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Abstract 24 

When conditions change, unicellular organisms rewire their metabolism to sustain cell 25 

maintenance and cellular growth. Such rewiring may be understood as resource re-allocation 26 

under cellular constraints. Eukaryal cells contain metabolically active organelles such as 27 

mitochondria, competing for cytosolic space and resources, and the nature of the relevant cellular 28 

constraints remain to be determined for such cells. Here we developed a comprehensive metabolic 29 

model of the yeast cell, based on its full metabolic reaction network extended with protein 30 

synthesis and degradation reactions (16304 reactions in total). The model predicts metabolic 31 

fluxes and corresponding protein expression by constraining compartment-specific protein pools 32 

and maximising growth rate. Comparing model predictions with quantitative experimental data 33 

revealed that under glucose limitation, a mitochondrial constraint limits growth at the onset of 34 

ethanol formation - known as the Crabtree effect. Under sugar excess, however, a constraint on 35 

total cytosolic volume dictates overflow metabolism. Our comprehensive model thus identifies 36 

condition-dependent and compartment-specific constraints that can explain metabolic strategies 37 

and protein expression profiles from growth rate optimization, providing a framework to 38 

understand metabolic adaptation in eukaryal cells.  39 
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Macromolecular synthesis and energy conservation by metabolism underlies cellular 40 

maintenance, growth and fitness. Unicellular organisms such as yeasts generally display a great 41 

variety of metabolic strategies that lead to competitive fitness across conditions1. The associated 42 

reprogramming of metabolism between such metabolic strategies is of key interest in 43 

biotechnology and biomedical research.  44 

 One well-known example is “overflow” metabolism, in which under aerobic conditions 45 

not all substrate is fully oxidized but secreted as by-products. In cancer cells it is referred to as 46 

the Warburg effect: enhanced glycolytic activity with lactate as byproduct at the expense of 47 

respiration2. The same phenomenon is known as the Crabtree effect in Saccharomyces 48 

cerevisiae  (Baker’s yeast)3. At sugar limitation, in the presence of oxygen, yeast respires glucose 49 

completely to CO2 for ATP generation; at sugar excess, it displays respirofermentative 50 

metabolism, where respiration is combined with ethanol formation (alcoholic fermentation). 51 

The extent to which these two metabolic strategies are used can be titrated in a glucose-limited 52 

chemostat: at a specific, “critical”, dilution (=growth) rate, ethanol formation starts and 53 

increases linearly with growth rate4.  Other microorganisms show similar behaviour5: for 54 

example, E. coli produces acetate at higher growth rates at the expense of respiration6.  55 

In the last decade, a theoretical framework has been developed that can explain why 56 

cells shift metabolic strategies upon environmental or gene-expression perturbations5,7–10. It is 57 

essentially based on the catalytic benefits of proteins, and their associated costs11. These costs 58 

comprise competition for building blocks, energy and synthesis machineries; and for space in 59 

cellular compartments. Two key features of this resource allocation paradigm can explain 60 

metabolic adaptations. First, cellular compartments are or can become “full”, which is the case 61 

when they are fully occupied with (maximally) active proteins, and an increase in one protein 62 

has to come at the expense of another. This was postulated as a phenomenological rule based on 63 

experimental observations12, but also follows naturally from growth-rate maximization13: at the 64 

maximum growth rate that is attainable at any condition, at least one compartment must be fully 65 

occupied and thus actively limit that growth rate. Second, cells allocate their limited resources 66 
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for protein synthesis according to their  demands14,15. Consequently, fractions of needed proteins 67 

vary with growth rate within compartments whose protein content is bounded, and this can lead 68 

to “active proteome constraints” related to full compartments.   69 

Within this framework, the onset of overflow metabolism was explained by the smaller 70 

protein cost of generating ATP through fermentation than respiratory pathways6,7; this becomes 71 

important under fast growth, when biosynthesis and ribosome demands are high and thus 72 

require large proteome fractions. Earlier work suggests that the proteome-constrained resource 73 

allocation paradigm, which was largely developed for E. coli, may also be a powerful perspective 74 

for regulation of eukaryal yeast metabolism, such as ribosome biosynthesis16, and growth on 75 

different sugars17. However, a key feature of the metabolism of a eukaryal cell is the presence of 76 

metabolically active organelles, most prominently mitochondria. Each organelle introduces two 77 

new compartments (intra-organellar space and membrane), and how these compartments 78 

impacts adaptation of metabolism, and which compartments become limiting under different 79 

conditions, is an open question.  80 

Moreover, despite the wealth of experimental data on Saccharomyces cerevisiae, a 81 

comprehensive, quantitative, data set in which growth rate is systematically varied and both 82 

fluxes and protein expression levels are measured, which are needed to validate resource 83 

allocation predictions, are still rare (see however, some recent studies16,18). 84 

Here we generated such high-quality comprehensive data sets, and in parallel developed 85 

the most detailed and comprehensive, compartmentalized and quantitative model of metabolism 86 

and protein synthesis of yeast. The model can compute the costs and benefits of protein 87 

expression and translocation; It can be used to interpret or predict experimentally determined 88 

changes in growth rate, protein expression and metabolic fluxes as a result of growth rate 89 

optimization through resource allocation into different, compartmentalized, proteome fractions. 90 

Comparison of the model predictions with the data gives unprecedented insight into our 91 

physiological understanding of this important model organism.  92 

 93 
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Results 94 

Construction of a comprehensive proteome-constrained yeast model 95 

We extended an existing19 metabolic genome-scale metabolic model of yeast (GEM), by 96 

coupling metabolic fluxes to the synthesis of the catalysing enzyme and added constraints on 97 

protein concentrations, expressed as protein fractions of the total proteome (Fig. 1a). We refer 98 

to the resulting model as proteome-constrained Yeast (pcYeast). Earlier GEM-based approaches 99 

exist that incorporate resource allocation, and for yeast, these considered constraints on enzyme 100 

activities and total protein content17,20–23, whereas for E. coli there were added constraints and 101 

reactions associated with transcription and translation9. Others considered membrane-area 102 

constraints and limitations of protein allocation to specific pathways8,24.  We combined all these 103 

extensions (see Supplementary Notes for detailed information) to make pcYeast: a next-104 

generation yeast GEM and computable knowledge base that incorporates protein expression, 105 

translation, folding, translocation and degradation at genome-scale for a compartmentalized, 106 

eukaryal, organism. In our current model, we consider the protein compartments most relevant 107 

for central metabolism: plasma membrane, cytosol, mitochondrion, and mitochondrial 108 

membrane. Other cell compartments such as the nucleus or endoplasmic reticulum are not (yet) 109 

specified explicitly - but do occupy volume in the cytosol. 110 

The cellular proteome was divided into metabolically active, ribosomal, and unspecified 111 

(UP) proteins. The UP fraction is cytosolic, has an average amino acid composition and is added 112 

to always maintain a constant protein density in the cytosol. It has a minimum expression level 113 

estimated from the experimental proteomics data (Supplementary Notes). The minimal UP 114 

fraction represents growth-rate independent structural, signalling and “household” proteins. 115 

Higher expression of UP than minimal represent both unspecified anticipatory proteins, or 116 

metabolic proteins that do not carry flux – including the unsaturated fraction of flux-carrying 117 

enzymes.  118 
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Metabolic enzymes are assigned to a specific compartment, either cytosol, plasma 119 

membrane, mitochondrial matrix or inner mitochondrial membrane; Mitochondrial proteins 120 

require additional protein transport complexes25. For each protein, we comprehensively 121 

modelled synthesis and degradation processes, which are responsible for the largest fraction of 122 

cellular energy usage. Our model includes 1,523 proteins, whose life cycles are described by 123 

16,304 reactions that include translation initiation, elongation and termination factors, 124 

ribosomal assembly factors, protein-specific folding by chaperones and degradation reactions, 125 

as well as 5’UTR-length dependent energetic costs for translation initiation (Table 1, 126 

Supplementary Notes).  127 

We applied three classes of constraints that couple metabolic fluxes and peptides 128 

synthesis rates (Fig. 1b and Supplementary Notes for details). The enzyme capacity constraint 129 

sets the minimal enzyme synthesis rate required to achieve a certain metabolic flux. Thus, all 130 

metabolically-active proteins are modeled to work at their maximal rate and are minimally 131 

expressed; the unspecified protein was used to maintain protein density. In this way we prevent 132 

choices about unknown regulatory and kinetic mechanisms that may affect the activity of 133 

enzymes; rather we use the deviation between predicted minimal and measured actual protein 134 

expression levels to indicate such effects. The total enzyme synthesis rate is constrained by the 135 

abundance of ribosomes through a ribosome capacity constraint, for both cytosol and 136 

mitochondria. Finally, we added compartment-specific constraints on the proteome, for the 137 

cytosol, the plasma membrane, and the mitochondrial matrix and inner membrane, (Fig. 1b). 138 

The values for these constraints are based on independent literature data or were fitted to 139 

experimental data (as explicified in Supplementary Notes) and the values are either fixed or 140 

growth-rate dependent, depending on the nature of the constraint.  141 

The steady-state metabolite balances, the enzyme synthesis and degradation balances, 142 

and the compartment-specific proteome constraints together specify a linear program with its 143 

fluxes as optimisation variables, provided the growth rate is treated as a parameter. We use a 144 

binary search algorithm to find the maximum growth rate where the linear programming 145 
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problem becomes just infeasible; the model returns all the flux values associated with the 146 

maximal feasible growth rate.  147 

 148 

Calibrating the model against experimental data 149 

We performed a series of experiments for collection of high-quality datasets of fluxes 150 

and protein levels, used either as model input or for comparison with model predictions. We 151 

used glucose-limited continuous cultures operated at dilution rates close to the critical dilution 152 

rate for ethanol formation, to capture proteome change upon the onset of overflow metabolism. 153 

Additionally, we varied the growth rate in pH-controlled batch experiments, either with 154 

different sugar quality or through translation inhibition. We measured fluxes, including O2 and 155 

CO2 fluxes (Supplementary Dataset 1), which combined with biomass measurements, allowed to 156 

estimate the so-called maintenance parameters, i.e. ATP usage that is not explicitly accounted for 157 

in the model (Supplementary Notes). Label-free proteome quantification allowed us to reliably 158 

estimate proteome fractions of around 3000 of the 6000 proteins (Supplementary Datasets 2, 3, 159 

and 4). 160 

 Parameters associated with translation strongly affected our model outcomes, and we 161 

used published quantitative proteomics data16 to estimate parameters for protein translation, 162 

such as the elongation rate (Supplementary Notes). According with experimental reports we 163 

assumed a constant inactive fraction of ribosomes, and a fixed saturation of the actively 164 

translating ribosomes16,27 and were hereby able to describe the growth-rate dependent 165 

ribosome mass fraction with the model (Fig. 1c). As evidence for correctly capturing the costs of 166 

protein synthesis, we correctly predicted the effect of over-expressing mCherry, an unneeded, 167 

“gratuitous” protein, on the specific growth rate (Fig. 1d). 168 

     169 

The model predicts shifts in metabolic strategies 170 

We subsequently used the model to analyse yeast’s physiological response to different 171 

levels of glucose availability. Traditional Flux Balance Analysis computes continuous chemostat 172 
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cultures by minimizing glucose uptake rate at fixed growth (=dilution) rate28. Here we 173 

simulated glucose availability by varying the degree of saturation of the glucose transporter. We 174 

needed to constrain the maximal expression level of the glucose transport system, based on 175 

literature data (Supplementary Notes), as leaving expression free to occupy available membrane 176 

space led to unrealistically high expression levels and overestimation of growth rate at 177 

subsaturating glucose levels. We subsequently computed the maximal feasible growth rate and 178 

compared model predictions with published data29, and from our glucose-limited chemostat 179 

cultures (growth rates between 0.2 – 0.34 h-1). We also included our data from batch cultures on 180 

glucose (growth rates 0.37-0.39 h-1) and on trehalose; Trehalose is a disaccharide of two glucose 181 

molecules, hydrolyzed extracelullarly30, thus providing slow release of glucose that supports low 182 

growth rates. 183 

The maximal feasible growth rate that the model predicted can be linked directly to the 184 

dilution rate in the chemostat, allowing comparison of model prediction and data (Fig. 2a). The 185 

(residual) glucose concentrations were calculated from documented (high) affinity of the 186 

transporters, which is close to 1 mM31. The resulting relationship between growth rate and 187 

residual glucose concentration fit experimental data very well (Fig. 2b), validating our 188 

expectation that we could ignore intracellular glucose32. Predicted biomass yield (Fig. 2c) and 189 

fluxes (Fig. 2d) corresponded well with the experimental data, as did the intracellular flux ratios 190 

from previously published 13C-labeling flux analysis at three specific growth rates in glucose-191 

limited chemostat cultures (Supplementary Figure 1). In particular, the model predicted a 192 

maximal oxygen consumption rate at dilution rates higher than 0.28 h-1, at the onset of ethanol 193 

formation. Above 0.35 h-1, this rate rapidly drops to the low level that is observed under glucose 194 

excess (batch) conditions. We conclude that the model can adequately predict the changes in 195 

metabolic fluxes when the growth rate is varied through the availability of glucose. 196 

 197 
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Changes in metabolic strategies are the result of proteome constraints 198 

We used pcYeast to identify the active proteome constraints, i.e. the protein pools that 199 

limit growth rate, because, according to resource allocation theory, the number of active 200 

proteome constraints determines the maximal number of independent metabolic behaviors that 201 

are possible in optimal states5,13. For this we computed the occupancy of each protein pool: a 202 

pool that is fully occupied is indicative of an active constraint. At low growth rates, below 0.28 h-203 

1, the glucose transporter is the only proteome pool that is fully occupied (Fig 2e). With only 204 

glucose uptake as active constraint, pure respiration is the single optimal strategy. At the onset 205 

of ethanol formation, a second metabolic mode started to carry flux (for formal computation of 206 

these modes and the concomitant theory, see Supplementary Notes), and thus a second 207 

constraint must have become active. Indeed, at this growth rate the occupancy of the inner-208 

mitochondrial membrane became maximal (Fig. 2e). Thus, the model suggests that under 209 

glucose-limited chemostat conditions, the onset of ethanol formation is caused by a limit of the 210 

mitochondrial membrane space, and hence the amount of proteins that yeast can maximally 211 

express in this compartment.  212 

At a growth rate of 0.35 h-1 we found that the unspecified protein level reached its 213 

minimal value (Fig. 2e), equivalent to the cytosol being completely filled with maximally active 214 

proteins. Further growth rate increase requires higher ribosomes and biosynthetic protein 215 

fractions, which now has to come at the expense of the least proteome efficient pathway. The 216 

model confirmed earlier calculations33 that respiration is less proteome efficient than 217 

fermentation (Supplementary Figure 2) and respiration is therefore replaced by fermentation. 218 

The model suggested therefore that at growth rate above 0.35 h-1 the second growth-limiting 219 

constraint was shifted from the mitochondrial proteome to the cytosolic proteome. Thus, the 220 

metabolic changes in the model, when growth rate and thus metabolic fluxes increase, are 221 

dictated by the filling up of different cellular compartments with active protein, unique for an 222 

eukaryal cell. The level of detail in our model to identify the condition-dependent, active, 223 
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protein-concentration constraints belonging to different compartments has so far not been 224 

provided by any other model.  225 

 226 

Proteomics data validates model predictions 227 

We subsequently measured protein levels with quantitative proteomics and compared 228 

them to the model predictions. We expected to underestimate most proteome fractions, because 229 

the model predict minimal protein levels required to support metabolic flux. Especially at lower 230 

growth rates where nutrient limitation is most severe, one can expect lower average enzyme 231 

saturation, and indeed we observed larger deviations between predicted minimal protein levels 232 

and measured protein fractions at low growth rates (Fig. 3a). The difference between the 233 

predicted minimal level and the data may be interpreted as a proxy for the average saturation of 234 

enzymes. We see an overall tendency that the saturation of enzymes increases with growth rate 235 

(Supplementary Figure 3). This is most prominent for the glycolytic pathway; also for amino 236 

acid biosynthesis, the protein expression is higher than expected based on metabolic activity, 237 

indicating also here a substantial undersaturation of the enzymes, as observed before for 238 

bacteria such as E. coli34 and L. lactis35. We find similar patterns for other biosynthetic pathways, 239 

except for lipids (Supplementary Figure 4). 240 

For mitochondrial proteins involved in the citric acid cycle and respiration, however, we 241 

found that predicted minimal proteome fractions were very close to the measured ones (Fig. 242 

3a). Unless kcats of mitochondrial enzymes are systematically underestimated, this indicates 243 

that mitochondrial proteins work at higher average saturation than cytosolic proteins - and 244 

seemingly close to their maximal capacity. Regardless of absolute numbers, the saturation of the 245 

mitochondria seems rather constant, suggesting that yeast tunes the total amount of 246 

mitochondria, rather than make excess (but subsaturated) mitochondria, at least under these 247 

conditions. This may make sense, given the extra costs of mitochondrial components such as 248 

membranes, and for protein translocation of host-derived proteins during mitochondrial 249 

biogenesis, which competes for membrane space with respiratory proteins.  250 
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Upon closer inspection, we observed that at the onset of ethanol formation the total 251 

mitochondrial protein fraction started to decrease (Fig. 3b). The observed decay follows the 252 

theoretical dilution-by-growth kinetics if at that point the rate of mitochondrial biosynthesis has 253 

reached a maximum (Fig. 3b). Thus, the data suggests that the rate of mitochondrial biogenesis, 254 

rather than  the maximal mitochondrial membrane area currently used by the model, may reach 255 

the host’s maximal capacity at the onset of ethanol formation. When we zoom in on the 256 

mitochondrial proteome, we find that the mitochondrial ribosome fraction increased as a 257 

funtion of growth rate, and also other proteins re-allocated (Supplementary Fig. 5). Indeed, 258 

mitochondria are self-replicating entities abiding to the same resource allocation principles as 259 

the host, which even includes selection for fast replication - but obviously severely dictated by 260 

the proteins the host provides. More data related to the mitochondrial biosynthetic processes, 261 

such as mitochondrial ribosomal capacity and protein import machinery would be required to 262 

predict the maximal mitochondrial growth rate from first principles, which is outside the scope 263 

of this study. Nonetheless, the distinct changes of mitochondrial proteins at the critical dilution 264 

rate are consistent with the model prediction that a mitochondrial constraint is responsible for 265 

the onset of ethanol formation under glucose-limited conditions.  266 

 267 

Constraints and fluxes under sugar excess conditions 268 

We then varied growth rate (between 0.05 h-1 and 0.4 h-1) by providing different sugars, 269 

i.e. trehalose, galactose, maltose and glucose during batch cultivation. Ethanol production was 270 

already observed on galactose, already at a growth rate of 0.16 h-1 so at a much lower growth 271 

rate than the critical growth rate of 0.28 h-1 under glucose-limited growth (Fig. 4a). Maltose 272 

showed intermediate growth rate and fluxes. Initial model simulations with a “naïve” model 273 

using the reported catalytic rates of the transporters and catabolic enzymes involved in 274 

galactose and maltose metabolism, however, resulted in predicted growth rates and fluxes not 275 

far from growth on glucose. This suggests that there are additional cost factors that were not 276 
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included in the model, and or that Saccharomyces cerevisiae is not as well adapted to these 277 

sugars.  278 

We therefore used the model as data analysis tool to estimate possible changes in 279 

parameters that fit the observed growth rate and corresponding fluxes (see Supplementary 280 

Notes for details). Such parameter changes may be interpreted as costs for suboptimal 281 

metabolism of carbon sources other than glucose. The onset of ethanol formation at a growth 282 

rate of 0.16 h-1 required a combination of changes in both sugar uptake and the intracellular 283 

proteome (through the minimal UP fraction constraint): a lower sugar uptake capacity alone 284 

would be identical to lowering saturation of the transporter as was done for glucose (Fig 2), and 285 

pure respiration would have been found at 0.16 h-1. Conversely, only an increase in minimal UP 286 

would have resulted in a proportional flux decrease that we also found with mCherry 287 

overexpression (or translation inhibition, Supplementary Figure 6), and more ethanol were to 288 

be found. 289 

We had to decrease the maximal galactose uptake rate by a factor of 2.5 compared to 290 

glucose. Furthermore, an increase in minimal UP fraction was needed, to 0.49 g/g protein. To fit 291 

all fluxes optimally, we also required additional energetic costs (see Supplementary Notes), 292 

whose mechanistic underpinning remains to be explored but may be related to the reported 293 

toxicity of galactose intermediates36. Such a change in energetic costs were not needed to 294 

describe the data for growth on maltose: only a change in the maltose uptake rate and minimal 295 

UP fraction (of 0.34 g/g protein) were required to achieve good fit.  296 

For maltose, a disaccharide of glucose, the reason for the required parameter changes is 297 

not clear. Only a maltose proton-symporter and a maltase protein distinguishes it from growth 298 

on glucose. The transport expression may be tightly regulated as very high maltose uptake rates 299 

can result in substrate-accelerated death37. For galactose, the toxicity of its intermediates36 300 

results in an evolutionary trade-off with growth on glucose38; on galactose yeast cells appear to 301 

be still prepared for growth on glucose, which may prevent them from optimal expression of 302 

proteins on galactose, as shown by expression titration experiments39. Indeed, laboratory 303 
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evolution experiments on galactose select mutations in Ras/cAMP signalling and adapted strains 304 

show increased growth rates and concomitant increased ethanol fluxes38. Interestingly, the 305 

direction of change points to the optimal behaviour predicted by the initial naïve model, 306 

suggesting that the pcYeast model may aid in predicting the direction of evolutionary change 307 

during laboratory evolution experiments (Supplementary Figure 7).  308 

With the updated parameters, we identified for both sugars that the active constraints 309 

limiting growth were the sugar transport expression and the minimal UP fraction constraint 310 

(Figure 4d, Supplementary Notes, Supplementary Figure 8). These active constraints explains 311 

ethanol formation during growth on galactose even though the growth rate is lower than the 312 

critical dilution rate on glucose. 313 

 314 

Proteomics data on sugar excess shows re-allocation of metabolic strategies  315 

If growth rate is actively constrained by the cytosolic proteome under galactose, maltose 316 

and glucose excess conditions, it implies that all cytosolic proteins work at their maximum 317 

activity, and changes in flux must be brought about by changes in protein level. We therefore 318 

turned to proteomics again. Comparing the minimal levels of the model with experimental data, 319 

we find again that mitochondrial proteins for the TCA cycle and respiration are very similar to 320 

the predicted minimal levels required to sustain flux (Fig. 4c). Cytosolic proteins were 321 

underestimated - even at sugar excess conditions. (Note however that the expected maximal 322 

attainable activity is not likely at the maximal rate in the forward direction as product inhibition 323 

is inevitable in a chain of enzymes.) 324 

More indicative of “a full cytosol” is that at the onset of ethanol formation (at galactose 325 

growth rate and higher) we find evidence for proportional relationships between protein and 326 

flux for high-flux carrying, pathway-grouped, proteins as a function of growth rate (Fig. 4c). This 327 

is observed even down to the individual protein level, as illustrated for glycolytic and 328 

respiratory proteins in Fig. 4d. This implies that under these conditions, enzyme saturation was 329 

constant (and maximal, we expect) and changes in flux could only be brought about by 330 
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corresponding changes in enzyme levels. This data illustrates how mitochondrial proteins are 331 

being traded in for glycolytic proteins needed for an enhanced fermentation and growth rate. It 332 

also confirms the model’s prediction that the cytosolic proteome constraint is active during 333 

growth on these sugars.  334 

 335 

Inhibition of translation highlights the role of environmental signaling in coordination 336 

of metabolism in yeast. 337 

Finally we varied growth rate by translation inhibition by cyclohexamide under 338 

controlled glucose batch conditions, and again measured fluxes, growth rate and proteome 339 

profiles (Fig. 5a). Upon inhibition of translation, we found a decrease in growth rate and close to 340 

proportional decreases in glucose, ethanol and CO2 fluxes, for both the model and the 341 

experimental data (Fig. 5b). Such behaviour is expected when one dominant constraint is active 342 

and its extent is varied (cf. glucose-limited fully respiratory growth, Fig. 2). In the case of glucose 343 

excess, the model suggested that the cytoplasmic volume was fully occupied with active proteins 344 

(minimal UP constraint was hit), and inhibition of translation required higher expression levels 345 

of ribosomes, taking away limited proteome space for growth-supporting activities. 346 

However, experimental observations compromised this initial explanation. First, for 347 

oxygen the model also predicted a proportional increase with growth rate, but experimentally 348 

the fluxes did not change much as did the expression of enzymes involved in oxygen 349 

consumption, such as TCA cycle and oxidative phosphorylation (Fig. 5d). Moreover, the 350 

ribosomal proteome fraction increased much less with inhibition than the model predicted (Fig. 351 

5c). Since translation inhibition in the model has the same effect as overexpression of a non-352 

functional protein (Supplementary Figure 6), we followed the earlier observation that the 353 

inactive fraction of ribosomes could be recruited for translation, depending on the translational 354 

load16, with only a small improvement (Supplementary Figure 9).  355 

This suggested that either some constraint prevents the ribosomal fraction from 356 

increasing to the optimal levels predicted by the model, or the expression of ribosomes in yeast 357 
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is dominantly regulated by environmental nutrient signalling and less by internal cues. A 358 

dominant role of signalling in ribosomal biogenesis has been suggested before16. In yeast the 359 

TOR pathway appears to be the master regulator of ribosomal biosynthesis and assembly at 360 

steady-state growth40,41. Following the TOR-specific targets described by Kunkel41, we find that 361 

key target proteins of this signalling pathway, including ribosomal auxiliary factors, had 362 

constant expression levels (Supplementary Figure 10 and Supplementary Table 1), supporting 363 

the dominant role of external rather than internal cues. 364 

When we constrained ribosomal expression to the measured maximal response, 365 

ribosomal expression rapidly became the only active constraint in the model, and the proteome 366 

space that became available in the cytosol at the lower growth rates was used for increased 367 

respiration (Supplementary Figure 10). This is not observed experimentally, and our data 368 

suggest that respiration does not respond to internal cues either. In contrast the fluxes and 369 

expression of proteins involved in glycolysis and amino acid metabolism did decrease with 370 

growth rate (Fig. 5bd). This suggests that these pathways must be sensitive to internal feedback 371 

regulation, as is well known for amino acid metabolism42. Thus, the proportional fluxes we found 372 

for ethanol and glucose upon translation inhibition, are likely the result of control by demand43, 373 

with lower demand at lower growth rate.  374 

 375 

Discussion 376 

In this work, we developed the most comprehensive model of a growing, 377 

compartmentalized, eukaryal cell to date. It includes all its known metabolic reactions, and 378 

details of the protein synthesis, degradation and transport machinery to express the enzymes. 379 

The key of our approach is the application of constraints on protein pools in the different 380 

compartments that have direct biochemical meaning and could be independently estimated 381 

from literature data. Our approach is unique in level of detail and in dealing with cellular 382 

compartmentation, in particular of the mitochondria. We furthermore generated a unique set of 383 
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high-quality quantitative data on both fluxes and the proteome under different, well-controlled, 384 

conditions. Through integration and comparison with the model, we provide deeper insight into 385 

the physiology of Saccharomyces cerevisiae.  386 

First, we firmly established that metabolic growth strategies of yeast on glucose can be 387 

well understood from a proteome-constrained optimisation problem with growth rate as 388 

objective. Through our high resolution sampling around the critical dilution rate, we observed 389 

distinct changes in proteins exactly at the onset of ethanol formation in the glucose-limited 390 

chemostat. We also show that the active constraints that drive these changes can be different 391 

under different conditions such as batch growth on galactose - even if ethanol is made in both 392 

cases. Our approach to identify the active cellular constraints may resolve some of the 393 

discussion in current literature about the cause of overflow metabolism, not only in yeast but 394 

possibly also in other eukaryotes, including discussion about the Warburg effect in mammalian 395 

cells44.  396 

Second, the proteome constraints of the model are currently based on experimental 397 

observations, but further research could drill deeper into their origin. For example, why would 398 

the protein density in the cytosol be relatively constant; Does this balance diffusion rates with 399 

catalytic capacities45? Are the current morphological dimensions of a yeast cell optimal for 400 

growth rate? Recent work on selection for cell number showed that smaller cells can be readily 401 

selected for46. We also identified that the levels of glucose transport and that of mitochondria 402 

need to be constrained to describe the data. Why would yeast not express these components at 403 

higher levels? In the case of mitochondria, the proteomics data suggest that rather than a 404 

maximum mitochondrial membrane area and matrix volume, there is a maximal rate of 405 

mitochondrial biogenesis. Can we calculate this rate from first principles? One could imagine 406 

that an upper limit for mitochondrial “growth rate” exists if all but eight metabolic proteins need 407 

to be transported over the same membrane that must also harbour the full machinery for 408 

oxidative phosphorylation. Moreover, we focused on mitochondrial protein content, and ignored 409 

details on morphology, lipid synthesis, or possible assembly costs. Thus, a next version of the 410 
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model will need to address the mitochondrial transport, biosynthesis and morphology in much 411 

more detail. 412 

In the case of glucose transport, the model suggested that further increase in glucose 413 

transporters beyond wild type expression did not increase growth rate substantially and would 414 

likely be invisible for evolution. At maximal saturation of the transporter, glucose transport 415 

expression was (just) no longer an active constraint in our model (Fig. 2e). Thus, it appears as if 416 

yeast expresses just enough glucose transporters to maximise its growth rate under glucose 417 

excess – as found in bacteria47. Expressing higher transport levels at lower glucose levels would 418 

enhance growth rate but may not pay off if this state is a transient towards glucose starvation, or 419 

could be outright dangerous if suddenly glucose would become available37. The expression level 420 

of the hexose transporters may thus have evolved to be an adaptation to dynamic 421 

environments48. Long-term evolution experiments in glucose-limited chemostats indeed show 422 

gene duplications of high-affinity glucose transporters49, showing that growth limitation, and 423 

hence selection pressure, is on glucose transport under these conditions.   424 

Third, in the case of nutrient uptake limitation, there appears to be “excess” proteome 425 

space that could be filled with anticipatory proteins or heterologous enzymes at no cost in 426 

fitness. Even though the composition of such excess proteome space cannot be predicted with 427 

our model, we were able to predict metabolic fluxes very well: in this nutrient-limited regime 428 

metabolic efficiency (ATP per glucose), not proteome efficiency (ATP per protein), determines 429 

the best growth rate strategy. This explains why Flux Balance Analysis applied to only the 430 

metabolic network has been so successful, but only under nutrient-limited conditions.  431 

Finally, we found linear or even proportional relationships between growth rate and 432 

flux, and between flux and enzyme levels in a sugar excess (batch culture) regime. In terms of 433 

regulation analysis50, such a regime is characterised by hierarchical regulation with absence of 434 

metabolic regulation, that is, all changes in flux are brought about by changes in enzyme levels, 435 

not their degree of saturation. For glycolysis and amino acid metabolism, the average saturation, 436 

estimated as the ratio of the predicted minimal enzyme level to the expressed enzyme level, at 437 
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maximal growth rate is around 0.5, incidently the level predicted as theoretical optimum for 438 

specific reaction rate51. In contrast, when growth is limited by glucose availability, the degree of 439 

saturation varies and the model suggests a mixture of hierarchical and metabolic regulation, as 440 

previously observed in chemostats as well52.  441 

To conclude, we present a mechanistic, compartmentalized, model of an eukaryal 442 

organism in full details, which can act as a valuable, computable, knowledge base. We show how 443 

it can be used to compute protein costs and identify active growth-limiting constraints, and how 444 

it can be combined with quantitative flux and proteomics data to provide unprecedented insight 445 

into cellular physiology. Finally, we show that also in eukaryal cells, metabolic strategies can be 446 

understood on the basis of growth rate optimisation under nutrient and proteome constraints. 447 

What remains to be understood is how the cell’s signalling and regulatory networks manage to 448 

implement these (optimal) proteome allocation strategies.  449 

 450 

Methods 451 

Model development 452 

The full description of the pcYeast model is provided as Supplementary Notes. The model codes 453 

are available per request to the authors and will be published on GitHub upon acceptance of this 454 

manuscript. 455 

 456 

Strains and shake flask cultivation 457 

The strain used for this study was Saccharomyces cerevisiae strain CEN.PK 113-7D53. The stocks 458 

used for the experiments were grown in 500 mL shake flask containing 100 mL of YPD medium 459 

(10 g L-1 of Bacto yeast extract, 20 g L-1 of peptone and 20 g L-1 of D-glucose). The culture was 460 

grown up to early stationary phase and 1 mL aliquots were stored in 20% (v/v) of glycerol at -461 

80 °C. For chemostats, pre-cultures were grown in 500 mL shake flasks containing 100 mL of 462 

synthetic medium, the pH was set to 6.0 with 2M KOH and the medium was supplemented with 463 
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20 g L-1 of D-glucose54. Shake flasks with medium were inoculated with the 1 mL frozen stocks of 464 

the strain and the cultivations were performed in an orbital shaker at 200 rpm at 30 °C. Pre-465 

cultures for batches with translation inhibitors were performed using a similar approach, 466 

whereas for batches with different carbon sources the pre-cultures were made with the 467 

respective carbon sources instead of D-glucose. 468 

 469 

Chemostat cultivations 470 

Chemostat cultivations were performed in 2 L bioreactors (Applikon, Schiedam, The 471 

Netherlands) with a working volume of 1.0 L, the dilution rates used in this study were 0.2, 0.23, 472 

0.27, 0.3, 0.32 and 0.34 h-1 in two independent replicate cultures. Growth rates were controlled 473 

by modifying the inflow rate on each experiment. Synthetic medium according to Verduyn54 474 

supplemented with 7.5 g L-1 of glucose and 0.25 g L−1 Pluronic 6100 PE antifoaming agent was 475 

supplied to the bioreactor from a 20 L continuously mixed reservoir vessel. Cultures were 476 

sparged with dried air at a flow rate of 700 mL min-1 and stirred at 800 rpm. The pH of the 477 

cultures was maintained at 5.0 by automatic addition of 2 M KOH. If, after at least six volume 478 

changes, the cultures dry cell weight concentration and carbon dioxide production ratediffered 479 

less than 2% over two consecutive volume changes the cultures were considered to be in  steady 480 

state. For cultures with dilution rates of 0.27, 0.3, 0.32 and 0.34 h-1, cultures were first 481 

maintained at a dilution rate of 0.2 h-1 for 15 hours (3 volume changes) prior to increasing the 482 

specific dilution rate to said values. 483 

 484 

Batch cultivations with different carbon sources 485 

Batch cultivations were performed using synthetic medium54, the medium was supplemented 486 

with 20 g L-1 final concentrations of the carbon sources, either D-trehalose, D-galactose, D-487 

maltose or D-glucose (Sigma Aldrich). The bioreactors were inoculated with 100 mL of yeast 488 

shake flask cultures, exponentially growing on the specific carbon source.The final OD660 of all 489 

pre-cultures was 4. Cultivations were performed at 30 °C, the pH was kept at 5.0 by automatic 490 
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addition of 2M KOH. The working volume of the bioreactors was 1.4 L in 2 L bioreactors 491 

(Applikon, Schiedam, The Netherlands). The cultures were stirred at 8000 rpm and sparged 492 

with a flow rate of 700 mL min-1 of dried air. Oxygen levels were kept above 40% of the initial 493 

saturation level as measured with Clark electrode (Mettler Toledo, Greifensee, Switzerland). 494 

 495 

Batch cultivations with the translation inhibitor cycloheximide 496 

Batch cultivations with the translation inhibitor cycloheximide were performed as for the 497 

batches with different carbon sources, except that all the batch cultures ran on 20 g L-1 of D-498 

glucose and were supplemented with different concentrations of cycloheximide with the aim of 499 

reaching specific growth rates. In total five growth rates were studied, being 0.06, 0.12, 0.2, 0.32 500 

and 0.41 h-1 (adding respective cycloheximide concentrations of 228.96, 124.51, 52.15, 25.99 501 

and 0 µg L-1). 502 

 503 

Analytical methods 504 

Cultures dry weight was measured by filtering 20 mL of culture, the sample was filtered in pre-505 

dried and pre-weight membrane filters with a pore size of 0.45 µm (Gelman Science), the filter 506 

was washed with demineralized water, subsequently it was dried in a microwave (20 min, 350 507 

W) and the final weight was measured as described previously.  508 

For the measurement of organic acids and residual carbon source concentrations, supernatants 509 

of the cultures were used. For carbon-limited chemostat cultures, the samples were directly 510 

quenched with cold steel beads and filtered55, whereas samples from batch cultures were 511 

centrifuged (5 min at 16.000× 𝑔). The supernatants were analysed by high-performance 512 

chromatography analysis on an Agilent 1100 HPLC (Agilent Technologies) equipped with an 513 

Aminex HPX-87H ion-exchange column (BioRad, Veenendaal, The Netherlands), operated with 5 514 

mM H2SO4 as the mobile phase at a flow rate of 0.6 mL min−1 and at 60 °C. Detection was 515 

according to a dual-wavelength absorbance detector (Agilent G1314A) and a refractive-index 516 

detector (Agilent G1362A), as described previously. 517 
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The exhaust gas from batch cultures was cooled down with a condenser (2°C) and dried with a 518 

PermaPure Dryer (model MD 110-8P-4; Inacom Instruments, Veenendaal, the Netherlands) 519 

before online analysis of carbon dioxide and oxygen with a Rosemount NGA 2000 Analyser 520 

(Baar, Switzerland). 521 

 522 

Glycogen and trehalose assays 523 

1 mL of culture was taken from the chemostats and directly added to 5 mL of cold methanol (-40 524 

°C). The sample was mixed and centrifuged (4400× 𝑔, -20 °C for 5 minutes), the supernatant 525 

was discarded, and the pellet was washed in 5 mL of cold methanol (-40 °C), and pellets were 526 

stored at -80 °C until further processing. Subsequently, the pellets were resuspended in 0.25 M 527 

Na2CO3 and processed as described previously56,57. D-glucose released from trehalose and 528 

glycogen were measured with a D-glucose assay kit (K-GLUC Megazyme), two biological 529 

replicates and three technical replicates were analysed per condition. 530 

 531 

RNA determination 532 

For RNA determination, 1-2 mL of broth was transferred to a filter (pore size of 0.45 µm, Gelman 533 

Science), after which the filter was washed with cold TCA 5 %. The cells were resuspended in 3 534 

mL of TCA 5% and centrifuged for 15 minutes at 4 °C at 4000 rpm. The supernatant was 535 

removed and the pellet was stored at -20 °C. Finally,  samples were processed as described by 536 

Popolo et al., 1982. Two biological replicates and three technical replicates were analysed per 537 

condition. 538 

 539 

Protein determination 540 

For the batches with CHX, culture volumes corresponding to 50 mg of DCW were centrifuged, 541 

washed twice with cold demineralized sterile waterand divided into two aliquots of 5 mL. 2 mL 542 

of the aliquot (containing 10 mg DW) was mixed with 1 mL of 3 M NaOH and incubated at 100 °C 543 

for 10 minutes. The final mix was diluted and processed following the copper-sulfate based 544 
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method as described previously58. The absorbance of the supernatant was measured at 510 nm, 545 

for calibration lyophilized bovine serum albumin (A2153, Sigma Aldrich) was used. Two 546 

biological replicates and 3 technical replicates were analysed per condition.  547 

 548 

Proteomics sample preprocessing 549 

Aliquots of 20 mL of culture from chemostats and batches with different carbon sources were 550 

centrifuged (4000 rpm 4 °C, 10 minutes) and washed two times, the final pellet was flash frozen 551 

in liquid nitrogen and stored at -80 °C. Two biological replicates and two technical replicates 552 

were analysed per condition. 553 

Frozen cell pellets were thawed on ice before transfer to Precellys® Lysing Kit 2 ml screw cap 554 

vials with 0.5mm glass beads (Bertin Instruments, France). Lysis was performed in 250 µl lysis 555 

buffer, 50 mM ammonium bicarbonate with cOmplete protease inhibitor cocktail (ROCHE, 556 

Switzerland), using a Minilys Personal Tissue Homogenizer (Bertin Instruments, France), at 557 

maximum speed for 15 cycles of 30 seconds with a one-minute rest on ice between each cycle. 558 

Lysed material was centrifuged for 10 minutes 13,000× 𝑔 at 4°C, the supernatant fraction was 559 

removed and retained. Fresh lysis buffer (250 μl) was added to the insoluble material, which 560 

was resuspended before extraction from the vial via a small hole inserted into the vial base. 561 

Soluble and insoluble fractions were recombined and the total final volume recorded. Protein 562 

concentration was determined using PierceTM Coomassie Plus Bradford Assay Kit (ThermoFisher 563 

Scientific, UK).  564 

Protein (100 μg) from each sample was treated with 0.05 % (w/v) RapiGestTM SF surfactant 565 

(Waters, UK) at 80 °C for 10 minutes, reduced with 4 mM dithiothreitol (Melford Laboratories 566 

Ltd., UK) at 60 °C for 10 minutes and subsequently alkylated with 14 mM iodoacetamide 567 

(SIGMA, UK) at room temperature for 30 minutes. Proteins were digested with 2 μg Trypsin 568 

Gold, Mass Spectrometry Grade (Promega, US) at 37 °C for 4 hours before a top-up of a further 2 569 

μg trypsin and incubation at 37 °C overnight. Digests were acidified by addition of trifluoroacetic 570 

acid (Greyhound Chromatography and Allied Chemicals, UK) to a final concentration of 0.5 % 571 
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(v/v) and incubated at 37 °C for 45 minutes before centrifugation at 13,000× 𝑔 (4°C) to remove 572 

insoluble non-peptidic material.  573 

 574 

Proteomics analytics 575 

The sample running order was randomised using a random number generator (Random.org). 576 

Samples were analysed using an UltiMateTM 3000 RSLCnano system (ThermoFisher Scientific) 577 

coupled to a Q Exactive™ HF Hybrid Quadrupole-Orbitrap™ Mass Spectrometer. Protein digests 578 

(1 ug of each) were loaded onto a trapping column (Acclaim PepMap 100 C18, 75 µm x 2 cm, 3 579 

µm packing material, 100 Å) using 0.1 % (v/v) trifluoroacetic acid, 2 % (v/v) acetonitrile in 580 

water at a flow rate of 12 µL min-1 for 7 min.  581 

The peptides were eluted onto the analytical column (EASY-Spray PepMap RSLC C18, 75 µm x 582 

50 cm, 2 µm packing material, 100 Å) at 40°C using a linear gradient of 120 minute shallow 583 

gradient rising from 8 % (v/v) acetonitrile/0.1 % (v/v) formic acid (Fisher Scientific, UK) to 30 584 

% (v/v) acetonitrile/0.1 % (v/v) formic acid at a flow rate of 300 nL min-1. The column was then 585 

washed at 1 % A : 99 % B for 8 min, and re-equilibrated to starting conditions. The nano-liquid 586 

chromatograph was operated under the control of Dionex Chromatography MS Link 2.14. 587 

The nano-electrospray ionisation source was operated in positive polarity under the control of 588 

QExactive HF Tune (version 2.5.0.2042), with a spray voltage of 2.1 kV and a capillary 589 

temperature of 250oC.  The mass spectrometer was operated in data-dependent acquisition 590 

mode.  Full MS survey scans between m/z 300-2000 were acquired at a mass resolution of 591 

60,000 (full width at half maximum at m/z 200).  For MS, the automatic gain control target was 592 

set to 3e6, and the maximum injection time was 100 ms.  The 16 most intense precursor ions 593 

with charge states of 2-5 were selected for MS/MS with an isolation window of 2 m/z units.  594 

Product ion spectra were recorded between m/z 200-2000 at a mass resolution of 30,000 (full 595 

width at half maximum at m/z 200).  For MS/MS, the automatic gain control target was set to 596 

1e5, and the maximum injection time was 45 ms. Higher-energy collisional dissociation was 597 
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performed to fragment the selected precursor ions using a normalised collision energy of 30 %.  598 

Dynamic exclusion was set to 30 s. 599 

 600 

Proteomics data analysis 601 

The resulting raw data files generated by XCalibur (version 3.1) were processed using MaxQuant 602 

software (version 1.6.0.16)59. The search parameters were set as follows: label free experiment 603 

with default settings; cleaving enzyme trypsin with 2 missed cleavages; Orbitrap instrument 604 

with default parameters; variable modifications: oxidation (M) and Acetyl (protein N-term); first 605 

search as default; in global parameters, the software was directed to the FASTA file; for 606 

advanced identification “Match between runs” was checked; for protein quantification we only 607 

used unique, unmodified peptides. All other MaxQuant settings were kept as default. The false 608 

discovery rate (FDR) for accepted peptide spectrum matches and protein matches was set to 609 

1%. The CEN.PK113-7D Yeast FASTA file was downloaded from the Saccharomyces Genome 610 

Database (SGD) (https://downloads.yeastgenome.org/sequence/strains/CEN.PK/CEN.PK113-611 

7D/CEN.PK113-7D_Delft_2012_AEHG00000000/). 612 

 613 

The resulting MaxQuant output was then analysed using the MSstats package (version 3.5.6)60  614 

in the R environment (version 3.3.3) to obtain differential expression fold changes with 615 

associated p values, along with normalized LFQ and intensity values as described previously61.  616 
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 779 

Fig. 1 pcYeast model formulation and calibration of protein synthesis parameters. a. A schematic 780 

overview of reactions in the model, their interdependence and constraints. Metabolic reactions 𝑣𝑖 are 781 

proportional to enzyme concentrations 𝑒𝑖 that are synthesized at rate 𝑣𝑠𝑦𝑛,𝑖 by the ribosomes 𝑅. Each 782 

protein can be degraded with rate 𝑣𝑑𝑒𝑔,𝑖 = 𝑘𝑑𝑒𝑔 ∙ 𝑒𝑖 or diluted by growth rate 𝑣𝑑𝑖𝑙,𝑖 = 𝜇 ∙ 𝑒𝑖. 783 

Compartment-specific constraints are indicated in the light-blue boxes. b. Optimisation problem with 784 

the key constraints, including 1) steady-state mass balances; 2) production of biomass components 785 

such as DNA, lipids, cell wall and polysaccharides. Proteins and tRNA are excluded as their synthesis 786 

rates are optimisation variables 3) enzyme capacity constraints that couple metabolic flux to catalytic 787 

rate 𝑘𝑐𝑎𝑡,𝑖 and the enzyme level, whose value at steady state is determined by its synthesis rate, rates 788 

of enzyme degradation, and dilution by growth. Note we use equalities and hence enzymes work at 789 

their maximal rate and minimal required protein levels are computed; 4) ribosome capacity that 790 

defines an upper bound for protein synthesis rate; 5) compartment-specific proteome constraints that 791 

define the maximal concentration of proteins that can be contained in that compartment, with 𝑤𝑖 the 792 

specific volume or area of protein 𝑖; 6) a cytosolic protein density constraint that has the same 793 

function as that of proteome constraints, but whose equality forces the cell to fill up any vacant 794 

proteome space with unspecified protein UP with average amino acid composition. c. Growth rate was 795 

Find maximal feasible 𝜇
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varied through sugar type (trehalose, galactose, maltose, glucose) or glucose concentration, and 796 

ribosomal protein fraction was determined by proteomics (which was consistent with literature data, 797 

also plotted). The translation rate was calibrated on that data, as detailed in Supplementary Notes. d. 798 

Impact of mCherry protein overexpression on growth rate. Symbols show experimental data26, solid 799 

lines show model predictions based on glucose minimal (SD) medium or rich SC/YPD media. 800 
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 802 

Fig. 2 Predicted and measured physiological response of S. cerevisiae CEN.PK as a function of glucose 803 

availability a. Measured (symbols) and predicted (line) residual glucose concentrations as a function of 804 

growth rate. The latter was calculated based on published affinity for glucose and assuming negligible 805 

intracellular glucose under these conditions. b. Maximal feasible growth rates of the model as a 806 

function of the glucose transporter saturation. c. measured (symbols) and predicted biomass yield on 807 

glucose. d. Experimental fluxes from glucose-limited chemostats at different dilution rates (circles) and 808 

from two batch experiments (triangles): excess trehalose (which mimicks glucose limitation at low 809 

dilution rate30) and excess glucose at the highest growth rate. The lines are model predictions; 810 

background colors indicate regimes with different active constraints; e. Computed proteome 811 

occupancy of different constrained protein pools. A fraction of 1 means that the compartment is full 812 

with metabolically actively proteins and constrains the growth rate at that condition.  813 
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 815 

Fig. 3 Proteomics data of selected pathways as a function of glucose availability. Blue symbols are 816 

glucose-limited chemostat data; orange symbols are controlled batch experiments with excess 817 

trehalose (lowest growth rate) or glucose (highest growth rate) a. Comparison of predicted minimal 818 

proteome fractions to sustain growth with the experimentally determined proteome fraction for four 819 

pathways. The ratio between the two represents an estimate of the saturation level of the constituent 820 

enzymes. Lines represent the model; experimental data are symbols. b. Decay of steady-state 821 

mitochondrial protein fraction with growth rate at onset of ethanol formation suggests a maximal rate 822 

of mitochondrial biosynthesis 𝑣𝑠𝑦𝑛,𝑚𝑎𝑥. 823 
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 825 

Fig. 4 Model predictions, fluxes and protein levels plotted as a function of growth rate during hexose 826 

sugar excess conditions (in the order: trehalose, galactose, maltose, glucose) a. Fluxes of sugar 827 

consumption, oxygen consumption and ethanol production. Circles are experimental data, bar plots 828 

indicate model predictions (of both the growth rate and fluxes); b. Predicted active constraints under 829 

the different sugar excess conditions as predicted by the mode (see legend of Fig. 2 for details). c. 830 

Comparison of predicted minimally needed proteome fractions with experimentally determined ones 831 

suggests differences in saturation level between pathways. Lines represent the model, experimental 832 

data are circles; d. Linearity of the expression of individual enzymes in glycolysis (right) and respiration 833 
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(left) with growth rate suggests trading in of respiratory protein for fermentative protein. The 834 

respiratory proteins converge at 0.474 ± 0.0002 h-1. 835 
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 837 

Fig. 5 The effect of translation inhibition by cyclohexamide on growth rate, fluxes and proteome 838 

fractions in controlled aerobic batch fermentations on glucose. a. Dependency of culture optical density 839 

(OD) on the time post-inoculation to the medium supplemented with cycloheximide. Lines are values 840 

of consecutive OD measurements, points represent the times when cultures were sampled. b. Main 841 

catabolic fluxes as a function of the growth rate. c. Ribosomal proteome fractions. Data from Fig. 1c 842 

are included for comparison. d. Proteome fractions measured for key metabolic pathways, and the 843 

minimal proteome fractions predicted by pcYeast. For b-d, lines are model predictions; symbols are 844 

experimental data points. 845 
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Table 1. Statistics of the pcYeast model. 847 

Process/Compartment # of reactions # of proteins 

Total 24422 1520 

Metabolic network 5774 913 

 from Yeast7.6 5738 909 

 manually added metabolic reactions 36 4 

Cytoplasm 2349 778 

Plasma membrane 529 114 

Mitochondria 1089 272 

Endomembrane system 2127 133 

Metabolic complex formation, disassembly, dilution 2787 - 

tRNA turnover and modification 2194 56 

Protein synthesis and turnover 13312 403 

 Cytoplasmic translation 1512 138 

 Mitochondrial translation 8 89 

 Protein folding 1515 31 

 Protein degradation 1607 42 

 Protein misfolding, refolding 6061 73 

 Protein transport 1324 30 

 Protein dilution by growth 1285 - 

Formation of macromolecular complexes 355 196 
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Table 2. Changes to the parameters for simulating sugar excess conditions. NGAM is non-growth 849 

related ATP maintenance. 850 

Growth condition Unit Glucose (naïve) Galactose Maltose 

Maximal hexose transporter 

area 

𝜇𝑚2/𝑐𝑒𝑙𝑙 7.5 3.0 3.5 

Carbon-related NGAM 𝑚𝑚𝑜𝑙/𝑔𝐷𝑊/ℎ 0.0 3.0 0.0 

Minimal UP fraction 𝑔   /𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 0.245 0.49 0.34 
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