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Abstract9

Inbreeding results from the mating of related individuals and has negative consequences because it brings10

together deleterious variants in one individual. Genomic estimates of the inbreeding coefficients are11

preferred to pedigree-based estimators as they measure the realized inbreeding levels and they are more12

robust to pedigree errors. Several methods identifying homozygous-by-descent (HBD) segments with13

hidden Markov models (HMM) have been recently developed and are particularly valuable when the14

information is degraded or heterogeneous (e.g., low-fold sequencing, low marker density, heterogeneous15

genotype quality or variable marker spacing). We previously developed a multiple HBD class HMM16

where HBD segments are classified in different groups based on their length (e.g., recent versus old17

HBD segments) but we recently observed that for high inbreeding levels with many HBD segments, the18

estimated contributions might be biased towards more recent classes (i.e., associated with large HBD19

segments) although the overall estimated level of inbreeding remained unbiased. We herein propose an20

updated multiple HBD classes model in which the HBD classification is modeled in successive nested21

levels. In each level, the rate specifying the expected length of HBD segments, and that is directly22

related to the number of generations to the ancestors, is distinct. The non-HBD classes are now modeled23

as a mixture of HBD segments from later generations and shorter non-HBD segments (i.e., both with24

higher rates). The updated model had better statistical properties and performed better on simulated25

data compared to our previous version. We also show that the parameters of the model are easier to26

interpret and that the model is more robust to the choice of the number of classes. Overall, the new27

model results in an improved partitioning of inbreeding in different HBD classes and should be preferred28

in applications relying on the length of estimated HBD segments.29

Keywords: homozygous-by-descent; inbreeding; hidden Markov model; autozygosity; ROH30
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1 Introduction31

In diploid species, offspring of related individuals can carry at autosomal loci a pair of DNA segments32

originating from the same common ancestor. These stretches of contiguous loci where the two DNA copies33

are identical-by-descent (IBD) are referred to as homozygous-by-descent (HBD) or autozygous segments.34

The length of these HBD segments is inversely related to the size of the so-called inbreeding loop that35

connects the individual to its common ancestor, since multiple generations of recombination will tend to36

reduce the size of each transmitted DNA copy. The inbreeding level of an individual can be defined as the37

proportion of its genome that lies in HBD segments. Genomic data may allow to directly estimate this38

proportion to provide an estimator of the realized inbreeding coefficient (Leutenegger et al., 2003), whereas39

pedigree-based estimators, when available, can only provide expected values. Such estimates of inbreeding40

coefficients are highly valuable for the study of inbreeding depression and the management of livestock41

populations or those in conservation programs. In addition, detailed assessment of the distribution of42

HBD segments over the genomes can also be used in homozygosity mapping experiments (Abney et al.,43

2002; Leutenegger et al., 2006), to identify recessive alleles causing genetic defects or diseases, or for44

demographic inference purposes (Kirin et al., 2010; Ceballos et al., 2018).45

In practice, HBD segments may be identified as runs-of-homozygosity (ROH) that correspond to long46

stretches of homozygous genotypes (Broman and Weber, 1999; McQuillan et al., 2008). Such ROH can47

be empirically detected with rule-based approaches requiring the definition of parameters such as window48

size, minimum ROH length, marker density, maximum allowed spacing between successive markers and49

number of missing or heterozygous genotypes (Purcell et al., 2007). More formally, likelihood-based50

ROH approaches allow to compare the likelihoods of segments to be allozygous versus autozygous regions51

based on marker allele frequencies and the genotyping error probabilities (Pemberton et al., 2012; Wang52

et al., 2009). However, these approaches still require the prior definition of fixed-length windows to scan53

the genome for ROH segments. Alternatively, several authors developed fully probabilistic approaches54

based on hidden Markov models (HMM) (Leutenegger et al., 2003; Narasimhan et al., 2016; Vieira55

et al., 2016; Druet and Gautier, 2017). As likelihood-based approaches, they rely on genotype frequencies56

and genotyping error probabilities, but in addition, they take into account inter-marker genetic distances.57

Moreover, they do not require prior selection of some window size as HBD estimations are integrated over58

all possible window lengths. Furthermore, uncertainty in genotype calling, as for low-fold sequencing data,59
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can also be integrated over (Vieira et al., 2016; Druet and Gautier, 2017). These two later characteristics60

make thus HMM methods particularly valuable for the analyses of data set with low marker density61

and/or heterogeneous genotype quality and/or heterogeneous marker spacing. For instance, they are62

the method of choice to work with ancient DNA (e.g., Renaud et al., 2019), where genotype quality is63

particularly poor, and several HMM have been developed in the field. Similarly, they are particularly well64

suited to work with exome sequencing data (Magi et al., 2014), low density marker array (e.g., Solé et al.,65

2017; Druet et al., 2020) or with low-fold sequencing data (Vieira et al., 2016). Overall, less parameters66

need to be defined when using these tools.67

In HMM based approaches, the length of HBD segments is generally assumed to be exponentially68

distributed. Modeling a single exponential distribution amounts to assume that all the autozygosity is69

associated to ancestors present in the same past generations. For complex population histories, this70

assumption may be too restrictive and Druet and Gautier (2017) proposed to use a mixture of expo-71

nential distributions to model HBD segment classes of different expected lengths, under a similar HMM72

framework. In this approach, HBD classes can be viewed as group of ancestors present in different past73

generations. This model better accounts for complex demographic histories in which different ancestors74

from many different past generations may contribute to autozygosity. We showed that it improves the fit75

of individual genetic data and provides more accurate estimations of autozygosity levels. For instance, a76

single HBD class model might underestimate autozygosity when multiple generations contribute to it, and77

also tend to regress length of HBD segment towards intermediate values, cutting in particular the longest78

segments into shorter pieces (e.g., Solé et al., 2017). An accurate estimation of HBD segment length79

distribution may however be critical to estimate the number of generations to the common ancestors.80

The multiple HBD-class model provides also insights into the past demographic history of populations81

and estimates the relative contributions of past generations to contemporary inbreeding levels (Druet and82

Gautier, 2017).83

Nevertheless, we recently observed that when the contribution of recent ancestors is extremely high,84

the multiple HBD classes model in its initial definition (as of Druet and Gautier, 2017) tended to un-85

derestimate the age of HBD segments by shifting HBD partitioning towards more recent classes (Druet86

et al., 2020), although the overall estimated levels of inbreeding remained unbiased. Consequently, we87

herein implemented an updated multiple HBD classes model in which the HBD classification is modeled88

in successive nested levels, each level corresponding to a single HBD class model with a distinct rate. As89

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.25.445246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445246
http://creativecommons.org/licenses/by-nc-nd/4.0/


a result, the non-HBD classes are now modeled as a mixture of HBD segments from later generations90

and shorter non-HBD segments (i.e., both from subsequent levels with higher rates). We further carried91

out a detailed simulation study to show that the upgraded model had better statistical properties and92

performed better compared to our previous version. We also show that the parameters of the model are93

easier to interpret and that the model is more robust to the choice of the number of classes. We also94

provide an illustration on genotyping data from European Bison that we previously analyzed with the95

original model (Druet et al., 2020).96

2 Models97

2.1 Previous models98

2.1.1 Single HBD-class model (1R model)99

Leutenegger et al. (2003) proposed to describe the genome of an individual as a mosaic of HBD and non-100

HBD segments with a HMM. In that model, the length of HBD segments is exponentially distributed101

with a rate R, related to the number of generations of recombination along both paths connecting each102

of the two individual DNA copies (haplotype) to their common ancestor, and their frequency is a direct103

function of the mixing coefficient ρ. The HBD and non-HBD segments are not directly observed but their104

distribution can be inferred using genotype data available for a set of markers. In that case, the model105

can be represented as an HMM with two hidden states (state 1 = “HBD” and state 2 = “non-HBD”)106

with the following transition probabilities between two consecutive markers m and m+ 1:107



P [Sm+1 = 1 | Sm = 1] = e−Rdm + (1− e−Rdm)ρ

P [Sm+1 = 1 | Sm = 2] = (1− e−Rdm)ρ

P [Sm+1 = 2 | Sm = 2] = e−Rdm + (1− e−Rdm)(1− ρ)

P [Sm+1 = 2 | Sm = 1] = (1− e−Rdm)(1− ρ)

(1)108

where Sm is the state at position m, dm is the genetic distance in Morgans between markers m and109

m + 1. The term e−Rdm represents the probability that there is no recombination on both genealogical110

paths between two consecutive markers m and m + 1 (i.e., the HBD status remains the same). We use111

the term “coancestry changes” to refer to the presence of at least one recombination on these paths as112

in Leutenegger et al. (2003), and R will be called the rate of coancestry change accordingly. In this113
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HMM, the equilibrium HBD probability is ρ, which has been shown to be an unbiased estimator of the114

inbreeding coefficient or the proportion of genome HBD (Leutenegger et al., 2003).115

The emission probabilities are the probabilities to observe the marker genotypes conditional on the116

underlying state. For non-HBD and HBD states, these emission probabilities are a function of expected117

genotype frequencies in non-HBD and HBD segments, respectively (Crow et al., 1970; Broman and Weber,118

1999; Leutenegger et al., 2003). For the HBD state:119

P [AmiAmj | Sm = 1, pmi] =


pmi if i = j

0 if i 6= j

(2)120

where Ami and Amj are the two alleles observed at marker m, i and j representing the allele numbers,121

pmi is the frequency of allele i at marker m. Ideally, these allele frequencies should be estimated from122

individuals in a reference population but they are generally computed from the sampled individuals. For123

the non-HBD state:124

P [AmiAmj | Sm = 2, pmi, pmj ] =


p2mi if i = j

2pmipmj if i 6= j

(3)125

The expected frequencies in non-HBD segments (eqn. 3) correspond to Hardy-Weinberg proportions.126

These emission probabilities are similar to probabilities used in maximum likelihood estimators of the127

inbreeding coefficient (e.g., Weir et al., 2006). As a result, when markers are considered independent128

(i.e., probability of coancestry change equal to 1), both approaches lead to very similar estimates (see129

Alemu et al., 2021). The extension of these emission probabilities to incorporate genotyping error or130

mutation probability is straightforward (see Broman and Weber, 1999; Leutenegger et al., 2003; Druet131

and Gautier, 2017). Similarly, the emission probabilities can also be modified to handle next-generation132

sequencing data (e.g., genotype likelihoods) allowing efficient analysis of shallow sequencing or GBS data133

(see Vieira et al., 2016; Narasimhan et al., 2016; Druet and Gautier, 2017).134

2.1.2 Models with multiple HBD classes (KR and MixKR models)135

In the single HBD class model, all HBD and non-HBD segments have the same expected length defined136

by the rate parameter R. Hence, ancestors contributing to HBD and non-HBD segments are assumed to137

have been present approximately in the same past generations. To model the contribution of different138

groups of ancestors to autozygosity (i.e., account for the difference in HBD segment lengths originating139
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from ancestors living in different past generations), we introduced models with multiple HBD classes140

(Druet and Gautier, 2017). In these new models, each class correspond to a distinct state, with states 1141

to K − 1 for HBD segments originating from groups of ancestors living in different past generations and142

a state K for non-HBD segments. For each HBD class c (c = 1, . . . ,K − 1), HBD segments length are143

assumed exponentially distributed with rate Rc . The non-HBD segments correspond to segments that144

do not trace back to a common ancestor up to the most remote HBD class. Therefore, the non-HBD145

segments are assumed to be exponentially distributed with the same rate as the most ancient HBD class146

(i.e., RK = RK−1). The transition probabilities from state b at marker m to state a at marker m+ 1 are:147

P [Sm+1 = a | Sm = b] =


e−Rbdm + (1− e−Rbdm)ρa if a = b

(1− e−Rbdm)ρa if a 6= b

(4)148

where ρc is the mixing coefficient associated with class c.149

We previously called these models with multiple rates “KR” models (e.g., 1R model corresponding150

to the single HBD-class model) and proposed to either estimate the K − 1 different rates Rc for each151

individual or set them to pre-defined values (so-called MixKR model) (Druet and Gautier, 2017). In152

practice, the latter modeling facilitates results comparisons across different individuals and in the present153

work we only consider MixKR models. More importantly, the estimated ρc mixing coefficient associated154

to each HBD class c in KR models (with K > 1) can no longer be interpreted as inbreeding coefficients as155

in the single HBD class model. Indeed, although they correspond to the initial HMM state probabilities,156

the ρc values do not correspond to the marginal equilibrium proportions of genomes belonging to each157

HBD class c as these proportions are also a function of the rates Rc, that now differ between classes.158

Nevertheless, several measures related to individual inbreeding coefficients can be obtained from KR159

models as i) the genome-wide estimate of the realized individual inbreeding level F̂G, corresponding to160

the proportion of the genome in HBD classes; ii) the inbreeding level F̂
(c)
G associated with HBD class c161

defined as the proportion of the genome belonging to class c; and iii) the probability φl that a locus l lies162

in a HBD segment (Druet and Gautier, 2017).163

In addition to the loss of interpretability of mixing coefficients, we previously showed that the MixKR164

model tended to assign HBD segments to more recent classes (i.e., with smaller R) when the overall165

inbreeding level of individuals was high (Druet et al., 2020). Although the 1R model remained limited166

in its range of applications (because modeling a single class of ancestors, see above), it provided both an167
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unbiased estimate of R and an estimate of ρ that could be interpreted as an inbreeding coefficient.168

G
e

n
e

ra
ti

o
n

s
in

 t
h

e 
p

as
t

Ancestral
Layer 1

Ancestral
Layer 2

Ancestral
Layer 3

Ancestral
Layer 4

ρ1, R1

ρ2, R2

ρ3, R3

ρ4, R4

Figure 1. Graphical illustration of the Nested 1R model. Four layers of ancestors are
represented. In each layer, the genome is represented as a mosaic of HBD and non-HBD segments with
a 1R model with specific parameters ρl and Rl.

2.2 New model: the nested 1R model169

Here were propose an alternative multiple HBD classes model that these preserves desirable properties170

of the 1R model and allows for the contribution of multiple groups of ancestors to autozygosity (as in171

the MixKR model). As illustrated in Figure 1, we sequentially model multiple layers of ancestors (from172

the most recent to the oldest), each contributing to a distinct HBD class. More precisely, a 1R model173

is first used to describe the genome of an individual as a mosaic of HBD segments associated with the174

most recent layer of ancestors (first group of ancestors) and non-HBD segments (i.e., relative to these175

ancestors). Although these segments would be non-HBD with respect to this first layer, they could176

be inherited HBD from more remote ancestors. Therefore, we propose to model in turn the non-HBD177

segments in the first layer as a mosaic of HBD and non-HBD segments associated with a second layer of178

ancestors (see Figure 1). This would be achieved by fitting a second 1R model, nested in the first one,179

with different parameters, ρ2 and R2 (with R2 > R1). This approach can be repeated for several layers180

of ancestors (Figure 1).181

Each layer l is thus described as a mosaic of HBD and non-HBD segments, labelled as HBDl and182

non-HBDl states. The non-HBD class in layer l would be a mixture of HBD classes in subsequent layers183
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and the non-HBD class in the last layer L. We assume that emission probabilities in HBD classes are the184

same in each layer, and identical to those used in the 1R model (eqn 2). Note that emission probabilities185

could be made layer dependant, e.g., to account for more generations of mutation or changes in allele186

frequencies through generations. Similarly, the emission probabilities for the non-HBD class in the last187

layer L matches those used in the 1R model (eq 3). However for non-HBD segments in layer l = 1 to188

l = L−1, the emission probabilities now also depend on the mixing coefficients ρc through the proportion189

πl =
L∏

c=l+1

(1− ρc) of positions expected to ultimately lie in a non-HBD segment at the oldest layer L190

(i.e., not mapping to an HBD segment in any successive layers l′ > l) as:191

πlP [AmiAmj | Sm = 2, pmi, pmj ] + (1− πl)P [AmiAmj | Sm = 1, pmi] (5)192

where P [AmiAmj | Sm = 2, pmi, pmj ] and P [AmiAmj | Sm = 1, pmi] are emission probabilities from the193

1R model (eqns. 2 and 3).194

As the parameters ρc for the different classes are required to obtain these emission probabilities, the195

implementation of this model is not trivial. A more convenient way to specify the Nested 1R model is196

to define L HBD states (one per layer) and a single non-HBD class associated to the Lth layer. This197

results in a parameterization very similar to the MixKR model (Druet and Gautier, 2017) but with a198

modified transition probabilities matrix Tm between consecutive markers m and m+ 1. More precisely,199

in the MixKR model, Tm can be decomposed in three parts i) a diagonal matrix Tm
0 associated with200

the probability of absence of coancestry change within each of L+1 states; ii) a matrix Tm
cc associated201

with the probability of coancestry change within each state; and iii) a matrix Tcs, that does not depend202

on the marker position, specifying the probability of entering each state after a coancestry change given203

the state of origin:204

Tm = Tm
0 + Tm

cc
′Tcs (6)205

In the nested 1R model, the matrix Tm will have a similar structure but the matrices Tm
cc and Tcs in206

eq. 6 that are defined with respect to states (eq 4) are replaced by matrices Tm
χ and TC that are rather207

defined with respect to layers as we detail below. As a result, Tm is decomposed as:208

Tm = Tm
0 + Tm

χ
′TC (7)209
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2.2.1 Transition probabilities in nested 1R models210

At marker position m, the genome can be associated with any state l from 1 to L + 1. States from 1211

to L correspond to HBD segments in layers 1 to L, respectively. HBD segments from state l are also212

non-HBD in layers 1 to l − 1. The last state L + 1 is associated to non-HBD segments in the last layer213

L, and must also be non-HBD in layers 1 to L− 1. To estimate the transition probabilities between the214

L+ 1 different hidden states, we must consider several possible events:215

1. the Markov chain remains in the same state l without any coancestry change. This requires no216

coancestry change between the two consecutive markers in all the generations included in both the217

genealogical paths to the ancestors from layer l;218

2. the first coancestry occurs within a given layer l (i.e., no coancestry change occurs before this layer).219

We must then account for both the probability of first coancestry change occurring in l and the220

conditional transition probabilities to the other states.221

2.2.2 Absence of coancestry change from layers 1 to l222

In the absence of coancestry change between the two consecutive markers, a HBD segment from a given223

layer l is simply extended. The same holds for non-HBD segments in layer L (i.e., for the state L+1).224

The probability of no coancestry change between markers m and m + 1 from layers 1 to l is equal to225

e−Rldm , as for a 1R model with rate Rl (eqn 1). These transitions can be summarized for all states as a226

diagonal matrix Tm
0 :227

Tm
0 =



e−R1dm 0 · · · 0 0

0 e−R2dm · · · 0 0

...
...

. . .
...

...

0 0 · · · e−RLdm 0

0 0 · · · 0 e−RLdm


(8)

Note that the probabilities for the last two states (L and L+ 1) are the same as they both belong to228

the last layer.229
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2.2.3 Probability of first coancestry change occurring within a given layer l230

From equation 8, the probability of at least one coancestry change occurring between two consecutive231

markers m and m+ 1 in the past generations covered by layers 1 to l is 1− e−Rldm . This is in agreement232

with eqn. 1 for a 1R model with rate Rl. The coancestry change may have occurred in any layers c233

(1 ≤ c ≤ l) but we are interested in the first coancestry change event since it implies the start of a new234

HBD or non-HBD segments in that layer (and affects thus also the status in subsequent layers).235

The probability χlm of a first coancestry change occurring within a specific layer l is equal to the236

probability of no coancestry change in earlier layers c < l, e−Rl−1dm , multiplied by the probability of a237

coancestry change between layers l − 1 and l which is equal to 1− e−(Rl−1−Rl)dm :238

χlm = e−Rl−1dm
(

1− e−(Rl−Rl−1)dm
)

= e−Rl−1dm − e−Rldm (9)

Note that χlm is also the probability of no coancestry change from layer 1 to l−1 minus the probability239

of no coancestry change from layer 1 to l. For notational convenience we set R0 = 0 (i.e., the probability240

of no coancestry change before the first layer is equal to 1). We can further show that the sum of241

probabilities of first coancestry changes within each layer from 1 to l is equal to 1− e−Rldm as expected:242

l∑
i=1

χlm =
l∑
i=1

(
e−Rl−1dm − e−Rldm

)
= e−R0dm − e−Rldm = 1− e−Rldm (10)

These probabilities can also be combined in a matrix Tm
χ , with L+ 1 columns (for states) and L rows243

(for layers). The element Tm
χ (l, c) represents the probability of first coancestry change within each layer244

for a genomic position in an hidden state c (which is an HBD segment if c ≤ L and a non-HBD segment245

if c = L+ 1):246

Tm
χ (l, c) =


χlm = e−Rl−1dm − e−Rldm if l ≤ c

0 if l > c

(11)247

The two last columns of Tm
χ both correspond to probabilities of first coancestry changes for genomic248

positions in states from the last layer, respectively HBD and non-HBD, and are thus identical. When249

l > c, Tm
χ (l, c) is 0 because for a HBD segment in layer c, coancestry changes can occur only from layers250

1 to c. Thus, Tm
χ can be represented as:251
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Tm
χ =



χ1
m χ1

m χ1
m · · · χ1

m χ1
m

0 χ2
m χ2

m · · · χ2
m χ2

m

0 0 χ3
m · · · χ3

m χ3
m

...
...

...
. . .

...

0 0 0 · · · χKm χKm


(12)

As indicated in Eq. 10, elements from the column l of Tm
χ sum to 1− e−Rldm for l ≤ L. Each column252

corresponds to the marginal probability of a coancestry change when the marker m is in state l.253

Figure 2. Representation of the transition probabilities in a Nested 1R model with L = 4
HBD states and one non-HBD states as a decision tree. In this representation the L+ 1 = 5
states are the leaves of the tree. The tree allows to estimate probabilities and conditional probabilities
to reach a leave.

2.2.4 Conditional transition probabilities after a coancestry change in layer l254

If a (first) coancestry change occurs within a given layer l, a new segment is started. This segment is255

either i) HBD of class l with probability ρl; or ii) non-HBD with probability 1 − ρl (Figure 2). These256

latter non-HBD segments from layer l are also mixture of HBD and non-HBD segments of layer l + 1257

with probabilities ρl+1 and 1 − ρl+1, respectively. The conditional transition probabilities towards the258

different HBD states c > l and the final non-HBD state from the last layer (i.e., state L+ 1 of the HMM)259

can then be recursively obtained by following the decision tree represented in Figure 2. (see also Figure 3260

for an example of a transition towards the fourth HBD state after a coancestry change in layer l = 2).261

Note that conditional transition probabilities to states c < l that are not child of the corresponding node262
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are null. Thus, the conditional transition probabilities TC (l, c) to each state c after a coancestry change263

occurring in layer l are:264

TC(l, c) =



0 if c < l

ρc if c = l[
c−1∏
j=l

(1− ρj)

]
ρc if l < c ≤ L

L∏
j=l

(1− ρj) if c = L+ 1

(13)265

These conditional transition probabilities can be represented as a matrix TC(l, c), independent of the266

marker position m, with L rows corresponding to layers, and L+ 1 columns corresponding to the hidden267

states (L HBD states and one non-HBD state):268

Tc =



ρ1 (1− ρ1) ρ2 (1− ρ1) (1− ρ2) ρ3 . . .

[
L−1∏
j=1

(1− ρj)

]
ρL

L∏
j=1

(1− ρj)

0 ρ2 (1− ρ2) ρ3 · · ·

[
L−1∏
j=2

(1− ρj)

]
ρL

L∏
j=2

(1− ρj)

0 0 ρ3 · · ·

[
L−1∏
j=3

(1− ρj)

]
ρL

L∏
j=3

(1− ρj)

...
...

...
. . .

...
...

0 0 0 . . . ρL 1− ρL


(14)

2.2.5 Initial state probabilities269

The first row of TC (eqns. 14 and 7) also corresponds to the vector of initial states probabilities δ =270

{δc}1,...,L+1 (i.e., δc representing the probability to start the chain in the hidden state c) which can271

obtained from the full decision tree (e.g., Figure 2). We have:272

δc =


[
c−1∏
j=1

(1− ρj)

]
ρc if c ≤ L

L∏
j=1

(1− ρj) if c = L+ 1

(15)273

We show in Appendix that the product δTm = δ, i.e., the Markov chain is stationary and the initial274

state distribution corresponds to the stationary distribution. These desired properties are also true for275

the 1R model, but not in our previous MixKR model. Note also that, if L = 1, the Nested 1R model276
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Figure 3. Illustration of conditional transition probabilities after a coancestry change. The
illustration shows the conditional transition probability to reach the fourth HBD state after a
coancestry change occurring within the second layer.

reduces to the 1R model.277

2.2.6 Parameter estimation278

The N1R model is now implemented as the default model in the RZooRoH package (from version 0.3.1).279

Following our previous work (Bertrand et al., 2019), we transformed the original parameters into new280

unconstrained parameters to rely on the L-BFGS-B optimizer implemented in the optim function from281

the R stats package (R Core Team, 2013). Back-transformation on the original scale ensures that rates282

are always positive and ordered (higher rates for older ancestral layers) and that mixing coefficients ρl283

are comprised between 0 and 1. The new parameters are obtained as follow from the original parameters:284

ηl =


log(Rl −Rl−1) if 1 < l ≤ L

log(Rl) if l = 1

(16)

τl = log

(
ρl

1− ρl

)
if l ≤ L (17)

2.2.7 Estimation of the inbreeding coefficient285

Following Leutenegger et al. (2003), the stationary distribution of the state probabilities δ (eq. 15) can286

be used to estimate the inbreeding coefficient. We must first define a reference population by deciding287

which HBD classes are considered as truly autozygous. We could for instance consider that only layers288
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with a rate Rc smaller than a threshold T contribute to autozygosity, and that ancestors in layers with289

Rc > T are unrelated (see for instance in Solé et al. (2017)). The inbreeding coefficient with respect to290

that base population, set approximately 0.5×T generations in the past (Druet and Gautier, 2017), is:291

Fδ−T =
l∑

c=1

δc (18)292

where l is the most ancient layer with rate Rl ≤ T . The inbreeding coefficient obtained with all layers293

is:294

Fδ =
L∑
c=1

δc (19)295

In addition, as opposed to our previous MixKR models, the nested 1R model allows to estimate in-296

breeding coefficients within each layer. Indeed, the equilibrium probability ρl may directly be interpreted297

as the inbreeding coefficient of the progeny of individuals from the most recent generation of the layer l298

when individuals from the oldest generation of layer l are assumed unrelated. This coefficient may also299

be interpreted as the inbreeding accumulated within the time period covered by layer l and may thus be300

related to the effective population size over this same period. Contrary to the proportion of the genome301

associated to a specific HBD class, this measure is independent of inbreeding generated in more recent302

generations.303

Metrics defined for the previous MixKR model (Druet and Gautier, 2017) and associated to the304

realized inbreeding have also their counterpart in the new Nested 1R model. First, the realized inbreeding305

F̂
(c)
g associated with each HBD class c (c ∈ (1, L)) can be defined as the proportion of the genome306

belonging to the class c and is estimated as the average of the corresponding local state probabilities over307

all the M locus:308

F̂
(c)
g =

1

M

M∑
l=1

P
(
Sl = c | Θ̂,Y

)
(20)309

where Θ̂ and Y represent respectively the estimated parameters of the model and the data.310

Next, the genome-wide estimate of the realized individual inbreeding F̂G is simply the average over311

the genome of the local estimates obtained for the M markers:312

F̂g =
1

M

M∑
l=1

φ̂l =
L∑
c=1

F̂
(c)
g (21)313
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The realized inbreeding coefficients can also be estimated relative to different base populations by314

considering HBD classes with a rate Rl ≤ T as in Solé et al. (2017).315

2.3 Evaluation based on simulated data sets316

2.3.1 Simulations under the inference model317

To simulate data sets under the inference model, we used the same approach as in our first study (Druet318

and Gautier, 2017). Briefly, we simulated individual genomes consisting of 25 chromosomes of 100 cM.319

Each individual genome is modeled as a mosaic of HBD and non-HBD segments modelled under the 1R320

model (Equation 1), where ρ represents the proportion of HBD segments (equivalent to F , the inbreeding321

coefficient). The length of HBD and non-HBD segments was exponentially distributed with rate R. The322

tested values for ρ were equal to 0.02, 0.05, 0.10, 0.20, 0.30 and 0.40, and those for R equal to 4, 8, 16,323

32 and 64. Genotypes were simulated for 25,000 bi-allelic SNPs (10 per cM) using emission probabilities324

(Equations 2 and 3). For each set of parameters, we simulated 500 individuals. More details are available325

in Druet and Gautier (2017).326

Individual inbreeding levels were estimated with a MixKR model with 9 HBD classes with rates equal327

to {2, 4, 8, ..., 1024} and with a Nested 1R (N1R) model with 9 layers with the same rates, and using328

the RZooRoH package (Bertrand et al., 2019). The mean absolute error (MAE) for each parameter of329

interest α (FG, Fδ, φ) was computed to evaluate the models as:330

MAE(α) =
1

N

N∑
n=1

|α̂n − αn| (22)331

where N is the number of simulated individuals, α̂n is the estimated parameter value for individual n332

and α is the corresponding simulated value.333

The partitioning of the autozygosity in different HBD classes was evaluated by assessing whether the334

autozygosity was concentrated in HBD classes with rates Rc close to the simulated rate R. Rates were335

compared on a log2 scale, resulting in a difference of -1, 0, 1 and 2 when Rc is equal to R multiplied by336

respectively 0.5, 1, 2 and 4. The associated MAE was estimated as follows:337

MAE(log2(R)) =
1

N

N∑
n=1

L∑
c=1

Ψ̂(c)
n | log2Rc − log2R| (23)338

where Ψ̂
(c)
n is the contribution of HBD class c in individual n to its total HBD, evaluated at true HBD339
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positions, and L is the number of HBD classes or layers. This criteria evaluates whether the identified340

HBD positions are assigned to the simulated HBD class.341

2.3.2 Simulations under a discrete-time Wright–Fisher process342

To simulate more realistic data relying on population genetic models, Druet and Gautier (2017) previously343

used the program ARGON (Palamara, 2016) that implements a discrete-time Wright-Fisher process.344

Here, we used the same simulated data. Bottlenecks were simulated to concentrate inbreeding in specific345

age classes (Druet and Gautier, 2017). Outside these events, Ne was kept large to reduce the noise due346

to inbreeding coming from other generations. The simulation scenario is summarized in Supplementary347

Figure 1. The ancestral population P0 had a constant haploid effective population size equal to 20,000348

(Ne0). The time of population split Ts was set equal to 10,000 and the effective population size of the349

first population (P1) outside the bottleneck was set to 100,000 (Ne1). Bottlenecks were simulated around350

generations Tb equal to either 16 or 64, and with effective population size (Neb) equal to 20 or 50. A351

single chromosome of 250 cM length was simulated for 50 diploid individuals, and with a marker density352

of 100 SNPs per cM. More details about the simulation procedure are available in Druet and Gautier353

(2017).354

Individual inbreeding levels were estimated with MixKR and N1R models with 13 HBD classes with355

rates equal to {2, 4, 8, ..., 8192} as implemented within the RZooRoH package (Bertrand et al., 2019).356

2.3.3 Application to estimation of inbreeding levels in the European bison357

The N1R model was tested and compared to the MixKR model on a set of 183 genotyped European bison358

with high inbreeding levels (Druet et al., 2020). These consisted of respectively 154 and 29 individuals359

from the Lowland and Lowland-Caucasian lines. Individuals from the first line experienced a stronger360

bottleneck as they trace back to fewer founders (see Druet et al., 2020, for more details). After data361

filtering, each individual was genotyped for 22,602 autosomal SNPs. Partitioning of inbreeding levels362

in different HBD classes was first compared with MixKR and N1R models with five HBD classes with363

rates equal to {4, 8, 16, 32, 64}. In order to assess robustness of results to model specifications, we also364

applied models with 9 HBD classes (Rk = {4, 8, . . . , 1024}). Analyses were carried out with the RZooRoH365

package (Bertrand et al., 2019).366
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3 Results367

3.1 Simulations under the inference model368

We begin by comparing results obtained from analyses of the data simulated under the inference model369

with the MixKR and N1R models. We expected our new N1R model to perform better in partitioning370

inbreeding in different HBD classes most particularly when inbreeding levels are high. This is confirmed371

in Figure 4 that represents the MAE associated with R (eq. 22). With the N1R model, the MAE is372

higher when there are fewer segments to estimate parameters (small ρ and/or small R). When inbreeding373

levels are low (e.g., ρ < 0.1 in Figure 4), MAE are similar for both models whereas for large inbreeding374

levels, MAE starts to increase for the MixKR model whereas it continues decrease for the N1R model.375

As a result, the proportions of true HBD positions associated with the class with Rc corresponding to376

the simulated value is higher with the N1R than with the former MixKR model when values of ρ are377

moderate to high (i.e., ρ > 0.1). In other words, a higher proportion of true autozyogisty is correctly378

associated to that HBD class with the N1R model (see Supplementary Table 1). As for the MAE, this379

proportion decreased for high values of ρ with the MixKR model whereas an opposite trend is observed380

for the N1R model, resulting in high differences. When ρ is high, the MixKR model tends to assign381

autozygosity to classes with smaller Rc rates, as we observed in real data sets. This is illustrated for four382

scenarios with R = 16 in Supplementary Figure 2. Similar patterns are obtained in simulations with two383

distributions of HBD segments (Supplementary Figure 3), with a shift towards more recent HBD classes384

when using the MixKR model.385

In terms of estimation of realized inbreeding (FG) and estimation of local HBD probabilities (φl),386

both models have very similar performances (Table 1). Hence, although the MixKR and N1R models387

differ in their partitioning of inbreeding in different age classes, they remain equally accurate for the388

estimation of inbreeding levels. Finally, the inbreeding coefficient Fδ corresponding to the initial state389

probabilities (and the stationary distribution) displayed a low MAE, close to the values obtained with390

a 1R model in our previous study (Druet and Gautier, 2017). With the N1R model, the inbreeding391

coefficient Fδ represents an unbiased estimate of the simulated ρ (Supplementary Figure 4), as opposed392

to the sum of initial state probabilities of HBD classes from the MixKR models that were clearly not a393

proper estimator of ρ.394
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Scenario Mean estimated values with N1R model MixKR model

R ρ ρ̂ (MAE) F̂g (MAE)
MAE for φ̂l
(φ̂lHBD)

F̂g (MAE)
MAE for φ̂l
(φ̂lHBD)

4 0.02 0.021 (0.007) 0.021 (0.002) 0.002 (0.012) 0.021 (0.002) 0.002 (0.013)
4 0.05 0.053 (0.012) 0.054 (0.002) 0.003 (0.011) 0.054 (0.002) 0.003 (0.013
4 0.10 0.103 (0.017) 0.103 (0.002) 0.004 (0.010) 0.103 (0.002) 0.004 (0.012)
4 0.20 0.200 (0.023) 0.200 (0.002) 0.005 (0.009) 0.200 (0.002) 0.005 (0.010)
4 0.30 0.302 (0.026) 0.301 (0.002) 0.006 (0.008) 0.301 (0.002) 0.007 (0.009)
4 0.40 0.401 (0.028) 0.402 (0.002) 0.007 (0.006) 0.402 (0.002) 0.007 (0.008)
8 0.02 0.023 (0.007) 0.022 (0.002) 0.003 (0.026) 0.022 (0.002) 0.003 (0.027)
8 0.05 0.051 (0.011) 0.052 (0.002) 0.004 (0.025) 0.052 (0.002) 0.004 (0.027)
8 0.10 0.101 (0.014) 0.101 (0.002) 0.006 (0.023) 0.101 (0.002) 0.006 (0.024)
8 0.20 0.204 (0.019) 0.204 (0.002) 0.009 (0.019) 0.204 (0.002) 0.010 (0.020)
8 0.30 0.299 (0.021) 0.299 (0.002) 0.011 (0.016) 0.299 (0.002) 0.012 (0.017)
8 0.40 0.404 (0.023) 0.404 (0.002) 0.012 (0.013) 0.403 (0.002) 0.013 (0.014)
16 0.02 0.023 (0.006) 0.022 (0.002) 0.004 (0.064) 0.022 (0.002) 0.004 (0.065)
16 0.05 0.052 (0.008) 0.052 (0.002) 0.007 (0.055) 0.052 (0.002) 0.007 (0.056)
16 0.10 0.102 (0.011) 0.102 (0.002) 0.012 (0.048) 0.102 (0.002) 0.012 (0.050)
16 0.20 0.201 (0.015) 0.201 (0.002) 0.017 (0.040) 0.201 (0.002) 0.018 (0.041)
16 0.30 0.302 (0.017) 0.302 (0.003) 0.022 (0.032) 0.302 (0.003) 0.022 (0.034)
16 0.40 0.403 (0.018) 0.403 (0.002) 0.023 (0.027) 0.403 (0.002) 0.024 (0.028)
32 0.02 0.022 (0.005) 0.021 (0.002) 0.007 (0.139) 0.021 (0.002) 0.007 (0.140)
32 0.05 0.052 (0.006) 0.052 (0.003) 0.014 (0.120) 0.052 (0.003) 0.014 (0.121)
32 0.10 0.101 (0.008) 0.101 (0.002) 0.022 (0.103) 0.101 (0.002) 0.023 (0.105)
32 0.20 0.202 (0.011) 0.202 (0.003) 0.034 (0.081) 0.202 (0.003) 0.035 (0.083)
32 0.30 0.302 (0.012) 0.302 (0.003) 0.042 (0.066) 0.302 (0.003) 0.042 (0.067)
32 0.40 0.402 (0.014) 0.402 (0.003) 0.045 (0.053) 0.402 (0.003) 0.046 (0.055)
64 0.02 0.022 (0.004) 0.022 (0.003) 0.013 (0.283) 0.022 (0.003) 0.013 (0.284)
64 0.05 0.052 (0.005) 0.052 (0.003) 0.026 (0.243) 0.052 (0.003) 0.026 (0.244)
64 0.10 0.102 (0.007) 0.102 (0.003) 0.043 (0.204) 0.102 (0.003) 0.043 (0.205)
64 0.20 0.202 (0.008) 0.202 (0.003) 0.066 (0.160) 0.202 (0.003) 0.066 (0.161)
64 0.30 0.301 (0.010) 0.302 (0.003) 0.079 (0.128) 0.302 (0.003) 0.080 (0.129)
64 0.40 0.402 (0.010) 0.402 (0.003) 0.084 (0.103) 0.403 (0.003) 0.086 (0.104)

Table 1. Performance of the two models on data simulated under the 1R inference model.
The simulated genome consisted of 25 chromosomes of 100 cM with a marker density of 10 SNPs per
cM. Genotyping data for 500 individuals were simulated under the 1R inference model for each of 30
different scenarios defined by the simulated R and ρ values reported in the first two columns. The table
reports the mean estimated values and the Mean Absolute Errors (MAE) for the mixing proportions (ρ̂)

and the individual inbreeding (F̂g). The table gives also the MAE for the estimated local inbreeding

(φl) either for all the SNPs (φ̂l) or for those actually lying within HBD segments (φ̂lHBD). These values
are reported for both models, with the exception of (ρ̂).
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Figure 4. Concordance between simulated rates and partitioning in HBD classes. The
accuracy of partitioning is evaluated as the Mean Absolute Error between the log2 of the simulated rate
and the log2 of the assigned HBD classes. This is equivalent to measuring the deviation from the
simulated parameter in term of absolute value of log2 of the ratio between rates of simulated and
estimated HBD classes. The comparisons are performed for different values of R and ρ.

3.2 Simulations under Wright-Fisher process395

Analyses realized on data sets simulated under a more realistic model confirmed our first observations.396

For high inbreeding levels, the MixKR model captures a large fraction of the autozygosity generated by397

the bottleneck (when Ne drops to 20) into the more recent HBD class neighboring the class representative398

of the bottleneck period (e.g., class with Rc = 64 for a bottleneck pertaining to the class with Rc = 128,399

i.e., occurring 63 to 66 generations ago - Figure 5). This neighbouring class captures almost the same or400

even a larger fraction of autozygosity that the HBD class associated with the bottleneck. The pattern is401

less pronounced for milder bottleneck (Ne =50 in Figure 5). With the N1R model, the class Rc = 128402

representative of the bottleneck period captures the majority of the HBD segments in both cases. Similar403

results were obtained for more recent bottlenecks (Supplementary Figure 5).404

The global partitioning of the genome in HBD-classes presents similar patterns (Supplementary Figure405

6). As the proportion of inbreeding in the HBD class associated with the bottleneck is always higher406

with the N1R model, the MAE associated with the rate of the selected HBD classes was lower than407
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Figure 5. Partitioning of HBD segments related to the bottleneck in different HBD
classes. The partitioning are realized with the MixKR and N1R models. Data were simulated with a
Wright-Fisher process, with a bottleneck in generations 63 to 66 expected to be associated with the
HBD class with Rk = 128. The applied model and the effective population size during the bottleneck
are indicated above the graphs.

with the MixKR model (more so when the bottleneck was strong). With the N1R model, the MAE408

values were respectively equal to 0.546, 0.786, 0.386 and 0.426 for the four different scenarios ({Neb = 20,409

Tb = 16},{Neb = 50, Tb = 16},{Neb = 20, Tb = 64},{Neb = 50, Tb = 64}), compared to 0.763, 0.793,410

0.601 and 0.491 for the same scenarios with the MixKR model.411

As for the first simulations, the differences between models are mainly in the partitioning of au-412

tozygosity in HBD classes. For instance, the average local HBD probabilities for segments associated413

with ancestors present in different past generations are almost identical (Supplementary Figure 7). We414

also confirm in Figure 6 that mixing coefficients of the new model are interpretable and can be used to415
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Figure 6. Inbreeding coefficients estimated as the equilibrium HBD distribution and for
different base generations. The inbreeding coefficients are estimated as the equilibrium
distributions, Fδ, obtained from the mixing coefficients ρc. Only HBD-classes with a rate Rk ≤ a
threshold T are used to estimate Fδ. This allows to set the reference population approximately 0.5× T
generations in the past. Data were simulated with a Wright-Fisher process, with a bottleneck. The time
of the bottleneck and the effective population size during the bottleneck are indicated above the graphs.
The red star indicates the HBD-class associated to the bottleneck and the expected inbreeding levels
generated during the bottleneck.

estimate the inbreeding coefficient Fδ. More precisely, we estimated Fδ−T by adding sequentially each416

HBD-class in the estimation. We estimated the expected inbreeding accumulated during the bottleneck417

as 1 − (1 − 1
2Ne

)t, where Ne is the diploid effective population size (here, Ne = 20 or Ne = 50) and418

t = 4 is the number of generations of the bottleneck. We see that most of the inbreeding is captured419

by the HBD-class corresponding to the bottleneck and its close neighbours. As a result, Fδ−T remains420

relatively constant for generations before and after the bottleneck and increases sharply at the period of421
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the bottleneck. In addition, the estimated inbreeding levels match the expected values. Finally, we also422

observe inbreeding related to much more distant ancestors, accumulated over many more generations.423

3.3 Application to real data424

Application of the two models on genotype data from two distinct lines of European bison, presenting high425

inbreeding levels, results in similar observations than applications to simulated data sets: partitioning of426

inbreeding in HBD-class is shifted towards more recent HBD-classes with the MixKR model compared427

to the N1R model (Figure 7A-B). Since for simulations the N1R performed better for the partitioning in428

HBD-classes, and since patterns are similar, the results from the N1R model fit probably better the reality.429

The shift was more pronounced when more HBD-classes were included in the model and the non-HBD430

class had consequently a higher rate RK , and in the Lowland line where the inbreeding levels are higher.431

Higher shift for higher inbreeding levels were also observed with simulated data. With the MixKR model,432

the partitioning in different HBD-classes and the estimated mixing coefficients (Figure 7C-D) changed433

according to the model specifications, whereas the N1R model proved robust to these changes (Figures434

7A-D). Note that we also fitted HBD-classes corresponding to HBD segments shorter than the shortest435

HBD segments than could be captured with the available density. As a result, the contribution of these436

classes remained null. As for the simulated data sets, the overall inbreeding levels estimated by the two437

models were highly similar (Figure E-F), the difference being essentially the partitioning.438

Analysis of real data with the N1R model confirmed that mixing coefficients can now be interpreted,439

with levels close to estimated HBD proportions in different classes, contrary to those obtained with the440

MixKR model (Figure 7C-D). In addition, they can now be used to estimate the inbreeding coefficients,441

Fδ or Fδ−T . These inbreeding coefficients based on the equilibrium distribution and on the number of442

HBD segments are close to values of the realized inbreeding coefficient, FG and FG−T , corresponding to the443

proportion of the genome in HBD classes (Figures E-F). The mixing coefficients estimate the proportion444

of HBD segments within a specific layer and provide an estimation of the inbreeding accumulated in that445

layer, which depends also on the number of generations included in the layer.446

When inbreeding levels are lower, such as in cattle (see for instance in Solé et al. (2017)), differences447

are smaller. This is illustrated in Supplementary Figure 8 on a Holstein data set including 245 individuals448

genotyped for 30,000 markers (Alemu et al., 2021).449
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Figure 7. Estimation of inbreeding levels in the European bison.Inbreeding levels are estimated
in 154 Lowland individuals (panels A-C-E) and 29 Lowland-Caucasian individuals (panels B-D-F). Estimation
was performed with the MixKR and N1R models with 6 HBD-classes (Mix6R and N1R-5L) or with 10
HBD-classes (Mix10R and N1R-9L). A) and B) Proportion of the genome associated with different
HBD-classes averaged over all individuals from a population. C) and D) Estimated mixing coefficients for each
HBD class, averaged over all individuals. E) and F) Average estimated inbreeding levels. Only HBD-classes
with a rate Rk ≤ a threshold T are used to estimate F . This allows to set the reference population
approximately 0.5T generations in the past. The inbreeding coefficients are estimated as the proportion of the
genome in HBD-classes, FG, or as the equilibrium distributions, Fδ, obtained from the mixing coefficients ρc
(only for the N1R model).
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4 Discussion450

We herein proposed an improved model, we called the N1R model, for the characterization of individual451

genomic inbreeding levels and its partitioning into different HBD-classes. Compared to our previous452

MixKR model (Druet and Gautier, 2017), the main improvement relied on a new modelling of the453

transition probabilities which both resulted in better statistical properties in general, but also facilitated454

the interpretation of the mixing coefficients with initial state probabilities now corresponding to the455

stationary distributions. Although the estimation of both global and local inbreeding levels were almost456

identical between the N1R and the MixKR models, the partitioning of inbreeding into different HBD-457

classes was clearly improved and the N1R model provided more accurate estimation of the relative458

contribution of each group of ancestors.459

Our main objective was indeed to improve this partitioning, in particular for high inbreeding levels460

since we previously observed that in such cases, the partitioning could be shifted towards more recent HBD461

classes (Druet et al., 2020). This problem was caused in our previous MixKR model by the difference of462

rates for HBD classes associated to recent ancestors (i.e., capturing large HBD segments) and the non-463

HBD class that resulted in high differences in their underlying mixing coefficients. More precisely, the464

non-HBD class had a very high mixing coefficient because it generally represented the main contribution465

to individual genomes and it was modelled with a large Rc (i.e., as many short segments tracing back in466

the distant past). Conversely, mixing coefficients from recent HBD classes (long segments with low rates467

Rc) were very small as these segments were much less numerous than short HBD or non-HBD segments.468

Therefore, in the Markov chain, the probability to start a new recent HBD segment was extremely low and469

needed to be supported by long stretches of homozygous genotypes. In these conditions, two consecutive470

recent HBD segments were systematically modelled as a single long HBD segments because transitions471

to new recent HBD segments were heavily penalized, explaining the overestimation of segment length472

and the incorrect HBD partitioning (a shift towards more recent HBD classes). Yet, the strength of this473

problem was expected to be a function of the frequency of consecutive HBD segments, and was thus only474

observed in simulated and real data sets with high recent inbreeding levels (Druet et al., 2020). We here475

showed that using the same rates for HBD and non-HBD segments by modelling sequentially multiple476

nested 1R models in our new N1R model allowed to solve this issue. This property is important to better477

interpret the results by determining which generations of ancestors mostly contributed to autozygosity.478
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Our improved N1R model should also allow better estimation of the number of generations to the common479

ancestor for an HBD segment. Nevertheless, more work is required to quantify how precisely the age of480

individual HBD segments can be estimated with this or other similar approaches.481

The new model is also more robust to the number and specifications (i.e., rates Rk) of the fitted classes482

in the sense that partitioning remains consistent when the rate of the non-HBD classes is modified. With483

our previous MixKR model, the choice of the rates associated with the non-HBD segments, often directly484

related to the number of fitted classes, might indeed influence the partitioning in HBD and non-HBD485

classes because higher rates (smaller segments) resulted in even higher mixing coefficients for the non-486

HBD class further penalizing the occurrence of two consecutive recent HBD segments (see above). The487

fact that the N1R model is less sensitive to model specifications is an important aspect because one of488

the advantages of methods relying on HMM (Leutenegger et al., 2003; Vieira et al., 2016; Narasimhan489

et al., 2016; Druet and Gautier, 2017) is that fewer parameters need to be defined compared to rule-based490

ROH approaches, where these definitions might sometimes result arbitrary. In general, there is less need491

to optimize parameters, HBD probabilities indicate whether the evidence for autozygosity is strong or492

not. In our model, the number of classes and their range must still be defined but it affects mainly493

interpretation in terms of age of ancestors. To this respect, the robustness of the N1R model is highly494

valuable since in the previous MixKR model partitioning could be affected by the definition of the last495

HBD class.496

Our newly developed N1R model allows the definition of new inbreeding coefficients based on the497

initial state probabilities. These inbreeding coefficients fit closer to the original definition by Leutenegger498

et al. (2003) since under the 1R model, the mixing coefficient can be interpreted as both the frequency499

of HBD segment and the proportion of the genome that is HBD (i.e., the equilibrium distribution).500

Yet, this is slightly different from a direct estimation of the realized proportion of the genome in HBD501

segments (e.g., as obtained from the posterior HBD probability of each marker, see eq. 21), although both502

estimators are highly correlated. Interestingly, the mixing coefficients also provide direct estimators of503

the level of inbreeding associated with ancestors present in a specific period of time (corresponding to a504

layer in our model), independently on what happened in other more recent layers. In an ideal population,505

this inbreeding would directly be related to the number of generations and to the effective population506

size in the layer. These aspects must be further investigated and more work is required to understand507

which generations are captured by a specific layer, or the relationship with the underlying historical Ne.508
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In practice, the variation of mixing coefficients across layers could be used to monitor whether inbreeding509

is increasing or not, for instance in a conservation program as suggested by Druet et al. (2020).510

Comparisons of our previous MixKR and our new N1R models on genotyping data from European511

bison were in agreement with trends observed on simulated data. The overall inbreeding levels were512

similar with both models but the partitioning was different, shifted towards more recent HBD classes513

with the MixKR model. This shift was also more pronounced when inbreeding levels were higher and514

when the rate of the non-HBD class was higher, matching our predictions (see above). This suggests that515

the new partitioning is more accurate, strengthening our initial conclusions that the contribution from516

the most recent generations of ancestors to inbreeding is decreasing and that the restoration plan has517

been successful to control inbreeding in European bison (Druet et al., 2020).518

Finally, it is important to note that differences between our new N1R version of the model and the519

former MixKR one in terms of interpretation only concern the partitioning of inbreeding when inbreeding520

levels are high. For instance, differences would be minimal in most human populations. Even in cattle521

presenting moderate inbreeding levels, the impact on the partitioning remained limited.522
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A Appendix585

Here we show that in the N1R model, the Markov chain is stationary and the initial state distribution586

corresponds to the stationary distribution, i.e.:587

δTm = δ
(
Tm

0 + Tm
χ
′TC

)
= δ (24)

where δ is a row vector of dimension L+1. Let the (row) vector ζ = {ζk}1,..,L+1 = δTm. We want to588

show that ζk = δ
(
tm0,k + tmCχ,k

)
= δk for all k ∈ (1, L+ 1), where tm0,k is the kth column vector of T0

m
589

and tmCχ,k is the kth column vector of the matrix Tm
χ
′TC :590

tmCχ,k =



χ1
m 0 · · · 0 0 0 · · · 0

χ1
m χ2

m · · · 0 0 0 · · · 0

χ1
m χ2

m · · · 0 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

χ1
m χ2

m · · · χk−1
m 0 0 · · · 0

χ1
m χ2

m · · · χk−1
m χkm 0 · · · 0

χ1
m χ2

m · · · χk−1
m χkm χk+1

m · · · 0

...
...
. . .

...
...

...
. . .

...

χ1
m χ2

m · · · χk−1
m χkm χk+1

m · · · χKm

χ1
m χ2

m · · · χk−1
m χkm χk+1

m · · · χKm



×



[
k−1∏
j=1

(1− ρj)

]
ρk[

k−1∏
j=2

(1− ρj)

]
ρk

...

(1− ρk−1) ρk

ρk

0

...

0

0



= ρk



1∑
i=1

χim

[
k−1∏
j=i

(1− ρj)

]
2∑
i=1

χim

[
k−1∏
j=i

(1− ρj)

]
...

k−1∑
i=1

χim

[
k−1∏
j=i

(1− ρj)

]
k∑
i=1

χim

[
k−1∏
j=i

(1− ρj)

]
k∑
i=1

χim

[
k−1∏
j=i

(1− ρj)

]
...

k∑
i=1

χim

[
k−1∏
j=i

(1− ρj)

]
k∑
i=1

χim

[
k−1∏
j=i

(1− ρj)

]


(25)

To simplify notations in the above equation, we assume that
k−1∏
j=k

(1− ρj) = 1. Still to keep notations591

general, for k = L+ 1 we define ρL+1 = 1− ρL. Note also that elements l ≥ k of tmCχ,k are all identical.592

Hence,593
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ζk = δtm0,k + δtmCχ,k

= δke
−Rkdm + ρk

L+1∑
l=1

δl min(k,l)∑
i=1

χim

(k−1)∏
j=i

(1− ρj)


= δke

−Rkdm + ρk

k∑
i=1

χim
k−1∏
j=i

(1− ρj)

 L+1∑
l=i

δl


= δke

−Rkdm + ρk

k∑
i=1

χim
k−1∏
j=1

(1− ρj)


The last equality follows from the nested model properties which consider each layer sequentially (see594

the main text and Figure 2). Hence,
L+1∑
l=i

δl can be interpreted as the probability of starting a layer as old595

or older than i which is also the probability of not having entered any of the successive layer more recent596

than i i.e.
L+1∑
l=i

δl =
i−1∏
j=1

(1− ρj). Note also that
L+1∑
l=1

δl = 1. In addition, recalling that δk = ρk
k−1∏
j=1

(1− ρj)597

(eq. 15) and
k∑
i=1

χim = 1− eRkdm (eq. 10), we obtain:598

ζk = δke
−Rkdm + ρk

k∑
i=1

χim
k−1∏
j=1

(1− ρj)


= δke

−Rkdm + ρk

k−1∏
j=1

(1− ρj)

 k∑
i=1

χim

= δke
−Rkdm + δk

(
1− e−Rkdm

)
= δk
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