
KIR gene content imputation from single-nucleotide 

polymorphisms in the Finnish population 

Jarmo Ritari1*, Kati Hyvärinen1, Jukka Partanen1, Satu Koskela1,

1Finnish Red Cross Blood Service, Helsinki, Finland

*Correspondence: jarmo.ritari@veripalvelu.fi; satu.koskela@veripalvelu.fi

1

2

3

4

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445789doi: bioRxiv preprint 

mailto:jarmo.ritari@veripalvelu.fi
mailto:satu.koskela@veripalvelu.fi
https://doi.org/10.1101/2021.05.26.445789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

The killer cell immunoglobulin-like receptor (KIR) gene cluster on chromosome 19

encodes cell surface glycoproteins that bind class I human leukocyte antigen 

(HLA) molecules as well as some other ligands. Through regulation of natural 

killer (NK) cell activity KIRs participate in tumour surveillance and clearing viral 

infections. KIR gene gene copy number variation associates with the outcome of 

transplantations and susceptibility to immune-mediated diseases. Inferring KIR 

gene content from genetic variant data is therefore desirable for immunogenetic 

analysis, particularly in the context of growing biobank genome data collections 

that rely on genotyping by microarray. Here we describe a stand-alone and freely

available gene content imputation for 12 KIR genes. The models were trained 

using 818 Finnish biobank samples genotyped for 5774 KIR-region SNPs and 

analysed for KIR gene content with targeted sequencing. Cross-validation results 

demonstrate a high mean overall accuracy of 99.2% (95% CI: 97.8-99.7%) which 

compares favourably with previous methods including short-read sequencing 

based approaches.  

Introduction

Killer cell immunoglobulin-like receptors (KIRs) regulate the activity of natural 

killer (NK) cells and a subset of T cells via inhibitory and activating signals. 

Through their KIR molecules NK cells detect phenotypic change in a target cell. 

KIRs recognise human leukocyte antigen (HLA) class I molecules as cognate 

ligands, limiting to particular HLA allotypes within the serological HLA-C1 and C2 

allele groups (Wroblewski et al., 2019) HLA-Bw4 motif, HLA-A3/11, HLA-G and 

HLA-F (Garcia-Beltran et al., 2016). The functional difference between inhibitory 

and activating KIRs is determined by the presence or absence of a cytoplasmic 

immunoreceptor tyrosine-based inhibitory (ITIM) protein motif, respectively. In 

the absence of constitutive signaling conveyed by an inhibitory KIR binding to its 

class I ligand, NK cell cytotoxic activity and cytokine production are triggered 

(Lanier, 2008). 

According to the missing-self hypothesis, NK cells recognise tumour or virally 

infected cells that attempt to evade T cell mediated immunity by downregulating

their cell surface HLA-molecules that present intracellular antigens to T cells. 
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Activating KIRs, in contrast, are thought to recognise surface molecules 

indicative of aberrant host cell activity such as an exceptionally high surface 

density of HLA class I molecules even though in some cases the ligand remains 

unknown (Ivarsson et al., 2014). Activating KIRs have lower affinity to their 

ligands than inhibitory KIRs (Stewart et al., 2005) most likely owing to NK cell 

education to maintain self-tolerance. However, upon receiving a sufficient 

positive stimulus, they are able induce NK cell activation and target cell lysis. A 

vast majority of genetic associations of KIRs with cancer, autoimmunity and 

infectious diseases are attributed to variation in activating KIRs (Parham and 

Guethlein, 2018).

The KIR gene cluster on the human chromosome 19q13.4 encodes fifteen 

relatively homologous KIR genes and two pseudogenes, constituting two main 

haplotypes: A and B (https://www.ebi.ac.uk/ipd/kir/sequenced_haplotypes.html). 

The group A haplotype consists of functional KIR3DL3, KIR2DL3, KIR2DL1,  

KIR2DL4, KIR3DL1, KIR2DS4 and KIR3DL2 genes of which all except KIR2DS4 are 

inhibitory. The group B haplotype, on the other hand, is more diverse being 

characterised by the presence of at least one of KIR2DS2, KIR2DL2, KIR2DL5, 

KIR2DS5, KIR3DS1, KIR2DS3 or KIR2DS1 genes (Bashirova et al., 2006). Thus, the

group B haplotype  harbours several activating KIR genes, whereas the only 

activating receptor, KIR2DS4, of the group A is in a significant proportion of 

Caucasians a non-functional truncated variant (Bontadini et al., 2006; Maxwell et

al., 2002), rendering about 40% of group A homozygotes solely inhibitory. 

Approximately 55% of haplotypes are mixtures between group A and B 

(Middleton and Gonzelez, 2010), making the haplotype strucure highly variable 

in the population. Allelic diversity within KIRs is equally high with at least a few 

hundred  known polymorphisms (https://www.ebi.ac.uk/ipd/kir/stats.html), which 

can affect class I ligand affinity (Carr et al., 2005; Frazier et al., 2013).

Discovery and interpretation of KIR gene and haplotype associations in large 

biobank genome data collections can be facilitated by imputation of KIR content 

from single-nucleotide polymorphisms (SNPs) genotyped by microarray. 

Furthermore, in organ or stem cell transplantation setting the KIR locus offers 

additional genetic information for donor selection and prediction of clinical 

outcome (Cooley et al., 2010; Impola et al., 2014; Littera et al., 2017), and for 

many of these clinical genome datasets SNP microarray provides the most cost-

effective genotyping platform as well. To date, several KIR copy number or gene 

content analysis methods have been implemented for sequencing data (Chen et 
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al., 2020; Maniangou et al., 2017; Norman et al., 2016; Roe and Kuang, 2020; 

Wagner et al., 2018), but to our knowledge only one SNP-based approach exists 

so far (Vukcevic et al., 2015). These approaches reach a high accuracy which 

makes KIR inference reliable enough for research and even practical clinical 

applications. However, regarding biobank data, a stand-alone application that 

does not require submitting individual genotype data to external servers would 

be essential. To this end, we have implemented a random forest (RF) based KIR 

gene content prediction in the R environment exploiting SNP data. The reference 

data used for model fitting comprises KIR genotypes determined by targeted 

sequencing and 5774 genotyped SNPs in the KIR chromosomal region. Based on 

prediction of an independent subset of data, our results demonstrate a mean 

overall accuracy of 99.2% which is comparable to previously published methods.

Materials and Methods

Subjects 

Genomic DNA samples from blood donors and their genotypes were obtained 

from the Blood Service Biobank, Helsinki, Finland. The samples were collected 

from Finnish blood donors who had given a broad biobank consent according to 

the Finnish Biobank Act (688/2012).

Genotyping

Genotyping of samples was originally performed on a customized ThermoFisher 

Axiom array at the Thermo Fisher genotyping service facility (San Diego, USA) as

a part of the FinnGen project. After the embargo period, the genotypes were 

returned to the Blood Service Biobank. 

Genotype calling and quality control steps are described in 

finngen.gitbook.io/documentation/methods/genotype-imputation. The array 

markes files can be downloaded from www.finngen.fi/en/researchers/genotyping.

The protocol for genotype data liftover to hg38/GRCh38 is described in detail in 

www.protocols.io/view/genotyping-chip-data-lift-over-to-reference-genome-

xbhfij6?version_warning=no, and genotype imputation protocol is described in 

www.protocols.io/view/genotype-imputation-workflow-v3-0-xbgfijw. KIR 
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genotyping at absence-presence level of 818 samples was purchased from 

Histogenetics LLC (NY, USA). 

Imputation models

The outline of the modelling set up is depicted in Figure 1. The random forest 

model for predicting KIR gene content was implemented with R v4.0.4 (R Core 

Team, 2021) using the library ranger v0.12.1 (Wright and Ziegler, 2017). The 

model error was estimated by dividing the data randomly into two equal subsets 

to one of which a RF model for each KIR gene was fitted while the other subset 

was used for prediction with the fitted model. SNP dosage values in the KIR 

region on chr19 were used as predictor variables, and the KIR gene content (1 

for presence, 0 for absence) as determined by targeted sequencing served as 

the target phenotype variable. Feature selection within the model fitting was 

implemented using the permutated importance metric. Variants achieving an 

importance >1 x 10-5 were accepted into the model. The final model was fitted 

with the full dataset (Figure 1).

Figure 1. Schematic presentation of the 

study setup. The reference data set of 

818 individuals was genotyped on the 

FinnGen SNP array, and KIR gene content 

was determined by targeted sequencing. 

We used random forests to fit models to 

the training data set comprising randomly

selected 409 individuals. Feature 

selection was based on the importance 

metric computed through permutation. 

The model was re.fitted on SNPs 

achieving an importance of >0. Based on 

the test set comprising the other half of 

the samples, we calculated prediction 

error estimates for the modeling 

approach. Finally, we used the whole data

set to train complete models. 

Accuracy metrics were calculated using the R library caret v6.0-86 (Kuhn, Max, 

2020). Positive predictive value (PPV) was defined as (sensitivity * prevalence) / 
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((sensitivity*prevalence) + ((1-specificity)*(1-prevalence))). Negative predictive 

value (NPV) was defined as (specificity * (1-prevalence)) / (((1-

sensitivity)*prevalence) + ((specificity)*(1-prevalence))). Balanced accuray was 

calculated as (sensitivity+specificity)/2. Overall accuracy was calculated as the 

proportion of correct calls from all calls with 95% confidence intervals 

determined by binomial distribution. The data were managed with the tidyverse 

v1.3.0 (Wickham et al., 2019) package system.

To compare our method with KIR*IMP, KIR*IMP v1.2.0 

(http://imp.science.unimelb.edu.au/kir/) (Vukcevic et al., 2015) was applied to 

the 818 samples constituting our reference panel. Prior to submitting the data to 

KIR*IMP, the genotypes were transferred to hg19 coordinates with UCSC LiftOver 

(http://genome.ucsc.edu/cgi-bin/hgLiftOver) and phased with shapeit v2.r904 

(O’Connell et al., 2014) with default parameters except for burn=10, prune=10, 

main=50 and window=0.5. The orientations of the SNPs in the phased dataset 

were harmonised according to the KIR*IMP SNP information file 

(http://imp.science.unimelb.edu.au/kir/static/kirimp.uk1.snp.info.csv) using a 

custom R script. In analysing the results, we used KIR2DS4TOTAL and 

KIR3DL1ex9 CNV imputation results of KIR*IMP to compare with our KIR2DS4 and

KIR3DL1 absence-presence imputations, respectively.

Code availability

The analysis code and the models are available at https://github.com/FRCBS/  KIR-  

imputation. 

Results

Accuracy estimates for each KIR gene for prediction of an independent test set 

are listed in Table 1. In summary, the mean overall accuracy of prediction was 

0.992 (95% CI 0.997–0.978). The lowest accuracy of 0.968 (95% CI 0.983-0.945) 

was obtained for KIR2DS3 while KIR2DL3, KIR2DS2, KIR2DS4 and KIR3DL1 all 

achieved an overall accuracy of 1. Accuracy estimates for the test data and the 

RF out-of-bag (training set and full data) are plotted in Figure 2a. SNPs used by 

the models are listed in Supplementary Table 1.
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Figure 2. Overview of KIR prediction accuracy. a) Prediction performance metrics for the

12 imputed KIR genes. OOB: out-of-bag estimate from random forest models. Test set 

was predicted by models fitted on the training set. KIR*IMP was applied to the full 

dataset. Note the varying scale of the y-axis. b) Comparison of overall accuracies 

between the test set and reported values for the WGS based method kpi extracted from 

the publication by Chen and co-workers. c) Impact of missing SNPs on prediciton 

performance in the test set. d) Posterior probability distributions for test set prediction. 

Genotypes 0 and 1 denote absence and presence of a KIR gene, respectively. e) 

Confusion tables for the test set predition. Posterior probabilities >0.5 were classified as 

‘present’.

To compare our approach with KIR*IMP, we converted our dataset of 818 

samples to hg19 genome build and harmonised the SNP orientations. 126 SNPs 

out of 5774 could not be lifted over to hg19, and out of the 301 SNPs used by 

KIR*IMP 249 were found in our input data. SNP allele frequencies between the 

KIR*IMP reference panel and the input data had Pearson’s correlation coefficient 
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of 0.968 (Supplementary Figure 1a). Mean accuracy based on an estimate from 

the KIR*IMP reference subsetted for the input SNPs was 96.59% (Supplementary 

Figure 1b). Accuracy metrics for the imputation of our data by KIR*IMP are 

indicated by grey colour in Figure 2a. In summary, for all 12 included KIR genes 

we observed a distinctly lower imputation accuracy for KIR*IMP in comparison 

with our method.

Table 1. KIR imputation accuracy. 

To compare the level of overall accuracy of our SNP-based method with an 

established sequencing-based approach, we extracted the results of the 

evaluation by Chen and coworkers (Chen et al., 2020) for the KIR imputation 

method kpi (Roe and Kuang, 2020). Figure 2b shows the accuracy of kpi 

compared with our test set results. The observed values were highly similar with 

KIR2DS3 being the most diffcult gene to impute correctly. 

Varying numbers of missing SNPs within the KIR region reduced the imputation 

accuracy in accordance with the fraction of removed variants. At 80% of the 

SNPs present the accuracy generally remained at a good level but started to 

increasingly deteriorate after that (Figure 2c). 

Posterior probability (PP) values of imputation are informative of imputation 

uncertainty and can be incorporated into association analyses (Zhou et al., 

2020). Figure 2d shows the PP distributions for each imputed KIR gene. 

Classification performances according to the PP threshold where PPs below 0.5 

were classified as a missing KIR gene are shown by confusion tables in Figure 2e.

KIR genes with a higher error rate typically exhibited a PP distribution indicative 

of higher uncertainty as more values were closer to 0.5 than 1 or 0.

8

KIR_gene Sensitivity Specificity Precision Recall

2DL1 0.833 1 1 0.997 1 0.833 0.917 0.997
2DL2 0.995 1 1 0.994 1 0.995 0.998 0.997
2DL3 1 1 1 1 1 1 1 1
2DL5 0.967 0.985 0.983 0.97 0.983 0.967 0.976 0.976
2DP1 0.833 1 1 0.997 1 0.833 0.917 0.997
2DS1 1 0.982 0.986 1 0.986 1 0.991 0.992
2DS2 1 1 1 1 1 1 1 1
2DS3 0.965 0.978 0.993 0.901 0.993 0.965 0.972 0.968
2DS4 1 1 1 1 1 1 1 1
2DS5 1 0.946 0.972 1 0.972 1 0.973 0.981
3DL1 1 1 1 1 1 1 1 1
3DS1 1 0.988 0.99 1 0.99 1 0.994 0.995

Pos. Pred. 
Value

Neg. Pred. 
Value

Balanced 
accuracy

Overall 
accuracy
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Discussion

Genome data generated in a growing number of biobank projects is instrumental

to detailed immunogenetic analyses of several clinical phenotypes and diseases. 

Within the current technological and economical constraints SNP microarrays 

offer a practical way for genotyping hundreds of thousands of individuals. The 

KIR gene content, despite being a relatively coarse-scale feature, has been 

shown to influence many immune-mediated disorders (Bashirova et al., 2006; 

Parham and Guethlein, 2018) and complications in pregnancy (Colucci, 2017). 

Imputation of KIR gene content from SNPs in a scalable way is therefore essential

to analysing and interpreting large biomedical databases. To this end, in the 

present study we have built a machine learning model for inferring KIR gene 

content from SNP dosage data for stand-alone application in biobanks and other 

clinical data collections. Exploitation of random forest for imputing KIRs from SNP

genotypes was first implemented in the KIR*IMP software (Vukcevic et al., 2015),

which runs on a remote server (http://imp.science.unimelb.edu.au/kir/). The main

difference of our method in comparison with KIR*IMP is that it does not require 

phased data and the models can be downloaded and run locally. However, 

KIR*IMP produces a more detailed output that includes A and B haplotypes, 

framework genes KIR3DP1 and KIR2DL4, variants of KIR2DS4 and KIR3DL1 and 

gene copy numbers. Otherwise, at the level of gene absence-presence, the 

imputation accuracy of our method compares favourably not only with KIR*IMP 

but also to sequencing-based methods (Chen et al., 2020; Roe and Kuang, 2020).

In all imputation evaluations KIR2DS3 demonstrated the largest error in overall 

accuracy, followed by KIR2DL5 and KIR2DS5. A common feature shared by these 

three genes is that their location within the KIR chromosomal region is not fixed 

but can vary between centromeric and telomeric positions (Hsu et al., 2002; Pyo 

et al., 2010). Conceivably, this kind of positional variance may confound the 

identification of predictive SNPs resulting in greater imputation uncertainty. 

Other challenging genes were KIR2DL1 and KIR2DP1 which both harbour a 

relatively rare gene absence with population frequency of about 1.6%, and 

therefore had few cases in the training data. In this regard, the out-of-bag 

estimate for the whole dataset might be the most reliable error estimate for 

these genes, suggesting a balanced accuracy and positive predictive value of 

about 0.95. Despite some challenges, KIR gene content imputation presents a 
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valuable tool for initial screening and provides a rational basis for further 

analyses.

Allelic diversity, copy number variation and homologous gene sequences make 

KIR typing challenging by NGS or microarray probes. Nevertheless, the large 

number of variants within the region allows extraction of information based on 

linkage with gene content, even if the causative variants cannot in all cases be 

directly measured. This is also a shortcoming because linkage patterns vary 

between populations and consequently models trained on one population may 

not be fully transferrable to another. While the informative SNPs used by our 

method are not specific to the Finnish population as such, but present a set of 

common genetic variants with relatively similar allele frequencies across 

European populations, it is not guaranteed that the prediction would achieve as 

good an accuracy in populations other than Finns. Our method is also limited by 

the requirement of the availability of informative SNPs in the dataset under 

analysis. These variants are not genotyped by all microarrays commonly used in 

genome analysis and therefore selection of a suitable platform is crucial. Another

noteworthy limitation is that the method is not capable of identifying alleles. To 

date, only targeted sequencing based approaches can resolve KIR alleles 

(Maniangou et al., 2017; Norman et al., 2016; Roe and Kuang, 2020; Wagner et 

al., 2018). A possible future direction therefore is to extend KIR imputation from 

SNPs to cover allelic diversity.
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