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Gene expression studies using chimeric xenograft transplants or co-culture systems have proven to 
be valuable to uncover cellular dynamics and interactions during development or in disease models. 
However, the mRNA sequence similarities among species presents a challenge for accurate 
transcript quantification. To identify optimal strategies for analyzing mixed-species RNA 
sequencing data, we evaluate both alignment-dependent and alignment-independent methods. 
Alignment of reads to a pooled reference index is effective, particularly if optimal alignments are 
used to classify sequencing reads by species, which are re-aligned with individual genomes, 
generating >97% accuracy across a range of species ratios. Alignment-independent methods, such as 
Convolutional Neural Networks, which extract the conserved patterns of sequences from two 
species, classify RNA sequencing reads with over 85% accuracy. Importantly, both methods perform 
well with different ratios of human and mouse reads. Our evaluation identifies valuable and effective 
strategies to dissect species composition of RNA sequencing data from mixed populations. 
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1.   Introduction 

Mus musculus has long been used as a model organism for the study of 
human biology.1, 2 The conserved similarity between human and mouse at 
genetic, molecular, and physiological levels makes it a powerful tool 
which effectively contributes to human studies.3-5 However, not only do 
mice respond to drugs in ways that markedly differ from humans,6 but 
mouse strains carrying human genetic variance also frequently fail to fully 
mimic human phenotypes.7-9 Strikingly, a study that examined gene 
expression in human and mouse tissues reported transcript diversity 
between comparable tissues from human and mouse,10 which indicates 
fundamental differences between these two organisms. Finally, genome-
wide association studies (GWAS) frequently identify disease-associated 
SNPs in noncoding genome, which may affect regulatory elements,11 but 
noncoding sequence is less conserved between species.12, 13 While the 
mouse remains a valuable model organism for studies of human biology, 
certain disease-associated phenotypes are better captured and examined in 
a human genetic background.  

Human cells and tissue may be available post-mortem, however, these 
cannot be used to observe complex biological activities for mechanistic 
studies.14 Particularly for the study of brain, this limitation severely 
restrains the exploration of complex neuronal network activity, brain 
development and related neurodegenerative disorders. Studies have 
reported human-mouse chimeric models with human cells transplanted 
into mouse.15-19 This transplantation system allows us to more closely 
evaluate donor cellular dynamics in vivo.20, 21 Similarly, neurons 
differentiated from human induced pluripotent stem cells (iPSC) are often 
co-cultured with mouse glial cells for metabolic and trophic support22-24 as 
mouse glia enhance maturation of human induced neurons.25 Gene 
expression studies from either xenograft transplants or co-cultures include 
sequences from multiple species that need to be resolved. 

Bulk RNA sequencing (RNAseq) cannot provide unambiguous species 
resolution from a mixed population.26, 27 Thus, species-specific 
decomposition is needed after sequencing but before analysis. Single-cell 
sequencing technologies provide detailed information about the 
heterogeneity of the cellular mixture but this technique remains expensive, 
less sensitive, and noisier compared with traditional bulk RNAseq.28 
Moreover, despite the rapid growth of single-cell level sequencing, the 
majority of available public databases are based on bulk RNAseq.  
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Several strategies have been used for processing mixed-species 
RNAseq data. Regression-based methods decompose expression data from 
a mixed cell population, but these depend on an estimated reference gene 
expression profile from purified cell populations using cell sorting.29, 30 
Other methods require a pre-captured reference profile from single-cell 
expression data to estimate the composition of cell mixtures,31-33 which is 
not always feasible.34 Here we compare methods which directly classify 
bulk RNAseq reads into human or mouse. The goal is to perform bulk 
RNAseq using a mixed cell population of both human and mouse and 
distinguish sequencing reads of each species without a pre-captured 
reference profile or single-cell sequencing. Our alignment-based approach 
maps raw sequencing data to pooled reference genomes and compares 
strategies for choosing the best alignment to classify reads based on 
species. An alignment-free approach employs a one-dimensional 
convolutional neuronal network which is commonly used in image 
classification and text matching problems.35, 36 We demonstrate the 
performance using different sets of mixed RNAseq data of pre-acquired 
purified human and mouse cells. We found the alignment-free method is 
accurate when assessing a mixed population with relatively equal 
proportions of human and mouse cells. This method is time efficient and 
does not significantly increase time for data processing before analysis. 
However, alignment-based methods outperform the alignment-free 
approach, particularly when using the “primary alignment” flag in the 
initial SAM/BAM files. 

2.   Methods 

Our goal was to model RNAseq data from mixed cultures of human 
neurons induced from iPSC lines co-cultured with mouse glia, since this is 
a system used in our research.22, 23, 37 Therefore, we obtained public 
FASTQ files of human control interneuron RNAseq data (GEO accession 
GSE118313, sample GSM3324649, 9,506,181 raw reads)38 and mouse 
astrocytes derived from dorsal root ganglia (GEO accession GSE133745, 
sample GSM3926526, 80,822,800 raw reads)39. Both datasets were paired-
end with 75 nt/end. 

For alignment-based methods, standard open-source software was 
used, including HISAT2, Kallisto, Samtools, and Python for scripting.  

• HISAT2 v2.2.0 http://daehwankimlab.github.io/hisat2/  
• Kallisto v0.46.0 https://pachterlab.github.io/kallisto/  
• Samtools v1.3.1 http://www.htslib.org/  
• Python v3.7.6 https://www.python.org/  
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Alignment-free methods implemented a Convolutional Neural 
Networks adopted from previous work with modifications. To identify the 
consensus features from different species, each sequence was first mapped 
to the feature space, F, to create the feature vectors according to a finite 
alphabet, A. After mapping, the similarity between feature vectors was 
calculated. We trained a simple CNN with a total of 8 hidden layers, 
including a one-dimensional convolution on top of the feature vectors. 
Consistent with the concept used in image processing, we also added zero 
padding around the feature vectors to get the same dimensions as input40, 

41 so that no features would be shrinking. The maximum (Max) pooling 
layer was used in between to extract the sharpest features and reduce the 
complexity.42-44 We applied 20 sliding filters with different kernel sizes to 
optimize performance. To prevent co-adaptation of the hidden layers and 
make the model more robust, we apply regularization by employing 
dropout layers.45, 46 Twenty percent of the hidden units were dropped out. 
Last, we added a dense layer with one as parameter to produce a single 
output node in the output vector.47, 48 Sources and versions of open-source 
software libraries and neural-network library are listed below. 
• NumPy v1.20.0 (https://numpy.org/) 
• Pandas v1.2.4 (https://pandas.pydata.org/) 
• TensorFlow v2 (https://www.tensorflow.org/install) 
• Biopython v1.78 (https://biopython.org/wiki/Download) 
• Matplotlib v3.4.2 
(https://matplotlib.org/stable/users/installing.html) 

Python scripts used in the study are found on GitHub: 
https://github.com/rhart604/optimized  

3.   Results 

To generate ‘hypothetical’ RNAseq data with pooled reads from both 
human and mouse, we randomly selected a total of 9,500,000 paired-
ended reads from two FASTQ files with different percentages of human 
content (0, 10, 50, 90 or 100%). To track the source of each read, a prefix 
of ‘human-’ or ‘mouse-’ was added to the read ID in the FASTQ records.  

As an example of the potential for misrepresentation of alignment 
counts, we analyzed the 50% mixture of reads aligned with a mixed 
human and mouse reference genome using HISAT2 (Table 1). By 
comparing the read IDs pre-tagged with source genome vs. the species of 
the aligned reference chromosome, the total numbers of correctly paired 
alignments could be counted, along with a percent misalignment (the 
fraction of total aligned read pairs assigned to the wrong genome). While 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447735doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447735
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Optimized Splitting of RNA Sequencing Data by Species 
 

 

5

this fraction was small (0.15% for human reads and 0.40% for mouse 
reads), it was not zero. Furthermore, the numbers of pairs aligned 
exceeded the input reads from each species, by 4.43% for hg38 and 0.40% 
for mm10. More concerning was the observation that summary counts for 
several individual genes had a substantial misassignment due to human 
reads matching mouse genome (Supplemental Table 1). The top five 
genes on this list (Table 2) exhibited a surprisingly high proportion of 
misaligned reads, ranging from ~8% to over 65%. Clearly, using a mixed 
reference genome allows for cross-alignment of reads to the wrong 
species, and for some genes this can produce a substantial source of error. 

Table 1. HISAT2 alignment of a 50-50 mixture of human or mouse FASTQ reads with a mixed 
genome reference index. Counts are shown for first in pair properly aligned (flag 0x43) to each 

genome. The percent misaligned is the fraction of total read pairs from each species aligning with the 

incorrect genome. 

Source hg38 mm10 
Percent 

Misaligned 
Percent 

False Positive 

human 4,960,218 7,526 0.15% 4.43% 

mouse 37,591 4,769,160 0.78% 0.40% 

Total read  
pairs aligned 

4,997,809 4,776,686   

 
Two general strategies were pursued—those that relied upon alignment 

with a reference genome index and those that did not. We will compare 
these along with minor variations to explore the optimal method for 
parsing mixed-genome samples. 

Table 2. Top 5 genes with the highest proportion of human reads matching mouse genome ortholog 

and at least 10 counts per genome. For complete list, see Supplemental Table 1. 

Mouse 
symbol 

mm10 
counts 

Human 
symbol 

hg38 
counts 

Percent 
mm10 

Lars2 274 LARS2 128 68.16% 

Srsf1 106 SRSF1 1009 9.51% 

Rc3h2 26 RC3H2 263 9.00% 

Bcl11a 15 BCL11A 167 8.24% 

Clk4 17 CLK4 212 7.42% 
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3.1.   Alignment-Dependent Methods 

3.1.1.   HISAT2 with Separate Genome Index 

The first method we tested aligned RNAseq reads with either the mouse 
reference genome index or the human reference genome index 
independently. Since results with a mixed genome index identified 
misalignments, we hypothesized that separately aligning with each 
genome would have fewer opportunities for mismatch based on 
homologous sequence. 

 
Figure 1. Comparison of alignment methods. A. Percentage of reads aligned using each method. Dots indicate 

the proportion of the two genomes. B. The error rate is calculated as the difference between fraction of reads 
aligned and the expected fraction, summed for each genome. C. Accuracy was assessed for each method and 

genome proportion by comparing the count of human read pairs correctly aligned to the human genome to the 
number of human read pairs in the input file.  

Using hisat2-build, we created separate indices for the human genome 
and the mouse genome using toplevel fasta DNA sequence files from the 
Ensembl ftp site (GRCh38 [hg38] or GRCm38 [mm10], respectively). 
After building the indices, we used HISAT2 to align each of the 5 pairs of 
mixed fastq files with a range of species compositions using each index. 
The result was 5 SAM files for human and 5 for mouse. The number of 
non-matching and matching reads in each SAM file was recorded.  
As expected, some reads matched both species, and so were counted 
twice, inflating the total percent alignment above 100% (Fig. 1A, 
HISAT2_sep). The percent error was calculated as the sum of the 
differences between actual vs. observed proportion of reads for each 
species. The high number of non-matching reads contributed to an 
unexpectedly high percentage error, as shown in the “HISAT2_sep” bars 
in Fig. 1B. The accuracy, defined as the percentage of human reads 
aligned with human genome, was relatively insensitive to the species 
proportions (Fig. 1C). Separating the alignment produced greater total 
alignments with greater error and a similar accuracy, compared with 
mixed-genome alignment.  
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3.1.2.   Kallisto with Combined Index 

The high error using HISAT2 on separate genomes led us to consider 
using Kallisto, which uses pseudoalignment to efficiently quantify 
abundances of transcripts.49 Unlike HISAT2, which indexes the entire 
genome, Kallisto builds an index considering only subsequences, or k-
mers, that distinguish isoforms. We built an index of the pooled mouse 
and human cDNA sequence, intending to focus on only the k-mers that 
distinguish the two different species (as well as different isoforms or genes 
within a species).  
First, cDNA FASTA files from the Ensembl archive were downloaded 
from both GRCh38 and GRCm38, with each transcript identified by a 
species-specific Ensembl transcript ID. The files were combined and run 
through kallisto index to build an index. Then kallisto quant was used to 
align each of the 5 pairs of mixed files to the combined index. The number 
of mouse sequences that matched to human species and vice versa in the 
resulting directories were counted using the R package Rsubread (Fig. 1). 
Kallisto produced slightly fewer alignments than HISAT2 (third bar, Fig. 
1A). While Kallisto was expected to be more accurate than the mixed-
genome HISAT2 method, the average percent error was 11.2%, compared 
with only 1.7% for HISAT2-mixed (Fig. 1B). The accuracy, however, was 
substantially lower than other alignment methods (Fig. 1C), causing us to 
abandon this approach. 

3.1.3.   Separating FASTQ Reads by Alignment Score 

To improve on interpretation of alignments, the “by alignment score” 
(byAS) method was developed, based on the hypothesis that among 
multiple alignments from each sequencing record to the mixed genome 
index, the one with the greatest alignment score is the best match. These 
scores are used to split the original sequencing files into two sets of 
species-specific RNAseq reads for re-alignment with only the appropriate 
genome. 
We prepared a Python script (byAS.py) that separates RNAseq FASTQ 
files into human and mouse subsets based on their alignment scores in 
SAM files produced from HISAT2 with a mixed reference index. The 
alignment score, a component of the SAM file format, is calculated by 
each algorithm using its own method, so it can only be compared among 
results from a particular program.  
The byAS script scans a SAM file and stores alignment scores from each 
species in a separate dictionary, in which the key is the unique record ID. 
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Reads that match both genomes with equal scores (~0.51% of reads) are 
biased to choose the first-appearing read in the bam file. The two species-
specific dictionaries are then used to iterate through the source, paired 
FASTQ files, exporting records into two sets of species-specific FASTQ 
files. The two sets of paired FASTQ files are re-aligned with the 
appropriate species of genome index using HISAT2. Selecting only high-
scoring read pairs slightly reduced the final alignment rate (Fig. 1A, 
byAS). However, the overall error rate (Fig. 1B) is substantially reduced 
compared with a direct alignment with individual genomes 
(HISAT2_sep), and the accuracy was equal to or better than other methods 
(Fig. 1C). The strategy of classifying reads based on optimal match to a 
given genome clearly improved accurate alignment. 

3.1.4.   Separating FASTQ Reads by Primary Alignment Flag 

During evaluation of the byAS method, we realized that the alignment 
score calculated by HISAT2 exhibits a narrow range of values so there is 
little resolution between the best and worst alignments. Furthermore, the 
number of reads with identical alignment scores (~0.51%), while small, is 
another source of inaccuracy.  Another element of the SAM file format is 
a flag to denote the “primary” alignment, with lesser quality alignments 
considered as secondary (marked with a “true” SAM flag at 0x100, or 
decimal 256, which denotes “not primary alignment”). Since this flag, 
when set as “false,” ought to be found on the read with the best alignment 
score, it appeared to provide a simpler strategy for classifying alignments 
by species. We designed a second Python script (byPrim.py) to split 
FASTQ files based on the primary alignment flag in a mixed-genome 
SAM file. 
This script reads the SAM file input and stores all read IDs as keys and 
primary flags as values in two species-specific dictionaries. Then, using 
these dictionaries, byPrim parses through the paired FASTQ files and 
outputs two sets of species-specific files. 
Results indicated a slightly greater alignment rate (Fig. 1A, byPrim), 
reduced error rate (Fig. 1B), and a similar accuracy (Fig. 1C) compared 
with other HISAT2-based methods. However, the script is slightly 
simpler, with less ambiguity (for example, there are no reads excluded for 
matching alignment scores). Based on these evaluations, byPrim was 
judged to be optimal among the alignment methods. 
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3.2.   Alignment-Independent Methods 

The aim of an alignment-independent method is to build a classifier to 
distinguish sequence reads from different species without aligning to 
individual reference genomes. This requires us capture the hidden 
information directly from the nucleotide sequence of both mouse and 
human. We first sought to apply a classical probabilistic based approach, 
Hidden Markov models (HMMs), to discover the underlying variance 
between human and mouse sequence. HMMs are used in sequence data 
analysis with many bioinformatics applications50, 51 including 
identification of genes, motifs finding, metagenomic taxonomic 
classification.52-54 However, third order HMMs did not separate sequence 
fragments from mouse and human (Fig. 2A). Even with higher order 
Markov Models (8th or higher) which successfully performed 
metagenomic sequence classification,55 the separation of human and 
mouse reads is not ideal. The receiver operating characteristic curve56 
indicates that this binary classifier system only slightly improves with 
higher order models (Fig. 2B). Moreover, we noticed that HMMs require 
substantial amount of memory and compute time. For a sequence of length 
l, the memory to find the best path through the model with s states and e 
edges proportional to sl and the time proportional to el.  
 

 
Figure 2. Performance of Hidden Markov Models. A. Separation of human and mouse reads compared with 

randomly generated sequence with same length using third order Markov Model. B. Separation of human and 

mouse reads with 10th order of Markov Models. C. ROC plot showing the false positive rate and true positive 
rate of different orders of Markov models. 

 
To find a more accurate and efficient way to separate human and mouse 
reads, we next utilized Convolutional Neural Networks (CNN),47 which 
was originally developed for computer visualization and image 
processing.57, 58 CNN performs effectively in many natural language 
processing (NLP) problems including sentence modeling, text 
classification and query processing.42, 59-62 We applied CNN here to 
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classify RNA sequencing reads of different species using the identified 
features directly from the fragments without pre-aligning to reference 
genome. 
We consider this process as assigning labels of either human or mouse to 
strings of characters. The key step is choosing the sets of features which 
will then input into the classification algorithms. Features like sequence 
length are highly dependent on the size selection step during library 
preparation so input strings must be truncated to a constant length 
(Supplemental Fig. 1A).63 Other sequence features, for example GC 
content, may have specificity for human genome.64 However, the 
difference in GC content between these two species (~41% in human and 
~42% in mouse for non-sex chromosomes; Supplemental Fig. 1B) is 
insufficient to aid the separation.65  
Our approach was to utilize raw reads from FASTQ files. Reads in the 
FASTQ file can be represented as a linear succession of L characters or 
nucleotides. Each nucleotide was coded using a finite alphabet, A, 
containing five nucleotides, A, T, C, G, or N, pointing to integers 1,2,3,4, 
or 5, respectively, where ‘N’ is denoted as an ambiguous base due to low 
quality during sequencing.66 The percentage of N bases per read was 
calculated for each species to ensure there was no substantial difference 
(Supplemental Fig. 1C). All the generic strings can be obtained by 
concatenating characters from A to create the sample space, S. 
Specifically, each sequencing read, r, can be mapped to feature space, F, 
from sample space, S, by a function � using the alphabetic index. We then 
represent each string r of length l as a multidimensional feature vector, x, 
in the 5l dimensional feature space by � � ���� according to the alphabet 
table. 
The basic architecture of the convolutional neural network is adopted from 
the original work of Collobert et al.42 in NLP with some modifications 
(Supplemental Fig. 2G). To avoid feature shrinking, each vector of 
length l was first padded with zeros to equalize dimensions before feeding 
into the network.40, 41 For each convolutional layer, we use a convolution 
operation with fixed filter width, k, to produce a new feature by given 
function �. Here, � is a non-linear function that may involve a bias term. 
The filter is applied to the entire feature vector with all possibilities, 
creating a new feature map. We then apply a max pooling operation over 
the feature map and take the maximum value as output from this layer.42 
The penultimate layer takes all features obtained from the previous layers 
and outputs a probability distribution over either label. The last dense 
layer then outputs a binary classification indicating the species. Note that 
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we also employed a dropout on the penultimate layer to avoid the co-
adaptation of units.45 We introduce a random variable from a Bernoulli 
distribution, with probability p being 1, which determines the proportion 
of dropping units.  
 

 
Figure 3. Performance of Convolutional Neural Networks. A. Accuracy of classification with different ratios of 

human reads in the training datasets. B. Accuracy of classification with different ratios of human reads in the 
testing datasets. Accuracy was calculated as the percentage of correctly classified reads in the input data. 

 
To test the performance of our model, we used the mixed human and 
mouse reads with different ratios. Reads are drawn from sequencing 
output without any selection or tuning. Reads were further split randomly 
into a 50% training set and a 50% testing set. We trained the same 
network with five training sets and tested the performance of each trained 
network using all five testing sets. The final performance was evaluated by 
accuracy after six epochs. Accuracies of model trained by either 0% or 
100% human showed a strict linear relation with percentage of human 
reads in the testing sets (Fig. 3A). The 10% and 50% human training sets 
behaved with similar accuracies across all testing sets (Fig. 3A). With 
50% or less human reads in the testing set, models that are trained by 
training sets with 10% and 50% human reads outperformed models trained 
by other training sets. With 90% or more human reads in the testing sets, 
models trained by 90% and 100% human reads performed similarly. The 
total accuracy positively correlated with the ratio in testing sets. To further 
determine the conceptual training strategy with different ratios of human 
reads in the testing sets, we compared accuracies with multiple possible 
testing datasets. The performance of models tested with 0, 10% and 50% 
human reads decrease along with decreased human reads in training sets 
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(Fig. 3B). However, the accuracies dropped at 50% or more human reads 
in the training sets. This intuitively makes sense since more human reads 
in the training data would have emphasized the features of human rather 
than mouse which leads to the worse performance with lower human reads 
in the testing. The accuracy from testing sets with a higher percentage of 
human reads, on the other hand, jumped significantly after 10% then 
increased along with increased human reads in the training sets. Thus, we 
propose that to optimize performance of the model, the training sets 
should contain equal number of reads from both species.  
To better classify human and mouse reads, we tuned several 
hyperparameters including kernel size, filters numbers, pooling methods 
and optimization algorithm to produce the highest accuracy 
(Supplemental Fig. 2). First, we noticed that the number of epochs with 
the highest accuracy turned out to be five, which is smaller than the usual 
number required in image processing or text classification. The accuracy 
on training sets increased dramatically after five epochs and continued 
increase to near 100% while the accuracy on testing sets dropped after five 
iterations (Supplemental Fig. 2A). This indicated a quick overfitting of 
the model67, 68 and signaled that the number of epochs should be set 
strictly within six.69-71 However, variations in the kernel size and number 
of filters, which are two critical parameters that alter network efficiency,72, 

73 did not change the classification accuracy dramatically (Supplemental 
Fig. 2B-C). Kernel size only affected the overall performance of the 
model by around 1%. With a kernel size larger than four, the model stably 
produces accuracies over 87% (Supplemental Fig. 2B-C). Similarly, filter 
number only slightly changed the accuracy (Supplemental Fig. 2D). 
Pooling layer, on the other hand, was crucial after the convolution layer. 
Not only did it downsize the information to reduce computation time, but 
it also increased the classification accuracy.74 Network without pooling 
usually had a substantial decrease of performance which was usually 
caused by the propagation of local features to the neighbors.75 So, 
including the pooling operation can shrink the feature map while still 
preserving key information required for classification.43, 76, 77 We 
investigated two popular pooling methods, average pooling and max 
pooling, each with its own strengths and weaknesses.43, 78 The evaluation 
of the model accuracy with different pooling methods showed that max 
pooling outperformed average pooling despite the percentage of human 
reads (Supplemental Fig. 2E). Finally, we showed that instead of 
classical stochastic gradient descent procedure, the Adam optimization 
algorithm,79-81 performed the best (Supplemental Fig. 2F).  
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4.   Discussion 

Our results demonstrate that the optimal strategy for obtaining accurate 
classification of sequencing reads from mixed-species samples requires 
three steps: first, alignment to a mixed reference genome, then, the 
selection of the optimal alignment for each read to partition reads into 
species-specific FASTQ files, followed by re-alignment to the appropriate 
genome. Aligning mixed samples using a pooled reference index resulted 
in errors, some of which underestimated counts unequally across genes. 
Surprisingly, an algorithm designed to focus on differences within a 
reference sequence (Kallisto) was less effective at distinguishing reads by 
species. An algorithm using indexed genomes (HISAT2) performed better, 
with better overall accuracy and reduced error, particularly when coupled 
with a method to separate input FASTQ files using alignment information. 
With pooled mouse and human RNAseq reads with various proportions, 
both byAS and byPrim methods offered over 95% accuracies.  
The overall performance of alignment-based method, however, is highly 
dependent on the quality of the sequencing data, and could be less 
effective under conditions where poor sequencing quality leads to lower 
alignment rate. Therefore, we also evaluated alignment-independent 
methods, HMM and CNN, by which reads can be separated based on 
features within the sequences without pre-aligning to reference genomes. 
HMM did not adequately separate reads by species. However, CNN could 
be applied for sequencing datasets from organisms whose genomes are not 
well annotated. Importantly, CNN provides better and faster classification 
of RNAseq reads of two species compared with HMM (Fig. 2). We 
suspect the suboptimal performance of such probabilistic models is due to 
the high similarity between the linear sequence from human and mouse 
genome.  
In summary, while the optimal CNN non-alignment strategy successfully 
partitioned reads by species, a more traditional approach of mixed-genome 
alignment followed by separation of reads by optimal alignment (byPrim) 
proved to be the most successful with the lowest error rates. 
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Supplemental Figures 

  

 
 

Supplemental Figure 1. Characteristic of sequence reads. A. Length distribution of human and mouse reads. B. 
GC content of human and mouse reads. C. Ratio of ambiguous base ‘N’ in human and mouse sequence. 
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Supplemental Figure 2. Optimization of hyperparameters. A. Accuracy of classification in training and testing 
sets with increase of epochs. B. Comparison of accuracy of classification with different kernel size using six 

epochs. C. Accuracy of classification with different kernel size during first five epochs. D. Comparison of 
accuracy of classification with different filter numbers using six epochs. E. Comparison of accuracy of 
classification with different pooling methods. F. Comparison of accuracy of classification with different 

optimizers. Accuracy was calculated as the percentage of correctly classified reads in the input data. G. 
Structure of Neural Networks. 
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