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 2 

Abstract 26 

The contributions of species to ecosystem functions or services depend not only on 27 

their presence in a given community, but also on their local abundance. Progress in 28 

predictive spatial modelling has largely focused on species occurrence, rather than 29 

abundance. As such, limited guidance exists on the most reliable methods to explain 30 

and predict spatial variation in abundance. We analysed the performance of 68 31 

abundance-based species distribution models fitted to 800,000 standardised 32 

abundance records for more than 800 terrestrial bird and reef fish species. We found 33 

high heterogeneity in performance of abundance-based models. While many models 34 

performed poorly, a subset of models consistently reconstructed range-wide 35 

abundance patterns. The best predictions were obtained using random forests for 36 

frequently encountered and abundant species, and for predictions within the same 37 

environmental domain as model calibration. Extending predictions of species 38 

abundance outside of the environmental conditions used in model training generated 39 

poor predictions. Thus, interpolation of abundances between observations can help 40 

improve understanding of spatial abundance patterns, but extrapolated predictions of 41 

abundance, e.g. under climate change, have a much greater uncertainty. Our 42 

synthesis provides a roadmap for modelling abundance patterns, a key property of 43 

species’ distributions that underpins theoretical and applied questions in ecology and 44 

conservation. 45 

 46 
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Introduction 48 

Environmental change alters the occurrence and local abundance patterns of 49 

species (Hastings et al. 2020, Román-Palacios and Wiens 2020, Lenoir et al. 2020, 50 

Antão et al. 2020b). Modelling species’ occurrence has helped predict the 51 

distribution and erosion of biodiversity under unprecedented rates of environmental 52 

change (Pereira et al. 2013, Kissling et al. 2018, Jetz et al. 2019). Species 53 

occurrence models, however, provide limited opportunities to understand local 54 

abundance changes that accompany species distribution shifts (Lenoir and Svenning 55 

2013, Bates et al. 2015, Hastings et al. 2020). Species present in high numbers at 56 

only a few sites can make large contributions to ecological processes but a focus on 57 

occurrence would overlook these species (Table 1: (Stuart-Smith et al. 2013, 58 

Williams et al. 2014, Winfree et al. 2015, Johnston et al. 2015, Genung et al. 2020)). 59 

Abundance trends can also act as an early warning signal of population collapse 60 

(Clements et al. 2017, Ceballos et al. 2020) but occurrence patterns may not change 61 

until after local population depletion (Hastings et al. 2020). To better inform spatial 62 

conservation planning, we must better monitor and predict species abundance 63 

(Margules and Pressey 2000, Pauly and Froese 2010, Mi et al. 2017); however, 64 

abundance-based species distribution models remain under-developed relative to 65 

occurrence-based models. 66 

  67 

As in occurrence-based models, modelling abundance according to abiotic 68 

environmental conditions depends on assumptions of niche theory (Maguire, 1973, 69 

Holt 2009). Critically, environmental conditions are assumed to affect demographic 70 

processes which in turn drive population dynamics (Maguire, 1973, Brown et al. 71 

1995, Holt 2009, Pearce-Higgins et al. 2015, Betts et al. 2019). For a given species, 72 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445591
http://creativecommons.org/licenses/by/4.0/


 4 

spatial abundance variation is a consequence of these links coupled with natural 73 

environmental gradients (Holt 2009). If this theory is accurate, predictions of local 74 

abundance from environmental factors should be possible (Maguire, 1973, Martínez-75 

Meyer et al. 2013, Waldock et al. 2019).  76 

  77 

Yet, abundance does not appear to always be strongly constrained by theoretical 78 

niche properties in empirical data (Yañez-Arenas et al. 2014a, Dallas et al. 2017, 79 

Osorio-olvera et al. 2019, Santini et al. 2019, Dallas and Santini 2020, Holt 2020, 80 

Sporbert et al. 2020). For example, Allee effects, non-equilibrium population states, 81 

demographic stochasticity, and environmental variability act to weaken the link 82 

between environmental conditions and local abundance (Osorio-olvera et al. 2019, 83 

Dallas and Santini 2020, Holt 2020). If these factors dominate over macro-84 

environmental constraints on abundance, then abundance will be poorly predicted 85 

using a species distribution modelling approach. At present, the expected predictive 86 

power when modelling abundance in relation to environmental conditions is poorly 87 

understood and not quantitatively reviewed over large datasets and a varied set of 88 

modelling frameworks.  89 

  90 

Recent decades of statistical algorithm development provide an opportunity to 91 

evaluate the performance of abundance-based species distribution models. Current 92 

abundance model evaluations examine only a limited set of statistical frameworks 93 

and the best options may be overlooked (Pearce and Ferrier 2001, Potts and Elith 94 

2006, Oppel et al. 2012, Bahn and McGill 2013). For example, if abundance is 95 

determined by non-linear and complex interactions of environmental factors, then 96 

machine-learning algorithms may be most appropriate (Merow et al. 2014, Damaris 97 
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et al. 2016). In contrast, simpler models may be favoured if a species’ environmental 98 

responses closely follows simple unimodal functions (Austin 2002, Ready et al. 99 

2010, Boucher-Lalonde et al. 2012, Waldock et al. 2019). Simpler models are also 100 

expected to perform better when extrapolated to new environmental conditions 101 

(Merow et al. 2014, Brun et al. 2019).  102 

 103 

The scarcity of abundance data across entire species ranges has likely also 104 

contributed to poor model development (i.e., a Prestonian shortfall; (Pauly and 105 

Froese 2010, Cardoso et al. 2011, Hortal et al. 2015)). However, the technological 106 

expansion in citizen-science has generated a rapidly increasing quantity of species’ 107 

abundance records (Dickinson et al. 2010, Edgar and Stuart-Smith 2014), which 108 

combined with many national and regional biomonitoring surveys could allow the 109 

large-scale application of abundance-based species distribution models (Margules 110 

and Pressey 2000, Kissling et al. 2018, Callaghan et al. 2021).  111 

  112 

Species distribution model performance is often associated with species and data 113 

characteristics. Establishing how and why model performance varies for different 114 

species is critical for conservation and management applications, particularly with 115 

respect to commonness. Common species, in terms of local and regional 116 

abundance, often contribute most to ecosystem functioning (Genung et al. 2020). 117 

Low abundance and range-restricted species may be prioritised for conservation, 118 

having higher extinction risk (Purvis et al. 2000, Ceballos et al. 2020) and potentially 119 

playing unique roles in ecosystems (Violle et al. 2017). Species distribution models 120 

generally perform better for species with smaller ranges, lower endemicity and non-121 

migratory behaviour, in addition, the number of observations positively affects 122 
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performance (McPherson and Jetz 2007, Newbold et al. 2009, Chefaoui et al. 2011, 123 

Thuiller et al. 2019). The influence of species characteristics on abundance model 124 

performance is less well established. Furthermore, in novel environmental conditions 125 

the species characteristics associated with extrapolating abundance predictions are 126 

important to identify.  127 

 128 

Effects of species characteristics in abundance-based models may differ from 129 

occurrence-based models. Differences could arise because species abundance is 130 

jointly determined by fundamental niche axes in addition to dynamic population 131 

properties (Peterson et al. 2011), such as the strength of negative density 132 

dependence, intrinsic population growth rates and population cycles (Chisholm and 133 

Muller-Landau 2011, Yañez-Arenas et al. 2014b, Chu et al. 2016, Bowler et al. 2017, 134 

Yenni et al. 2017, Hallett et al. 2018). Fundamental niche limits are expected to play 135 

a small role in controlling abundance of wide-ranging species, because these 136 

species have their abundance controlled by a milieu of demographic factors that may 137 

each have different response functions (Hallett et al. 2018), perhaps leading to lower 138 

performance. In contrast, rare (low mean abundance) species that have narrow 139 

niches are theoretically expected to exhibit more stable populations and could 140 

therefore exhibit more predictable abundances (Yenni et al. 2017).  141 

 142 

Data characteristics, such as the amount of observations, are another element that 143 

could affect the success of species distribution model performance (Wisz et al. 2008, 144 

Yañez-Arenas et al. 2014b). More samples generally improve species distribution 145 

model performance by being less geographically and environmentally biased (Wisz 146 
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et al. 2008), and should similarly improve abundance model performance (Yañez-147 

Arenas et al. 2014b). Yet, these effects have not been tested. 148 

  149 

Here, we aim to provide practical guidance on applying statistical approaches to 150 

predict species’ abundance, and identify factors most affecting predictive 151 

performance. We compare 68 abundance-based species distribution models fitted 152 

for two standardised abundance datasets containing more than 800 marine and 153 

terrestrial vertebrate species and over 800,000 abundance observations. We test 154 

model interpolative (within-sample) and extrapolative (out-of-sample) performance. 155 

We ask how statistical framework and model complexity, and species’ and data 156 

characteristics, affect metrics of model accuracy, discrimination, and precision. We 157 

show that abundance-based species distribution models have great potential – 158 

additional to occurrence-based models – to generate insights in spatial ecology and 159 

biogeography, and to improve systematic conservation planning outcomes. 160 

  161 
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Table 1. Role of species’ abundance information in applied ecology and 162 

conservation.  163 

Research 
topic 

Benefit of abundance information Application 

Monitoring 
biodiversity 
change 

Population and patch extinction risk is 
better predicted by patch abundance rather 
than occupancy alone. 

Schulz et al. (2020) show abundance in the previous year to be a 
strong predictor of Glanville fritillary (Melitaea cinxia) butterfly 
patch occupancy, such that local abundance rather than average 
abundance determines local extinction risks.  

If using a fixed focal area for surveys, 
species’ environmental response curves 
are better quantified using abundance, 
which provides more information than 
presence-absence. 

Becker et al. (2019) modelled the influx of cetacean individuals to 
the California current system, using generalised additive models, 
during a heatwave event of 2014.  

Quantitative changes in abundance within 
a species range are more informative that 
occurrence shifts (i.e., intermediate stages 
in range shifts, no change in range extent). 

Fei et al. (2017) found that shifts in the spatial distribution of 
species’ abundance for tree species in the United States from, 
1980s to 2010s, was mostly due to sub-populations increasing in 
density from low initial abundance. 

Abundance is more sensitive at detecting 
impacts on species’ distributions than 
occurrence. 

Maxwell et al. (2019) synthesised 698 studied responses to 
extreme weather events and showed that abundance declines 
occurred in 100 cases, but local extinction occurred in only 31 
cases. Ricart et al. (2018) show that habitat forming Codium 
vermilara algae in the north west Mediterranean has declined by 
95% in terms of abundance but only 45% in terms of site 
occupancy. 

Trends in abundance and species richness 
can be disconnected.  

Antão et al. (2020a) found contrasting patterns in assemblage 
abundance and species richness in Finnish moth assemblages 
over 19 years, with abundance declining despite species richness 
increasing. 

Ecosystem 
function and 
services  

Individuals contribute to ecosystem 
services rather than species.  

Winfree et al. (2015) found that, in real-world ecosystems, crop 
pollination was driven by abundance fluctuations of dominant bee 
species whereas species richness was driven by rare species that 
contributed little to ecosystem function.  

Interaction strengths depend on the 
abundance of interacting species. 

Matías et al. (2019) document how pathogen abundance 
determines Cork oak (Quercus suber) mortality rates across the 
species’ distribution. More generally, Vázquez et al. (2007) show 
that asymmetry in interaction strength between hosts and 
consumers is correlated with abundance, so that rarer species are 
more negatively affected by abundant partners but pairs of 
interacting abundant species exhibit reciprocally strong effects. 

Geographic differences in patterns in 
evenness in abundance exist, such that the 
contributions of individuals and species to 
assemblage functional diversity varies at a 
macroecological scale. 

Stuart-Smith et al. (2013) show that community evenness is higher 
in temperate reef fish assemblages, compared to tropical 
assemblages. This difference in assemblage evenness suggest 
that each fish species contribution to reef ecosystem functioning is 
higher in temperate than tropical regions.  

Productivity depends on number of 
individuals in an area, which can map 
differently to the area suitable for 
occupancy. 

Kallasvuo et al. (2017) demonstrate that the most productive 
areas, with most individuals, only occupy a small area of the total 
suitable region for fish stocks in the Baltic Sea. 

Management 
of biodiversity 

Management goals are often to maintain 
abundance (biomass) of individuals rather 
than just presence 

Hutchings and Reynolds (2004) show breeding population sizes of 
economically valuable fishes have declined by 83%, undermining 
profitable fisheries, even though small populations still persist. 

Extinction risk is often established based 
on population abundance change, which 
can be spatially variable 

Sherley et al. (2020) use 40 years of count data of African penguin 
(Spheniscus demersus) and model spatially dependent abundance 
change through time to identify regions in the geographic range at 
high risk of extinction. The overall decline in abundance was 65% 
since 1989, indicating that the threshold for the IUCN 'Endangered' 
Red List category had been crossed. 

Spatial mapping of abundance for 
prioritization of area of conservation 

Flores et al. (2018) show how valley areas are important for 
maintaining high populations of Guanaco (Lama guanicao) in 
central Tierra del Fuego, and that spatial heterogeneity of 
abundance is greater in the breeding that non-breeding season. 

Invader impact curves suggest impacts are 
threshold dependent. 

Yokomizo et al. (2009) simulations indicate that impacts of invasive 
species depend on density, and that density–impact curve must be 
correctly identified to prevent overinvestment in management with 
little reduction in impact, particularly for species whose impact is 
only realised at high densities. 

 164 
 165 

 166 
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Materials and methods 167 

Spatial abundance data 168 

We obtained standardised estimates of species abundance across large regions for 169 

birds and shallow-water reef fishes from the Breeding Bird Survey of the USA (BBS) 170 

and Reef Life Survey (RLS) respectively (for detailed sampling schemes see 171 

(Pardieck et al. 2019) for birds and (Edgar and Stuart-Smith 2014) for fishes). For 172 

birds, abundance data comprise of 3-minute counts of individuals sighted and heard 173 

within a 400m stop radius along a transect of 50 stops. We summed bird species’ 174 

abundance across 50-stops within a sampled year, and mean-averaged abundances 175 

for a given species in a repeated site across the years 2014-2018. We aggregated 176 

abundances across years to better generalise our results to the structure of most 177 

abundance datasets, whereby yearly values across broad geographic regions are 178 

unlikely to be available (see Figure S25 for exploration of this assumption). We 179 

filtered out all samples that did not meet BBS established weather, date, time, route 180 

completion, randomised sampling, and sampling protocol criteria (i.e., using BBS 181 

data with a run type of 1). For fishes, abundance data are counts of individuals 182 

sighted along 50m long underwater transects (summed across 2 x 5m wide blocks 183 

either side of the transect line). We mean-averaged RLS abundance estimates 184 

across multiple transects within sites and we defined sites as sets of transects 185 

<200m apart (Edgar and Stuart-Smith 2014, Cresswell et al. 2017). We filtered sites 186 

geographically between 3°S to 50°S and 110°E to 165°E to select for Australian and 187 

Indo-Pacific survey locations where sampling effort was most intensive and 188 

comprehensive in the RLS dataset. For both BBS and RLS datasets, we removed 189 

species without full scientific names and fewer than 50 abundance records. We 190 

required species absences for two-stage models and abundance-absence models. 191 
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We generated absences for each species by taking observations where species 192 

were present and finding all observations within a 1000 km buffer where species 193 

were not present. A lack of observed presence is not necessarily a ‘true absence’, 194 

but instead suggests species were undetectable with a reasonable sampling effort 195 

(Guillera-Arroita 2017). We analysed a total of 264,474 observations of 385 species 196 

in 3,890 sites for birds in the BBS dataset, and 567,669 observations of 495 species 197 

in 2,137 sites for reef fishes in the RLS dataset. 198 

  199 

Covariates 200 

We matched site locations to gridded environmental variables representing climate, 201 

biogeochemistry, land-use, depth, habitat area, and human populations, retaining 202 

only variables with expected a priori relationships with abundance (see Table S1 for 203 

details). Because of the high number of similar climate-related variables, and to 204 

avoid multicollinearity in these, we first applied robust-PCA using package 205 

pcaMethods (version 1.76.0; Stacklies et al. 2007) which is shown to be a good 206 

approach to reduce multicollinearity in SDMs (Cruz-Cárdenas et al. 2014, De Marco 207 

and Nóbrega 2018, Osorio‐Olvera et al. 2020). Furthermore, we focused on 208 

predictive power to ensure our results were more robust to potential multicollinearity. 209 

We ran a separate robust-PCA on 19 variables characterising climates across the 210 

bird survey locations (bio1-bio19), and on 15 variables characterising climatic and 211 

biogeochemical properties across the fish survey locations (mean, minimum and 212 

maximum of pH, salinity, chl-a, net primary productivity, degree heating weeks; 213 

indicated in Table S1). For each dataset, we retained 3 principal components, 214 

explaining 87.8% and 77.8% variation respectively, and used these principal 215 

component scores as predictor variables to summarise the dominant climate and 216 
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biogeochemical regimes of the data in each set of models (3 PCA variables for birds 217 

and 3 PCA variables for fishes; Figure S1 and S2). We retained the PCA axes which 218 

explained >5% variation in the PCA-covariate set, which resulted in 3 axes 219 

summarising the climatological variation for each dataset. In addition to the 220 

climatological variables, we also included additional environmental variables as 221 

predictors in our model that we expected to act independently. All non-PCA variables 222 

were mean-centred, normalised to a variance of 1, and transformed according to 223 

Table S1 before modelling. 224 

 225 

Analytical design 226 

We analysed a large diversity of species abundance models that spanned a gradient 227 

in model complexity and different formulations of abundance data. Further, we 228 

assessed model performance for interpolation and extrapolation cross-validation 229 

scenarios (Figure 1). Given that data requirements are a major challenge in fitting 230 

species abundance models, we chose species-level statistical models that were 231 

suitable for our goal of comparing predictive performance (i.e., not mechanistic, 232 

hierarchical or multispecies/joint/multivariate SDMs). In total, we fitted and evaluated 233 

68 types of species abundance model (24 model frameworks by 3 response variable 234 

(abundance) formulations, less 4 models of zero-inflation that are not valid for 235 

abundance-only models = 68 models; see Table S2 for full model list). Combining 236 

models and cross-validations for 1,547 species led to 59,840 models to evaluate. 237 

  238 

Our full species abundance model set comprises different statistical algorithms, 239 

response transformations, error distributions, and formulations of abundance data. 240 

We used 24 model variants from common statistical distributions and 241 
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transformations for abundance data that were available within statistical software 242 

packages in R (e.g., Poisson, negative binomial, zero-inflated, tweedie, multi-243 

nominal, log10-gaussian, log-gaussian; Table S2). We chose statistical treatments of 244 

abundance data that are common in the literature and valid to the error distribution of 245 

abundance. We fitted these 24 model variants using four statistical model fitting 246 

procedures: generalised linear models (GLM), generalised additive models (GAM; 247 

Wood 2011), gradient boosting machine (GBM; Friedman 2001), and random forests 248 

(RF; Breiman 2001). This model set varied in complexity of the relationship between 249 

abundance and environmental variables (linear to highly-complex) and the behaviour 250 

of interactions within the models (none to many; Merow et al. 2014). For GLMs and 251 

GAMs we used a range of error distributions rather than determining a priori the 252 

most appropriate error distribution for each species. This follows previous species 253 

abundance model comparisons (Potts and Elith 2006), which assumed that incorrect 254 

model specification leads to poor predictive ability, and we focussed our comparison 255 

of model performance on predictive ability (which also provided a standardised 256 

assessment criteria across statistical algorithms). For all models, we included the 257 

same initial set of predictor variables, although each model framework had a 258 

different underlying variable selection procedure that identified independent sets of 259 

final predictors. The full model fitting procedure, algorithm parameters, and 260 

justification for each modelling approach and software used are provided in 261 

Appendix 2. 262 

  263 

In addition to model variants, we used three formulations of response data: 264 

abundance-when-present (for 20 model variants, less 4 zero-inflated models), 265 

abundance-absence (for 24 model variants), and an indirect two-stage modelling 266 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445591
http://creativecommons.org/licenses/by/4.0/


 13 

approach (for 24 model variants). For abundance-when-present models we removed 267 

all absences. Abundance-absence models were analogous to classic presence-268 

absence data in species distribution models, but using abundance estimates instead 269 

of presences. In abundance-absence models, we standardised prevalence (the 270 

number of absences compared to presences) across species, which can influence 271 

the estimation of response curves from data characteristics alone when there are 272 

many more absences than presences (Meynard et al. 2019). To do so, we bootstrap-273 

subsampled the number of absences to be twice the number of presences, repeating 274 

this procedure 10 times and averaging abundance predictions across bootstraps. 275 

Finally, our indirect two-stage modelling approach first modelled habitat suitability as 276 

a traditional SDM by converting abundance-absences into presence-absences. Next, 277 

we used the habitat suitability predictions from this model as a single covariate to 278 

predict abundance. Note, this is not a hurdle approach, but instead tests the 279 

assumption that habitat suitability correlates to, and predicts, local abundance 280 

(Vanderwal et al. 2009). Details for fitting SDMs to produce occupancy predictions 281 

are provided in Appendix 2. 282 

 283 

Model evaluation: accuracy, discrimination, and precision 284 

We evaluated the consistency between predicted and observed abundance using 285 

metrics of: i) accuracy, ii) discrimination and iii) precision (see Figure1 for equations; 286 

(Norberg et al. 2019)). Accuracy is the degree of proximity to a known truth, 287 

measured here using mean absolute error between observed and predicted 288 

abundance, divided by the mean observed abundance for a species (Amae). 289 

Discrimination measure how well model predictions discern low values from high 290 

values of observed abundance, e.g., in the correct overall ordering of abundances. 291 
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This is a continuous analogue of occurrence SDMs discerning between present and 292 

absent. We measured discrimination using both Spearman’s rank correlation 293 

(Dspearman) and Pearson’s correlation (Dpearson) between predicted and observed 294 

abundance. In addition, we estimated the slope and intercept of a linear model 295 

between predicted and observed abundance (Dslope, Dintercept). Precision measures 296 

the information content in the predictions as the variation in predicted abundance 297 

relative to the variation in the observed abundances. Precision differs from accuracy 298 

because estimates can be precise with high information content even if overall 299 

predictions were biased. Here we measured precision as the standard deviation of 300 

the predicted abundances (Norberg et al. 2019). However, we compared this value 301 

to a reasonable expectation of precision because each species has a different range 302 

of abundance values. Therefore, we estimated the predicted precision divided by the 303 

expected variation in abundance and call this property Pdispersion. 304 

 305 

Accuracy, discrimination, and precision capture different facets of model 306 

performance and so could be considered together or separately depending on the 307 

purposes of the modelling exercise. For example, a model can predict mean 308 

abundance of a species well (high accuracy) but poorly discriminate between high 309 

and low abundances (low discrimination). We focused our results mostly on 310 

discrimination because identifying changes in spatial and temporal variation in 311 

abundance, a goal of conservation and wildlife management, depends on good 312 

discrimination of abundance values between sites or time-points. Further, accuracy 313 

and precision may depend on the quality of sampling, but inaccurate sampling may 314 

still provide reasonable estimates of spatial and temporal differences in abundance. 315 

We identified an ‘optimal model’ based on the most discriminatory model for each 316 
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species. To do so, we rescaled the four discrimination metrics between 0-1, 317 

averaged the score across the scaled metrics, and identified the model with the 318 

highest average score per species – we report this as the ‘optimal model’ 319 

throughout. 320 

  321 

Note that we avoid confounding performance in predicting presence-absences from 322 

performance in predicting abundance by only evaluating predictions for species 323 

abundances when present (i.e., we exclude any abundance values predicted in sites 324 

where species are absent in the observed data). Many reviews exist identifying the 325 

best occupancy based frameworks for predicting presence or absences (see 326 

Norberg et al. 2019), our novel contribution focuses on predicting species 327 

abundance. In practice, to obtain abundance estimates, both occupancy and 328 

abundance predictions should be combined (Denes et al. 2015).  329 

 330 

We assessed whether a rescaling correction could improve the biases in abundance 331 

predictions between predicted and observed abundance. This bias appears 332 

systematically in quantitative ecological predictions (Pearce and Ferrier 2001, 333 

Fukaya et al. 2020, Ploton et al. 2020). We rescaled predicted values to take the 334 

range of observed values using the following formula: 
predicted −  min(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

max(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) −min (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
 and 335 

assessed how this procedure affected model performance indicated by our 336 

evaluation metric set.  337 

  338 

Model cross-validations and transferability to novel climates 339 

We evaluated model performance using two cross-validation strategies. We 340 

evaluated how well models predict abundance when i) interpolating within 341 
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environments (within-sample) and ii) extrapolating into novel climate conditions (out-342 

of-sample). The first scenario applies when models are interpolated to fill geographic 343 

gaps in sampling within a species range. The second scenario applies when 344 

modelling species abundance under climate change. When testing interpolation 345 

within-sample environments, we randomly held out 20% of the abundance data and 346 

fitted models to the remaining 80%. This within-sample model evaluation used a 347 

random subset of sites within the full covariate space. 348 

  349 

Our second cross-validation strategy tested model transferability into novel 350 

conditions. Transferability measures if models can be projected beyond 351 

environments found within bounds of the covariate data. Given the rate of 352 

anthropogenic changes to our environment, models will be best applied when also 353 

accurate in novel conditions with no past analogues (Evans 2012, Sequeira et al. 354 

2018a). Model transferability can be low if models are overfitted, exhibit non-355 

stationarity, or are missing important covariates (Yates et al. 2018). We built 356 

separate models following the above protocol to test model transferability. To do so, 357 

we non-randomly sampled 20% data from above the 80th quantile of sea-surface 358 

temperature in reef-fishes, and above the 80th quantile of the climatological PCA-1 in 359 

birds, and fitted our abundance models to the remaining 80%. We estimated all 360 

evaluation metrics within the out-of-sample cross-validation sets as above. In both 361 

scenarios, we assumed that cross-validation frames were independent of the training 362 

data frames (Randin et al. 2006, Roberts et al. 2017). 363 

  364 

We did not perform k-fold cross-validation for the full span of covariate space 365 

because we wanted to gain an understanding of abundance estimates from 366 
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directional environmental novelty due to climate change (e.g., predicting abundance 367 

in warmer temperatures than fishes currently experience in the oceans). As a 368 

hypothetical example, if we split a temperature gradient from 20-30°C into 20-22, 22-369 

24, 24-26, 26-28 and 28-30°C bins and examined performance on each bin; spatial 370 

auto-correlation would lead to an underestimate of model performance in novel 371 

future climates when evaluating the middle bins. Under temperature warming, we 372 

therefore only used the highest 20% bin threshold for exploring extrapolation (i.e., 373 

transferability to novel climates). To ensure cross-validation scenarios of 374 

interpolation and extrapolation were comparable, we used only one 20% subsample 375 

for the interpolation (random) subset also. Although this procedure is not encouraged 376 

in general for SDM fitting and evaluation, for good reason (Roberts et al. 2017), it 377 

suits our specific cross-validation goals (Sequeira et al. 2018a, Yates et al. 2018). 378 

We expected our findings to be robust to any small biases introduced by only 379 

performing one-fold cross-validations because of the high number of species 380 

included in the exercise. We did, however, perform 10-fold cross-validations when 381 

sub-sampling species absences to ensure findings were robust to variation in the 382 

locations of species absences. 383 

  384 

Species’ and data characteristics  385 

We also tested how characteristics of species’ abundance, frequency, and data 386 

availability affected model performance. To explain variation in model performance 387 

among species, we calculated i) the mean abundance of species when present; ii) 388 

the proportion of presence compared to absence records (within 1000km) in the 389 

observational data (% occupied sites); and iii) the total number of presence records 390 

per species (overall observation number). Although the frequency of occurrence and 391 
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the total number of presences are colinear in bird and fish datasets (rho=0.87, 392 

rho=0.67, respectively) we included both because unbiased estimates of coefficients 393 

are achieved through multiple regression (Morrissey and Ruxton 2018). We log10 394 

transformed and standardised predictor variables to have unit variance and removed 395 

outliers (points > 2 SD from the mean) from the response variables. Next, we fitted 396 

multiple regressions that explained how the model evaluation metrics depended on 397 

our three measures of species’ characteristics. For simplicity, we present these 398 

results using Dspearman due to the high number of comparisons and the importance of 399 

model discrimination highlighted above. We first fitted a full model, including three 400 

two-way interactions between pairs of predictors. We performed backwards stepwise 401 

model selection and selected the model with the lowest AIC score using the R 402 

package MuMIn (Burnham and Anderson 2002, Barton 2017). We plotted marginal 403 

effects by predicting model effects for a given variable across the mean value of all 404 

other model covariates. We fitted these models using phylogenetic generalised least 405 

squares using the R package caper using maximum likelihood to estimate Pagels  406 

(Blomberg and Symonds 2014, Orme et al. 2018). We used published bird (Jetz et 407 

al. 2012, 2014; https://birdtree.org/downloads/) and fish (Rabosky et al. 2018; 408 

https://fishtreeoflife.org/downloads/) phylogenetic trees.  409 

 410 
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 411 

Figure 1. Overview of analysis from data sources to model performance evaluations. 412 

Model evaluation metrics for accuracy, discrimination and precision are presented. 413 

  414 
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Results  415 

Overview of model performance 416 

We first assessed performance by applying all frameworks to all species and 417 

evaluating interpolative prediction of within-sample observations. Doing so, model 418 

performance was highly variable and generally low (Table S3; Figure S5-S8). For 419 

example, across all models and species, Dspearman had a median of 0.29 (5th 420 

percentile = -0.17, 95th percentile = 0.64), median Dslope was 0.06 (-0.07 – 0.47) and 421 

median Amae was 0.74 (0.48 – 1.52). As such, of the complete model set (n=68), only 422 

51% of species had at least one model with a Dspearman above 0.5; 53% of species 423 

had at least one model with a Dslope between 0.5 and 1.5, but 93% of species had at 424 

least one model with Amae predicting mean abundances within 10% of observed 425 

mean abundances, and 33% of species had models fitting all the above criteria. 426 

 427 

We next investigated the best fitting algorithm for each species independently, 428 

keeping only the single best model each species (i.e., our ‘optimal model’). Random 429 

forests were most often selected as the optimal models for discrimination (precision, 430 

accuracy) being best for 51% (55%, 46%) of the species, gradient boosting 431 

machines for 22% (26%, 32%) and generalised linear models and generalised 432 

additive models for 16% (9%, 14%) and 12% (10%, 8%) of species respectively 433 

(Figure 2, Figure S5, Figure S7, Figure S9). Building models using abundance-434 

absence data led to the best discrimination (precision, accuracy) performance for 435 

68% (30%, 26%) of species, 19% (24%, 32%) using only species’ abundance, and 436 

14% (46%, 42%) using a two-step indirect approach relating abundance to 437 

occurrence probability (Figure S4). 438 

 439 
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Table 2. Summary of evaluation metrics of model performance for most 440 

discriminatory models comparing within- and out-of-sample cross validations, 441 

median and interquartile range (IQR) for all species within datasets are presented. 442 

Amae has the proportional error of estimated mean abundance compared to observed 443 

mean abundance having a target value of 1. Dpearson and Dspearman are correlation 444 

coefficients having a target value of 1. Dintercept is the number of individuals predicted 445 

from a linear regression between observed and predicted at 0 observed individuals. 446 

Dslope is the slope of this regression having a target value of 1. Pdispersion is a 447 

dimensionless ratio of the standard deviation of predicted abundance over the 448 

standard deviation of observed abundance having a target value of 1. 449 

 450 

    within-sample out-of-sample 

  metric Q0.05 Q0.25 median Q0.75 Q0.95 Q0.05 Q0.25 median Q0.75 Q0.95 

breeding 
bird 

survey 

Amae 0.43 0.54 0.62 0.70 0.97 0.47 0.65 0.78 0.92 1.88 

Dintercept  0.68  1.44  2.23  3.40  9.95  0.00  0.40  1.57  4.42 19.38 

Dslope 0.02 0.15 0.25 0.36 0.68 0.00 0.05 0.10 0.19 0.45 

Dpearson 0.15 0.37 0.49 0.61 0.74 0.09 0.23 0.34 0.46 0.65 

Dspearman 0.14 0.36 0.48 0.61 0.72 0.10 0.24 0.34 0.46 0.62 

Pdispersion 0.12 0.34 0.51 0.68 1.27 0.04 0.18 0.32 0.55 1.25 

reef life 
survey 

Amae 0.46 0.59 0.69 0.84 1.34 0.45 0.66 0.83 0.97 1.43 

Dintercept  0.25  0.90  1.68  5.75 93.70 -0.01  0.42  1.50  4.68 62.63 

Dslope 0.01 0.10 0.20 0.38 0.99 0.00 0.02 0.06 0.16 0.49 

Dpearson 0.15 0.33 0.48 0.63 0.84 0.05 0.21 0.36 0.50 0.74 

Dspearman 0.17 0.31 0.43 0.56 0.72 0.04 0.22 0.34 0.47 0.67 

Pdispersion 0.05 0.25 0.44 0.72 1.67 0.00 0.07 0.20 0.41 1.25 

 451 

 452 
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 453 

Figure 2. Counts of the model framework (top row) and abundance response 454 

treatment (bottom row) to which the most discriminatory model for each species 455 

belongs. Breeding bird survey shown in left column and reef life survey in right 456 

column. Colour shading indicates whether model predictions were from the within-457 

sample model runs (dark) or out-of-sample model runs (light). See Figure S4 for 458 

counts using most accurate, most precise models, as well as combining all metric 459 

groups. 460 
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When selecting an optimal model for each species, model performance was good for 462 

most metrics (Figure 3; Table 2). For example, there were positive correlations for 463 

most species between observed and predicted abundances and the error of average 464 

abundance estimation was relatively low. Specifically, median Dspearman was 0.48 465 

(0.14 – 0.72) and 0.43 (0.17 – 0.72) for bird and fish surveys respectively, and 466 

median Amae was 0.62 (0.43 – 0.97) and 0.69 (0.46 – 1.34) respectively. Some 467 

measures of model performance were poor, leading to a biased relationship between 468 

observed and predicted abundances and a poor estimation of abundance variation. 469 

Specifically, Dslope was 0.25 (0.02 – 0.68) and 0.20 (0.01 – 0.99) for bird and fish 470 

surveys, and Pdispersion was 0.51 (0.12 – 1.27) and 0.44 (0.05 – 1.67), respectively.  471 

 472 

Predictions of abundance from optimal models had a high correspondence with 473 

observed abundances, on average across all species, in both fish and birds (Figure 474 

4). However, as indicated by the evaluation metrics, the overall relationship was 475 

biased to be shallower than a 1:1 correspondence between observed and predicted 476 

abundance by models consistently overestimating low abundance and 477 

underestimating high abundances (Figure 4; see Figure S15 and S17 for all models, 478 

and Figure S19 and S21 for individual optimal models). Applying a rescaling 479 

correction (rescaling predicted abundances to the observed abundance range) for 480 

each species helped to correct this systematic bias. Model performance improved as 481 

indicated by Amae (before correction = 0.64-0.69 to after correction = 0.88-0.94), 482 

Dslope (0.20-0.25 to 0.50-0.56) and Pdispersion (0.44-0.51 to 1.10), however, 483 

performance decreased when indicated by Dintercept (1.7-2.2 to 5.6-5.9; see full results 484 

in Table S4). 485 

 486 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445591
http://creativecommons.org/licenses/by/4.0/


 24 

 487 

Figure 3. Boxplots of model performance of most discriminatory model for each 488 

species across all 6 metrics. Colours indicate breeding bird survey and reef life 489 

survey, whereas shading indicates within-sample and out-of-sample cross 490 

validations. Dashed lines indicate target values for each metric. Note that the type of 491 

model is not necessarily the same for a given species in the within-sample and out-492 

of-sample comparisons, as indicated in Figure 2. Central lines correspond to median 493 

values, hinges correspond to 25th and 75th quantiles and whiskers correspond to 1.5x 494 

the hinges. Outliers are excluded from visualisations. See Figure S25 for 495 

performance of most accurate and most precise models, as well as combining all 496 

metric groups. 497 

 498 
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 500 

 501 

Figure 4. Contour plots of observed abundance vs. model predicted abundance 502 

across bird and fish datasets. Upper panels show within-sample interpolation and 503 

lower panels show out-of-sample extrapolation of predicted values (see Methods and 504 

Materials for details). Dashed line indicates 1:1 correspondence. Colour intensity 505 

indicates the number of records within contour. Both axes are log10+1 transformed 506 

and rescaled between 0 and 1 to show ability of models to discriminate abundance 507 

values. To avoid species with more data dominating patterns, for each species, we 508 

binned observations into 30 bins and estimated the mean predicted abundance for 509 

each observed abundance bin. Note that, due to the 0-1 transformation, a value of 0 510 

is the minimum observed or predicted abundance value.  511 

 512 

  513 
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Model transferability to novel conditions (i.e., out-of-sample) 514 

Transferring models to novel conditions, the best performing algorithm for each 515 

species in terms of discrimination (precision, accuracy) shifted to generalised linear 516 

models being the best for 33% species (27%, 21%), random forests for 29% (40%, 517 

38%), generalised additive models for 19% (19%, 21%), and gradient boosting 518 

machines for 19% (15%, 21%) of the species (Figure 2, Figure S4, S6, S8, S10). 519 

Building models using abundance-absence data remained the best performing 520 

treatment of response data in terms of discrimination (precision, accuracy) for 60% 521 

(33%, 25%) of species, with 21% (41%, 20%) of species having best models when 522 

using only species’ abundances, and 20% (26%, 56%) using a two-step approach 523 

(Figure 2).  524 

 525 

Transferring models to novel conditions reduced model performance for most 526 

metrics across both birds and fishes (Table 2; Figure 3). The general discrimination 527 

of high and low abundances remained (median Dspearman was 0.34 for birds and 0.34 528 

for fishes). Dslope declined by more than half compared to within-sample cross-529 

validations (median Dslope was 0.10 for birds and 0.06 for fishes). Surprisingly, 530 

accuracy increased compared to within-sample cross-validations with a median of 531 

0.78 and 0.83 in birds and fishes, respectively. 532 

 533 

Predicted abundance still corresponded with observed abundances on average 534 

across all species, in both fishes and birds (Figure 4), despite the poorer model 535 

performance. However, similar issues with a biased intercept and slope exist in the 536 

out-of-sample cross-validations as for the within-sample cross-validations, and were 537 

similarly corrected for by the rescaling procedure (Figure 4; see Figure S16 and S18 538 
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for all models, and Figure S20 and S22 for individual optimal models; see Table S4 539 

for comparisons with rescaling).  540 

 541 

Species’ and data characteristics 542 

The variation in model performance explained by species and data characteristics 543 

varied among performance metrics, and was higher in general for within-sample (R2 544 

= 0.04 – 0.44) compared to out-of-sample cross-validations (R2 = 0.01 – 0.33; Table 545 

S5 – S8). All six evaluation metrics were affected by species or data characteristics 546 

in both birds and fishes (Table S5 – S8). Dintercept had the most variation explained by 547 

species and data characteristics in both birds and fishes (R2 of 0.42-0.44).  548 

 549 

We present the example metric Dspearman, which had a R2 between 0.16 and 0.33. 550 

The effects of species and data characteristics on Dspearman were highly consistent 551 

across within and out-of-sample predictions and across both datasets (Figure 5; 552 

Figure S23; Table S5-8). More observations decreased the Dspearman. Higher 553 

frequency of occurrence increased Dspearman but only if species also had high number 554 

of observations. Species with higher abundance had higher Dspearman only if species 555 

had high frequency too. This last effect was not evident for fish species in out-of-556 

sample predictions. Phylogenetic signal (Pagel’s ) in the residuals was very weak 557 

ranging from 0 to 0.17.  558 

  559 
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 560 

 561 

Figure 5. Effect of species’ and data characteristics on Dspearman for breeding bird 562 

survey (a-c) and reef life survey (d-f). Plots display marginal effects from multiple 563 

regressions fitted using phylogenetic generalised least squares for within-sample 564 

cross validations. Lines represent mean predicted values. Shaded areas show 565 

uncertainty as mean ± (standard error x 1.96) of coefficient values. All effects are 566 

significant at an alpha of 0.05, and interaction terms are only shown when significant. 567 

Full statistical results across all metrics, datasets and cross validations are displayed 568 

in (Table S5 to S8). See Figure S23 for effect of species and data characteristics on 569 

Dspearman in out-of-sample predictions.  570 

  571 
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Discussion 572 

We demonstrated the capacity to predict spatial patterns in abundance for many 573 

species if an appropriate model framework is chosen. The predictability of 574 

abundance using only the environmental response shapes of species has probably 575 

been under-appreciated somewhat, in part due to many options for statistical models 576 

and only a few providing acceptable predictions. For example, using GAMs and 577 

GLMs, Johnston et al. (2013) found a low rank correlation of 0.19 for predicted and 578 

observed seabird densities, and therefore focussed on coarser spatial scales for 579 

predictive analyses (also see (Illan et al. 2014)). Our results support that correlative 580 

abundance models could have an important role in quantifying the changing spatial 581 

patterns of species’ abundance due to environmental change, although many 582 

challenges remain. Here we discuss our relative success and failures in modelling 583 

abundance to better guide future applications. 584 

 585 

 586 

Successful aspects of species abundance models 587 

A small number of good approaches for predicting species abundance emerged after 588 

exploring a large set of models. Correlation values from our optimal models were 589 

higher than ~0.3 for more than 75% of species, and higher than ~0.6 for 25% of 590 

species (Table 2). Our finding that random forests performed well at within-sample 591 

prediction provides solid evidence that the findings for Balearic shearwaters 592 

(Puffinus mauretanicus; Oppel et al. 2012) apply more generally, at least across the 593 

800 species of bird and fish tested here. The high discrimination, precision and 594 

accuracy of random forests would improve confidence in assigning regions as 595 

important abundance-priority areas for conservation.  596 
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 597 

A focus on linear functions relating environments to local abundances may have 598 

previously reduced predictive performance. More flexible response curves of 599 

machine learning approaches allow for what may often be highly non-linear 600 

abundance niche shapes (Pearce and Ferrier 2001, Potts and Elith 2006, Renwick et 601 

al. 2012, Betts et al. 2019). Further optimised algorithms and deep learning 602 

approaches may better integrate abundance into biodiversity indicator frameworks 603 

given the much better performance of machine learning approaches here (Jetz et al. 604 

2019). If abundance has been perceived to be poorly explained by climate or other 605 

variables in the past, it could be falsely concluded that broad-scale variables only 606 

weakly affect abundance and that abundance niches are more strongly constrained 607 

by factors other than species’ fundamental niches (but see Illan et al. 2014, Dallas 608 

and Santini 2020).  609 

  610 

Accurate prediction of local abundances with abiotic variables supports the 611 

theoretical prediction that fitness optima along abiotic niche axes filters down to 612 

determine ecologically successful locations of high population growth rates (Maguire, 613 

1973). The prediction of abundance from abiotic niche axes has been questioned by 614 

recent empirical studies (Dallas and Hastings 2018, Santini et al. 2019, Sporbert et 615 

al. 2020). These studies determine environmental effects on abundance indirectly 616 

from habitat suitability or environmental centroids. Here we directly relate abundance 617 

to environmental conditions which provides a more direct quantification of species’ 618 

abundance niche with fewer assumptions (Osorio‐Olvera et al. 2020).  619 

 620 
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Our finding that modelling abundance directly was better than an indirect approach 621 

(i.e., comparing our abundance-absence models to two-stage models) for more than 622 

80% of species indicates that spatial abundance and occurrence patterns are 623 

somewhat mismatched, or at least not always congruent (although it is challenging to 624 

completely disentangle abundance from occurrence, and vice versa). Mismatches 625 

arise from different ecological controls of abundance and occurrence, such as 626 

different demographic rates controlling each to different extents (McGill 2012, 627 

Johnston et al. 2015, Acevedo et al. 2017, Dallas and Santini 2020, Schulz et al. 628 

2020, Yancovitch et al. 2020, Bohner and Diez 2020). Understanding such 629 

mismatches offers an important avenue for better understanding range and 630 

abundance shifts under climate change (Geppert et al. 2020) and potentially guiding 631 

spatial management and conservation. For example, a focus on occurrence can 632 

miss critical patches of high abundance driven by a few isolated factors (Johnston et 633 

al. 2015, Suggitt et al. 2018). Such ‘strongholds’ for species could be a common 634 

feature of ecological communities and are likely only considered when management 635 

is focussed on small scales for data-rich species. Moving species distribution models 636 

beyond modelling occurrences, to help identify such areas, will require improving 637 

knowledge of species’ responses to environmental gradients using multiple 638 

performance metrics (i.e., occurrence, abundance, demographic rates) (Ehrlén and 639 

Morris 2015, Ashcroft et al. 2017, Bohner and Diez 2020). 640 

 641 

Current limitations and challenges in species abundance models 642 

We identify two important biases in abundance models here: why do we 643 

systematically over-predict low observed abundances and under-predict high 644 

observed abundances (see also Pearce and Ferrier 2001, Fukaya et al. 2020, Ploton 645 
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et al. 2020)? And, why does having more abundance observations for a species lead 646 

to lower discriminatory power of predictions (i.e., poorer ability to discriminate 647 

between high abundance sites and low abundance sites)? These biases may jointly 648 

arise as we undoubtedly miss key biotic (e.g. ecological interactions) and micro-649 

climatic variables from our models (Lembrechts et al. 2019), leading to extreme local 650 

abundances. 651 

 652 

Missing inter- and intra-specific interactions has been a well-recognised problem in 653 

predictive occurrence-based species distribution modelling (Guisan and Thuiller 654 

2005, Wisz et al. 2013, Mouquet et al. 2015, Pollock et al. 2020). For abundance-655 

based models, species’ interactions can drive population feedbacks that may be 656 

important for explaining extreme abundances, but are missing from models in 657 

general, leading to poor predictive performance. Recent theoretical work highlights 658 

how interaction feedbacks can strongly modify abundance along environmental 659 

gradients, even if the fundamental niche shape is unimodal (Kéfi et al. 2016, 660 

Liautaud et al. 2019). In addition, behavioural aggregations from seasonal migrations 661 

or resource booms can lead to extreme abundances; challenging the identification of 662 

appropriate statistical response distributions (Lindén and Mäntyniemi 2011). These 663 

points emphasise the need to better understand how local environments, individual 664 

behaviour and species interactions together shape macroecological abundance 665 

patterns. Novel joint species distribution modelling approaches (Ovaskainen et al. 666 

2017), or direct estimation of interaction strengths (Wootton and Emmerson 2005) 667 

are promising tools to help address such questions. 668 

 669 
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Abundance-based species distribution models could be further improved by 670 

considering fine-scale microclimatic data, a concept gaining traction for occurrence-671 

based species distribution models (Potter et al. 2013, Bennie et al. 2014, 672 

Lembrechts et al. 2019) and critical for better conservation planning in the face of 673 

climate change (Roslin et al. 2009, Isaak et al. 2017). Microclimate variation within 674 

grid cells can arise from variations in topography, aspect (Bennie et al. 2008, Graae 675 

et al. 2018) and land-use features (Chen et al. 1999, 2006, Zhao et al. 2014, Senior 676 

et al. 2017) that filter species locally, and affect abundances, depending on species’ 677 

physiological and climatic niches (Ashcroft et al. 2014, Nowakowski et al. 2018, 678 

Waldock et al. 2020).  679 

 680 

Incorporating (micro)climatic variation at the appropriate spatiotemporal scale for a 681 

given species is a critical area for model improvements (Roslin et al. 2009, Ashcroft 682 

et al. 2014, Rebaudo et al. 2016), especially for projections of future climate effects 683 

on species occurrence and abundance (Gillingham et al. 2012, Hannah et al. 2014, 684 

Maclean et al. 2015, Woods et al. 2015). Our sensitivity analysis indicates improved 685 

model fit with improved data resolution for some species, but not all, when using just 686 

one year of BBS data linked to a finer temporal resolution of climate data (Figure 687 

S25). This finding indicates species-specific behaviour (migratory vs. non-migratory), 688 

mobility (sedentary or mobile, home-range size), life-cycle (hibernators vs. year-689 

round activity) and environmental niche characteristics (breadth, plasticity) could 690 

contribute to the resolution and windows of microclimatic data required to accurately 691 

estimate local abundances and occurrence (Bennie et al. 2014, Lembrechts et al. 692 

2019). 693 

 694 
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An additional problem, not present in occurrence-based models, is that the 695 

probability of sampling a system in an extreme abundance state is higher with more 696 

samples, leading to outlier points (i.e., bright-spots or dark-spots). Perhaps these 697 

outliers could be an avenue to unveil important predictors of locations of hyper-698 

abundance, or bright spots which in turn can comprise important targets for 699 

conservation (Cinner et al. 2016, Frei et al. 2018). Biased predictions and missed 700 

outliers have important consequences. For example, the shallower slope of predicted 701 

versus observed abundance will underestimate change in abundance when the 702 

environment changes. In contrast, the likelihood of persistence will be overestimated 703 

because abundance losses in the last stages of population decline are poorly 704 

captured by models such as ours (Bates et al. 2014). As such, separate models for 705 

occurrence and abundance patterns will need to be calibrated and outputs 706 

combined. For occurrence-based models more data generally leads to better models 707 

(Chefaoui et al. 2011), we identify the opposite here with the consequence that for 708 

abundance-based models data-poor species perhaps generate overconfident 709 

models, a caveat worth exploring further.  710 

  711 

We identify that the transferability of species abundance models to novel 712 

environmental conditions is presently limited. This shortcoming applies to 713 

occurrence-based species distribution models (Sequeira et al. 2018a, Yates et al. 714 

2018) and models of family-level abundances (Sequeira et al. 2018b), and may be 715 

exacerbated when considering species’ abundance. Models with perfect 716 

discrimination of presence-absence can still have poor predictive power of 717 

abundance values because more mechanisms underlie abundance variation and 718 

errors in capturing each mechanisms using statistical response functions will 719 
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accumulate (Bahn and McGill 2013, Johnston et al. 2015). We demonstrate model 720 

performance also declines when predicting outside the bounds of even a single 721 

covariate (rather than a spatial block (Ploton et al. 2020)), with strong consequences 722 

for future climatic predictions.  723 

 724 

Novel climatic conditions are fast emerging (Williams and Jackson 2007), hence 725 

solutions that improve model transferability are urgently needed (Radeloff et al. 726 

2015, Harris et al. 2018). Whilst mechanistic models offer accurate predictions at 727 

coarse spatial scales (Fernandes et al. 2013, 2020), further integration with 728 

correlative frameworks may enable prediction at fine-scales and in novel 729 

environments (Cheung et al. 2008, Fernandes et al. 2020, Gamliel et al. 2020).  730 

 731 

Which species to target for abundance-based species distribution modelling? 732 

Our consideration of strengths and limitations of species abundance models can 733 

help guide their application for predicting the spatial distribution of species 734 

abundance for systematic conservation planning (Margules and Pressey 2000, 735 

Pinsky et al. 2020, Pollock et al. 2020). Importantly, from a conservation perspective, 736 

we outline how model performance relates to rarity and thus extinction risk. Our 737 

results suggest that species with low frequency of occurrence and low mean 738 

abundance will be more challenging to predict. Perhaps such species are only 739 

weakly constrained by physiological niche limits, and more strongly constrained by 740 

meta-population dispersal, microclimate effects, and availability of resources, hosts, 741 

or prey items (Selig et al. 2014, Venter et al. 2014, Mouillot et al. 2016, Suggitt et al. 742 

2018). In contrast, common and abundant species that mostly contribute to 743 

ecosystem functions and services may be good targets for species abundance 744 
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modelling (Winfree et al. 2015, Mouillot et al. 2016). We also highlight how the 745 

treatment of abundance data can modify how well models perform in accuracy, 746 

discrimination and precision which could have important consequences depending 747 

on the target application (i.e., Figure S4). Here, consideration of species’ 748 

abundances as well as changes in occurrence should greatly assist understanding 749 

how biodiversity change affects ecosystem functioning and human wellbeing 750 

(Johnston et al. 2015, Kissling et al. 2018, Pinsky et al. 2020). 751 

  752 

Conclusions 753 

Species’ abundances in localised field surveys can be predicted using broad-scale 754 

environmental and human factors, such as climate, land cover and habitat area for a 755 

large number of species. Species abundance models showed surprisingly similar 756 

performance in species from two very different ecological contexts. Transferring 757 

models to novel conditions was very challenging, however. Models fitted better for 758 

more frequently encountered and abundant species, highlighting that abundance 759 

models may be most applicable to questions relating to ecosystem function and 760 

service provision rather than in modelling rare or endemic species under extinction 761 

threats. When common species are to be prioritised (e.g., (Pinsky et al. 2020)), 762 

species abundance models could be used in many ways, providing spatial maps of 763 

species’ abundance, landscape scale estimates of ecological processes and 764 

services (Gilby et al. 2020), or helping to identify regions with large, stable, viable 765 

populations that can act as sources and facilitate reserve spill-over and ecosystem 766 

stability (Rondinini and Chiozza 2010, Halpern et al. 2010, Timus et al. 2017, Cabral 767 

et al. 2020; Table 1). We argue that spatial abundance models can provide critical 768 
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biodiversity information with the potential to improve the ecological relevance and 769 

species conservation applications of species distribution models.  770 
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