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Abstract 
Identifying biomarkers that predict the mental states with large effect sizes and high test-retest 

reliability is a growing priority for fMRI research. We examined a well-established multivariate 

brain measure that tracks pain induced by nociceptive input, the Neurologic Pain Signature 

(NPS). In N = 295 participants across eight studies, NPS responses showed a very large effect 

size in predicting within-person single-trial pain reports (d = 1.45) and medium effect size in 

predicting individual differences in pain reports (d = 0.49, average r = 0.20). The NPS showed 

excellent short-term (within-day) test-retest reliability (ICC = 0.84, with average 69.5 

trials/person). Reliability scaled with the number of trials within-person, with ≥60 trials required 

for excellent test-retest reliability. Reliability was comparable in two additional studies across 

5-day (N = 29, ICC = 0.74, 30 trials/person) and 1-month (N = 40, ICC = 0.46, 5 trials/person) 

test-retest intervals. The combination of strong within-person correlations and only modest 

between-person correlations between the NPS and pain reports indicates that the two 

measures have different sources of between-person variance. The NPS is not a surrogate for 

individual differences in pain reports, but can serve as a reliable measure of pain-related 

physiology and mechanistic target for interventions. 
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Significance statement 
Current efforts towards the translation of brain biomarkers require identifying brain measures 

with large effect sizes in predicting outcomes of interest and reliability. We systematically 

examined the performance of a well-established brain activity pattern, the Neurological Pain 

Signature (NPS), in a large and diverse sample of participants. The NPS showed excellent 

reliability, and the reliability scaled with the number of trials within-person. The NPS responses 

showed strong correlations with pain reports at the within-person level but only modest 

correlations at the between-person level. The findings suggest that the NPS is not a surrogate 

for individual differences in pain reports but can serve as a reliable measure of a pain-related 

physiological target. 
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Effect sizes and test-retest reliability of the fMRI-based Neurologic Pain Signature 

 
 
Understanding individual differences in brain activity and their links with behavior is a 

primary focus of fMRI research. One approach is to establish structure-function associations 

and make inferences about the brain bases of individual differences. A distinct but related 

approach uses brain measures to develop biomarkers that can contribute to measuring 

external constructs (e.g., pain, the risk for mental illness) and inform diagnosis and treatment 

(FDA-NIH Biomarker Working Group, 2016). For example, research on neural mechanisms 

of physiological pain helps to understand which brain areas are involved in constructing 

different kinds of pain experiences in different populations. Meanwhile, the research helps to 

develop biomarkers that can subtype pain based on pathophysiology, predicting risk for 

future pain, and more, leading to new ways of understanding, diagnosing, and treating pain. 

Both establishing structure-function associations and developing biomarkers require brain 

measures with good measurement properties, including large effect sizes in predicting 

external variables (e.g., behavior) and high reliability.  

 

Historically, the measurement properties of fMRI activities have been rarely assessed. Effect 

sizes in predicting external variables are calculated at both within-person and between-

person levels when repeated measures are collected within each person. Predictions at 

these levels can be inconsistent due to different sources of variance (Bakdash & Marusich, 

2017; Kievit et al., 2013). For example, the two variables are positively correlated at the 

within-person level while having no relation at the between-person level. Assessing effect 

sizes at both within-person and between-person levels prevents incorrect interpretations of 

the predictions and yields a deeper understanding of the brain measures. Test-retest 

reliability is one type of reliability index, usually measured with an intraclass correlation 

coefficient (ICC, Shrout & Fleiss, 1979), that assesses temporal stability under repeated 

tests. Both effect sizes and test-retest reliability rely on a low random error in the 

measurement. Test-retest reliability also relies on high inter-individual variability, indicating 

differentiable measures across subjects (Barnhart et al., 2007).  

  

As translational goals accelerate and sample sizes increase, measurement properties of 

fMRI studies are increasingly a focus of attention (Bennett & Miller, 2010; Button et al., 2013; 

Dubois & Adolphs, 2016; Elliott et al., 2019, 2020; Hedge et al., 2018; Herting et al., 2018; 

Kraemer, 2014; Nichols et al., 2017; Noble et al., 2019; O’Connor et al., 2017; Poldrack et 

al., 2017; Xu et al., 2016; Zuo et al., 2019; Zuo & Xing, 2014). Studies of traditional 

univariate brain measures provide a pessimistic picture of task fMRI’s measurement 
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properties. Effect sizes of univariate brain measures in local brain regions have often been 

limited to moderate effect sizes (i.e., Cohen’s d values centered on approximately d = 0.5; 

Poldrack et al., 2017). The reliability of univariate brain measures in many studies with small 

samples varies substantially (Letzen et al., 2016; Manuck et al., 2007; Nord et al., 2017; 

Plichta et al., 2012). A recent meta-analysis of fMRI literature across diverse tasks generally 

demonstrated low reliability (ICCs < 0.4) of the average activation level of single brain 

regions of interest (ROI), which did not decrease with longer test-retest interval (Elliott et al., 

2020). In resting-state fMRI studies, low test-retest reliability (ICCs < 0.3) was indicated by 

the individual edge-level connectivity (Noble et al., 2019; Pannunzi et al., 2017).   

 

An important trend in the fMRI studies is the development of a priori multivariate brain 

measures that can be used as biomarkers, also called ‘neuromarkers’ or ‘signatures’ 

(Arbabshirani et al., 2017; Doyle et al., 2015; Gabrieli et al., 2015; Haynes, 2015; Kragel et 

al., 2018; Orrù et al., 2012; Woo, Chang, et al., 2017). Such models consist of patterns of 

brain activity, connectivity, and other derived features (e.g., graph-theoretic measures) within 

and across brain regions, which can be applied prospectively to new samples or participants. 

Because they are pre-specified models applied to new samples without re-fitting, 

neuromarkers provide an opportunity to evaluate measurement properties across different 

samples and contexts systematically. Multivariate brain signatures can yield measures with 

much larger effect sizes (Cohen’s d > 2; Chang et al., 2015; Geuter et al., 2020; Krishnan et 

al., 2016; Wager et al., 2013; Zunhammer et al., 2018). They also show enhanced test-retest 

reliability for both task-evoked (ICCs > 0.7; Kragel et al., 2020; Woo & Wager, 2016) and 

resting-state (ICCs > 0.6; Gordon et al., 2017; Gratton et al., 2020; Yoo et al., 2019; Zuo & 

Xing, 2014) fMRI measures in some studies. However, this has rarely been assessed across 

diverse samples and scanners, particularly with respect to a systematic evaluation of effect 

sizes for within-person and between-person prediction of external variables and test-retest 

reliability. 

 

In the current study, we evaluated a well-established multivariate brain-based model in the 

pain domain, i.e., the Neurologic Pain Signature (NPS; Wager et al., 2013). NPS consists of 

interpretable and stable patterns across brain regions known to show increased activity in 

pain-related studies. These regions included the thalamus, the posterior and middle insula, 

the secondary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray 

matter, and other regions (see Figure 1(A)). The NPS predicts subjective pain intensity in 

response to noxious thermal (Wager et al., 2013), mechanical (Krishnan et al., 2016), 

electrical (Krishnan et al., 2016; Ma et al., 2016), and visceral stimuli (Van Oudenhove et al., 

2020). In addition, it does not respond to non-noxious warm stimuli (Wager et al., 2013), 
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threat cues (Krishnan et al., 2016; Ma et al., 2016; Wager et al., 2013), social rejection-

related stimuli (Wager et al., 2013), vicarious pain (Krishnan et al., 2016), or aversive images 

(Chang et al., 2015). The NPS provides a neuromarker of a basic mental process with 

negative affective components, which can serve as an intermediate phenotype potentially 

relevant to various disorders. For example, enhanced NPS responses, combined with 

another brain signature related to non-painful sensory processing, discriminated fibromyalgia 

from pain-free controls with 93% accuracy (López-Solà et al., 2017).  

 

NPS effect sizes have been mainly assessed on within-person correlations with pain 

(Lindquist et al., 2017) and reliability has only been assessed in a preliminary fashion 

(Kragel et al., 2020; Woo & Wager, 2016). The measurement properties of individual brain 

regions of the NPS have not been assessed systematically. Comparing the measurement 

properties of the whole NPS and individual brain regions could help clarify whether NPS's 

performance exceeds individual brain regions and reveal the different performance of 

different individual brain regions. Further, the properties that influence test-retest reliability of 

the NPS (e.g., amount of data collected per person) have not been systematically examined 

in detail across studies. Examining these properties could both help understand the NPS as 

a test case and reveal principles underlying the sources of error and reliability of task fMRI 

more broadly. 

 
Methods 

We tested four types of effect size for both NPS and local brain regions of interest by 

analyzing painful stimulus-evoked fMRI and pain reports across ten studies (total N = 444), 

none of which were used to train the NPS model. The main analyses were conducted on 

single trial-level data from a multi-study dataset across eight studies (N = 295).  In this 

dataset, we also tested short-term (i.e., within one day) test-retest reliability and several 

factors potentially influencing it. These factors include the number of trials used, the noxious 

stimulus intensity, and whether the NPS was applied to pain-versus-rest or a contrast 

between high and low painful stimulus intensity (Bennett & Miller, 2010, 2013). Studies 9 and 

10 evaluated test-retest reliability across 5-days (N = 29) and one-month (N = 120) intervals. 

We compared the short-term, and longer-term test-retest reliability controlling for the number 

of trials averaged when calculating the NPS response.  

 

Datasets description 
We analyzed three datasets: (1) a single-trial dataset included 15,940 single-trial images of 

fMRI activity from healthy subjects with multiple levels of noxious heat and pain ratings 

within one scan session (i.e., one day) across 295 participants from 8 studies (i.e., study 1 to 
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8); (2) a study (i.e., study 9) with healthy subjects during heat pain tasks with behavioral and 

fMRI data collected across three sessions with five-days intervals between each session (N 

= 29); (3) a study (i.e., study 10) with chronic back pain subjects receiving pressure pain 

stimulations with behavioral and fMRI data collected across two sessions with an average of 

one month between them (N = 120). Participants received a series of painful stimuli and 

rated their individually experienced pain following each stimulus in all studies. Each study 

also included psychological manipulation, such as cue-induced expectation and placebo 

treatment. Descriptive data on age, sex, and other study sample features are given in Table 
1. The number of trials, stimulation sites, stimulus intensities and durations varied across 

studies but were comparable; these variables are summarized in Table 2. In the studies 

included, we examined the test-retest reliability of the NPS and pain ratings irrespective of 

diverse study-specific features and manipulations, which facilitated our conclusion's 

generalizability.  

 

Data from the study 1 to 8 have been used in previous publications (see Table 1). However, 

the analyses and findings reported here are novel, and the data used for developing the 

NPS was not included in the current study to avoid double-dipping (Kriegeskorte et al., 

2009). Data from the study 9 and 10 have not been published yet. All participants were 

recruited from New York City and Boulder/Denver Metro Areas. The institutional review 

board of Columbia University and the University of Colorado Boulder approved all the 

studies, and all participants provided written informed consent. Participants' preliminary 

eligibility was determined through an online questionnaire, a pain safety screening form, and 

an MRI safety screening form. Participants with psychiatric, physiological, or pain disorders, 

neurological conditions, and MRI contraindications were excluded before enrollment. No 

participants were excluded from the study after screening other than individuals who, upon 

screening, provided different responses that made them ineligible (e.g., developing a 

physiological disorder).  

 

Materials and Procedures 

Thermal and pressure stimulation 
We delivered thermal stimulation to multiple skin sites using a TSA-II Neurosensory Analyzer 

(Medoc Ltd., Chapel Hill, NC) with a 16 mm Peltier thermode endplate, excepting Study 3 

using the Pathway ATS model and Study 8 with a 32 mm Peltier thermode endplate. Study 

10 delivered pressure rather than thermal stimulation, using a custom-built pneumatic device 

pushing a piston into the left thumbnail. At the end of every trial, participants rated pain 

intensity on a visual analog scale or a labeled magnitude scale (Bartoshuk et al., 2004). 

Thermal stimulation parameters varied across studies, with stimulation temperatures ranging 
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from 44.3 °C to 50 °C and stimulation durations ranging from 1.85 to 12.5 seconds. Most 

studies applied thermal stimulation to the left volar forearm; study 2 also applied the left 

foot’s dorsum; study 6 and study 8 applied the stimulation to the lower leg. See Table 2 for 

stimulation location, intensity levels, duration, number of trials per subject, and other 

cognitive manipulations. 

 

fMRI Analysis 
Preprocessing 

We were interested in using the preprocessing pipelines from the original published studies 

as this will likely reflect the variations in preprocessing steps observed across studies in the 

literature. In studies 1 to 8, structural T1-weighted images were coregistered to each 

subject's mean functional image using the iterative mutual information-based algorithm 

implemented in SPM (Ashburner & Friston, 2005). They were then normalized to MNI space 

using SPM. Following SPM normalization, study 4 included an additional step of 

normalization to the group mean using a genetic algorithm-based normalization (Atlas et al., 

2010, 2014; Wager & Nichols, 2003). In each functional run, we removed initial volumes to 

allow for image intensity stabilization. We also identified image-intensity outliers (i.e., 

'spikes') by computing the mean and standard deviations (SD, across voxels) of intensity 

values for each image for all slices to remove intermittent gradient and severe motion-related 

artifacts present to some degree in all fMRI data. We first computed both the mean and the 

SD of intensity values across each slice for each image to identify outliers. Mahalanobis 

distances for the matrix of (concatenated) slice-wise mean and standard deviation values by 

functional volumes (overtime) were computed. Any values with a significant χ2 value 

(corrected for multiple comparisons based on the more stringent of either false discovery 

rate or Bonferroni methods) were considered outliers. In practice, less than 1% of the 

images were deemed outliers. The outputs of this procedure were later included as nuisance 

covariates in the first-level models. Next, functional images were corrected for differences in 

each slice's acquisition timing and were motion-corrected (realigned) using SPM. The 

functional images were warped to SPM's normative atlas (warping parameters estimated 

from coregistered, high-resolution structural images), interpolated to 2 × 2 × 2 mm3 voxels, 

and smoothed with an 8 mm FWHM Gaussian kernel. This smoothing level has been shown 

to improve inter-subject functional alignment while retaining sensitivity to mesoscopic activity 

patterns consistent across individuals (Shmuel et al., 2010). 

 

The preprocessing of study 9 and 10 were conducted using fMRIPrep 1.2.4 (Esteban et al., 

2019; Esteban, Blair, et al., 2018; RRID:SCR_016216). The BOLD reference was co-

registered to the T1w reference. Co-registration was configured with nine degrees of 
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freedom to account for distortions remaining in the BOLD reference. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six 

corresponding rotation and translation parameters) are estimated. The BOLD time-series 

were resampled onto their original, native space by applying a single, composite transform to 

correct for head-motion and susceptibility distortions. The BOLD time-series were resampled 

to MNI152NLin2009cAsym standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space. The preprocessed BOLD runs were smoothed with a 6 mm 

FWHM Gaussian kernel. We identified image-intensity outliers (i.e., 'spikes') using 

Mahalanobis distances (3 standard deviations) and dummy regressors were included as 

nuisance covariates in the first level. Besides, twenty-four head motion covariates per run 

were entered into the first level model as well (displacement in six dimensions, displacement 

squared, derivatives of displacement, and derivatives squared). 

 

General linear model (GLM) analyses 
For studies 1 to 8, a single trial, or "single-epoch", design and analysis approach was 

employed to model the data. Quantification of single-trial response magnitudes was done by 

constructing a GLM design matrix with separate regressors for each trial, as in the "beta 

series" approach (Mumford et al., 2012; Rissman et al., 2004). First, boxcar regressors, 

convolved with the canonical hemodynamic response function (HRF), were constructed to 

model cue, pain, and rating periods in each study. Then, we included a regressor for each 

trial, as well as several types of nuisance covariates. Because each trial consisted of 

relatively few volumes, trial estimates could be strongly affected by acquisition artifacts that 

occur during that trial (e.g., sudden motion, scanner pulse artifacts). Therefore, trial-by-trial 

variance inflation factors (VIFs; a measure of design-induced uncertainty due, in this case, to 

collinearity with nuisance regressors) were calculated, and any trials with VIFs that 

exceeded 2.5 were excluded from the analyses. Single-trial analysis for Study 2 and 4 were 

based on fitting a set of three basis functions, rather than the standard HRF used in the 

other studies. This flexible strategy allowed the shape of the modeled hemodynamic 

response function (HRF) to vary across trials and voxels. This procedure differed from that 

used in other studies because (a) it maintains consistency with the procedures used in the 

original publication on Study 4 (Atlas et al., 2010), and (b) it provides an opportunity to 

examine predictive performance using a flexible basis set. For both studies, the pain period 

basis set consisted of three curves shifted in time and was customized for thermal pain 

responses based on previous studies (Atlas et al., 2010; Lindquist et al., 2009). To estimate 

cue-evoked responses for Study 4, the pain anticipation period was modeled using a boxcar 

epoch convolved with a canonical HRF. This epoch was truncated at 8 s to ensure that fitted 

anticipatory responses were not affected by noxious stimulus-evoked activity. As with the 
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other studies, we included nuisance covariates and excluded trials with VIFs > 2.5. In Study 

4 we also excluded trials that were global outliers (those that exceeded 3 SDs above the 

mean). We reconstructed the fitted basis functions from the flexible single-trial approach to 

compute the area under the curve (AUC) for each trial and in each voxel. We used these 

trial-by-trial AUC values as estimates of trial-level anticipatory or pain-period activity. For 

studies 9 and 10, we estimated a GLM for each participant, including the nuisance 

covariates generated in preprocessing and three regressors of interest: pain stimuli, pain 

ratings, and button presses, each convolved with the standard HRF. 

 

Computing Neurologic Pain Signature (NPS) responses  
We computed a single scalar value for each trial and each subject, representing the NPS 

pattern expression in response to the thermal and pressure pain stimulus (using the contrast 

[Pain Stimulation minus Baseline] images). There are three methods to calculate the NPS 

pattern response, given the NPS is represented as a vector x, brain response to pain 

stimulus as a vector y, and the voxel number in the brain mask as n: (1) dot-product (NPS = 
∑ 𝑥!𝑦!"
! ), which combine whole-image magnitude and spatial similarity information; (2) cosine 

similarity (NPScos = ∑ $!%!"
!

&∑ $!
#"

! &∑ %!
#"

!

), which excludes whole-image magnitude information, 

representing the dot-product of unit vectors; (3) correlation (NPScorr = ∑ ($!($̅)(%!(%+)"
!

&∑ ($!($̅)#"
! &∑ (%!(%+)#"

!

), 

which excludes information related to whole-image mean and magnitude, representing 

cosine similarity between centered vectors. The effect size and reliability of these three NPS 

response metrics were not significantly different from each other (see Table S5). Thus we 

reported the results of the dot product of NPS in the main text. 

 

To test whether NPS's performance exceeds individual brain regions within NPS, we also 

computed the pattern expression, i.e., dot-product, for each brain area within NPS. The local 

brain areas were extracted based on the NPS map thresholded at q < 0.05 FDR, k > 10. We 

compared the effect size and the reliability of individual brain regions with the whole NPS 

pattern using paired t-tests by treating the study as the observation unit and corrected the 

multiple comparisons using q<0.05 FDR. In most of the regions in the NPS, pain is 

associated with the increased overall activity, i.e., positive brain regions, including the right 

Insula (rIns), the right dosal Insula (rdIns), the left Insula (lIns), the right secondary 

somatosensory cortex (rS2), the dorsal anterior cingulate cortex (dACC), the right Thalamus 

(rThal), vermis and the right primary visual area (rV1). Such regions include the major 

targets of ascending nociceptive afferents. In a subset of other regions, pain is associated 

with the decreased overall activity, i.e., negative brain regions, including the perigenual ACC 
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(pgACC), the posterior cingulate cortex (PCC), right inferior parietal lobule (rIPL), left lateral 

occipital complex (lLOC), right posterior lateral occipital complex (rpLOC), right lateral 

occipital complex (rLOC), and left superior temporal sulcus (lSTS). These regions are not 

strongly linked to nociception and are not direct targets of nociceptive afferents; rather, they 

have been associated with a variety of affective, autonomic, social, self-referential, and 

decision-making functions (Roy et al., 2012, 2014). 

 

Effect size analysis 
We analyzed four types of effect sizes of the NPS in the single-trial dataset: (1) Mean 

response: the mean NPS response across all trials irrespective of the temperature and 

experiment manipulations. A one-sample t-test was conducted for all participants in each 

study; (2) within-person correlation with temperature: correlation between the temperature 

and NPS response. A one-sample t-test was conducted for the correlation coefficients of all 

participants for each study; (3) Within-person correlation with pain reports: correlation 

between pain reports and the NPS response. A one-sample t-test was conducted for the 

correlation coefficients of all participants for each study. (4) Between-person correlation with 

pain reports. The mean NPS response and mean pain reports of each participant were 

calculated by the average of each participant's trials. The correlation between the NPS 

response and pain reports was calculated across all participants for each study. The effect 

size was determined by Cohen's d values, which are commonly characterized as follows: 

0.20 indicates small; 0.50 indicates medium; 0.80 indicates large, and 1.20 indicates very 

large effect size (Cohen, 2013; Sawilowsky, 2009). In between-person correlations, the 

transformation between r and cohen's d is d = ,×.
√0(.#

.   

 
Test-retest reliability analysis 
Test-retest reliability of NPS and pain reports was determined by the intra-class correlation 

coefficient (ICC; Koo & Li, 2016; McGraw & Wong, 1996; Shrout & Fleiss, 1979). ICC is 

calculated by mean squares obtained through analysis of variance among a given set of 

measures. We characterized two types of test-retest reliability, i.e., short-term and longer-

term test-retest reliability, based on the time interval between measures. In the single-trial 

dataset, which includes studies 1 to 8, we calculated the short-term test-retest reliability 

since data were collected within one session. To do so, we constructed a two-way mixed-

effects model with time (1st vs. 2nd half trials) as a fixed effect and subjects as a random 

effect. Since we were interested in the reliability of the averaged measures of the 1st and 

2nd half trials (i.e., the average of two halfs, k = 2), the mixed-effect model is referred to as 

ICC(3,k) = (BMS - EMS) / BMS. BMS represents the mean square for between-person 
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measures, and EMS represents the mean square for error. The ICC values in the current 

study were calculated using the ICC function in the ‘psych’ library in R.  

 

For studies 9 and 10, we assessed the longer-term test-retest reliability since data were 

collected across sessions with longer time intervals. We also constructed a two-way mixed-

effects model with time (multiple sessions) as a fixed effect and subjects as a random effect. 

Instead of calculating ICC(3,k), we calculated ICC(3,1) = (BMS - EMS) / (BMS + (k - 1) * 

EMS) for longer-term test-retest reliability since we were interested in the measure of one 

session, not the average of all sessions. BMS represents the mean square for between-

person measures, EMS represents the mean square for error, and k represents the number 

of scanning sessions (Koo & Li, 2016; McGraw & Wong, 1996; Shrout & Fleiss, 1979). 

Measures with ICCs are commonly characterized as follows: less than .40 are thought to 

have poor reliability, between .40 and .60 fair reliability, .60 and .75 good reliability, and 

greater than .75 excellent reliability (Cicchetti & Sparrow, 1981). We also reported the 95% 

confidence interval of ICC values (Koo & Li, 2016; McGraw & Wong, 1996).   

 

Results 
NPS effect sizes 
In the single-trial dataset, mean responses of the NPS were significantly larger than zero in 

each of the 8 studies (t = 5.02 - 19.22, ps < 0.001, d = 1.22 - 2.62). The within-person 

correlations between the NPS and temperature were significantly larger than zero in each of 

the 8 studies as well (mean r = 0.05 - 0.42, t = 2.32 - 18.91, ps < 0.05, d = 0.53 - 2.67). The 

within-person correlations between the NPS and subjective pain reports were significantly 

larger than zero in each of the 8 studies (mean r = 0.14 - 0.35, t = 4.81 - 11.49, ps < 0.001, d 

= 0.94 - 2.13). Lastly, the between-person correlations between the mean NPS and mean 

subjective pain rating (i.e., individual differences) were only significant in 1 out of 8 studies (r 

= -0.13 - 0.74, p = 0.69e-3 - 0.70, d = -0.27 - 2.20; see Figure 1 and Figure S1 for four 

types of tests and effect sizes; see Table S1 for the statistical details of each study). In 

Study 4, the only study showed significant between-person correlation, the stimuli were 

tailored to the individuals to elicit matched subjective pain, whereas the other studies applied 

the same stimuli for everyone. Thus the individual differences in subjective pain are not 

stimulus-driven in these studies except for Study 4. 

 

To test whether NPS's performance exceeds individual brain regions within the NPS, we did 

the same analyses for each local brain area of the NPS and compared the effect sizes with 

the NPS. Generally, positive brain regions had higher effect sizes than negative brain 

regions and the effect sizes of the full NPS were the highest in all four tests (see Figure S2). 
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To confirm the difference in the effect sizes between NPS and local brain regions, we 

conducted paired t-tests treating the study as the unit of the observation and corrected the 

multiple comparisons using q<0.05 FDR. The NPS has (1) significantly larger effect size 

than most local brain regions in the mean response, except for the rIns (mean±se = 

1.92±0.16 vs. 1.72±0.19); (2) significantly larger effect size in the within-person correlation 

with the temperature, except for the rIns (1.50±0.27 vs. 1.21±0.26); (3) significantly larger 

effect size in the within-person correlation with the subjective pain reports, except for the 

dACC (1.45±0.16 vs. 1.19±0.12); (4) does not significantly differ in effect size in the 

between-person correlation with the subjective pain reports from most brain regions, except 

for the rIPL (0.49±0.26 vs. -0.27±0.17) (see Table S2 for all statistic details). 

 

Test-retest reliability 

The short-term test-retest reliability of the NPS calculated in the single-trial dataset was 

distributed from good to excellent among 8 studies (ICC = 0.73 - 0.91; mean±s.e. = 

0.84±0.02; see Table S3 for more details), which was significantly smaller than the reliability 

of subjective pain reports (ICC = 0.85 - 0.96; mean±s.e. = 0.92±0.01; paired-t test: t(7) = 

4.11, p = 0.005). Reliability of the NPS was numerically higher than any local brain regions 

and was significantly higher than rThal and pgACC (q < 0.05 FDR; see Figure 1(C) and 

Table S4 for statistical details).  

 

Most pain-predictive and reliable NPS regions 

Among the brain regions in the NPS pattern, we identified several regions with the greatest 

promise for predicting stable individual differences in pain. Those regions ought to have the 

highest combination of within-person and between-person correlation with pain reports and 

test-retest reliability. This is because within-person correlation with pain reports is 

meaningful in terms of the relationship between NPS and pain reports, which might be driven 

by factors separate from what drives interindividual differences. Between-person correlation 

with pain reports is of primary interest for stable individual differences, though the effect 

sizes are moderate in our results. Besides, reliability is an important precondition for 

predicting stable individual differences in pain. A combination of three cutoffs, i.e., d > 0.2 for 

both within-person and between-person correlation with pain, and ICC > 0.6 for short-term 

test-retest reliability, identified six local regions including lIns, rIns, rdpIns, dACC, rS2, and 

rThal (see Table S2 and Table S4). 

 
Longer-term test-retest reliability 

The longer-term test-retest reliability was tested in studies 9 and 10. For study 9, both 

reliability of the NPS and pain reports were excellent (ICC = 0.74, 95CI = [0.61, 0.84] and 
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0.87, 95CI = [0.80, 0.92]; see Figure 1(D)). Time interval between session 1 and session 2 

was 4.93 ± 4.57 days, and the time interval between session 2 and session 3 was 4.79 ± 

2.81 days. Study 10 was a clinical trial randomizing chronic back patients to a psychological 

treatment, a placebo treatment, or a control group (n = 40 per group), with approximately 1 

month between the two assessment sessions. In the control group, the reliability of the NPS 

was fair (ICC = 0.46, 95CI = [0.22, 0.65]; see Figure 1(E)) and the reliability of pain reports 

was poor (ICC = 0.26, 95CI = [-0.15, 0.49]). Reliability of the 40 participants in the 

psychotherapy group and 40 participants in the placebo group were poor (see Table S3 for 

details).  

 

How does the number of trials influence reliability? 

We tested how the number of trials of the heat stimuli influences the test-retest reliability. 

The results in Figure 2(A) left panel showed that the more trials averaged to calculate the 

NPS response, the higher the ICC values in each of 8 studies. On average, 60 or more trials 

per condition were required to achieve an excellent reliability of the NPS. Given the same 

number of trials being averaged, ICC values in study 9 (30 trials) and study 10 (5 trials) with 

longer time intervals were comparable with ICC values of studies 1 to 8. The trend was 

flatter for the test-retest reliability of subjective pain reports, which achieved an ‘excellent’ 

level with even one trial.  

 

How does the effect size of stimuli influence reliability? 

The property of the stimulus itself might influence the reliability, such as the effect size it 

induced. For example, heat stimuli with higher temperatures might generally induce higher 

pain effects. The results in Figure 2(B) left panel showed that NPS responses induced by 

higher temperature had higher test-retest reliability. However, this was not the case for the 

subjective pain rating, which was very reliable across all temperatures. NPS responses 

might be more specific for high painful stimulus intensity, while subjective pain rating could 

represent a wider range of pain levels in a reliable way. 

 

How does the type of contrast influence reliability? 

There are two commonly used methods to calculate the brain response to an experimental 

condition, comparing a condition with the implicit baseline or to a control condition. The 

results in Figure 2(C) left panel showed that the reliability of NPS dropped when the 

response of NPS was calculated in contrast with a lower temperature, instead of the implicit 

baseline (ICC mean±s.e. = 0.25±0.17 vs. 0.81±0.03, which was calculated by averaging the 

reliability of all temperatures in one study first and calculating the mean and standard error of 

the reliability across all studies. Same below.). The drop of the reliability was smaller in 
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subjective pain reports (ICC mean±s.e. = 0.80±0.03 vs. 0.93±0.01). This finding indicates 

that using a contrast with a control condition with low reliability could reduce the reliability of 

the contrast measure. 

 

Discussion 

Current efforts towards the translation of brain biomarkers have renewed interest in brain 

measures' effect sizes in predicting outcomes of interest and reliability. With a large effect 

size, a measure can be diagnostic of outcomes at the individual level (Poldrack et al., 2017; 

Reddan et al., 2017). Test-retest reliability is a prerequisite for stable prediction of individual 

differences (Bennett & Miller, 2010; Drost & Others, 2011; Nakagawa & Schielzeth, 2010; 

Streiner, 2003). We systematically evaluated the effect sizes and test-retest reliability of the 

NPS across ten studies and 442 participants. The NPS showed a very large effect size in 

predicting within-person single-trial pain reports (d = 1.45, ranging from 0.94 to 2.13). The 

effect size in predicting individual differences in pain reports is medium and heterogeneous 

across studies (d = 0.49, ranging from -0.27 to 2.20). The NPS showed excellent short-term 

(within-day) test-retest reliability (ICC = 0.84). Reliability was comparable in a study with a 

longer time interval across 5-day (N = 29, ICC = 0.74). It was lower in a study with 1-month 

test-retest intervals (N = 40, ICC = 0.46), though this may have been driven by the low 

number of trials (5 trials per participant) rather than the longer time interval. 

 

The current findings with large and diverse samples indicate that the NPS measures 

physiological processes related to evoked pain with large effect sizes at the within-person 

level and high test-retest reliability. However, as a measure of individual differences in pain 

sensitivity, the NPS does not reduplicate pain reports. The NPS is only modestly related to 

the pain reports. This inconsistency of the effect sizes at within-person and between-person 

levels could be led by the different sources of variance underlying the NPS responses and 

pain reports (see Figure 3(A)). At the within-person level, different temperatures across 

trials are among the primary sources of variance in NPS responses and pain reports. The 

effect sizes of within-person correlations between the NPS and the temperatures were 

distributed from medium to huge (d = 0.53 - 2.67). The effect sizes of within-person 

correlations between the pain reports and the temperatures were distributed from very large 

to huge (d = 1.58 - 12.41). Both the NPS and pain reports are responsive to noxious stimuli 

intensities. 

 

However, at the between-person level, the NPS and pain reports' variances may have been 

driven by many factors that are irrelevant to the stimuli intensities. One person can report 

more pain than another because of differences in demographic variables, genetic factors, 
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and psychosocial processes (Fillingim, 2017; Woo & Wager, 2016). For example, individual 

differences in subjective pain reports might reflect communicative bias, such as "stoics" vs. 

"communicators." Meanwhile, the NPS responses might vary due to individual differences in 

task-related head movement (Engelhardt et al., 2017), respiration (Chang & Glover, 2009; 

Power et al., 2019), heart rate (Chang et al., 2009), BOLD magnitude (Levin et al., 2001) 

and inter-individual variation in brain bases for pain reports (Reddan & Wager, 2018). The 

combination of strong within-person correlations and only modest between-person 

correlations between the NPS and pain reports indicates that the NPS is not a surrogate for 

individual differences in pain reports. Instead, the NPS as an objective biological target could 

be useful for measuring physiological pain in combination with subjective pain reports. For 

example, a clinical trial is testing a new drug of analgesic. They might want to know how the 

drug works on pain reports and physiological measures like the NPS. Because pain reports 

alone may be subject to biases, such as the placebo effects (Tuttle et al., 2015; Zunhammer 

et al., 2018), the drug may not work in the long term because they are not engaged in the 

pain-relevant physiological mechanisms. Placebo treatments, on the contrary, only have 

minimal effects on the NPS (Zunhammer et al., 2018).  

 

Both the NPS (ICC = 0.73 - 0.91) and pain reports (ICC = 0.85 - 0.96) showed excellent 

short-term (i.e., within one-day) test-retest reliability. Test-retest reliability of pain reports has 

been extensively examined in previous pain-related studies that showed similar ICC values 

range from 0.75 - 0.96 (Jackson et al., 2020; Letzen et al., 2014, 2016; Upadhyay et al., 

2015). Previous studies have examined the test-retest reliability of the univariate brain 

measures to pain and showed widely varied ICCs in pain-related ROIs (0.32 - 0.88; Letzen 

et al., 2014; Quiton et al., 2014; Upadhyay et al., 2015), significantly activated clusters (0.33 

- 0.74; Jackson et al., 2020) and functional connectivities (-0.17 - 0.77; Letzen et al., 2016). 

Compared with the previous univariate brain measures of pain, the NPS showed consistently 

high performance of short-term test-retest reliability across eight studies. It is noteworthy that 

although the short-term test-retest reliability is mathematically identical to the internal 

consistency reliability, they are conceptually different. Internal consistency measures how 

consistent a set of items, e.g., voxels in NPS, measures a particular construct, e.g., pain 

(Drost & Others, 2011). At the same time, the short-term test-retest reliability characterizes 

the short-term temporal stability of measurement, e.g., the NPS response measured within a 

session (Drost & Others, 2011). High values of internal consistency are not always desirable 

and could point to the redundancy of items (Streiner, 2003), while high test-retest reliability 

values are a desirable feature given that the constructs being measured are stable. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.445964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.445964


NPS MEASUREMENT PROPERTIES    19 

To test whether the NPS measure is stable across longer time scales, we examined two 

studies with 5-day and one-month intervals between sessions. We found that the NPS had 

high performance in longer-term test-retest reliability when evaluated with sufficient data per 

person. In our estimation, more than 60 trials per condition are required on average to 

achieve excellent test-retest reliability, though this is rarely done in practice (Chen et al., 

2021; Dang et al., 2020; Rouder & Haaf, 2019). Besides the number of trials per condition, 

we also tested several other factors influencing the test-retest reliability, including stimulus 

intensity (e.g., temperature) and whether the measure was calculated in contrast to a 

baseline or a control condition (see Figure 3(B)). Previous studies have shown that the test-

retest reliabilities of pain reports and activities in ROIs are higher in response to evoked 

stimuli with higher temperatures (Upadhyay et al., 2015). The test-retest reliabilities of the 

significantly activated clusters were higher when the measures were calculated in contrast 

with the baseline than with a control condition (e.g., non-noxious stimuli; Jackson et al., 

2020). The current findings of the NPS are consistent with previous studies and are tested 

quantitatively in a large and diverse sample. All these factors have a more extensive 

influence on the NPS than self-reported pain, further supporting the argument that the NPS 

and pain reports contain different sources of variance (see Figure 2).  

 

The complete NPS performance was better than constituent local brain regions for both 

effect size and test-retest reliability. This finding is consistent with the argument that pain is 

encoded in distributed brain networks instead of a specific and isolated brain region (Petre et 

al., 2020; Woo & Wager, 2016). Interestingly, the six regions (i.e., bilateral insula, right 

dorsal posterior insula, dACC, right S2, and right thalamus) with relatively larger effect sizes 

and reliabilities were the targets of ascending nociceptive afferents and activated in 

response to pain stimuli. Other local regions deactivated with pain and are not direct targets 

of nociceptive afferents have smaller effect sizes and reliabilities (Roy et al., 2012, 2014). 

The reliabilities of multivariate patterns of ROIs were heterogeneous (i.e., ICCs range from 

poor to excellent), similar to previous findings of pain-related ROIs using the univariate 

analyses (Letzen et al., 2014; Quiton et al., 2014; Upadhyay et al., 2015). In contrast, the 

reliabilities of the complete NPS are more homogeneous and all ranging from good to 

excellent level across multiple diverse studies. 

 

The current study tests a large number of studies that are diverse in several aspects. Firstly, 

most of the studies contain some cognitive manipulations along with the pain stimuli, such as 

cognitive self-regulation intervention to increase or decrease pain (Woo et al., 2015), the 

combination of painful stimuli with visual or auditory cues for different pain intensities (Atlas 

et al., 2010; Chang et al., 2015; Jepma et al., 2018; Roy et al., 2014), placebo manipulation 
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(Atlas et al., 2010; Chang et al., 2015; Jepma et al., 2018; Roy et al., 2014). Secondly, the 

pain stimuli were applied to different body positions, including arm, foot, leg, and thumbnail, 

which were supposed to have different sensitivity to pain (Alburquerque-Sendín et al. 2018). 

Thirdly, the intensities of pain stimuli are largely varied regarding the temperature (44.3 - 50 

ºC) and duration (1.85 - 12.5 s). The diversities of the studies further support the 

generalizability of our findings about the measurement properties of the NPS and pain 

reports. The participants in these studies are mainly young and healthy participants, with 

only one study testing participants with chronic back pain (i.e., study 10). In study 10, our 

results showed that the reliability of the NPS in the control group was comparable with other 

studies when controlling the same number of trials for each participant. The reliabilities of the 

NPS in the psychotherapy and placebo group were lower (see Table S3). And the reliability 

of the subjective pain report was lower in study 10 compared with most other studies. We 

need further research to test the measurement properties of the NPS and subjective pain 

reports across more diverse participant samples, including the clinical populations (Herr et 

al., 2011; Voepel-Lewis et al., 2010; Walton et al., 2011). 

 

This paper focuses on the NPS because it has been one of the most extensively studied 

brain signatures for its validity and specificity in the pain domain (Chang et al., 2015; 

Krishnan et al., 2016; Ma et al., 2016; Van Oudenhove et al., 2020; Wager et al., 2013). The 

tests in the current study characterizing the reliability, within-person, and between-person 

variances related to pain reports could be applied to any neuromarker including other pain-

related patterns (Brown et al., 2011; Geuter et al., 2020; Kucyi & Davis, 2015; Kutch et al., 

2017; López-Solà et al., 2017; Marquand et al., 2010; Woo, Schmidt, et al., 2017). Some 

other pain signatures possibly could predict individual differences in pain better. Our study 

shows that it is crucial to characterize individual differences across studies and contexts. 

The correlation with individual differences in pain reports may vary across different 

experimental instructions and populations. For example, in study 4, we had a selected 

university population pre-screened for reliable pain reports and pre-calibrated for stimuli 

intensities and ended up with a very large effect in the between-person level correlation 

between the NPS and pain reports. 

 

In sum, we find that both the NPS and pain reports have excellent test-retest reliability in a 

large and diverse sample of participants. As a measure of individual differences in pain 

sensitivity, the NPS is only modestly related to pain reports, suggesting that the NPS is not 

as useful as a surrogate measure for pain reports. In contrast, the NPS could serve as an 

objective biological target to measure physiological pain in combination with subjective pain 

reports. In the future, many other multivariate brain patterns need to be tested before they 
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can be used as translational biomarkers. Our study provides a blueprint for future studies 

performing such measurement properties testing and suggests factors that could improve 

test-retest reliability in future measurements. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.445964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.445964


NPS MEASUREMENT PROPERTIES    22 

References 

Alburquerque-Sendín, F., Madeleine, P., Fernández-de-Las-Peñas, C., Camargo, P. R., & 
Salvini, T. F. (2018). Spotlight on topographical pressure pain sensitivity maps: A 
review. Journal of pain research, 11, 215. 

Arbabshirani, M. R., Plis, S., Sui, J., & Calhoun, V. D. (2017). Single subject prediction of 
brain disorders in neuroimaging: Promises and pitfalls. Neuroimage, 145, 137-165. 

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839-851. 
Atlas, L. Y., Bolger, N., Lindquist, M. A., & Wager, T. D. (2010). Brain mediators of predictive 

cue effects on perceived pain. Journal of Neuroscience, 30(39), 12964-12977. 
Atlas, L. Y., Lindquist, M. A., Bolger, N., & Wager, T. D. (2014). Brain mediators of the 

effects of noxious heat on pain. Pain, 155(8), 1632-1648. 
Bakdash, J. Z., & Marusich, L. R. (2017). Repeated Measures Correlation. Frontiers in 

Psychology, 8, 456. 
Barnhart, H. X., Haber, M. J., & Lin, L. I. (2007). An overview on assessing agreement with 

continuous measurements. Journal of Biopharmaceutical Statistics, 17(4), 529–569. 
Bartoshuk, L. M., Duffy, V. B., Green, B. G., Hoffman, H. J., Ko, C. W., Lucchina, L. A., 

Marks, L. E., Snyder, D. J., & Weiffenbach, J. M. (2004). Valid across-group 
comparisons with labeled scales: the gLMS versus magnitude matching. Physiology & 
Behavior, 82(1), 109–114. 

Bennett, C. M., & Miller, M. B. (2010). How reliable are the results from functional magnetic 
resonance imaging? Annals of the New York Academy of Sciences, 1191, 133–155. 

Bennett, C. M., & Miller, M. B. (2013). fMRI reliability: influences of task and experimental 
design. Cognitive, Affective & Behavioral Neuroscience, 13(4), 690–702. 

Brown, J. E., Chatterjee, N., Younger, J., & Mackey, S. (2011). Towards a physiology-based 
measure of pain: patterns of human brain activity distinguish painful from non-painful 
thermal stimulation. PloS One, 6(9), e24124. 

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & 
Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of 
neuroscience. Nature Reviews. Neuroscience, 14(5), 365–376. 

Chang, C., Cunningham, J. P., & Glover, G. H. (2009). Influence of heart rate on the BOLD 
signal: the cardiac response function. NeuroImage, 44(3), 857–869. 

Chang, C., & Glover, G. H. (2009). Relationship between respiration, end-tidal CO2, and 
BOLD signals in resting-state fMRI. NeuroImage, 47(4), 1381–1393. 

Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A., & Wager, T. D. (2015). A 
Sensitive and Specific Neural Signature for Picture-Induced Negative Affect. PLoS 
Biology, 13(6), e1002180. 

Chen, G., Padmala, S., Chen, Y., Taylor, P. A., Cox, R. W., & Pessoa, L. (2021). To pool or 
not to pool: Can we ignore cross-trial variability in FMRI?. NeuroImage, 225, 117496. 

Cicchetti, D. V., & Sparrow, S. A. (1981). Developing criteria for establishing interrater 
reliability of specific items: applications to assessment of adaptive behavior. American 
Journal of Mental Deficiency, 86(2), 127–137. 

Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Academic Press. 
Dang, J., King, K. M., & Inzlicht, M. (2020). Why Are Self-Report and Behavioral Measures 

Weakly Correlated? Trends in Cognitive Sciences, 24(4), 267–269. 
Doyle, O. M., Mehta, M. A., & Brammer, M. J. (2015). The role of machine learning in 

neuroimaging for drug discovery and development. Psychopharmacology, 232(21), 
4179-4189. 

Drost, E. A., & Others. (2011). Validity and reliability in social science research. Education 
Research and Perspectives, 38(1), 105. 

Dubois, J., & Adolphs, R. (2016). Building a Science of Individual Differences from fMRI. 
Trends in Cognitive Sciences, 20(6), 425–443. 

Elliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., Ireland, D., 
Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T. E., & Hariri, A. R. (2019). General 
functional connectivity: Shared features of resting-state and task fMRI drive reliable and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.445964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.445964


NPS MEASUREMENT PROPERTIES    23 

heritable individual differences in functional brain networks. NeuroImage, 189, 516–532. 
Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., Sison, M. L., 

Moffitt, T. E., Caspi, A., & Hariri, A. R. (2020). What Is the Test-Retest Reliability of 
Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-
Analysis. Psychological Science, 31(7), 792–806. 

Engelhardt, L. E., Roe, M. A., Juranek, J., DeMaster, D., Harden, K. P., Tucker-Drob, E. M., 
& Church, J. A. (2017). Children’s head motion during fMRI tasks is heritable and stable 
over time. Developmental Cognitive Neuroscience, 25, 58–68. 

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., Erramuzpe, A., Kent, J. 
D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., Durnez, J., 
Poldrack, R. A., & Gorgolewski, K. J. (2019). fMRIPrep: a robust preprocessing pipeline 
for functional MRI. Nature Methods, 16(1), 111–116. 

FDA-NIH Biomarker Working Group. (2016). BEST (Biomarkers, EndpointS, and other 
Tools) Resource. Food and Drug Administration (US). 

Fillingim, R. B. (2017). Individual differences in pain: understanding the mosaic that makes 
pain personal. Pain, 158(Suppl 1), S11. 

Gabrieli, J. D. E., Ghosh, S. S., & Whitfield-Gabrieli, S. (2015). Prediction as a humanitarian 
and pragmatic contribution from human cognitive neuroscience. Neuron, 85(1), 11–26. 

Geuter, S., Reynolds Losin, E. A., Roy, M., Atlas, L. Y., Schmidt, L., Krishnan, A., Koban, L., 
Wager, T. D., & Lindquist, M. A. (2020). Multiple Brain Networks Mediating Stimulus-
Pain Relationships in Humans. Cerebral Cortex , 30(7), 4204–4219. 

Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J., 
Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J. M., Coalson, R. S., 
Nguyen, A. L., McDermott, K. B., Shimony, J. S., Snyder, A. Z., Schlaggar, B. L., 
Petersen, S. E., Nelson, S. M., & Dosenbach, N. U. F. (2017). Precision Functional 
Mapping of Individual Human Brains. Neuron, 95(4), 791–807.e7. 

Gratton, C., Kraus, B. T., Greene, D. J., Gordon, E. M., Laumann, T. O., Nelson, S. M., 
Dosenbach, N. U. F., & Petersen, S. E. (2020). Defining Individual-Specific Functional 
Neuroanatomy for Precision Psychiatry. Biological Psychiatry, 88(1), 28–39. 

Haynes, J. D. (2015). A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, 
and Perspectives. Neuron, 87(2), 257–270. 

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive 
tasks do not produce reliable individual differences. Behavior Research Methods, 50(3), 
1166–1186. 

Herr, K., Coyne, P. J., McCaffery, M., Manworren, R., & Merkel, S. (2011). Pain assessment 
in the patient unable to self-report: position statement with clinical practice 
recommendations. Pain Management Nursing: Official Journal of the American Society 
of Pain Management Nurses, 12(4), 230–250. 

Herting, M. M., Gautam, P., Chen, Z., Mezher, A., & Vetter, N. C. (2018). Test-retest 
reliability of longitudinal task-based fMRI: Implications for developmental studies. 
Developmental Cognitive Neuroscience, 33, 17–26. 

Jackson, J. B., O’Daly, O., Makovac, E., Medina, S., Rubio, A. de L., McMahon, S. B., 
Williams, S. C. R., & Howard, M. A. (2020). Noxious pressure stimulation demonstrates 
robust, reliable estimates of brain activity and self-reported pain. NeuroImage, 221, 
117178. 

Jepma, M., Koban, L., van Doorn, J., Jones, M., & Wager, T. D. (2018). Behavioural and 
neural evidence for self-reinforcing expectancy effects on pain. Nature Human 
Behaviour, 2(11), 838–855. 

Kievit, R. A., Frankenhuis, W. E., Waldorp, L. J., & Borsboom, D. (2013). Simpson’s paradox 
in psychological science: a practical guide. Frontiers in Psychology, 4, 513. 

Koban, L., Jepma, M., López-Solà, M., & Wager, T. D. (2019). Different brain networks 
mediate the effects of social and conditioned expectations on pain. Nature 
Communications, 10(1), 4096. 

Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation 
Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 155–163. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.445964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.445964


NPS MEASUREMENT PROPERTIES    24 

Kraemer, H. C. (2014). The reliability of clinical diagnoses: state of the art. Annual Review of 
Clinical Psychology, 10, 111–130. 

Kragel, P. A., Koban, L., Barrett, L. F., & Wager, T. D. (2018). Representation, Pattern 
Information, and Brain Signatures: From Neurons to Neuroimaging. Neuron, 99(2), 257–
273. 

Kragel, P., Han, X., Kraynak, T., Gianaros, P. J., & Wager, T. (2020). fMRI can be highly 
reliable, but it depends on what you measure. Psyarxiv. 

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., & Baker, C. I. (2009). Circular 
analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 
12(5), 535–540. 

Krishnan, A., Woo, C. W., Chang, L. J., Ruzic, L., Gu, X., López-Solà, M., ... & Wager, T. D. 
(2016). Somatic and vicarious pain are represented by dissociable multivariate brain 
patterns. Elife, 5, e15166. 

Kucyi, A., & Davis, K. D. (2015). The dynamic pain connectome. Trends in Neurosciences, 
38(2), 86–95. 

Kutch, J. J., Ichesco, E., Hampson, J. P., Labus, J. S., Farmer, M. A., Martucci, K. T., Ness, 
T. J., Deutsch, G., Apkarian, A. V., Mackey, S. C., Klumpp, D. J., Schaeffer, A. J., 
Rodriguez, L. V., Kreder, K. J., Buchwald, D., Andriole, G. L., Lai, H. H., Mullins, C., 
Kusek, J. W., … MAPP Research Network. (2017). Brain signature and functional 
impact of centralized pain: a multidisciplinary approach to the study of chronic pelvic 
pain (MAPP) network study. Pain, 158(10), 1979–1991. 

Letzen, J. E., Boissoneault, J., Sevel, L. S., & Robinson, M. E. (2016). Test-retest reliability 
of pain-related functional brain connectivity compared with pain self-report. Pain, 157(3), 
546–551. 

Letzen, J. E., Sevel, L. S., Gay, C. W., O’Shea, A. M., Craggs, J. G., Price, D. D., & 
Robinson, M. E. (2014). Test-retest reliability of pain-related brain activity in healthy 
controls undergoing experimental thermal pain. The Journal of Pain: Official Journal of 
the American Pain Society, 15(10), 1008–1014. 

Levin, J. M., Frederick, B. de B., Ross, M. H., Fox, J. F., von Rosenberg, H. L., Kaufman, M. 
J., Lange, N., Mendelson, J. H., Cohen, B. M., & Renshaw, P. F. (2001). Influence of 
baseline hematocrit and hemodilution on BOLD fMRI activation. Magnetic Resonance 
Imaging, 19(8), 1055–1062. 

Lindquist, M. A., Krishnan, A., López-Solà, M., Jepma, M., Woo, C. W., Koban, L., ... & 
Wager, T. D. (2017). Group-regularized individual prediction: theory and application to 
pain. Neuroimage, 145, 274-287. 

Lindquist, M. A., Meng Loh, J., Atlas, L. Y., & Wager, T. D. (2009). Modeling the 
hemodynamic response function in fMRI: efficiency, bias and mis-modeling. 
NeuroImage, 45(1 Suppl), S187–S198. 

López-Solà, M., Woo, C. W., Pujol, J., Deus, J., Harrison, B. J., Monfort, J., & Wager, T. D. 
(2017). Towards a neurophysiological signature for fibromyalgia. Pain, 158(1), 34–47. 

Losin, E. A. R., Woo, C.-W., Medina, N. A., Andrews-Hanna, J. R., Eisenbarth, H., & Wager, 
T. D. (2020). Author Correction: Neural and sociocultural mediators of ethnic differences 
in pain. Nature Human Behaviour, 4(6), 656–658. 

Manuck, S. B., Brown, S. M., Forbes, E. E., & Hariri, A. R. (2007). Temporal stability of 
individual differences in amygdala reactivity. The American Journal of Psychiatry, 
164(10), 1613–1614. 

Marquand, A., Howard, M., Brammer, M., Chu, C., Coen, S., & Mourão-Miranda, J. (2010). 
Quantitative prediction of subjective pain intensity from whole-brain fMRI data using 
Gaussian processes. NeuroImage, 49(3), 2178–2189. 

Ma, Y., Wang, C., Luo, S., Li, B., Wager, T. D., Zhang, W., Rao, Y., & Han, S. (2016). 
Serotonin transporter polymorphism alters citalopram effects on human pain responses 
to physical pain. NeuroImage, 135, 186–196. 

McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation 
coefficients. Psychological Methods, 1(1), 30–46. 

Mumford, J. A., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.445964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.445964


NPS MEASUREMENT PROPERTIES    25 

activation in event-related designs for multivoxel pattern classification analyses. 
NeuroImage, 59(3), 2636–2643. 

Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: 
a practical guide for biologists. Biological Reviews, 85(4), 935-956. 

Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, M., Kriegeskorte, 
N., Milham, M. P., Poldrack, R. A., Poline, J.-B., Proal, E., Thirion, B., Van Essen, D. C., 
White, T., & Yeo, B. T. T. (2017). Best practices in data analysis and sharing in 
neuroimaging using MRI. Nature Neuroscience, 20(3), 299–303. 

Noble, S., Scheinost, D., & Constable, R. T. (2019). A decade of test-retest reliability of 
functional connectivity: A systematic review and meta-analysis. NeuroImage, 203, 
116157. 

Nord, C. L., Gray, A., Charpentier, C. J., Robinson, O. J., & Roiser, J. P. (2017). Unreliability 
of putative fMRI biomarkers during emotional face processing. NeuroImage, 156, 119–
127. 

O’Connor, D., Potler, N. V., Kovacs, M., Xu, T., Ai, L., Pellman, J., Vanderwal, T., Parra, L. 
C., Cohen, S., Ghosh, S., Escalera, J., Grant-Villegas, N., Osman, Y., Bui, A., 
Craddock, R. C., & Milham, M. P. (2017). The Healthy Brain Network Serial Scanning 
Initiative: a resource for evaluating inter-individual differences and their reliabilities 
across scan conditions and sessions. GigaScience, 6(2), 1–14. 

Orrù, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using 
Support Vector Machine to identify imaging biomarkers of neurological and psychiatric 
disease: A critical review. Neuroscience and Biobehavioral Reviews, 36(4), 1140–1152. 

Pannunzi, M., Hindriks, R., Bettinardi, R. G., Wenger, E., Lisofsky, N., Martensson, J., 
Butler, O., Filevich, E., Becker, M., Lochstet, M., Kühn, S., & Deco, G. (2017). Resting-
state fMRI correlations: From link-wise unreliability to whole brain stability. NeuroImage, 
157, 250–262. 

Petre, B., Kragel, P. A., Atlas, L. Y., Geuter, S., Jepma, M., Koban, L., ... & Wager, T. D. 
(2020). Evoked pain intensity representation is distributed across brain systems: A 
multistudy mega-analysis. BioRxiv. 

Plichta, M. M., Schwarz, A. J., Grimm, O., Morgen, K., Mier, D., Haddad, L., Gerdes, A. B. 
M., Sauer, C., Tost, H., Esslinger, C., Colman, P., Wilson, F., Kirsch, P., & Meyer-
Lindenberg, A. (2012). Test–retest reliability of evoked BOLD signals from a cognitive–
emotive fMRI test battery. NeuroImage, 60(3), 1746–1758. 

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. 
R., ... & Yarkoni, T. (2017). Scanning the horizon: towards transparent and reproducible 
neuroimaging research. Nature reviews neuroscience, 18(2), 115. 

Power, J. D., Lynch, C. J., Silver, B. M., Dubin, M. J., Martin, A., & Jones, R. M. (2019). 
Distinctions among real and apparent respiratory motions in human fMRI data. 
NeuroImage, 201, 116041. 

Quiton, R. L., Keaser, M. L., Zhuo, J., Gullapalli, R. P., & Greenspan, J. D. (2014). 
Intersession reliability of fMRI activation for heat pain and motor tasks. NeuroImage. 
Clinical, 5, 309–321. 

Reddan, M. C., Lindquist, M. A., & Wager, T. D. (2017). Effect Size Estimation in 
Neuroimaging. JAMA Psychiatry , 74(3), 207–208. 

Reddan, M. C., & Wager, T. D. (2018). Modeling Pain Using fMRI: From Regions to 
Biomarkers. Neuroscience Bulletin, 34(1), 208–215. 

Rissman, J., Gazzaley, A., & D’Esposito, M. (2004). Measuring functional connectivity during 
distinct stages of a cognitive task. NeuroImage, 23(2), 752–763. 

Rouder, J. N., & Haaf, J. M. (2019). A psychometrics of individual differences in 
experimental tasks. Psychonomic Bulletin & Review, 26(2), 452–467. 

Roy, M., Shohamy, D., Daw, N., Jepma, M., Wimmer, G. E., & Wager, T. D. (2014). 
Representation of aversive prediction errors in the human periaqueductal gray. Nature 
Neuroscience, 17(11), 1607–1612. 

Roy, M., Shohamy, D., & Wager, T. D. (2012). Ventromedial prefrontal-subcortical systems 
and the generation of affective meaning. Trends in Cognitive Sciences, 16(3), 147–156. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.445964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.445964


NPS MEASUREMENT PROPERTIES    26 

Sawilowsky, S. S. (2009). New effect size rules of thumb. Journal of Modern Applied 
Statistical Methods, 8(2), 26. 

Shmuel, A., Chaimow, D., Raddatz, G., Ugurbil, K., & Yacoub, E. (2010). Mechanisms 
underlying decoding at 7 T: ocular dominance columns, broad structures, and 
macroscopic blood vessels in V1 convey information on the stimulated eye. 
Neuroimage, 49(3), 1957-1964. 

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: uses in assessing rater reliability. 
Psychological Bulletin, 86(2), 420–428. 

Streiner, D. L. (2003). Starting at the beginning: an introduction to coefficient alpha and 
internal consistency. Journal of Personality Assessment, 80(1), 99–103. 

Tuttle, A. H., Tohyama, S., Ramsay, T., Kimmelman, J., Schweinhardt, P., Bennett, G. J., & 
Mogil, J. S. (2015). Increasing placebo responses over time in U.S. clinical trials of 
neuropathic pain. Pain, 156(12), 2616–2626. 

Upadhyay, J., Lemme, J., Anderson, J., Bleakman, D., Large, T., Evelhoch, J. L., 
Hargreaves, R., Borsook, D., & Becerra, L. (2015). Test-retest reliability of evoked heat 
stimulation BOLD fMRI. Journal of Neuroscience Methods, 253, 38–46. 

Van Oudenhove, L., Kragel, P. A., Dupont, P., Ly, H. G., Pazmany, E., Enzlin, P., Rubio, A., 
Delon-Martin, C., Bonaz, B., Aziz, Q., Tack, J., Fukudo, S., Kano, M., & Wager, T. D. 
(2020). Common and distinct neural representations of aversive somatic and visceral 
stimulation in healthy individuals. Nature Communications, 11(1), 5939. 

Voepel-Lewis, T., Zanotti, J., Dammeyer, J. A., & Merkel, S. (2010). Reliability and validity of 
the face, legs, activity, cry, consolability behavioral tool in assessing acute pain in 
critically ill patients. American journal of critical care, 19(1), 55-61. 

Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An 
fMRI-based neurologic signature of physical pain. The New England Journal of 
Medicine, 368(15), 1388–1397. 

Wager, T. D., & Nichols, T. E. (2003). Optimization of experimental design in fMRI: a general 
framework using a genetic algorithm. Neuroimage, 18(2), 293-309. 

Walton, D. M., Macdermid, J. C., Nielson, W., Teasell, R. W., Chiasson, M., & Brown, L. 
(2011). Reliability, standard error, and minimum detectable change of clinical pressure 
pain threshold testing in people with and without acute neck pain. The Journal of 
Orthopaedic and Sports Physical Therapy, 41(9), 644–650. 

Woo, C. W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better 
biomarkers: brain models in translational neuroimaging. Nature Neuroscience, 20(3), 
365–377. 

Woo, C. W., Roy, M., Buhle, J. T., & Wager, T. D. (2015). Distinct brain systems mediate the 
effects of nociceptive input and self-regulation on pain. PLoS Biology, 13(1), e1002036. 

Woo, C.-W., Schmidt, L., Krishnan, A., Jepma, M., Roy, M., Lindquist, M. A., Atlas, L. Y., & 
Wager, T. D. (2017). Quantifying cerebral contributions to pain beyond nociception. 
Nature Communications, 8, 14211. 

Woo, C. W., & Wager, T. D. (2016). What reliability can and cannot tell us about pain report 
and pain neuroimaging. Pain, 157(3), 511-513. 

Assessing Variations in Areal Organization for the Intrinsic Brain: From Fingerprints to 
Reliability. Cerebral Cortex , 26(11), 4192–4211. 

Yoo, K., Rosenberg, M. D., Noble, S., Scheinost, D., Constable, R. T., & Chun, M. M. (2019). 
Multivariate approaches improve the reliability and validity of functional connectivity and 
prediction of individual behaviors. NeuroImage, 197, 212–223. 

Zunhammer, M., Bingel, U., Wager, T. D., & Placebo Imaging Consortium. (2018). Placebo 
Effects on the Neurologic Pain Signature: A Meta-analysis of Individual Participant 
Functional Magnetic Resonance Imaging Data. JAMA Neurology, 75(11), 1321–1330. 

Zuo, X.-N., & Xing, X.-X. (2014). Test-retest reliabilities of resting-state FMRI measurements 
in human brain functional connectomics: a systems neuroscience perspective. 
Neuroscience and Biobehavioral Reviews, 45, 100–118. 

Zuo, X.-N., Xu, T., & Milham, M. P. (2019). Harnessing reliability for neuroscience research. 
Nature Human Behaviour, 3(8), 768–771. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.445964doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.445964


NPS MEASUREMENT PROPERTIES    27 

 

Table 1. Study demographics, experiment sessions and prior publications 

Study N Gender Ages, 
M (SD) 

# of 
Sessions 

Interval between 
Sessions (days) 

Prior publications 

Study1 33 
healthy 

22 F 27.9 
(9.0) 

1 N/A (Geuter et al., 2020; 
Lindquist et al., 2017; 
Woo et al., 2015; 
Woo, Schmidt, et al., 
2017) 

Study2 28 
healthy 

10 F 25.2 
(7.4) 

1 N/A (Chang et al., 2015; 
Geuter et al., 2020; 
Krishnan et al., 2016; 
Lindquist et al., 2017; 
Woo, Schmidt, et al., 
2017) 

Study3 93 
healthy 

49 F 28.7 
(5.7) 

1 N/A (Geuter et al., 2020; 
Losin et al., 2020) 

Study4 17 
healthy 

9 F 25.5 1 N/A (Atlas et al., 2010; 
Geuter et al., 2020; 
Lindquist et al., 2017; 
Woo, Schmidt, et al., 
2017) 

Study5 50 
healthy 

27 F 25.1 
(6.9) 

1 N/A (Geuter et al., 2020; 
Lindquist et al., 2017; 
Roy et al., 2014; Woo, 
Schmidt, et al., 2017) 

Study6 19 
healthy 

10 F 25.5 
(9.5) 

1 N/A (Geuter et al., 2020; 
Jepma et al., 2018) 

Study7 29 
healthy 

16 F 20.4 
(3.3) 

1 N/A (Lindquist et al., 2017; 
Woo, Schmidt, et al., 
2017) 

Study8 26 
healthy 

11 F 28 
(9.3) 

1 N/A (Koban et al., 2019; 
Lindquist et al., 2017; 
Woo, Schmidt, et al., 
2017) 

Study9 29 
healthy 

16 F 30.3 
(9.8) 

3 Ses 1 to 2: 
4.93 (4.57); 
Ses 2 to 3: 
4.79 (2.81);  

unpublished 

Study10 120 
chronic 
back pain 

61 F 42.6 
(15.6) 

2 25 - 40 Ashar et al., submitted 
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Table 2. Stimulation protocol 
Study Stimulus 

location 
Stimulus 
Intensity (ºC) 

Stimulus 
duration 
(seconds) 

Trials per 
subject 

Other experimental manipulations 

Study1 Arm 44.3, 45.3, 
46.3, 47.3, 
48.3, 49.3 

12.5 97 
Cognitive self-regulation 
intervention to increase or 
decrease pain 

Study2  Arm, Foot 46, 47, 48 
11 81 

Combination of painful stimuli 
with heat-predictive visual cues 
for low, medium, and high pain 

Study3  Arm 47, 48, 49 
8 and 11 36 

Heat stimuli were intermixed 
with physically and emotionally 
aversive sound stimuli 

Study4   Arm 41.1 - 47.1 
10 64 

Combination of painful stimuli 
with heat-predictive auditory 
cues 

Study5  Arm 46, 47, 48 
11 48 

Combination of painful stimuli 
with heat-predictive visual cues 
and with a placebo manipulation 

Study6  Leg 48, 49 1.85 70 Combination of painful stimuli 
with heat-predictive visual cues 

Study7 Arm 44.7, 46.7 

10 64 

Combination of painful stimuli 
with intervention for perceived 
control (making vs. observing 
cue choice) and expectancy 
(80% vs. 50% probabilities of 
low pain) 

Study8  Leg 48, 49, 50 

1.85 96 

Combination of painful stimuli 
with heat-predictive visual cues 
and unreinforced social 
information 

Study9 Leg 46, 47, 48 12 30 Combine painful stimuli with 
neural feedback on suppressing 
NPS activity 

Study10 thumbnail 4, 7 
kg/cm2* 

6 5 Data collected in the context of 
a randomized controlled trial, 
including a psychotherapy 
treatment, placebo treatment, 
and treatment-as-usual control 
group 

 
*Study 10 delivered pressure rather than thermal stimulation. 
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Figure Captions 
Figure 1. NPS pattern and measurement properties. (A) The multivariate brain pattern of 
NPS. The map shows thresholded voxel weights (at q<0.05 false discovery rate (FDR)) for 

display only; all weights were used in the subsequent analyses. An example of dACC/SMA 

unthresholded patterns is presented in the insets; small squares indicate individual voxel 

weight. Ins denotes Insula, V1 primary visual area, S2 secondary somatosensory cortex, 

ACC anterior cingulate cortex, Thal thalamus, STS superior temporal sulcus, PCC posterior 

cingulate cortex, LOC lateral occipital complex, and IPL inferior parietal lobule. Direction is 

indicated with preceding lowercase letters as follows: r denotes right, l left, d dorsal, p 

posterior, pg perigenual. (B) Four types of NPS effect size. Each big dot represents a type 

of averaged effect size of studies 1 to 8; the vertical bar represents the standard error; each 

small dot represents the effect size of one study. See Figure S1 for the tests of each study. 

See Figure S2 for the effect sizes of local regions of the NPS. (C) Short-term test-retest 
reliability of subjective pain reports, NPS, and local regions. Each big dot represents the 

mean reliability of studies 1 to 8; the vertical bar represents the standard error; each small 

dot represents the reliability of one study. The downward-pointing arrows indicate ICC < 0. 

See Figure S3 for the illustration of short-term test-retest reliability of the NPS and subjective 

pain reports. (D) Illustration of longer-term test-retest reliability of NPS with a 5-day 
interval. Correlations of the NPS responses between session 1, session 2 and session 3 in 

study 9 (ICC = 0.73). Each dot represents one participant; the line represents the linear 

relationship between the NPS response in sessions 1, 2 and 3, and the shadow represents 

the standard error. (E) Illustration of longer-term test-retest reliability of NPS with a 1-
month interval. Correlation of the NPS responses between session 1 and session 2 in the 

treatment-as-usual control group of study 10 (ICC = 0.46). Each dot represents one 

participant; the line represents the linear relationship between the NPS response in sessions 

1 and 2, and the shadow represents the standard error. *** p < 0.001; ** p<0.005. 

 

Figure 2. Factors that influence the reliability of the NPS response (left column) and 

subjective pain reports (right column). The small numbers from 1 to 10 correspond to studies 

1 to 10. (A) The Influence of the trial number and time interval between sessions. The 

ICC values were calculated based on different trial numbers. Each line with color shows the 

nonlinear relationship between the trial number and the ICC values of the corresponding 

study (fitted using the loess function in R). The ICC values estimated with less than 10 

participants were excluded due to poor estimation. The black line showed the average of 

studies 1 to 8, which was weighted by the square root of the number of participants in each 

study. The grey shadow presents the standard error, which was also weighted by the square 

root of the number of participants in each study. On average, to achieve excellent reliability, 
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at least 60 trials were required to calculate the NPS response. Reliability was comparable in 

studies 9 and 10 with a longer time interval across 5-day and 1-month given the same 

number of trials (trial number = 30 and 5). The reliability of pain reports were excellent in 

general but were poor in study 10. (B) The influence of the temperature of the heat 
stimuli. Only participants with more than 4 trials in each temperature were included in the 

ICC calculation. The ICC values estimated with less than 13 participants were excluded due 

to poor estimation. Under these criteria, the study 4 and 7 were with no ICC value presented 

in the plot. NPS responses are more reliable in higher temperature stimuli. Whereas pain 

reports are reliable across all temperature stimuli. (C) The influence of the types of 
contrast. The larger dots represent the ICC values of the measurements calculated by 

comparing a temperature condition with the baseline, and the smaller dots represent the ICC 

values of the measurements calculated by comparing a temperature condition with the 

lowest temperature condition in each study. The length of the dashed line represents the 

difference between the ICC values of measurements calculated with different types of 

contrast. The downward-pointing arrow indicates ICC < 0. The measurements calculated by 

comparing with a control condition are less reliable than by comparing with the implicit 

baseline in virtually every case. 

 

Figure 3. Summary of variances and factors that influence the effect size and reliability. (A) 
Different sources of variance at the between-person level for the NPS and self-report 
pain. Rectangles represent the observed variables, i.e., pain reports and NPS. Ellipses 

represent the latent variables that we aim to measure, i.e., the core nociceptive feeling. The 

circle represents sources of variance that add to each observed measure. Both pain reports 

and NPS activity measure the core nociceptive circuits that generate pain experience. 

However, different sources of variance at the between-person level reduce the correlation 

between pain reports and the NPS response. It suggests that the NPS is not as useful as a 

surrogate measure for pain reports. In contrast, the NPS could be useful as an objective 

biological target to measure physiological pain in combination with subjective pain reports. 

(B) Factors that influence reliability. Rectangles represent the observed variables, such 

as the NPS response, across different sessions. Ellipses represent the latent variables that 

we are interested in modeling. Results suggest that stimuli with larger effect sizes have 

higher test-retest reliability, indicated by the up red arrow, and have the same effect on all 

sessions, indicated by 𝜂. Some active change across sessions could decrease the test-

retest reliability, indicated by the down blue arrow. They might have different effects on 

different sessions, indicated by α1, α2, and αn. The circle represents the measurement error 

that could decrease the test-retest reliability, indicated by the down blue arrow. There might 

be different errors on different sessions, indicated by σ1, σ2, and σn. 
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Figure 1. 
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Figure 2. 
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Figure 3.  
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