 351 
preferences affected how they adapted their choices to changing reward probabilities. Specifically, the 352 
monkeys learned faster from preferred nutrient-rewards and chose them frequently even under low reward 353 
probabilities (i.e., low probability of obtaining large reward amounts). Influences of past rewards on current 354 
choice were well described by a reward-history analysis. As in previous studies11,25, more recent rewards had 355 
a stronger influence on the monkeys’ choices. Critically, we also found that the impact of reward history 356 
depended on the nutrient composition of past rewards: the effect of past rewards high in preferred sugar content 357 
was stronger compared to that of less preferred low-nutrient or fat rewards. The history of past choices, 358 
irrespective of reward outcomes, also had a significant and nutrient-dependent effect on choice, with stronger 359 
effects of past choices for preferred nutrient rewards. We proposed a nutrient-sensitive RL model that captured 360 
the influences of preferred nutrients on learning and choice. The model updated the value of individual sugar 361 
and fat components of expected rewards trial by trial, based on recently experienced rewards, and integrated 362 
these components into scalar values that explained the monkeys’ choices. These results suggest that nutrients 363 
constitute important reward components that influence subjective valuation, learning and choice, and that 364 
canonical RL models can be usefully extended to capture such nutrient-specific values. 365 

Previous studies of reinforcement learning in macaques revealed important influences on learning and 366 
choice, including effects of reward and choice history5,7,11-13,25-27, the variance of recent rewards10, novelty and 367 
reward rarity9,28, and social observations8. Importantly, these studies did not vary the composition of reward 368 
outcomes and thus could not test whether specific reward components differentially affected learning and 369 
choice. We reasoned that nutrients are biologically critical reward components that are essential for survival 370 
and that monkeys should prefer high-nutrient rewards and adapt their choices to optimise nutrient intake. By 371 
manipulating the sugar and fat content of our liquid rewards, we confirmed that the monkeys’ learned 372 
differently from these different rewards.  373 

Previous studies demonstrated that macaques have sophisticated preferences for different reward types 374 
that comply with principles of economic choice theory2,29-31 but did not examine how different rewards affect 375 
learning. Here we showed that subjective preferences for specific nutrients influenced how monkeys tracked 376 
the changing reward probabilities of choice options. Specifically, both animals learned faster from preferred 377 
nutrient rewards. Moreover, they based their choices on both subjective valuations of offered reward types and 378 
estimates of current reward probabilities. This latter finding confirms the result from a previous study that 379 
macaques integrate reward type and probability information to express subjective preferences29; different from 380 
that study, our monkeys were required to derive probability information from past reward experiences rather 381 
than from explicit visual cues. 382 

Crucially, by varying the nutrient composition of rewards, we investigated reinforcement learning and 383 
choice for biologically important, universal reward components. Nutrients are basic building blocks of foods 384 
that are sensed by dedicated taste and oral-texture mechanisms22,32-34 and engage physiological and homeostatic 385 
processes35,36. Moreover, evidence from ecology and human metabolic sciences points to specific behavioral 386 
mechanisms that regulate nutrient intake. For example, ecological studies identify a ‘nutrient-balancing 387 
mechanism’ in wild macaques that promotes reproductive and survival success14,37-39. In humans, reduced 388 
protein in ultra-processed foods increases energy intake by ‘protein leveraging’, a mechanism that regulates 389 
food choice to counter protein deficits35,40-42. A 'fat-appetite mechanism' emerges in human monogenic obesity 390 
affecting melanocortin-signalling21. We recently showed that in macaques, nutrients and sensory food qualities 391 
(taste, viscosity, oral friction) shape human-like economic preferences22. Our approach makes a first step 392 
towards integrating the influential RL framework with these nutrient-dependent behavioral processes and thus 393 
enhance its biological validity.  394 

The concept of nutrient homeostasis in metabolic sciences suggests that internal states modulate nutrient 395 
values to guide state-dependent food choices. Recent homeostatic RL models explain the value of rewards as 396 
discrepancies between the current state and physiological setpoints43. This approach views reward values as 397 
physiological signals that serve to maintain homeostasis. However, fat and sugar can be preferred even without 398 
corresponding nutrient deficits22,23,44; therefore, the hedonic values of foods cannot be explained solely by 399 
homeostatic regulations of nutrient deficits. Future experiments could challenge the nutrient states of animals 400 
during food choices to estimate empirical nutrient-value functions from state-dependent choice patterns to 401 
refine these models. 402 
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We described a nutrient-specific learning mechanism that updates value estimates for separate fat and 403 
sugar reward-components and integrates this information to guide adaptive food choices. This mechanism 404 
implies parallel nutrient valuation systems that detect and evaluate the nutrient components depending on 405 
internal states. The neuronal implementation of this mechanism would require neurons that encode individual 406 
nutrient values (nutrient-value neurons) and dynamically update these nutrient values via nutrient prediction 407 
error signals (Fig. 6A). At a neural-network level (Fig. 6B), these nutrient-value neurons would extract 408 
nutrient-specific features from a food’s sensory properties to guide food choices. Importantly, physiological-409 
state signals could modulate the neural representations of nutrient values to allow for state-dependent valuation 410 
of food rewards. Therefore, we propose nutrient-value neurons and nutrient prediction error signals as potential 411 
substrates for nutrient-sensitive learning and choice. 412 

Our findings within a nutrient-based RL paradigm and our proposed computational framework have 413 
implications for value-based learning and decision theories and underlying neural mechanisms. Because 414 
nutrients provide energy and serve physiological functions for survival, animal reward systems should be 415 
shaped by nutrient availability in the environment and evolved dedicated mechanisms for adaptive nutrient-416 
sensitive decision-making. By decomposing the trial-by-trial reward values that guide reinforcement learning 417 
into nutrient-value components, we identified candidate signals that could be encoded by neurons in the reward 418 
and decision systems of the primate brain. The midbrain dopamine neurons, orbitofrontal cortex and amygdala 419 
participate in decision-making, reinforcement learning, and food evaluation2,3,8,31,45-48 and thus constitute 420 
suitable targets for testing these hypotheses experimentally. 421 
 422 
 423 
  424 
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METHODS 425 
 426 
Animals. Two adult male rhesus macaques (Macaca mulatta) were trained in the study: monkey Ya (weight 427 
during the experiments: 17-19 kg, age: 6 years) and monkey Ym (12-13 kg, age 6 years). The animals were 428 
trained and tested approximately one to two hours per day and five days per week for 6 months. Both monkeys 429 
participated in another nutrient choice study using the same dairy-based nutrient rewards as in this study. The 430 
animals were on a standard diet for laboratory macaques, composed of high-protein dry pellets (% calories 431 
provided by protein: 30.36%, fat: 13.29%, carbohydrates: 56.34%), dried fruits, seeds, nuts, and fresh fruits 432 
and vegetables. We monitored the monkeys’ health condition and body weights to ensure their welfare after 433 
introducing high-calorie rewards. No effects of these rewards on the animals’ health were observed. Each 434 
testing day, the animals had free access to the standard diet before and after the experiments and received their 435 
main liquid intake in the laboratory. The animals’ body weights increased as expected for growing animals. 436 
 All animal procedures conformed to US National Institutes of Health Guidelines. The experiments have 437 
been regulated, ethically reviewed and supervised by the following UK and University of Cambridge (UCam) 438 
institutions and individuals: UK Home Office, implementing the Animals (Scientific Procedures) Act 1986, 439 
Amendment Regulations 2012, and represented by the local UK Home Office Inspector; UK Animals in 440 
Science Committee; UCam Animal Welfare and Ethical Review Body (AWERB); UK National Centre for 441 
Replacement, Refinement and Reduction of Animal Experiments (NC3Rs); UCam Biomedical Service (UBS) 442 
Certificate Holder; UCam Welfare Officer; UCam Governance and Strategy Committee; UCam Named 443 
Veterinary Surgeon (NVS); UCam Named Animal Care and Welfare Officer (NACWO). 444 
 445 
Experimental Design 446 
 447 
Nutrient rewards. We prepared nutrient-controlled liquids with 2 × 2 fat and sugar levels to examine whether 448 
fat and sugar biased learning from reward outcomes (Fig. 1B; LFLS: low-fat low-sugar; HFLS: high-fat low-449 
sugar; LFHS: low-fat high-sugar; HFHS: high-fat high-sugar). The liquids were matched in flavor (peach or 450 
blackcurrant), temperature, protein, salt and other ingredients (see22 for detailed liquid compositions). We used 451 
commercial skimmed milk and whole milk (British skimmed milk and British whole milk, Sainsbury's 452 
Supermarkets Ltd., UK) as baseline low-fat and high-fat liquids and flavored the liquids with fruit juice to 453 
increase palatability 454 
 455 
Nutrient foraging task. The four nutrient reward types were associated with four untrained visual cues, 456 
respectively, in each session. When a choice trial started, the monkeys were first presented with two of the 457 
four visual cues, made a touch-monitor choice between the two cues, and then received either a large amount 458 
(‘rewarded’) or a small amount (‘non-rewarded’) of the cue-associated liquids depending on its prespecified 459 
reward probability (p) (Fig. 1A). When the session started, two of the rewards (LFLS/HFHS or LFHS/HFLS) 460 
were offered in high reward probabilities (p=0.8), and the other two rewards in low reward probabilities (p=0.2) 461 
(Fig. 1C, block A or block B). The reward probabilities were reversed every 100 trials (p=0.2 → 0.8; 462 
p=0.8→0.2) (Fig. 1D). 463 
 464 
Data Analysis 465 
All data were analyzed using Matlab 2017 (Mathworks). 466 
 467 
Learning curve. The learning curves were plotted by aligning reward-specific choices to the probability 468 
reversal trials. In particular, based on the probability before and after reversals, we grouped these curves into 469 
incremental (P=0.2 → P=0.8) and decremental (P=0.8 → P=0.2, not shown) learning curves, and plotted the 470 
incremental curves in Fig. 2B.  471 
 472 
Learning latency. The learning latency was defined as the number of trials between the first behavioral change 473 
point after probability reversals. The behavioral change points were identified as the significant changing 474 
points of cumulative choice slopes49, based on two-sample t-test with criteria P < 0.05.  475 
 476 
  477 
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Probability-matching (PM) choices. We simulated probability matching choices by first computing the 478 
relative proportions of the reward probabilities and transform them into predicted choices as follows50: 479 
 480 

𝜋𝑖(𝑡) =
𝑃𝑖(𝑡)

∑ 𝑃𝑘(𝑡)𝑘
, 𝑖 ∈ 𝑘 = {𝐿𝐹𝐿𝑆,𝐻𝐹𝐿𝑆, 𝐿𝐹𝐻𝑆, 𝐻𝐹𝐻𝑆} 481 

𝐴𝑖(𝑡)~𝐵(1, 𝜋𝑖(𝑡)) 482 
 483 
, where 𝜋𝑖(𝑡) was the probability of choosing a specific option; 𝑃𝑖(𝑡) denoted the reward probability of reward 484 
𝑖 on trial 𝑡, which were summed over the stimulus set as ∑ 𝑃𝑘(𝑡)𝑘 . The reward choices 𝐴𝑖(𝑡) followed the 485 
binomial distribution, based on the computed probability proportions for each reward type.  486 
 487 
Logistic regression analysis 488 
History model 489 
We used multiple logistic regression (fitglm function, Matlab) to model choices based on recent choices and 490 
reward outcomes as follows, 491 
 492 

𝑙𝑜𝑔𝑖𝑡(𝑃𝐿) =  𝛽0  + 𝛽1 × 𝐿𝑒𝑓𝑡𝐹𝑖𝑟𝑠𝑡 + 𝛽2 × 𝐹𝑎𝑡𝐿𝑣 + 𝛽3 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣 + ∑ (𝛽𝑘+3 × 𝐶𝑥𝑘)
𝑛
𝑘=1 +493 

∑ (𝛽𝑘+𝑛+3 × 𝑅𝑥𝑘)
𝑛
𝑘=1   494 

 495 
, where the probability of choosing the left option (𝑃𝐿) was modelled by differential choice history (𝐶𝑥𝑛) and 496 
reward history (𝑹𝑥𝑛) up to recent 𝑛 trials while controlling the presentation sequence (𝐿𝑒𝑓𝑡𝐹𝑖𝑟𝑠𝑡= 1, if the 497 
left option was shown first; 0, if the right option was shown first) and the nutrient information cued by 498 
pretrained visual stimuli (𝐹𝑎𝑡𝐿𝑣, 𝑆𝑢𝑔𝑎𝑟𝐿𝑣 = differential fat or sugar levels = 1, if left > right; 0, if left = right; 499 
-1, if left < right). Specifically, the choice history regressors 𝐶𝑥𝑛 and reward history regressors 𝑅𝑥𝑛 were 500 
defined as the differences between the history variables of the left and right options, 501 

𝐶𝑥𝑛 = 𝑐𝑛
𝐿 − 𝑐𝑛

𝑅 , 𝑐𝑛
𝑖 = {

1,
0,

if option 𝑖 was chosen 𝑛 trials earlier
if option 𝑖 was not chosen 𝑛 trials earlier

,  502 

𝑅𝑥𝑛 = 𝑟𝑛
𝐿 − 𝑟𝑛

𝑅 , 𝑟𝑛
𝑖 = {

1,
0,

if option 𝑖 was chosen and rewarded 𝑛 trials earlier
otherwise

 , 𝑖 ∈ {𝐿𝑛, 𝑅𝑛} 503 

 504 
Notably, the history regressors for each option coded past trials in terms of the offered trials because the 505 
unoffered options did not carry information to influence current choices51. Therefore, the n-back trials for the 506 
left option may not be the same choice trials as those for the right option, due to the randomized offers. 507 
 508 
Nutrient model 509 
Based on the history model, we further included nutrient-history interaction terms to characterize the 510 
influences of fat and sugar levels on the effects of recent choices and reward outcomes:  511 
 512 

𝑙𝑜𝑔𝑖𝑡(𝑃𝐿) = 𝛽0 + 𝛽1 × 𝐿𝑒𝑓𝑡𝐹𝑖𝑟𝑠𝑡 + 𝛽2 × 𝐹𝑎𝑡𝐿𝑣 + 𝛽3 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣 516 
                              +∑ (𝛽𝑘+3 × 𝐶𝑥𝑘)

𝑛
𝑘=1 +∑ (𝛽𝑘+𝑛+3 × 𝑅𝑥𝑘)

𝑛
𝑘=1   513 

                              +∑ (𝛽𝑘+2𝑛+3 × 𝐹𝐶𝑘)
𝑛
𝑘=1 + ∑ (𝛽𝑘+3𝑛+3 × 𝐹𝑅𝑘)

𝑛
𝑘=1   514 

                              +∑ (𝛽𝑘+4𝑛+3 × 𝑆𝐶𝑘)
𝑛
𝑘=1 + ∑ (𝛽𝑘+5𝑛+3 × 𝑆𝑅𝑘)

𝑛
𝑘=1   515 

 517 
, where 𝐹𝐶𝑛 denoted recent high-fat choices and 𝐹𝑅𝑛 for high-fat rewarded trials; 𝑆𝐶𝑛 denoted recent high-518 
sugar choices and 𝑆𝑅𝑛 for high-sugar rewarded trials. The nutrient-history interaction terms were defined as 519 
follows, 520 
 521 

𝐹𝐶𝑛 = 𝑐𝑡−𝑛
𝐿 × 𝐹𝑎𝑡𝐿𝑣𝑡−𝑛

𝐿 − 𝑐𝑡−𝑛
𝑅 × 𝐹𝑎𝑡𝐿𝑣𝑡−𝑛

𝑅   522 
𝑆𝐶𝑛 = 𝑐𝑡−𝑛

𝐿 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣𝑡−𝑛
𝐿 − 𝑐𝑡−𝑛

𝑅 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣𝑡−𝑛
𝑅   523 

𝐹𝑅𝑛 = 𝑟𝑡−𝑛
𝐿 × 𝐹𝑎𝑡𝐿𝑣𝑡−𝑛

𝐿 − 𝑟𝑡−𝑛
𝑅 × 𝐹𝑎𝑡𝐿𝑣𝑡−𝑛

𝑅   524 
𝑆𝑅𝑛 = 𝑟𝑡−𝑛

𝐿 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣𝑡−𝑛
𝐿 − 𝑟𝑡−𝑛

𝑅 × 𝑆𝑢𝑔𝑎𝑟𝐿𝑣𝑡−𝑛
𝑅   525 

 526 
, where 𝑐𝑡−𝑛

𝐿  and 𝑐𝑡−𝑛
𝑅  denoted whether the left or right option was chosen 𝑛  trials earlier (1, chosen; 0, 527 

unchosen); 𝑟𝑡−𝑛
𝐿  and 𝑟𝑡−𝑛

𝑅  denoted whether the left or right option was chosen and was rewarded (1, chosen 528 
and rewarded; 0, otherwise).  529 
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Reinforcement learning (RL) models 530 
Standard RL model (Q-learning) 531 
We adopted a standard Q-learning algorithm that followed the Rescorla-Wagner learning rule1,52. The reward 532 

values (𝑄𝑡
𝑖) were set to be 0 for all options initially (𝑄1

𝑖 = 0, ∀i ∈ {𝐿𝐹𝐿𝑆,𝐻𝐹𝐿𝑆, 𝐿𝐹𝐻𝑆,𝐻𝐹𝐻𝑆}) and were 533 
updated by the reward prediction errors (𝑅𝑃𝐸𝑡) multiplied by the learning rate 𝛼 ∈ [0,1] as follows, 534 
 535 

𝑅𝑃𝐸𝑡 = [𝑅𝑡
𝑖 − 𝑄𝑡−1

𝑖 ], 𝑅𝑡
𝑖 = {

1  , if rewarded 

0  , if otherwise
, 𝑖 ∈ {𝐿𝐹𝐿𝑆, 𝐻𝐹𝐿𝑆, 𝐿𝐹𝐻𝑆,𝐻𝐹𝐻𝑆} 536 

𝑄𝑡
𝑖 = 𝑄𝑡−1

𝑖 + 𝛼 ∙ 𝑅𝑃𝐸𝑡 537 
 538 
Choices were derived from transforming the value difference 𝛿𝑡  via the softmax function into choice 539 
probability 𝜋𝑡

𝐿, which was then dichotomized at 0.5 into binary choice actions 𝐴𝑡
𝐿 as below, 540 

 541 
𝛿𝑡 = 𝑄𝑡

𝐿 − 𝑄𝑡
𝑅 542 

𝜋𝐿(𝛿)𝑡 = 
1

1 + exp(−𝛽 ∙ 𝛿𝑡)
∈ [0,1] 543 

 544 

𝐴𝑡
𝐿 = {

1    , if 𝜋𝑡
𝐿 > 0.5

𝑌    , if 𝜋𝑡
𝐿 = 0.5

0    , if 𝜋𝑡
𝐿 < 0.5

∈ {1,0} , 𝑌~𝐵(1,0.5) 545 

 546 
, where 𝑄𝑡

𝐿 and 𝑄𝑡
𝑅 were the reward values for the left and right option on trial 𝑡; 𝛽 was the inverse temperature, 547 

the sensitivity of choice to value differences. 548 
 549 
Alternative RL models 550 
We systematically included differential learning rates and nutrient-specific learning parameters into the RL 551 
models. Specifically, we examined 9 combinatorial RL models with 3 differential learning rates (Standard, 552 
Asym, and Forget) and 3 nutrient-specific learning parameters (Standard, NutVal, Alpha) (3 x 3 = 9 models) 553 
as below. 554 
 555 

1. Differential learning rates (Standard, Asym, Forget) 556 
We included differential learning rates for rewarded (𝛼+), unrewarded (𝛼−), and unoffered (𝛼0) options to 557 
update the reward values as follows, 558 
 559 

𝑄𝑖(𝑡 + 1) = 𝑄𝑖(𝑡) + 𝛼 ∙ [𝑅𝑖(𝑡) − 𝑄𝑖(𝑡)], 𝛼 = {
𝛼+,
𝛼−,

𝛼0,

if rewarded     

if unrewarded

if unoffered     

∈ [0,1] 560 

 561 
In the Standard model, the agent equally updated both the rewarded and unrewarded option and kept perfect 562 
memory for the unoffered option (𝛼+ = 𝛼−, 𝛼0 = 0). In the Asym model, the agent updated the rewarded and 563 
unrewarded with different learning rates, while keeping perfect memory for the unoffered rewards (𝛼+ ≠564 
𝛼−, 𝛼0 = 0). In contrast, in the Forget model, the value of the unoffered rewards decayed due to value 565 
forgetting, but the rewarded and unrewarded option were updated equally (𝛼+ = 𝛼−, 𝛼0 > 0). 566 
 567 

2. Nutrient-specific learning models (NutVal, Alpha) 568 
We examined nutrient preferences by including nutient-specific values (NutVal) or nutrient-specific learning 569 
rates (Alpha). In the NutVal model, the reward values depend on the reward types as follows, 570 
 571 

𝑅𝑖(𝑡) = {

 1/(𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆),          𝑖 = 𝐿𝐹𝐿𝑆

𝑉𝐹/(𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆), 𝑖 = 𝐻𝐹𝐿𝑆 

𝑉𝑆/(𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆), 𝑖 = 𝐿𝐹𝐻𝑆 
  1,                                    𝑖 = 𝐻𝐹𝐻𝑆

 572 

 573 
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, where 𝑉𝐹 , 𝑉𝑆 , and 𝑉𝐹𝑆  are the values of high-fat content, high-sugar content, and their combinations, 574 
respectively, relative to the low-nutrient liquid. We normalized all reward values to (𝑉𝐹 ∙ 𝑉𝑆 ∙ 𝑉𝐹𝑆), to constrain 575 
all reward values between 0 and 1. 576 
In the Alpha model, higher learning rates are used to update the values for high-nutrient rewards as follow, 577 
 578 

𝑙𝑜𝑔 [
𝛼+(𝑡)

1−𝛼+(𝑡)
] =

{
 
 

 
      𝛼0

+,      𝑖𝑡 = 𝐿𝐹𝐿𝑆

𝛼0
+ + 𝛼𝐹 , 𝑖𝑡 = 𝐻𝐹𝐿𝑆

𝛼0
+ + 𝛼𝑆 , 𝑖𝑡 = 𝐿𝐹𝐻𝑆

𝛼0
+ + 𝛼𝐹𝑆, 𝑖𝑡 = 𝐻𝐹𝐻𝑆

∈ ℝ,  𝛼+(𝑡) ∈ [0,1], ∀𝑡 ∈ ℕ 579 

 580 
, where 𝛼+(𝑡) denoted the learning rate to update the value of the rewarded option on trial 𝑡, which was first 581 
transformed from [0,1] to any real number and modified by the high-fat level (𝛼𝐹), the high-sugar level (𝛼𝑆), 582 
or their combination (𝛼𝐹𝑆). The logistic transformation ensured that the learning rates are always between 0 583 
and 1. 584 
 585 
Nutrient prediction error-RL model (NPE-RL model) 586 
In the NPE-RL model, we decomposed the nutrient-specific values 𝑄𝑖(𝑡) into components of fat value 𝑄𝑖

𝐹(𝑡) 587 

and sugar value 𝑄𝑖
𝑆(𝑡), 588 

 589 
𝑄𝑖(𝑡) = 𝑄𝑖

𝐹(𝑡) ∙ 𝑄𝑖
𝑆(𝑡) ∈ [0,1], ∀𝑡 ∈ ℕ 590 

 591 
Importantly, the nutrient prediction errors were computed as the discrepancies between the subjective nutrient 592 
values and the trial-by-trial estimations of the nutrient values as follows, 593 
 594 

𝑁𝑃𝐸𝑖
𝐹(𝑡) =  𝑉𝑖

𝐹(𝑡) − 𝑄𝑖
𝐹(𝑡), 𝑉𝑖

𝐹(𝑡) = {
1/𝑣𝐹
1

, 𝑖(𝑡) = 𝐿𝐹𝐿𝑆, 𝐿𝐹𝐻𝑆
, 𝑖(𝑡) = 𝐻𝐹𝐿𝑆,𝐻𝐹𝐻𝑆

 595 

𝑁𝑃𝐸𝑖
𝑆(𝑡) =  𝑉𝑖

𝑆(𝑡) − 𝑄𝑖
𝑆(𝑡), 𝑉𝑖

𝑆(𝑡) = {
1/𝑣𝑆
1

, 𝑖(𝑡) = 𝐿𝐹𝐿𝑆,𝐻𝐹𝐿𝑆
, 𝑖(𝑡) = 𝐿𝐹𝐻𝑆,𝐻𝐹𝐻𝑆

 596 

 597 
, where 𝑁𝑃𝐸𝑖

𝐹 and 𝑁𝑃𝐸𝑖
𝑆 denoted the fat and sugar prediction errors for the chosen reward on trial 𝑡, 𝑖(𝑡). 𝑣𝑖

𝐹 598 

and 𝑣𝑖
𝑆 were the subjective values for fat and sugar, and 𝑄𝑖

𝐹 and 𝑄𝑖
𝑆 were the current values of fat and sugar 599 

components for reward 𝑖, respectively. The nutrient values were independently updated by corresponding 600 
nutrient prediction errors, 601 
 602 

𝑄𝑖
𝐹(𝑡 + 1) = 𝑄𝑖

𝐹(𝑡) + 𝛼+ ∙ 𝑁𝑃𝐸𝑖
𝐹(𝑡) 603 

𝑄𝑖
𝑆(𝑡 + 1) = 𝑄𝑖

𝑆(𝑡) + 𝛼+ ∙ 𝑁𝑃𝐸𝑖
𝑆(𝑡) 604 

 605 
, where 𝑄𝑖

𝐹(𝑡 + 1) and 𝑄𝑖
𝑆(𝑡 + 1) are the updated fat and sugar values, each was updated by the previous fat 606 

and sugar values, 𝑄𝑖
𝐹(𝑡) and 𝑄𝑖

𝑆(𝑡), by the NPEs for fat and sugar discounted by the learning rate 𝛼+ ∈ [0,1]. 607 
 608 
 609 
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SUPPLEMENTARY FIGURES 615 
 616 
 617 

 618 
 619 
Fig. S1. Fat-sugar value interactions. The reward values of HFHS (𝑉𝐹𝑆) were plotted against the values 620 
predicted by the multiplications of the fat values (𝑉𝐹) and the sugar values (𝑉𝑆) across sessions. The unity lines 621 
(dashed) indicated the independence of the fat values and the sugar values, estimated by the nutrient-sensitive 622 
reinforcement learning models. b = slope [95% confidence interval]. 623 
 624 
 625 
 626 
 627 
 628 

 629 
 630 
Fig. S2. Nutrient-specific learning rates. A) Nutrient-specific learning rate model (NutAlphaVal-Forget 631 
model) architecture. The reward values were updated based on nutrient-specific learning rates (𝛼𝑖

+) in addition 632 
to the nutrient-specific values (𝑉𝑖

𝑡). Values of the unchosen and unoffered rewards decayed according to the 633 
forgetting factor 𝛼0, as in the main nutrient value RL model (Figure 4A). B) Nutrient-specific learning rates 634 
and forgetting factors. Learning rates for HFLS (𝛼𝐹), LFHS (𝛼𝑆), and HFHS (𝛼𝐹𝑆) were all compared to the 635 
baseline learning rates for LFLS (𝛼𝐿); the forgetting factors were tested against perfect value memory (𝛼0 =636 
0). Wilcoxon signed-rank test.   637 
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