1. An improved hidden Markov model for the characterization of homozygous-by-descent segments in individual genomes

Tom Druet ${ }^{1}$ and Mathieu Gautier ${ }^{2}$

May 25, 2021
${ }_{5}{ }^{1}$ Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège,
6 Belgium
$7{ }^{2}$ INRAE, UMR CBGP (INRAE—IRD—Cirad—Montpellier SupAgro), Montferrier-sur-Lez, France

8 Corresponding author: Tom Druet (tom.druet@uliege.be)


#### Abstract

Inbreeding results from the mating of related individuals and has negative consequences because it brings together deleterious variants in one individual. Genomic estimates of the inbreeding coefficients are preferred to pedigree-based estimators as they measure the realized inbreeding levels and they are more robust to pedigree errors. Several methods identifying homozygous-by-descent (HBD) segments with hidden Markov models (HMM) have been recently developed and are particularly valuable when the information is degraded or heterogeneous (e.g., low-fold sequencing, low marker density, heterogeneous genotype quality or variable marker spacing). We previously developed a multiple HBD class HMM where HBD segments are classified in different groups based on their length (e.g., recent versus old HBD segments) but we recently observed that for high inbreeding levels with many HBD segments, the estimated contributions might be biased towards more recent classes (i.e., associated with large HBD segments) although the overall estimated level of inbreeding remained unbiased. We herein propose an updated multiple HBD classes model in which the HBD classification is modeled in successive nested levels. In each level, the rate specifying the expected length of HBD segments, and that is directly related to the number of generations to the ancestors, is distinct. The non-HBD classes are now modeled as a mixture of HBD segments from later generations and shorter non-HBD segments (i.e., both with higher rates). The updated model had better statistical properties and performed better on simulated data compared to our previous version. We also show that the parameters of the model are easier to interpret and that the model is more robust to the choice of the number of classes. Overall, the new model results in an improved partitioning of inbreeding in different HBD classes and should be preferred in applications relying on the length of estimated HBD segments.


Keywords: homozygous-by-descent; inbreeding; hidden Markov model; autozygosity; ROH

## 1 Introduction

In diploid species, offspring of related individuals can carry at autosomal loci a pair of DNA segments originating from the same common ancestor. These stretches of contiguous loci where the two DNA copies are identical-by-descent (IBD) are referred to as homozygous-by-descent (HBD) or autozygous segments. The length of these HBD segments is inversely related to the size of the so-called inbreeding loop that connects the individual to its common ancestor, since multiple generations of recombination will tend to reduce the size of each transmitted DNA copy. The inbreeding level of an individual can be defined as the proportion of its genome that lies in HBD segments. Genomic data may allow to directly estimate this proportion to provide an estimator of the realized inbreeding coefficient (Leutenegger et al., 2003), whereas pedigree-based estimators, when available, can only provide expected values. Such estimates of inbreeding coefficients are highly valuable for the study of inbreeding depression and the management of livestock populations or those in conservation programs. In addition, detailed assessment of the distribution of HBD segments over the genomes can also be used in homozygosity mapping experiments (Abney et al., 2002; Leutenegger et al., 2006), to identify recessive alleles causing genetic defects or diseases, or for demographic inference purposes (Kirin et al., 2010; Ceballos et al., 2018).

In practice, HBD segments may be identified as runs-of-homozygosity ( ROH ) that correspond to long stretches of homozygous genotypes (Broman and Weber, 1999; McQuillan et al., 2008). Such ROH can be empirically detected with rule-based approaches requiring the definition of parameters such as window size, minimum ROH length, marker density, maximum allowed spacing between successive markers and number of missing or heterozygous genotypes (Purcell et al., 2007). More formally, likelihood-based ROH approaches allow to compare the likelihoods of segments to be allozygous versus autozygous regions based on marker allele frequencies and the genotyping error probabilities (Pemberton et al., 2012; Wang et al., 2009). However, these approaches still require the prior definition of fixed-length windows to scan the genome for ROH segments. Alternatively, several authors developed fully probabilistic approaches based on hidden Markov models (HMM) (Leutenegger et al., 2003; Narasimhan et al., 2016; Vieira et al., 2016; Druet and Gautier, 2017). As likelihood-based approaches, they rely on genotype frequencies and genotyping error probabilities, but in addition, they take into account inter-marker genetic distances. Moreover, they do not require prior selection of some window size as HBD estimations are integrated over all possible window lengths. Furthermore, uncertainty in genotype calling, as for low-fold sequencing data,
can also be integrated over (Vieira et al., 2016; Druet and Gautier, 2017). These two later characteristics make thus HMM methods particularly valuable for the analyses of data set with low marker density and/or heterogeneous genotype quality and/or heterogeneous marker spacing. For instance, they are the method of choice to work with ancient DNA (e.g., Renaud et al., 2019), where genotype quality is particularly poor, and several HMM have been developed in the field. Similarly, they are particularly well suited to work with exome sequencing data (Magi et al., 2014), low density marker array (e.g., Solé et al., 2017; Druet et al., 2020) or with low-fold sequencing data (Vieira et al., 2016). Overall, less parameters need to be defined when using these tools.

In HMM based approaches, the length of HBD segments is generally assumed to be exponentially distributed. Modeling a single exponential distribution amounts to assume that all the autozygosity is associated to ancestors present in the same past generations. For complex population histories, this assumption may be too restrictive and Druet and Gautier (2017) proposed to use a mixture of exponential distributions to model HBD segment classes of different expected lengths, under a similar HMM framework. In this approach, HBD classes can be viewed as group of ancestors present in different past generations. This model better accounts for complex demographic histories in which different ancestors from many different past generations may contribute to autozygosity. We showed that it improves the fit of individual genetic data and provides more accurate estimations of autozygosity levels. For instance, a single HBD class model might underestimate autozygosity when multiple generations contribute to it, and also tend to regress length of HBD segment towards intermediate values, cutting in particular the longest segments into shorter pieces (e.g., Solé et al., 2017). An accurate estimation of HBD segment length distribution may however be critical to estimate the number of generations to the common ancestors. The multiple HBD-class model provides also insights into the past demographic history of populations and estimates the relative contributions of past generations to contemporary inbreeding levels (Druet and Gautier, 2017).

Nevertheless, we recently observed that when the contribution of recent ancestors is extremely high, the multiple HBD classes model in its initial definition (as of Druet and Gautier, 2017) tended to underestimate the age of HBD segments by shifting HBD partitioning towards more recent classes (Druet et al., 2020), although the overall estimated levels of inbreeding remained unbiased. Consequently, we herein implemented an updated multiple HBD classes model in which the HBD classification is modeled in successive nested levels, each level corresponding to a single HBD class model with a distinct rate. As
a result, the non-HBD classes are now modeled as a mixture of HBD segments from later generations and shorter non-HBD segments (i.e., both from subsequent levels with higher rates). We further carried out a detailed simulation study to show that the upgraded model had better statistical properties and performed better compared to our previous version. We also show that the parameters of the model are easier to interpret and that the model is more robust to the choice of the number of classes. We also provide an illustration on genotyping data from European Bison that we previously analyzed with the original model (Druet et al., 2020).

## 2 Models

### 2.1 Previous models

### 2.1.1 Single HBD-class model (1R model)

Leutenegger et al. (2003) proposed to describe the genome of an individual as a mosaic of HBD and nonHBD segments with a HMM. In that model, the length of HBD segments is exponentially distributed with a rate $R$, related to the number of generations of recombination along both paths connecting each of the two individual DNA copies (haplotype) to their common ancestor, and their frequency is a direct function of the mixing coefficient $\rho$. The HBD and non-HBD segments are not directly observed but their distribution can be inferred using genotype data available for a set of markers. In that case, the model can be represented as an HMM with two hidden states (state $1=$ "HBD" and state $2=$ "non-HBD") with the following transition probabilities between two consecutive markers $m$ and $m+1$ :

$$
\left\{\begin{array}{l}
\mathbb{P}\left[S_{m+1}=1 \mid S_{m}=1\right]=e^{-R d_{m}}+\left(1-e^{-R d_{m}}\right) \rho  \tag{1}\\
\mathbb{P}\left[S_{m+1}=1 \mid S_{m}=2\right]=\left(1-e^{-R d_{m}}\right) \rho \\
\mathbb{P}\left[S_{m+1}=2 \mid S_{m}=2\right]=e^{-R d_{m}}+\left(1-e^{-R d_{m}}\right)(1-\rho) \\
\mathbb{P}\left[S_{m+1}=2 \mid S_{m}=1\right]=\left(1-e^{-R d_{m}}\right)(1-\rho)
\end{array}\right.
$$

where $S_{m}$ is the state at position $m, d_{m}$ is the genetic distance in Morgans between markers $m$ and $m+1$. The term $e^{-R d_{m}}$ represents the probability that there is no recombination on both genealogical paths between two consecutive markers $m$ and $m+1$ (i.e., the HBD status remains the same). We use the term "coancestry changes" to refer to the presence of at least one recombination on these paths as in Leutenegger et al. (2003), and $R$ will be called the rate of coancestry change accordingly. In this

HMM, the equilibrium HBD probability is $\rho$, which has been shown to be an unbiased estimator of the inbreeding coefficient or the proportion of genome HBD (Leutenegger et al., 2003).

The emission probabilities are the probabilities to observe the marker genotypes conditional on the underlying state. For non-HBD and HBD states, these emission probabilities are a function of expected genotype frequencies in non-HBD and HBD segments, respectively (Crow et al., 1970; Broman and Weber, 1999; Leutenegger et al., 2003). For the HBD state:

$$
\mathbb{P}\left[A_{m i} A_{m j} \mid S_{m}=1, p_{m i}\right]= \begin{cases}p_{m i} & \text { if } i=j  \tag{2}\\ 0 & \text { if } i \neq j\end{cases}
$$

where $A_{m i}$ and $A_{m j}$ are the two alleles observed at marker $m, i$ and $j$ representing the allele numbers, $p_{m i}$ is the frequency of allele $i$ at marker $m$. Ideally, these allele frequencies should be estimated from individuals in a reference population but they are generally computed from the sampled individuals. For the non-HBD state:

$$
\mathbb{P}\left[A_{m i} A_{m j} \mid S_{m}=2, p_{m i}, p_{m j}\right]= \begin{cases}p_{m i}^{2} & \text { if } i=j  \tag{3}\\ 2 p_{m i} p_{m j} & \text { if } i \neq j\end{cases}
$$

The expected frequencies in non-HBD segments (eqn. 3) correspond to Hardy-Weinberg proportions. These emission probabilities are similar to probabilities used in maximum likelihood estimators of the inbreeding coefficient (e.g., Weir et al., 2006). As a result, when markers are considered independent (i.e., probability of coancestry change equal to 1 ), both approaches lead to very similar estimates (see Alemu et al., 2021). The extension of these emission probabilities to incorporate genotyping error or mutation probability is straightforward (see Broman and Weber, 1999; Leutenegger et al., 2003; Druet and Gautier, 2017). Similarly, the emission probabilities can also be modified to handle next-generation sequencing data (e.g., genotype likelihoods) allowing efficient analysis of shallow sequencing or GBS data (see Vieira et al., 2016; Narasimhan et al., 2016; Druet and Gautier, 2017).

### 2.1.2 Models with multiple HBD classes (KR and MixKR models)

In the single HBD class model, all HBD and non-HBD segments have the same expected length defined by the rate parameter $R$. Hence, ancestors contributing to HBD and non-HBD segments are assumed to have been present approximately in the same past generations. To model the contribution of different groups of ancestors to autozygosity (i.e., account for the difference in HBD segment lengths originating
from ancestors living in different past generations), we introduced models with multiple HBD classes (Druet and Gautier, 2017). In these new models, each class correspond to a distinct state, with states 1 to $K-1$ for HBD segments originating from groups of ancestors living in different past generations and a state $K$ for non-HBD segments. For each HBD class $c(c=1, \ldots, K-1)$, HBD segments length are assumed exponentially distributed with rate $R_{c}$. The non-HBD segments correspond to segments that do not trace back to a common ancestor up to the most remote HBD class. Therefore, the non-HBD segments are assumed to be exponentially distributed with the same rate as the most ancient HBD class (i.e., $R_{K}=R_{K-1}$ ). The transition probabilities from state $b$ at marker $m$ to state $a$ at marker $m+1$ are:

$$
\mathbb{P}\left[S_{m+1}=a \mid S_{m}=b\right]= \begin{cases}e^{-R_{b} d_{m}}+\left(1-e^{-R_{b} d_{m}}\right) \rho_{a} & \text { if } a=b  \tag{4}\\ \left(1-e^{-R_{b} d_{m}}\right) \rho_{a} & \text { if } a \neq b\end{cases}
$$

where $\rho_{c}$ is the mixing coefficient associated with class $c$.
We previously called these models with multiple rates "KR" models (e.g., 1R model corresponding to the single HBD-class model) and proposed to either estimate the $K-1$ different rates $R_{c}$ for each individual or set them to pre-defined values (so-called MixKR model) (Druet and Gautier, 2017). In practice, the latter modeling facilitates results comparisons across different individuals and in the present work we only consider MIxKR models. More importantly, the estimated $\rho_{c}$ mixing coefficient associated to each HBD class $c$ in KR models (with $K>1$ ) can no longer be interpreted as inbreeding coefficients as in the single HBD class model. Indeed, although they correspond to the initial HMM state probabilities, the $\rho_{c}$ values do not correspond to the marginal equilibrium proportions of genomes belonging to each HBD class $c$ as these proportions are also a function of the rates $R_{c}$, that now differ between classes. Nevertheless, several measures related to individual inbreeding coefficients can be obtained from KR models as i) the genome-wide estimate of the realized individual inbreeding level $\widehat{F}_{G}$, corresponding to the proportion of the genome in HBD classes; ii) the inbreeding level $\widehat{F}_{G}^{(c)}$ associated with HBD class $c$ defined as the proportion of the genome belonging to class $c$; and iii) the probability $\phi_{l}$ that a locus $l$ lies in a HBD segment (Druet and Gautier, 2017).

In addition to the loss of interpretability of mixing coefficients, we previously showed that the MixKR model tended to assign HBD segments to more recent classes (i.e., with smaller $R$ ) when the overall inbreeding level of individuals was high (Druet et al., 2020). Although the 1R model remained limited in its range of applications (because modeling a single class of ancestors, see above), it provided both an
unbiased estimate of $R$ and an estimate of $\rho$ that could be interpreted as an inbreeding coefficient.


Figure 1. Graphical illustration of the Nested 1R model. Four layers of ancestors are represented. In each layer, the genome is represented as a mosaic of HBD and non-HBD segments with a 1R model with specific parameters $\rho_{l}$ and $R_{l}$.

### 2.2 New model: the nested 1R model

Here were propose an alternative multiple HBD classes model that these preserves desirable properties of the 1 R model and allows for the contribution of multiple groups of ancestors to autozygosity (as in the MixKR model). As illustrated in Figure 1, we sequentially model multiple layers of ancestors (from the most recent to the oldest), each contributing to a distinct HBD class. More precisely, a 1R model is first used to describe the genome of an individual as a mosaic of HBD segments associated with the most recent layer of ancestors (first group of ancestors) and non-HBD segments (i.e., relative to these ancestors). Although these segments would be non-HBD with respect to this first layer, they could be inherited HBD from more remote ancestors. Therefore, we propose to model in turn the non-HBD segments in the first layer as a mosaic of HBD and non-HBD segments associated with a second layer of ancestors (see Figure 1). This would be achieved by fitting a second 1R model, nested in the first one, with different parameters, $\rho_{2}$ and $R_{2}$ (with $R_{2}>R_{1}$ ). This approach can be repeated for several layers of ancestors (Figure 1).

Each layer $l$ is thus described as a mosaic of HBD and non-HBD segments, labelled as $\operatorname{HBD}_{l}$ and non- $\mathrm{HBD}_{l}$ states. The non-HBD class in layer $l$ would be a mixture of HBD classes in subsequent layers
and the non-HBD class in the last layer $L$. We assume that emission probabilities in HBD classes are the same in each layer, and identical to those used in the 1R model (eqn 2). Note that emission probabilities could be made layer dependant, e.g., to account for more generations of mutation or changes in allele frequencies through generations. Similarly, the emission probabilities for the non-HBD class in the last layer $L$ matches those used in the 1 R model (eq 3). However for non-HBD segments in layer $l=1$ to $l=L-1$, the emission probabilities now also depend on the mixing coefficients $\rho_{c}$ through the proportion $\pi_{l}=\prod_{c=l+1}^{L}\left(1-\rho_{c}\right)$ of positions expected to ultimately lie in a non-HBD segment at the oldest layer $L$ (i.e., not mapping to an HBD segment in any successive layers $l^{\prime}>l$ ) as:

$$
\begin{equation*}
\pi_{l} \mathbb{P}\left[A_{m i} A_{m j} \mid S_{m}=2, p_{m i}, p_{m j}\right]+\left(1-\pi_{l}\right) \mathbb{P}\left[A_{m i} A_{m j} \mid S_{m}=1, p_{m i}\right] \tag{5}
\end{equation*}
$$

where $\mathbb{P}\left[A_{m i} A_{m j} \mid S_{m}=2, p_{m i}, p_{m j}\right]$ and $\mathbb{P}\left[A_{m i} A_{m j} \mid S_{m}=1, p_{m i}\right]$ are emission probabilities from the 1R model (eqns. 2 and 3).

As the parameters $\rho_{c}$ for the different classes are required to obtain these emission probabilities, the implementation of this model is not trivial. A more convenient way to specify the Nested 1 R model is to define $L$ HBD states (one per layer) and a single non-HBD class associated to the $L$ th layer. This results in a parameterization very similar to the MixKR model (Druet and Gautier, 2017) but with a modified transition probabilities matrix $\mathbf{T}^{\mathbf{m}}$ between consecutive markers $m$ and $m+1$. More precisely, in the MixKR model, $\mathbf{T}^{\mathbf{m}}$ can be decomposed in three parts i) a diagonal matrix $\mathbf{T}_{0}^{m}$ associated with the probability of absence of coancestry change within each of $\mathrm{L}+1$ states; ii) a matrix $\mathbf{T}_{c c}^{m}$ associated with the probability of coancestry change within each state; and iii) a matrix $\mathbf{T}_{c s}$, that does not depend on the marker position, specifying the probability of entering each state after a coancestry change given the state of origin:

$$
\begin{equation*}
\mathbf{T}^{m}=\mathbf{T}_{0}^{m}+\mathbf{T}_{c c}^{m \prime} \mathbf{T}_{c s} \tag{6}
\end{equation*}
$$

In the nested $1 R$ model, the matrix $\mathbf{T}^{\mathbf{m}}$ will have a similar structure but the matrices $\mathbf{T}_{c c}^{m}$ and $\mathbf{T}_{c s}$ in eq. 6 that are defined with respect to states (eq 4) are replaced by matrices $\mathbf{T}_{\chi}^{m}$ and $\mathbf{T}_{C}$ that are rather defined with respect to layers as we detail below. As a result, $\mathbf{T}^{\mathbf{m}}$ is decomposed as:

$$
\begin{equation*}
\mathbf{T}^{m}=\mathbf{T}_{0}^{m}+\mathbf{T}_{\chi}^{m \prime} \mathbf{T}_{C} \tag{7}
\end{equation*}
$$

### 2.2.1 Transition probabilities in nested 1R models

At marker position $m$, the genome can be associated with any state $l$ from 1 to $L+1$. States from 1 to $L$ correspond to HBD segments in layers 1 to $L$, respectively. HBD segments from state $l$ are also non-HBD in layers 1 to $l-1$. The last state $L+1$ is associated to non-HBD segments in the last layer $L$, and must also be non-HBD in layers 1 to $L-1$. To estimate the transition probabilities between the $L+1$ different hidden states, we must consider several possible events:

1. the Markov chain remains in the same state $l$ without any coancestry change. This requires no coancestry change between the two consecutive markers in all the generations included in both the genealogical paths to the ancestors from layer $l$;
2. the first coancestry occurs within a given layer $l$ (i.e., no coancestry change occurs before this layer). We must then account for both the probability of first coancestry change occurring in $l$ and the conditional transition probabilities to the other states.

### 2.2.2 Absence of coancestry change from layers 1 to $l$

In the absence of coancestry change between the two consecutive markers, a HBD segment from a given layer $l$ is simply extended. The same holds for non-HBD segments in layer $L$ (i.e., for the state $\mathrm{L}+1$ ). The probability of no coancestry change between markers $m$ and $m+1$ from layers 1 to $l$ is equal to $e^{-R_{l} d_{m}}$, as for a 1 R model with rate $R_{l}$ (eqn 1). These transitions can be summarized for all states as a diagonal matrix $\mathbf{T}_{0}^{m}$ :

$$
\mathbf{T}_{0}^{m}=\left(\begin{array}{ccccc}
e^{-R_{1} d_{m}} & 0 & \cdots & 0 & 0  \tag{8}\\
0 & e^{-R_{2} d_{m}} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & e^{-R_{L} d_{m}} & 0 \\
0 & 0 & \cdots & 0 & e^{-R_{L} d_{m}}
\end{array}\right)
$$

Note that the probabilities for the last two states $(L$ and $L+1)$ are the same as they both belong to the last layer.

### 2.2.3 Probability of first coancestry change occurring within a given layer $l$

From equation 8, the probability of at least one coancestry change occurring between two consecutive markers $m$ and $m+1$ in the past generations covered by layers 1 to $l$ is $1-e^{-R_{l} d_{m}}$. This is in agreement with eqn. 1 for a 1 R model with rate $R_{l}$. The coancestry change may have occurred in any layers $c$ $(1 \leq c \leq l)$ but we are interested in the first coancestry change event since it implies the start of a new HBD or non-HBD segments in that layer (and affects thus also the status in subsequent layers).

The probability $\chi_{m}^{l}$ of a first coancestry change occurring within a specific layer $l$ is equal to the probability of no coancestry change in earlier layers $c<l, e^{-R_{l-1} d_{m}}$, multiplied by the probability of a coancestry change between layers $l-1$ and $l$ which is equal to $1-e^{-\left(R_{l-1}-R_{l}\right) d_{m}}$ :

$$
\begin{equation*}
\chi_{m}^{l}=e^{-R_{l-1} d_{m}}\left(1-e^{-\left(R_{l}-R_{l-1}\right) d_{m}}\right)=e^{-R_{l-1} d_{m}}-e^{-R_{l} d_{m}} \tag{9}
\end{equation*}
$$

Note that $\chi_{m}^{l}$ is also the probability of no coancestry change from layer 1 to $l-1$ minus the probability of no coancestry change from layer 1 to $l$. For notational convenience we set $R_{0}=0$ (i.e., the probability of no coancestry change before the first layer is equal to 1 ). We can further show that the sum of probabilities of first coancestry changes within each layer from 1 to $l$ is equal to $1-e^{-R_{l} d_{m}}$ as expected:

$$
\begin{equation*}
\sum_{i=1}^{l} \chi_{m}^{l}=\sum_{i=1}^{l}\left(e^{-R_{l-1} d_{m}}-e^{-R_{l} d_{m}}\right)=e^{-R_{0} d_{m}}-e^{-R_{l} d_{m}}=1-e^{-R_{l} d_{m}} \tag{10}
\end{equation*}
$$

These probabilities can also be combined in a matrix $\mathbf{T}_{\chi}^{m}$, with $L+1$ columns (for states) and $L$ rows (for layers). The element $\mathbf{T}_{\chi}^{m}(l, c)$ represents the probability of first coancestry change within each layer for a genomic position in an hidden state $c$ (which is an HBD segment if $c \leq L$ and a non-HBD segment if $c=L+1$ ):

$$
\mathbf{T}_{\chi}^{m}(l, c)= \begin{cases}\chi_{m}^{l}=e^{-R_{l-1} d_{m}}-e^{-R_{l} d_{m}} & \text { if } l \leq c  \tag{11}\\ 0 & \text { if } l>c\end{cases}
$$

The two last columns of $\mathbf{T}_{\chi}^{m}$ both correspond to probabilities of first coancestry changes for genomic positions in states from the last layer, respectively HBD and non- HBD , and are thus identical. When $l>c, \mathbf{T}_{\chi}^{m}(l, c)$ is 0 because for a HBD segment in layer $c$, coancestry changes can occur only from layers 1 to $c$. Thus, $\mathbf{T}_{\chi}^{m}$ can be represented as:

$$
\mathbf{T}_{\chi}^{m}=\left(\begin{array}{cccccc}
\chi_{m}^{1} & \chi_{m}^{1} & \chi_{m}^{1} & \cdots & \chi_{m}^{1} & \chi_{m}^{1}  \tag{12}\\
0 & \chi_{m}^{2} & \chi_{m}^{2} & \cdots & \chi_{m}^{2} & \chi_{m}^{2} \\
0 & 0 & \chi_{m}^{3} & \cdots & \chi_{m}^{3} & \chi_{m}^{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \\
0 & 0 & 0 & \cdots & \chi_{m}^{K} & \chi_{m}^{K}
\end{array}\right)
$$

As indicated in Eq. 10 , elements from the column $l$ of $\mathbf{T}_{\chi}^{m}$ sum to $1-e^{-R_{l} d_{m}}$ for $l \leq L$. Each column corresponds to the marginal probability of a coancestry change when the marker $m$ is in state $l$.


Figure 2. Representation of the transition probabilities in a Nested 1R model with $L=4$ HBD states and one non-HBD states as a decision tree. In this representation the $L+1=5$ states are the leaves of the tree. The tree allows to estimate probabilities and conditional probabilities to reach a leave.

### 2.2.4 Conditional transition probabilities after a coancestry change in layer $l$

If a (first) coancestry change occurs within a given layer $l$, a new segment is started. This segment is either i) HBD of class $l$ with probability $\rho_{l}$; or ii) non-HBD with probability $1-\rho_{l}$ (Figure 2). These latter non-HBD segments from layer $l$ are also mixture of HBD and non-HBD segments of layer $l+1$ with probabilities $\rho_{l+1}$ and $1-\rho_{l+1}$, respectively. The conditional transition probabilities towards the different HBD states $c>l$ and the final non-HBD state from the last layer (i.e., state $L+1$ of the HMM) can then be recursively obtained by following the decision tree represented in Figure 2. (see also Figure 3 for an example of a transition towards the fourth HBD state after a coancestry change in layer $l=2$ ). Note that conditional transition probabilities to states $c<l$ that are not child of the corresponding node
are null. Thus, the conditional transition probabilities $\mathbf{T}_{C}(l, c)$ to each state $c$ after a coancestry change occurring in layer $l$ are:

$$
\mathbf{T}_{C}(l, c)= \begin{cases}0 & \text { if } c<l  \tag{13}\\ \rho_{c} & \text { if } c=l \\ {\left[\prod_{j=l}^{c-1}\left(1-\rho_{j}\right)\right] \rho_{c}} & \text { if } l<c \leq L \\ \prod_{j=l}^{L}\left(1-\rho_{j}\right) & \text { if } c=L+1\end{cases}
$$

These conditional transition probabilities can be represented as a matrix $\mathbf{T}_{C}(l, c)$, independent of the marker position $m$, with $L$ rows corresponding to layers, and $L+1$ columns corresponding to the hidden states ( $L$ HBD states and one non-HBD state):

$$
\mathbf{T}_{c}=\left(\begin{array}{ccccc}
\rho_{1} & \left(1-\rho_{1}\right) \rho_{2} & \left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \rho_{3} & \ldots & {\left[\prod_{j=1}^{L-1}\left(1-\rho_{j}\right)\right.}  \tag{14}\\
0 & \rho_{2} & \left(1-\rho_{2}\right) \rho_{3} & \ldots & \rho_{j=2}^{L-1}\left(1-\rho_{j}\right) \\
0 & \prod_{j=1}^{L}\left(1-\rho_{j}\right) \\
\vdots & \vdots & \rho_{3} & \cdots & \rho_{L} \\
\prod_{j=2}^{L}\left(1-\rho_{j}\right) \\
0 & 0 & \vdots & \ddots & \vdots \\
j=3 \\
0 & 0 & \cdots & \left.\rho_{j}\right)
\end{array}\right] \rho_{L} \begin{aligned}
& \prod_{j=3}^{L}\left(1-\rho_{j}\right) \\
& \vdots
\end{aligned}
$$

### 2.2.5 Initial state probabilities

The first row of $\mathbf{T}_{C}$ (eqns. 14 and 7 ) also corresponds to the vector of initial states probabilities $\boldsymbol{\delta}=$ $\left\{\delta_{c}\right\}_{1, \ldots, L+1}$ (i.e., $\delta_{c}$ representing the probability to start the chain in the hidden state $c$ ) which can obtained from the full decision tree (e.g., Figure 2). We have:

$$
\delta_{c}= \begin{cases}{\left[\prod_{j=1}^{c-1}\left(1-\rho_{j}\right)\right] \rho_{c}} & \text { if } c \leq L  \tag{15}\\ \prod_{j=1}^{L}\left(1-\rho_{j}\right) & \text { if } c=L+1\end{cases}
$$

We show in Appendix that the product $\boldsymbol{\delta} \mathbf{T}^{m}=\boldsymbol{\delta}$, i.e., the Markov chain is stationary and the initial state distribution corresponds to the stationary distribution. These desired properties are also true for the 1R model, but not in our previous MixKR model. Note also that, if $L=1$, the Nested 1 R model


Figure 3. Illustration of conditional transition probabilities after a coancestry change. The illustration shows the conditional transition probability to reach the fourth HBD state after a coancestry change occurring within the second layer.
reduces to the 1 R model.

### 2.2.6 Parameter estimation

The N1R model is now implemented as the default model in the RZooRoH package (from version 0.3.1). Following our previous work (Bertrand et al., 2019), we transformed the original parameters into new unconstrained parameters to rely on the L-BFGS-B optimizer implemented in the optim function from the $R$ stats package (R Core Team, 2013). Back-transformation on the original scale ensures that rates are always positive and ordered (higher rates for older ancestral layers) and that mixing coefficients $\rho_{l}$ are comprised between 0 and 1 . The new parameters are obtained as follow from the original parameters:

$$
\begin{gather*}
\eta_{l}= \begin{cases}\log \left(R_{l}-R_{l-1}\right) & \text { if } 1<l \leq L \\
\log \left(R_{l}\right) & \text { if } l=1\end{cases}  \tag{16}\\
\tau_{l}=\log \left(\frac{\rho_{l}}{1-\rho_{l}}\right) \quad \tag{17}
\end{gather*}
$$

### 2.2.7 Estimation of the inbreeding coefficient

Following Leutenegger et al. (2003), the stationary distribution of the state probabilities $\boldsymbol{\delta}$ (eq. 15) can be used to estimate the inbreeding coefficient. We must first define a reference population by deciding which HBD classes are considered as truly autozygous. We could for instance consider that only layers
with a rate $R_{c}$ smaller than a threshold $T$ contribute to autozygosity, and that ancestors in layers with $R_{c}>T$ are unrelated (see for instance in Solé et al. (2017)). The inbreeding coefficient with respect to that base population, set approximately $0.5 \times \mathrm{T}$ generations in the past (Druet and Gautier, 2017), is:

$$
\begin{equation*}
F_{\delta-T}=\sum_{c=1}^{l} \delta_{c} \tag{18}
\end{equation*}
$$

where $l$ is the most ancient layer with rate $R_{l} \leq T$. The inbreeding coefficient obtained with all layers is:

$$
\begin{equation*}
F_{\delta}=\sum_{c=1}^{L} \delta_{c} \tag{19}
\end{equation*}
$$

In addition, as opposed to our previous MixKR models, the nested 1 R model allows to estimate inbreeding coefficients within each layer. Indeed, the equilibrium probability $\rho_{l}$ may directly be interpreted as the inbreeding coefficient of the progeny of individuals from the most recent generation of the layer $l$ when individuals from the oldest generation of layer $l$ are assumed unrelated. This coefficient may also be interpreted as the inbreeding accumulated within the time period covered by layer $l$ and may thus be related to the effective population size over this same period. Contrary to the proportion of the genome associated to a specific HBD class, this measure is independent of inbreeding generated in more recent generations.

Metrics defined for the previous MixKR model (Druet and Gautier, 2017) and associated to the realized inbreeding have also their counterpart in the new Nested 1R model. First, the realized inbreeding $\widehat{F}_{\mathrm{G}}^{(\mathrm{c})}$ associated with each HBD class $c(c \in(1, L))$ can be defined as the proportion of the genome belonging to the class $c$ and is estimated as the average of the corresponding local state probabilities over all the $M$ locus:

$$
\begin{equation*}
\widehat{F}_{\mathrm{G}}^{(\mathrm{c})}=\frac{1}{M} \sum_{l=1}^{M} \mathbb{P}\left(S_{l}=c \mid \widehat{\Theta}, \mathbf{Y}\right) \tag{20}
\end{equation*}
$$

where $\widehat{\Theta}$ and $\mathbf{Y}$ represent respectively the estimated parameters of the model and the data.
Next, the genome-wide estimate of the realized individual inbreeding $\widehat{F}_{G}$ is simply the average over the genome of the local estimates obtained for the $M$ markers:

$$
\begin{equation*}
\widehat{F}_{\mathrm{G}}=\frac{1}{M} \sum_{l=1}^{M} \widehat{\phi}_{l}=\sum_{c=1}^{L} \widehat{F}_{\mathrm{G}}^{(\mathrm{c})} \tag{21}
\end{equation*}
$$

The realized inbreeding coefficients can also be estimated relative to different base populations by considering HBD classes with a rate $R_{l} \leq T$ as in Solé et al. (2017).

### 2.3 Evaluation based on simulated data sets

### 2.3.1 Simulations under the inference model

To simulate data sets under the inference model, we used the same approach as in our first study (Druet and Gautier, 2017). Briefly, we simulated individual genomes consisting of 25 chromosomes of 100 cM . Each individual genome is modeled as a mosaic of HBD and non-HBD segments modelled under the 1R model (Equation 1), where $\rho$ represents the proportion of HBD segments (equivalent to $F$, the inbreeding coefficient). The length of HBD and non-HBD segments was exponentially distributed with rate $R$. The tested values for $\rho$ were equal to $0.02,0.05,0.10,0.20,0.30$ and 0.40 , and those for $R$ equal to $4,8,16$, 32 and 64. Genotypes were simulated for 25,000 bi-allelic SNPs ( 10 per cM ) using emission probabilities (Equations 2 and 3). For each set of parameters, we simulated 500 individuals. More details are available in Druet and Gautier (2017).

Individual inbreeding levels were estimated with a MIxKR model with 9 HBD classes with rates equal to $\{2,4,8, \ldots, 1024\}$ and with a Nested 1R (N1R) model with 9 layers with the same rates, and using the RZooRoH package (Bertrand et al., 2019). The mean absolute error (MAE) for each parameter of interest $\alpha\left(F_{G}, F_{\delta}, \phi\right)$ was computed to evaluate the models as:

$$
\begin{equation*}
M A E(\alpha)=\frac{1}{N} \sum_{n=1}^{N}\left|\widehat{\alpha}_{n}-\alpha_{n}\right| \tag{22}
\end{equation*}
$$

where $N$ is the number of simulated individuals, $\hat{\alpha}_{n}$ is the estimated parameter value for individual $n$ and $\alpha$ is the corresponding simulated value.

The partitioning of the autozygosity in different HBD classes was evaluated by assessing whether the autozygosity was concentrated in HBD classes with rates $R_{c}$ close to the simulated rate $R$. Rates were compared on a $\log _{2}$ scale, resulting in a difference of $-1,0,1$ and 2 when $R_{c}$ is equal to $R$ multiplied by respectively $0.5,1,2$ and 4 . The associated MAE was estimated as follows:

$$
\begin{equation*}
M A E\left(\log _{2}(R)\right)=\frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{L} \widehat{\Psi}_{n}^{(c)}\left|\log _{2} R_{c}-\log _{2} R\right| \tag{23}
\end{equation*}
$$

where $\widehat{\Psi}_{n}^{(c)}$ is the contribution of HBD class $c$ in individual $n$ to its total HBD, evaluated at true HBD
positions, and $L$ is the number of HBD classes or layers. This criteria evaluates whether the identified HBD positions are assigned to the simulated HBD class.

### 2.3.2 Simulations under a discrete-time Wright-Fisher process

To simulate more realistic data relying on population genetic models, Druet and Gautier (2017) previously used the program ARGON (Palamara, 2016) that implements a discrete-time Wright-Fisher process. Here, we used the same simulated data. Bottlenecks were simulated to concentrate inbreeding in specific age classes (Druet and Gautier, 2017). Outside these events, $N_{e}$ was kept large to reduce the noise due to inbreeding coming from other generations. The simulation scenario is summarized in Supplementary Figure 1. The ancestral population $P_{0}$ had a constant haploid effective population size equal to 20,000 $\left(N_{e 0}\right)$. The time of population split $T_{s}$ was set equal to 10,000 and the effective population size of the first population $\left(P_{1}\right)$ outside the bottleneck was set to $100,000\left(N_{e_{1}}\right)$. Bottlenecks were simulated around generations $T_{b}$ equal to either 16 or 64 , and with effective population size $\left(N_{e b}\right)$ equal to 20 or 50 . A single chromosome of 250 cM length was simulated for 50 diploid individuals, and with a marker density of 100 SNPs per cM. More details about the simulation procedure are available in Druet and Gautier (2017).

Individual inbreeding levels were estimated with MIxKR and N1R models with 13 HBD classes with rates equal to $\{2,4,8, \ldots, 8192\}$ as implemented within the RZooRoH package (Bertrand et al., 2019).

### 2.3.3 Application to estimation of inbreeding levels in the European bison

The N1R model was tested and compared to the MixKR model on a set of 183 genotyped European bison with high inbreeding levels (Druet et al., 2020). These consisted of respectively 154 and 29 individuals from the Lowland and Lowland-Caucasian lines. Individuals from the first line experienced a stronger bottleneck as they trace back to fewer founders (see Druet et al., 2020, for more details). After data filtering, each individual was genotyped for 22,602 autosomal SNPs. Partitioning of inbreeding levels in different HBD classes was first compared with MixKR and N1R models with five HBD classes with rates equal to $\{4,8,16,32,64\}$. In order to assess robustness of results to model specifications, we also applied models with 9 HBD classes $\left(R_{k}=\{4,8, \ldots, 1024\}\right)$. Analyses were carried out with the RZooRoH package (Bertrand et al., 2019).

## 3 Results

### 3.1 Simulations under the inference model

We begin by comparing results obtained from analyses of the data simulated under the inference model with the MIxKR and N1R models. We expected our new N1R model to perform better in partitioning inbreeding in different HBD classes most particularly when inbreeding levels are high. This is confirmed in Figure 4 that represents the MAE associated with $R$ (eq. 22). With the N1R model, the MAE is higher when there are fewer segments to estimate parameters (small $\rho$ and/or small $R$ ). When inbreeding levels are low (e.g., $\rho<0.1$ in Figure 4), MAE are similar for both models whereas for large inbreeding levels, MAE starts to increase for the MixKR model whereas it continues decrease for the N1R model. As a result, the proportions of true HBD positions associated with the class with $R_{c}$ corresponding to the simulated value is higher with the N1R than with the former MixKR model when values of $\rho$ are moderate to high (i.e., $\rho>0.1$ ). In other words, a higher proportion of true autozyogisty is correctly associated to that HBD class with the N1R model (see Supplementary Table 1). As for the MAE, this proportion decreased for high values of $\rho$ with the MixKR model whereas an opposite trend is observed for the N1R model, resulting in high differences. When $\rho$ is high, the MixKR model tends to assign autozygosity to classes with smaller $R_{c}$ rates, as we observed in real data sets. This is illustrated for four scenarios with $R=16$ in Supplementary Figure 2. Similar patterns are obtained in simulations with two distributions of HBD segments (Supplementary Figure 3), with a shift towards more recent HBD classes when using the MixKR model.

In terms of estimation of realized inbreeding $\left(F_{G}\right)$ and estimation of local HBD probabilities $\left(\phi_{l}\right)$, both models have very similar performances (Table 1). Hence, although the MixKR and N1R models differ in their partitioning of inbreeding in different age classes, they remain equally accurate for the estimation of inbreeding levels. Finally, the inbreeding coefficient $F_{\delta}$ corresponding to the initial state probabilities (and the stationary distribution) displayed a low MAE, close to the values obtained with a $1 R$ model in our previous study (Druet and Gautier, 2017). With the N1R model, the inbreeding coefficient $F_{\delta}$ represents an unbiased estimate of the simulated $\rho$ (Supplementary Figure 4), as opposed to the sum of initial state probabilities of HBD classes from the MIxKR models that were clearly not a proper estimator of $\rho$.

| Scenario |  | Mean estimated values with N1R model |  |  | MixKR model |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R$ | $\rho$ | $\widehat{\rho}$ (MAE) | $\widehat{F_{\mathrm{G}}}$ (MAE) | $\frac{\mathrm{MAE}}{\left(\widehat{\phi_{l^{\text {HBD }}}}\right)} \text { for } \widehat{\phi_{l}}$ | $\widehat{F_{\mathrm{G}}}$ (MAE) | $\frac{\mathrm{MAE}}{\left(\widehat{\phi_{l^{\mathrm{HBD}}}}\right)} \text { for } \widehat{\phi}_{l}$ |
| 4 | 0.02 | 0.021 (0.007) | 0.021 (0.002) | 0.002 (0.012) | 0.021 (0.002) | 0.002 (0.013) |
| 4 | 0.05 | 0.053 (0.012) | 0.054 (0.002) | 0.003 (0.011) | 0.054 (0.002) | 0.003 (0.013 |
| 4 | 0.10 | 0.103 (0.017) | 0.103 (0.002) | 0.004 (0.010) | 0.103 (0.002) | 0.004 (0.012) |
| 4 | 0.20 | 0.200 (0.023) | 0.200 (0.002) | 0.005 (0.009) | 0.200 (0.002) | 0.005 (0.010) |
| 4 | 0.30 | 0.302 (0.026) | 0.301 (0.002) | 0.006 (0.008) | 0.301 (0.002) | 0.007 (0.009) |
| 4 | 0.40 | 0.401 (0.028) | 0.402 (0.002) | 0.007 (0.006) | 0.402 (0.002) | 0.007 (0.008) |
| 8 | 0.02 | 0.023 (0.007) | 0.022 (0.002) | 0.003 (0.026) | 0.022 (0.002) | 0.003 (0.027) |
| 8 | 0.05 | 0.051 (0.011) | 0.052 (0.002) | 0.004 (0.025) | 0.052 (0.002) | 0.004 (0.027) |
| 8 | 0.10 | 0.101 (0.014) | 0.101 (0.002) | 0.006 (0.023) | 0.101 (0.002) | 0.006 (0.024) |
| 8 | 0.20 | 0.204 (0.019) | 0.204 (0.002) | 0.009 (0.019) | 0.204 (0.002) | 0.010 (0.020) |
| 8 | 0.30 | 0.299 (0.021) | 0.299 (0.002) | 0.011 (0.016) | 0.299 (0.002) | 0.012 (0.017) |
| 8 | 0.40 | 0.404 (0.023) | 0.404 (0.002) | 0.012 (0.013) | 0.403 (0.002) | 0.013 (0.014) |
| 16 | 0.02 | 0.023 (0.006) | 0.022 (0.002) | 0.004 (0.064) | 0.022 (0.002) | 0.004 (0.065) |
| 16 | 0.05 | 0.052 (0.008) | 0.052 (0.002) | 0.007 (0.055) | 0.052 (0.002) | 0.007 (0.056) |
| 16 | 0.10 | 0.102 (0.011) | 0.102 (0.002) | 0.012 (0.048) | 0.102 (0.002) | 0.012 (0.050) |
| 16 | 0.20 | 0.201 (0.015) | 0.201 (0.002) | 0.017 (0.040) | 0.201 (0.002) | 0.018 (0.041) |
| 16 | 0.30 | 0.302 (0.017) | 0.302 (0.003) | 0.022 (0.032) | 0.302 (0.003) | 0.022 (0.034) |
| 16 | 0.40 | 0.403 (0.018) | 0.403 (0.002) | 0.023 (0.027) | 0.403 (0.002) | 0.024 (0.028) |
| 32 | 0.02 | 0.022 (0.005) | 0.021 (0.002) | 0.007 (0.139) | 0.021 (0.002) | 0.007 (0.140) |
| 32 | 0.05 | 0.052 (0.006) | 0.052 (0.003) | 0.014 (0.120) | 0.052 (0.003) | 0.014 (0.121) |
| 32 | 0.10 | 0.101 (0.008) | 0.101 (0.002) | 0.022 (0.103) | 0.101 (0.002) | 0.023 (0.105) |
| 32 | 0.20 | 0.202 (0.011) | 0.202 (0.003) | 0.034 (0.081) | 0.202 (0.003) | 0.035 (0.083) |
| 32 | 0.30 | 0.302 (0.012) | 0.302 (0.003) | 0.042 (0.066) | 0.302 (0.003) | 0.042 (0.067) |
| 32 | 0.40 | 0.402 (0.014) | 0.402 (0.003) | 0.045 (0.053) | 0.402 (0.003) | 0.046 (0.055) |
| 64 | 0.02 | 0.022 (0.004) | 0.022 (0.003) | 0.013 (0.283) | 0.022 (0.003) | 0.013 (0.284) |
| 64 | 0.05 | 0.052 (0.005) | 0.052 (0.003) | 0.026 (0.243) | 0.052 (0.003) | 0.026 (0.244) |
| 64 | 0.10 | 0.102 (0.007) | 0.102 (0.003) | 0.043 (0.204) | 0.102 (0.003) | 0.043 (0.205) |
| 64 | 0.20 | 0.202 (0.008) | 0.202 (0.003) | 0.066 (0.160) | 0.202 (0.003) | 0.066 (0.161) |
| 64 | 0.30 | 0.301 (0.010) | 0.302 (0.003) | 0.079 (0.128) | 0.302 (0.003) | 0.080 (0.129) |
| 64 | 0.40 | 0.402 (0.010) | 0.402 (0.003) | 0.084 (0.103) | 0.403 (0.003) | 0.086 (0.104) |

Table 1. Performance of the two models on data simulated under the 1R inference model. The simulated genome consisted of 25 chromosomes of 100 cM with a marker density of 10 SNPs per cM . Genotyping data for 500 individuals were simulated under the 1 R inference model for each of 30 different scenarios defined by the simulated $R$ and $\rho$ values reported in the first two columns. The table reports the mean estimated values and the Mean Absolute Errors (MAE) for the mixing proportions ( $\widehat{\rho}$ ) and the individual inbreeding $\left(\widehat{F_{\mathrm{G}}}\right)$. The table gives also the MAE for the estimated local inbreeding $\left(\phi_{l}\right)$ either for all the SNPs $\left(\widehat{\phi_{l}}\right)$ or for those actually lying within HBD segments $\left(\widehat{\phi_{l^{\text {HBD }}}}\right)$. These values are reported for both models, with the exception of $(\widehat{\rho})$.


Figure 4. Concordance between simulated rates and partitioning in HBD classes. The accuracy of partitioning is evaluated as the Mean Absolute Error between the $\log _{2}$ of the simulated rate and the $\log _{2}$ of the assigned HBD classes. This is equivalent to measuring the deviation from the simulated parameter in term of absolute value of $\log _{2}$ of the ratio between rates of simulated and estimated HBD classes. The comparisons are performed for different values of $R$ and $\rho$.

### 3.2 Simulations under Wright-Fisher process

Analyses realized on data sets simulated under a more realistic model confirmed our first observations. For high inbreeding levels, the MixKR model captures a large fraction of the autozygosity generated by the bottleneck (when $N_{e}$ drops to 20 ) into the more recent HBD class neighboring the class representative of the bottleneck period (e.g., class with $R_{c}=64$ for a bottleneck pertaining to the class with $R_{c}=128$, i.e., occurring 63 to 66 generations ago - Figure 5). This neighbouring class captures almost the same or even a larger fraction of autozygosity that the HBD class associated with the bottleneck. The pattern is less pronounced for milder bottleneck ( $N_{e}=50$ in Figure 5). With the N1R model, the class $R_{c}=128$ representative of the bottleneck period captures the majority of the HBD segments in both cases. Similar results were obtained for more recent bottlenecks (Supplementary Figure 5).

The global partitioning of the genome in HBD-classes presents similar patterns (Supplementary Figure 6). As the proportion of inbreeding in the HBD class associated with the bottleneck is always higher with the N1R model, the MAE associated with the rate of the selected HBD classes was lower than


Figure 5. Partitioning of HBD segments related to the bottleneck in different HBD
classes. The partitioning are realized with the MixKR and N1R models. Data were simulated with a Wright-Fisher process, with a bottleneck in generations 63 to 66 expected to be associated with the HBD class with $R_{k}=128$. The applied model and the effective population size during the bottleneck are indicated above the graphs.
with the MixKR model (more so when the bottleneck was strong). With the N1R model, the MAE values were respectively equal to $0.546,0.786,0.386$ and 0.426 for the four different scenarios ( $\left\{N_{e b}=20\right.$, $\left.\left.T_{b}=16\right\},\left\{N_{e b}=50, T_{b}=16\right\},\left\{N_{e b}=20, T_{b}=64\right\},\left\{N_{e b}=50, T_{b}=64\right\}\right)$, compared to 0.763, 0.793, 0.601 and 0.491 for the same scenarios with the MixKR model.

As for the first simulations, the differences between models are mainly in the partitioning of autozygosity in HBD classes. For instance, the average local HBD probabilities for segments associated with ancestors present in different past generations are almost identical (Supplementary Figure 7). We also confirm in Figure 6 that mixing coefficients of the new model are interpretable and can be used to


Figure 6. Inbreeding coefficients estimated as the equilibrium HBD distribution and for different base generations. The inbreeding coefficients are estimated as the equilibrium distributions, $F_{\delta}$, obtained from the mixing coefficients $\rho_{c}$. Only HBD-classes with a rate $R_{k} \leq \mathrm{a}$ threshold T are used to estimate $F_{\delta}$. This allows to set the reference population approximately $0.5 \times T$ generations in the past. Data were simulated with a Wright-Fisher process, with a bottleneck. The time of the bottleneck and the effective population size during the bottleneck are indicated above the graphs. The red star indicates the HBD-class associated to the bottleneck and the expected inbreeding levels generated during the bottleneck.
estimate the inbreeding coefficient $F_{\delta}$. More precisely, we estimated $F_{\delta-T}$ by adding sequentially each HBD-class in the estimation. We estimated the expected inbreeding accumulated during the bottleneck as $1-\left(1-\frac{1}{2 N_{e}}\right)^{t}$, where $N_{e}$ is the diploid effective population size (here, $N_{e}=20$ or $N_{e}=50$ ) and $t=4$ is the number of generations of the bottleneck. We see that most of the inbreeding is captured by the HBD-class corresponding to the bottleneck and its close neighbours. As a result, $F_{\delta-T}$ remains relatively constant for generations before and after the bottleneck and increases sharply at the period of
the bottleneck. In addition, the estimated inbreeding levels match the expected values. Finally, we also observe inbreeding related to much more distant ancestors, accumulated over many more generations.

### 3.3 Application to real data

Application of the two models on genotype data from two distinct lines of European bison, presenting high inbreeding levels, results in similar observations than applications to simulated data sets: partitioning of inbreeding in HBD-class is shifted towards more recent HBD-classes with the MIxKR model compared to the N1R model (Figure 7A-B). Since for simulations the N1R performed better for the partitioning in HBD-classes, and since patterns are similar, the results from the N1R model fit probably better the reality. The shift was more pronounced when more HBD-classes were included in the model and the non-HBD class had consequently a higher rate $R_{K}$, and in the Lowland line where the inbreeding levels are higher. Higher shift for higher inbreeding levels were also observed with simulated data. With the MixKR model, the partitioning in different HBD-classes and the estimated mixing coefficients (Figure 7C-D) changed according to the model specifications, whereas the N1R model proved robust to these changes (Figures 7A-D). Note that we also fitted HBD-classes corresponding to HBD segments shorter than the shortest HBD segments than could be captured with the available density. As a result, the contribution of these classes remained null. As for the simulated data sets, the overall inbreeding levels estimated by the two models were highly similar (Figure E-F), the difference being essentially the partitioning.

Analysis of real data with the N1R model confirmed that mixing coefficients can now be interpreted, with levels close to estimated HBD proportions in different classes, contrary to those obtained with the MixKR model (Figure 7C-D). In addition, they can now be used to estimate the inbreeding coefficients, $F_{\delta}$ or $F_{\delta-T}$. These inbreeding coefficients based on the equilibrium distribution and on the number of HBD segments are close to values of the realized inbreeding coefficient, $F_{G}$ and $F_{G-T}$, corresponding to the proportion of the genome in HBD classes (Figures E-F). The mixing coefficients estimate the proportion of HBD segments within a specific layer and provide an estimation of the inbreeding accumulated in that layer, which depends also on the number of generations included in the layer.

When inbreeding levels are lower, such as in cattle (see for instance in Solé et al. (2017)), differences are smaller. This is illustrated in Supplementary Figure 8 on a Holstein data set including 245 individuals genotyped for 30,000 markers (Alemu et al., 2021).


Figure 7. Estimation of inbreeding levels in the European bison.Inbreeding levels are estimated in 154 Lowland individuals (panels A-C-E) and 29 Lowland-Caucasian individuals (panels B-D-F). Estimation was performed with the MixKR and N1R models with 6 HBD-classes (Mix6R and N1R-5L) or with 10 HBD-classes (Mix10R and N1R-9L). A) and B) Proportion of the genome associated with different HBD-classes averaged over all individuals from a population. C) and D) Estimated mixing coefficients for each HBD class, averaged over all individuals. E) and F) Average estimated inbreeding levels. Only HBD-classes with a rate $R_{k} \leq \mathrm{a}$ threshold T are used to estimate $F$. This allows to set the reference population approximately $0.5 T$ generations in the past. The inbreeding coefficients are estimated as the proportion of the genome in HBD-classes, $F_{G}$, or as the equilibrium distributions, $F_{\delta}$, obtained from the mixing coefficients $\rho_{c}$ (only for the N1R model).

## 4 Discussion

We herein proposed an improved model, we called the N1R model, for the characterization of individual genomic inbreeding levels and its partitioning into different HBD-classes. Compared to our previous MixKR model (Druet and Gautier, 2017), the main improvement relied on a new modelling of the transition probabilities which both resulted in better statistical properties in general, but also facilitated the interpretation of the mixing coefficients with initial state probabilities now corresponding to the stationary distributions. Although the estimation of both global and local inbreeding levels were almost identical between the N1R and the MixKR models, the partitioning of inbreeding into different HBDclasses was clearly improved and the N1R model provided more accurate estimation of the relative contribution of each group of ancestors.

Our main objective was indeed to improve this partitioning, in particular for high inbreeding levels since we previously observed that in such cases, the partitioning could be shifted towards more recent HBD classes (Druet et al., 2020). This problem was caused in our previous MIXKR model by the difference of rates for HBD classes associated to recent ancestors (i.e., capturing large HBD segments) and the nonHBD class that resulted in high differences in their underlying mixing coefficients. More precisely, the non-HBD class had a very high mixing coefficient because it generally represented the main contribution to individual genomes and it was modelled with a large $R_{c}$ (i.e., as many short segments tracing back in the distant past). Conversely, mixing coefficients from recent HBD classes (long segments with low rates $R_{c}$ ) were very small as these segments were much less numerous than short HBD or non-HBD segments. Therefore, in the Markov chain, the probability to start a new recent HBD segment was extremely low and needed to be supported by long stretches of homozygous genotypes. In these conditions, two consecutive recent HBD segments were systematically modelled as a single long HBD segments because transitions to new recent HBD segments were heavily penalized, explaining the overestimation of segment length and the incorrect HBD partitioning (a shift towards more recent HBD classes). Yet, the strength of this problem was expected to be a function of the frequency of consecutive HBD segments, and was thus only observed in simulated and real data sets with high recent inbreeding levels (Druet et al., 2020). We here showed that using the same rates for HBD and non-HBD segments by modelling sequentially multiple nested 1R models in our new N1R model allowed to solve this issue. This property is important to better interpret the results by determining which generations of ancestors mostly contributed to autozygosity.

Our improved N1R model should also allow better estimation of the number of generations to the common ancestor for an HBD segment. Nevertheless, more work is required to quantify how precisely the age of individual HBD segments can be estimated with this or other similar approaches.

The new model is also more robust to the number and specifications (i.e., rates $R_{k}$ ) of the fitted classes in the sense that partitioning remains consistent when the rate of the non-HBD classes is modified. With our previous MixKR model, the choice of the rates associated with the non-HBD segments, often directly related to the number of fitted classes, might indeed influence the partitioning in HBD and non-HBD classes because higher rates (smaller segments) resulted in even higher mixing coefficients for the nonHBD class further penalizing the occurrence of two consecutive recent HBD segments (see above). The fact that the N1R model is less sensitive to model specifications is an important aspect because one of the advantages of methods relying on HMM (Leutenegger et al., 2003; Vieira et al., 2016; Narasimhan et al., 2016; Druet and Gautier, 2017) is that fewer parameters need to be defined compared to rule-based ROH approaches, where these definitions might sometimes result arbitrary. In general, there is less need to optimize parameters, HBD probabilities indicate whether the evidence for autozygosity is strong or not. In our model, the number of classes and their range must still be defined but it affects mainly interpretation in terms of age of ancestors. To this respect, the robustness of the N1R model is highly valuable since in the previous MixKR model partitioning could be affected by the definition of the last HBD class.

Our newly developed N1R model allows the definition of new inbreeding coefficients based on the initial state probabilities. These inbreeding coefficients fit closer to the original definition by Leutenegger et al. (2003) since under the 1R model, the mixing coefficient can be interpreted as both the frequency of HBD segment and the proportion of the genome that is HBD (i.e., the equilibrium distribution). Yet, this is slightly different from a direct estimation of the realized proportion of the genome in HBD segments (e.g., as obtained from the posterior HBD probability of each marker, see eq. 21), although both estimators are highly correlated. Interestingly, the mixing coefficients also provide direct estimators of the level of inbreeding associated with ancestors present in a specific period of time (corresponding to a layer in our model), independently on what happened in other more recent layers. In an ideal population, this inbreeding would directly be related to the number of generations and to the effective population size in the layer. These aspects must be further investigated and more work is required to understand which generations are captured by a specific layer, or the relationship with the underlying historical $N_{e}$.

In practice, the variation of mixing coefficients across layers could be used to monitor whether inbreeding is increasing or not, for instance in a conservation program as suggested by Druet et al. (2020).

Comparisons of our previous MixKR and our new N1R models on genotyping data from European bison were in agreement with trends observed on simulated data. The overall inbreeding levels were similar with both models but the partitioning was different, shifted towards more recent HBD classes with the MixKR model. This shift was also more pronounced when inbreeding levels were higher and when the rate of the non-HBD class was higher, matching our predictions (see above). This suggests that the new partitioning is more accurate, strengthening our initial conclusions that the contribution from the most recent generations of ancestors to inbreeding is decreasing and that the restoration plan has been successful to control inbreeding in European bison (Druet et al., 2020).

Finally, it is important to note that differences between our new N1R version of the model and the former MixKR one in terms of interpretation only concern the partitioning of inbreeding when inbreeding levels are high. For instance, differences would be minimal in most human populations. Even in cattle presenting moderate inbreeding levels, the impact on the partitioning remained limited.

## 5 Acknowledgements

This work was supported by the Fonds de la Recherche Scientifique-FNRS under grants J.0134.16 and J.0154.18. Tom Druet is Senior Research Associate from the F.R.S.-FNRS. We used the supercomputing facilities of the "Consortium d'Equipements en Calcul Intensif en Fédération Wallonie-Bruxelles" (CECI), funded by the F.R.S.-FNRS.

## References

Abney, M., C. Ober, and M. S. McPeek, 2002 Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the hutterites. The American Journal of Human Genetics 70: 920-934.

Alemu, S. W., N. K. Kadri, C. Harland, P. Faux, C. Charlier, A. Caballero, and T. Druet, 2021 An evaluation of inbreeding measures using a whole-genome sequenced cattle pedigree. Heredity 126: 410-423.

Bertrand, A. R., N. K. Kadri, L. Flori, M. Gautier, and T. Druet, 2019 Rzooroh: An r package to characterize individual genomic autozygosity and identify homozygous-by-descent segments. Methods in Ecology and Evolution 10: 860-866.

Broman, K. W. and J. L. Weber, 1999 Long homozygous chromosomal segments in reference families from the centre d'Etude du polymorphisme humain. Am J Hum Genet 65: 1493-500.

Ceballos, F. C., P. K. Joshi, D. W. Clark, M. Ramsay, and J. F. Wilson, 2018 Runs of homozygosity: windows into population history and trait architecture. Nature Reviews Genetics 19: 220.

Crow, J. F., M. Kimura, et al., 1970 An introduction to population genetics theory. An introduction to population genetics theory. .

Druet, T. and M. Gautier, 2017 A model-based approach to characterize individual inbreeding at both global and local genomic scales. Molecular ecology 26: 5820-5841.

Druet, T., K. Oleński, L. Flori, A. R. Bertrand, W. Olech, M. Tokarska, S. Kaminski, and M. Gautier, 2020 Genomic footprints of recovery in the european bison. Journal of Heredity 111: 194-203.

Kirin, M., R. McQuillan, C. S. Franklin, H. Campbell, P. M. McKeigue, and J. F. Wilson, 2010 Genomic runs of homozygosity record population history and consanguinity. PloS One 5: e13996.

Leutenegger, A.-L., A. Labalme, E. Génin, A. Toutain, E. Steichen, F. Clerget-Darpoux, and P. Edery, 2006 Using genomic inbreeding coefficient estimates for homozygosity mapping of rare recessive traits: application to taybi-linder syndrome. The American journal of human genetics 79: 62-66.

Leutenegger, A. L., B. Prum, E. Genin, C. Verny, A. Lemainque, F. Clerget-Darpoux, and E. A. Thompson, 2003 Estimation of the inbreeding coefficient through use of genomic data. American Journal of Human Genetics 73: 516-23.

Magi, A., L. Tattini, F. Palombo, M. Benelli, A. Gialluisi, B. Giusti, R. Abbate, M. Seri, G. F. Gensini, G. Romeo, et al., 2014 H 3 m 2 2: detection of runs of homozygosity from whole-exome sequencing data. Bioinformatics 30: 2852-2859.

McQuillan, R., A.-L. Leutenegger, R. Abdel-Rahman, C. S. Franklin, M. Pericic, et al., 2008 Runs of homozygosity in european populations. American Journal of Human Genetics 83: 359-372.

Narasimhan, V., P. Danecek, A. Scally, Y. Xue, C. Tyler-Smith, and R. Durbin, 2016 Bcftools/roh: a hidden markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32: 1749-1751.

Palamara, P. F., 2016 ARGON: fast, whole-genome simulation of the discrete time Wright-fisher process. Bioinformatics 32: 3032-4.

Pemberton, T. J., D. Absher, M. W. Feldman, R. M. Myers, N. A. Rosenberg, and J. Z. Li, 2012 Genomic patterns of homozygosity in worldwide human populations. American Journal of Human Genetics 91: 275-292.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. de Bakker, M. J. Daly, and P. C. Sham, 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559-75.

R Core Team, 2013 R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

Renaud, G., K. Hanghøj, T. S. Korneliussen, E. Willerslev, and L. Orlando, 2019 Joint estimates of heterozygosity and runs of homozygosity for modern and ancient samples. Genetics 212: 587-614.

Solé, M., A.-S. Gori, P. Faux, A. Bertrand, F. Farnir, M. Gautier, and T. Druet, 2017 Age-based partitioning of individual genomic inbreeding levels in belgian blue cattle. Genetics Selection Evolution 49: 1-18.

Vieira, F. G., A. Albrechtsen, and R. Nielsen, 2016 Estimating ibd tracts from low coverage ngs data. Bioinformatics 32: 2096-2102.

Wang, S., C. Haynes, F. Barany, and J. Ott, 2009 Genome-wide autozygosity mapping in human populations. Genet Epidemiol 33: 172-80.

Weir, B. S., A. D. Anderson, and A. B. Hepler, 2006 Genetic relatedness analysis: modern data and new challenges. Nature Reviews Genetics 7: 771-780.

## A Appendix

Here we show that in the N1R model, the Markov chain is stationary and the initial state distribution corresponds to the stationary distribution, i.e.:

$$
\begin{equation*}
\boldsymbol{\delta} \mathbf{T}^{m}=\boldsymbol{\delta}\left(\mathbf{T}_{0}^{m}+\mathbf{T}_{\chi}^{m \prime} \mathbf{T}_{C}\right)=\boldsymbol{\delta} \tag{24}
\end{equation*}
$$

where $\boldsymbol{\delta}$ is a row vector of dimension $\mathrm{L}+1$. Let the (row) vector $\zeta=\left\{\zeta_{\mathbf{k}}\right\}_{\mathbf{1}, . ., \mathbf{L}+\mathbf{1}}=\boldsymbol{\delta} \mathbf{T}^{\mathbf{m}}$. We want to show that $\zeta_{k}=\boldsymbol{\delta}\left(\boldsymbol{t}_{\mathbf{0}, \boldsymbol{k}}^{\boldsymbol{m}}+\boldsymbol{t}_{\boldsymbol{C} \boldsymbol{\chi}, \boldsymbol{k}}^{\boldsymbol{m}}\right)=\delta_{k}$ for all $\mathrm{k} \in(1, L+1)$, where $\boldsymbol{t}_{\mathbf{0}, \boldsymbol{k}}^{\boldsymbol{m}}$ is the $k$ th column vector of $\mathbf{T}_{\mathbf{0}}{ }^{m}$ and $\boldsymbol{t}_{\boldsymbol{C} \boldsymbol{\chi}, \boldsymbol{k}}^{\boldsymbol{m}}$ is the $k$ th column vector of the matrix $\mathbf{T}_{\chi}^{m \prime} \mathbf{T}_{C}$ :

To simplify notations in the above equation, we assume that $\prod_{j=k}^{k-1}\left(1-\rho_{j}\right)=1$. Still to keep notations general, for $k=L+1$ we define $\rho_{L+1}=1-\rho_{L}$. Note also that elements $l \geq k$ of $\boldsymbol{t}_{\boldsymbol{C \chi}, \boldsymbol{k}}^{\boldsymbol{m}}$ are all identical.

Hence,

$$
\begin{aligned}
\zeta_{k} & =\boldsymbol{\delta} \boldsymbol{t}_{\mathbf{0}, \boldsymbol{k}}^{\boldsymbol{m}}+\boldsymbol{\delta} \boldsymbol{t}_{\boldsymbol{C} \boldsymbol{\chi}, \boldsymbol{k}}^{\boldsymbol{m}} \\
& =\delta_{k} e^{-R_{k} d_{m}}+\rho_{k} \sum_{l=1}^{L+1}\left(\delta_{l} \sum_{i=1}^{\min (k, l)} \chi_{m}^{i}\left[\prod_{j=i}^{(k-1)}\left(1-\rho_{j}\right)\right]\right) \\
& =\delta_{k} e^{-R_{k} d_{m}}+\rho_{k} \sum_{i=1}^{k}\left(\chi_{m}^{i}\left[\prod_{j=i}^{k-1}\left(1-\rho_{j}\right)\right] \sum_{l=i}^{L+1} \delta_{l}\right) \\
& =\delta_{k} e^{-R_{k} d_{m}}+\rho_{k} \sum_{i=1}^{k}\left(\chi_{m}^{i}\left[\prod_{j=1}^{k-1}\left(1-\rho_{j}\right)\right]\right)
\end{aligned}
$$

The last equality follows from the nested model properties which consider each layer sequentially (see the main text and Figure 2). Hence, $\sum_{l=i}^{L+1} \delta_{l}$ can be interpreted as the probability of starting a layer as old or older than $i$ which is also the probability of not having entered any of the successive layer more recent than $i$ i.e. $\sum_{l=i}^{L+1} \delta_{l}=\prod_{j=1}^{i-1}\left(1-\rho_{j}\right)$. Note also that $\sum_{l=1}^{L+1} \delta_{l}=1$. In addition, recalling that $\delta_{k}=\rho_{k} \prod_{j=1}^{k-1}\left(1-\rho_{j}\right)$ (eq. 15) and $\sum_{i=1}^{k} \chi_{m}^{i}=1-e^{R_{k} d_{m}}$ (eq. 10), we obtain:

$$
\begin{aligned}
\zeta_{k} & =\delta_{k} e^{-R_{k} d_{m}}+\rho_{k} \sum_{i=1}^{k}\left(\chi_{m}^{i}\left[\prod_{j=1}^{k-1}\left(1-\rho_{j}\right)\right]\right) \\
& =\delta_{k} e^{-R_{k} d_{m}}+\rho_{k}\left[\prod_{j=1}^{k-1}\left(1-\rho_{j}\right)\right] \sum_{i=1}^{k} \chi_{m}^{i} \\
& =\delta_{k} e^{-R_{k} d_{m}}+\delta_{k}\left(1-e^{-R_{k} d_{m}}\right) \\
& =\delta_{k}
\end{aligned}
$$

