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. Abstract

10 Inbreeding results from the mating of related individuals and has negative consequences because it brings
un  together deleterious variants in one individual. Genomic estimates of the inbreeding coeflicients are
12 preferred to pedigree-based estimators as they measure the realized inbreeding levels and they are more
13 robust to pedigree errors. Several methods identifying homozygous-by-descent (HBD) segments with
1 hidden Markov models (HMM) have been recently developed and are particularly valuable when the
15 information is degraded or heterogeneous (e.g., low-fold sequencing, low marker density, heterogeneous
16 genotype quality or variable marker spacing). We previously developed a multiple HBD class HMM
v where HBD segments are classified in different groups based on their length (e.g., recent versus old
18 HBD segments) but we recently observed that for high inbreeding levels with many HBD segments, the
v estimated contributions might be biased towards more recent classes (i.e., associated with large HBD
20 segments) although the overall estimated level of inbreeding remained unbiased. We herein propose an
a1 updated multiple HBD classes model in which the HBD classification is modeled in successive nested
2 levels. In each level, the rate specifying the expected length of HBD segments, and that is directly
3 related to the number of generations to the ancestors, is distinct. The non-HBD classes are now modeled
2 as a mixture of HBD segments from later generations and shorter non-HBD segments (i.e., both with
s higher rates). The updated model had better statistical properties and performed better on simulated
» data compared to our previous version. We also show that the parameters of the model are easier to
27 interpret and that the model is more robust to the choice of the number of classes. Overall, the new
;s model results in an improved partitioning of inbreeding in different HBD classes and should be preferred

2 in applications relying on the length of estimated HBD segments.

» Keywords: homozygous-by-descent; inbreeding; hidden Markov model; autozygosity; ROH
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+ 1 Introduction

» In diploid species, offspring of related individuals can carry at autosomal loci a pair of DNA segments
3 originating from the same common ancestor. These stretches of contiguous loci where the two DNA copies
s are identical-by-descent (IBD) are referred to as homozygous-by-descent (HBD) or autozygous segments.
3 The length of these HBD segments is inversely related to the size of the so-called inbreeding loop that
3 connects the individual to its common ancestor, since multiple generations of recombination will tend to
s reduce the size of each transmitted DNA copy. The inbreeding level of an individual can be defined as the
3 proportion of its genome that lies in HBD segments. Genomic data may allow to directly estimate this
3 proportion to provide an estimator of the realized inbreeding coefficient (Leutenegger et al., 2003), whereas
o pedigree-based estimators, when available, can only provide expected values. Such estimates of inbreeding
a coefficients are highly valuable for the study of inbreeding depression and the management of livestock
2 populations or those in conservation programs. In addition, detailed assessment of the distribution of
1 HBD segments over the genomes can also be used in homozygosity mapping experiments (Abney et al.,
s 2002; Leutenegger et al., 2006), to identify recessive alleles causing genetic defects or diseases, or for
s demographic inference purposes (Kirin et al., 2010; Ceballos et al., 2018).

26 In practice, HBD segments may be identified as runs-of-homozygosity (ROH) that correspond to long
«  stretches of homozygous genotypes (Broman and Weber, 1999; McQuillan et al., 2008). Such ROH can
s be empirically detected with rule-based approaches requiring the definition of parameters such as window
w0 size, minimum ROH length, marker density, maximum allowed spacing between successive markers and
so number of missing or heterozygous genotypes (Purcell et al., 2007). More formally, likelihood-based
51 ROH approaches allow to compare the likelihoods of segments to be allozygous versus autozygous regions
52 based on marker allele frequencies and the genotyping error probabilities (Pemberton et al., 2012; Wang
s3 et al., 2009). However, these approaches still require the prior definition of fixed-length windows to scan
s the genome for ROH segments. Alternatively, several authors developed fully probabilistic approaches
55 based on hidden Markov models (HMM) (Leutenegger et al., 2003; Narasimhan et al., 2016; Vieira
so et al., 2016; Druet and Gautier, 2017). As likelihood-based approaches, they rely on genotype frequencies
57 and genotyping error probabilities, but in addition, they take into account inter-marker genetic distances.
ss  Moreover, they do not require prior selection of some window size as HBD estimations are integrated over

s all possible window lengths. Furthermore, uncertainty in genotype calling, as for low-fold sequencing data,
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o can also be integrated over (Vieira et al., 2016; Druet and Gautier, 2017). These two later characteristics
e make thus HMM methods particularly valuable for the analyses of data set with low marker density
&2 and/or heterogeneous genotype quality and/or heterogeneous marker spacing. For instance, they are
¢ the method of choice to work with ancient DNA (e.g., Renaud et al., 2019), where genotype quality is
e particularly poor, and several HMM have been developed in the field. Similarly, they are particularly well
s suited to work with exome sequencing data (Magi et al., 2014), low density marker array (e.g., Solé et al.,
s 2017; Druet et al., 2020) or with low-fold sequencing data (Vieira et al., 2016). Overall, less parameters
ez need to be defined when using these tools.

68 In HMM based approaches, the length of HBD segments is generally assumed to be exponentially
6 distributed. Modeling a single exponential distribution amounts to assume that all the autozygosity is
7 associated to ancestors present in the same past generations. For complex population histories, this
7 assumption may be too restrictive and Druet and Gautier (2017) proposed to use a mixture of expo-
7 nential distributions to model HBD segment classes of different expected lengths, under a similar HMM
7 framework. In this approach, HBD classes can be viewed as group of ancestors present in different past
= generations. This model better accounts for complex demographic histories in which different ancestors
7 from many different past generations may contribute to autozygosity. We showed that it improves the fit
% of individual genetic data and provides more accurate estimations of autozygosity levels. For instance, a
77 single HBD class model might underestimate autozygosity when multiple generations contribute to it, and
7 also tend to regress length of HBD segment towards intermediate values, cutting in particular the longest
7 segments into shorter pieces (e.g., Solé et al., 2017). An accurate estimation of HBD segment length
s distribution may however be critical to estimate the number of generations to the common ancestors.
a1 The multiple HBD-class model provides also insights into the past demographic history of populations
2 and estimates the relative contributions of past generations to contemporary inbreeding levels (Druet and
s Gautier, 2017).

8 Nevertheless, we recently observed that when the contribution of recent ancestors is extremely high,
s the multiple HBD classes model in its initial definition (as of Druet and Gautier, 2017) tended to un-
s derestimate the age of HBD segments by shifting HBD partitioning towards more recent classes (Druet
e et al., 2020), although the overall estimated levels of inbreeding remained unbiased. Consequently, we
s herein implemented an updated multiple HBD classes model in which the HBD classification is modeled

s in successive nested levels, each level corresponding to a single HBD class model with a distinct rate. As
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o a result, the non-HBD classes are now modeled as a mixture of HBD segments from later generations
o and shorter non-HBD segments (i.e., both from subsequent levels with higher rates). We further carried
oo out a detailed simulation study to show that the upgraded model had better statistical properties and
o3 performed better compared to our previous version. We also show that the parameters of the model are
o easier to interpret and that the model is more robust to the choice of the number of classes. We also
os  provide an illustration on genotyping data from European Bison that we previously analyzed with the

o original model (Druet et al., 2020).

« 2 Models

« 2.1 Previous models

w 2.1.1 Single HBD-class model (1R model)

w0 Leutenegger et al. (2003) proposed to describe the genome of an individual as a mosaic of HBD and non-
i HBD segments with a HMM. In that model, the length of HBD segments is exponentially distributed
102 with a rate R, related to the number of generations of recombination along both paths connecting each
03 of the two individual DNA copies (haplotype) to their common ancestor, and their frequency is a direct
14 function of the mixing coefficient p. The HBD and non-HBD segments are not directly observed but their
105 distribution can be inferred using genotype data available for a set of markers. In that case, the model
s can be represented as an HMM with two hidden states (state 1 = “HBD” and state 2 = “non-HBD”)

w7 with the following transition probabilities between two consecutive markers m and m + 1:

P[Spmi1=1|8m =1 =e fdn 4 (1 —e Bin)p

P[Spi1=1|8,=2] =(1—e Fdm)p
108 (1)
PlSmi1=2|Sm=2] =e 4 (1—e n)(1-p)

P[Serl =2 | Sy = 1] =(1- e_Rdm)(l —p)

109 where S, is the state at position m, d,, is the genetic distance in Morgans between markers m and
uw m+ 1. The term e F%m represents the probability that there is no recombination on both genealogical
w paths between two consecutive markers m and m + 1 (i.e., the HBD status remains the same). We use
12 the term “coancestry changes” to refer to the presence of at least one recombination on these paths as

us  in Leutenegger et al. (2003), and R will be called the rate of coancestry change accordingly. In this
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us  HMM, the equilibrium HBD probability is p, which has been shown to be an unbiased estimator of the
us inbreeding coefficient or the proportion of genome HBD (Leutenegger et al., 2003).

116 The emission probabilities are the probabilities to observe the marker genotypes conditional on the
u7  underlying state. For non-HBD and HBD states, these emission probabilities are a function of expected
us  genotype frequencies in non-HBD and HBD segments, respectively (Crow et al., 1970; Broman and Weber,
uo  1999; Leutenegger et al., 2003). For the HBD state:

120 P[AmiAmj ‘ Sm = ]-apmi] = (2)

0 ifi#j
w1 where A,,; and A,,; are the two alleles observed at marker m, ¢ and j representing the allele numbers,
122 P 18 the frequency of allele ¢ at marker m. Ideally, these allele frequencies should be estimated from
123 individuals in a reference population but they are generally computed from the sampled individuals. For
124 the non-HBD state:

9 e
P [AmsAms | S = 2, pois o] = 40 = (3)

2mipm; i F]

126 The expected frequencies in non-HBD segments (eqn. 3) correspond to Hardy-Weinberg proportions.
127 These emission probabilities are similar to probabilities used in maximum likelihood estimators of the
s inbreeding coefficient (e.g., Weir et al., 2006). As a result, when markers are considered independent
1o (i.e., probability of coancestry change equal to 1), both approaches lead to very similar estimates (see
1w Alemu et al., 2021). The extension of these emission probabilities to incorporate genotyping error or
w1 mutation probability is straightforward (see Broman and Weber, 1999; Leutenegger et al., 2003; Druet
12 and Gautier, 2017). Similarly, the emission probabilities can also be modified to handle next-generation
1 sequencing data (e.g., genotype likelihoods) allowing efficient analysis of shallow sequencing or GBS data

1 (see Vieira et al., 2016; Narasimhan et al., 2016; Druet and Gautier, 2017).

3 2.1.2 Models with multiple HBD classes (KR and MixKR models)

13 In the single HBD class model, all HBD and non-HBD segments have the same expected length defined
137 by the rate parameter R. Hence, ancestors contributing to HBD and non-HBD segments are assumed to
138 have been present approximately in the same past generations. To model the contribution of different

1o groups of ancestors to autozygosity (i.e., account for the difference in HBD segment lengths originating


https://doi.org/10.1101/2021.05.25.445246
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.25.445246; this version posted May 25, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1w from ancestors living in different past generations), we introduced models with multiple HBD classes
w1 (Druet and Gautier, 2017). In these new models, each class correspond to a distinct state, with states 1
w2 to K — 1 for HBD segments originating from groups of ancestors living in different past generations and
13 a state K for non-HBD segments. For each HBD class ¢ (¢ = 1,..., K — 1), HBD segments length are
s assumed exponentially distributed with rate R, . The non-HBD segments correspond to segments that
s do not trace back to a common ancestor up to the most remote HBD class. Therefore, the non-HBD
us segments are assumed to be exponentially distributed with the same rate as the most ancient HBD class

wr (l.e., Rk = Ri—1). The transition probabilities from state b at marker m to state a at marker m + 1 are:

e~ Redm 4 (1 — e~ Bedm)p, ifa="b
148 P [Sm+1 =a | Sm = b] = (4)

(1 — e Fedm)p, ifa#b

u  where p. is the mixing coefficient associated with class c.

150 We previously called these models with multiple rates “KR” models (e.g., 1R model corresponding
11 to the single HBD-class model) and proposed to either estimate the K — 1 different rates R, for each
152 individual or set them to pre-defined values (so-called MIXKR model) (Druet and Gautier, 2017). In
153 practice, the latter modeling facilitates results comparisons across different individuals and in the present
15« work we only consider MIxKR models. More importantly, the estimated p. mixing coefficient associated
155 to each HBD class ¢ in KR models (with K > 1) can no longer be interpreted as inbreeding coefficients as
156 in the single HBD class model. Indeed, although they correspond to the initial HMM state probabilities,
157 the p. values do not correspond to the marginal equilibrium proportions of genomes belonging to each
155 HBD class ¢ as these proportions are also a function of the rates R., that now differ between classes.
159 Nevertheless, several measures related to individual inbreeding coefficients can be obtained from KR
10 models as i) the genome-wide estimate of the realized individual inbreeding level ﬁg, corresponding to
11 the proportion of the genome in HBD classes; ii) the inbreeding level ﬁc(f) associated with HBD class ¢
12 defined as the proportion of the genome belonging to class ¢; and iii) the probability ¢; that a locus [ lies
13 in a HBD segment (Druet and Gautier, 2017).

164 In addition to the loss of interpretability of mixing coefficients, we previously showed that the MixKR
s model tended to assign HBD segments to more recent classes (i.e., with smaller R) when the overall
166 inbreeding level of individuals was high (Druet et al., 2020). Although the 1R model remained limited

67 in its range of applications (because modeling a single class of ancestors, see above), it provided both an
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s unbiased estimate of R and an estimate of p that could be interpreted as an inbreeding coeflicient.
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Figure 1. Graphical illustration of the Nested 1R model. Four layers of ancestors are
represented. In each layer, the genome is represented as a mosaic of HBD and non-HBD segments with
a 1R model with specific parameters p; and R;.

w 2.2 New model: the nested 1R model

o Here were propose an alternative multiple HBD classes model that these preserves desirable properties
wm  of the 1R model and allows for the contribution of multiple groups of ancestors to autozygosity (as in
w2 the MIXKR model). As illustrated in Figure 1, we sequentially model multiple layers of ancestors (from
w3 the most recent to the oldest), each contributing to a distinct HBD class. More precisely, a 1R model
wa  is first used to describe the genome of an individual as a mosaic of HBD segments associated with the
s most recent layer of ancestors (first group of ancestors) and non-HBD segments (i.e., relative to these
we ancestors). Although these segments would be non-HBD with respect to this first layer, they could
iz be inherited HBD from more remote ancestors. Therefore, we propose to model in turn the non-HBD
s segments in the first layer as a mosaic of HBD and non-HBD segments associated with a second layer of
wo ancestors (see Figure 1). This would be achieved by fitting a second 1R model, nested in the first one,
10 with different parameters, po and Ry (with Ry > Rp). This approach can be repeated for several layers
w1 of ancestors (Figure 1).

182 Each layer [ is thus described as a mosaic of HBD and non-HBD segments, labelled as HBD; and

113 non-HBD; states. The non-HBD class in layer [ would be a mixture of HBD classes in subsequent layers
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14 and the non-HBD class in the last layer L. We assume that emission probabilities in HBD classes are the
15 same in each layer, and identical to those used in the 1R model (eqn 2). Note that emission probabilities
15 could be made layer dependant, e.g., to account for more generations of mutation or changes in allele
w7 frequencies through generations. Similarly, the emission probabilities for the non-HBD class in the last
s layer L matches those used in the 1R model (eq 3). However for non-HBD segments in layer | = 1 to
189 | = L—1, the emission probabilities now also depend on the mixing coefficients p. through the proportion
w0 T = ﬁ (1 = pe) of positions expected to ultimately lie in a non-HBD segment at the oldest layer L

c=Il+1
w1 (i.e., not mapping to an HBD segment in any successive layers I’ > [) as:

192 WZP [AmzAmj | Sm = 27pmi;pmj] + (1 - 7Tl)IP) [AmzAmj | Sm = 1apml] (5)

w3 where P[AniApmj | Sm = 2,Dmi, Pmj] and P[Ap; A | Sm = 1,pms] are emission probabilities from the
s 1R model (eqns. 2 and 3).

105 As the parameters p. for the different classes are required to obtain these emission probabilities, the
16 implementation of this model is not trivial. A more convenient way to specify the Nested 1R model is
7 to define L HBD states (one per layer) and a single non-HBD class associated to the Lth layer. This
s results in a parameterization very similar to the MiXKR model (Druet and Gautier, 2017) but with a
19 modified transition probabilities matrix T™ between consecutive markers m and m + 1. More precisely,
20 in the MIXKR model, T™ can be decomposed in three parts i) a diagonal matrix T{" associated with
21 the probability of absence of coancestry change within each of L+1 states; ii) a matrix T7 associated
20 with the probability of coancestry change within each state; and iii) a matrix T.s, that does not depend
203 on the marker position, specifying the probability of entering each state after a coancestry change given

20 the state of origin:

T™ =T + T2 Tes (6)
206 In the nested 1R model, the matrix T™ will have a similar structure but the matrices T} and T, in

a7 eq. 6 that are defined with respect to states (eq 4) are replaced by matrices TV and T¢ that are rather

28 defined with respect to layers as we detail below. As a result, T™ is decomposed as:

209 T" = Tom + T;n/TC (7)
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a0 2.2.1 Transition probabilities in nested 1R models

an At marker position m, the genome can be associated with any state [ from 1 to L + 1. States from 1
a2 to L correspond to HBD segments in layers 1 to L, respectively. HBD segments from state [ are also
23 non-HBD in layers 1 to [ — 1. The last state L 4 1 is associated to non-HBD segments in the last layer
a4 L, and must also be non-HBD in layers 1 to L — 1. To estimate the transition probabilities between the

as L+ 1 different hidden states, we must consider several possible events:

216 1. the Markov chain remains in the same state ! without any coancestry change. This requires no
217 coancestry change between the two consecutive markers in all the generations included in both the
218 genealogical paths to the ancestors from layer ;

219 2. the first coancestry occurs within a given layer [ (i.e., no coancestry change occurs before this layer).
220 We must then account for both the probability of first coancestry change occurring in [ and the
221 conditional transition probabilities to the other states.

2  2.2.2 Absence of coancestry change from layers 1 to [

23 In the absence of coancestry change between the two consecutive markers, a HBD segment from a given
a4 layer [ is simply extended. The same holds for non-HBD segments in layer L (i.e., for the state L+1).
25 The probability of no coancestry change between markers m and m + 1 from layers 1 to [ is equal to

e—de

26 = as for a 1R model with rate R; (eqn 1). These transitions can be summarized for all states as a

27 diagonal matrix T{":

e~ ftrdm 0 0 0
0 e~ Rzdm 0 0
Ty = (8)
0 0 e~ Brdm 0
0 0 . 0 e~ Rrdm
208 Note that the probabilities for the last two states (L and L + 1) are the same as they both belong to

29 the last layer.

10
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20 2.2.3 Probability of first coancestry change occurring within a given layer [

21 From equation 8, the probability of at least one coancestry change occurring between two consecutive

22 markers m and m + 1 in the past generations covered by layers 1 to [ is 1 — e~ ftdm

. This is in agreement
23 with eqn. 1 for a 1R model with rate R;. The coancestry change may have occurred in any layers c
2 (1 < e <) but we are interested in the first coancestry change event since it implies the start of a new
25 HBD or non-HBD segments in that layer (and affects thus also the status in subsequent layers).

236 The probability x!, of a first coancestry change occurring within a specific layer [ is equal to the

—Ri_1dm

257 probability of no coancestry change in earlier layers ¢ < [, e , multiplied by the probability of a

2 coancestry change between layers [ — 1 and [ which is equal to 1 — e~ (Fi-1=Fi)dm.

X'lrn — ¢~ Ric1dm (1 _ e_(Rl_Rl—l)dm) — e~ Ri-1dm _ —Ruidnm (9)
239 Note that x!, is also the probability of no coancestry change from layer 1 to [ —1 minus the probability

20 of no coancestry change from layer 1 to . For notational convenience we set Ry = 0 (i.e., the probability

21 of no coancestry change before the first layer is equal to 1). We can further show that the sum of

R;d

a2 probabilities of first coancestry changes within each layer from 1 to [ is equal to 1 — e™""%m as expected:

l l

lem —_ Z (e*Rz—ldm _ e*dem) —_ 6*R0dm _ B*dem —1— E*dem (10)
i=1 i=1
243 These probabilities can also be combined in a matrix T}, with L+ 1 columns (for states) and L rows

2 (for layers). The element N (1, c¢) represents the probability of first coancestry change within each layer
25 for a genomic position in an hidden state ¢ (which is an HBD segment if ¢ < L and a non-HBD segment

246 lfC:L+1)

Xin — e Ri1dm _ o—Ridm  if ] <ec

247 T;n(l, C) = (11)
0 ifl>c
28 The two last columns of T} both correspond to probabilities of first coancestry changes for genomic

20 positions in states from the last layer, respectively HBD and non-HBD, and are thus identical. When
s [ >c T’;Z(l, ¢) is 0 because for a HBD segment in layer ¢, coancestry changes can occur only from layers

s 1to c. Thus, TV can be represented as:

11
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Xm Xm Xm " Xm  Xm
0 Xjm X " X Xm
TY=10 0 X - Xh Xm (12)
0 0 0 - xh xh
252 As indicated in Eq. 10, elements from the column [ of T{" sum to 1 — e~ fdm for | < L. Each column

»3  corresponds to the marginal probability of a coancestry change when the marker m is in state [.

Ancestral  Ancestral Ancestral ~Ancestral .

Layer 1 layer2  Llayer3  Layer4 Hidden
| | I States

i HBD, 1

HBD, 2

HBD, 3

HBD, 4

. ) Non-HBD, 5

1 1 1 1 p4

Figure 2. Representation of the transition probabilities in a Nested 1R model with L =4
HBD states and one non-HBD states as a decision tree. In this representation the L +1 =15
states are the leaves of the tree. The tree allows to estimate probabilities and conditional probabilities
to reach a leave.

s 2.2.4 Conditional transition probabilities after a coancestry change in layer [

s If a (first) coancestry change occurs within a given layer I, a new segment is started. This segment is
6 either i) HBD of class | with probability p;; or ii) non-HBD with probability 1 — p; (Figure 2). These
»7  latter non-HBD segments from layer | are also mixture of HBD and non-HBD segments of layer [ + 1
»s  with probabilities p;4+1 and 1 — p;y1, respectively. The conditional transition probabilities towards the
20 different HBD states ¢ > [ and the final non-HBD state from the last layer (i.e., state L+ 1 of the HMM)
%0 can then be recursively obtained by following the decision tree represented in Figure 2. (see also Figure 3
s for an example of a transition towards the fourth HBD state after a coancestry change in layer | = 2).

%2 Note that conditional transition probabilities to states ¢ < [ that are not child of the corresponding node

12
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%3 are null. Thus, the conditional transition probabilities T¢ (I, ¢) to each state ¢ after a coancestry change

x4 occurring in layer [ are:

0 ife<l
Pe ife=1
265 Tc(l, C) = c—1 (13)
I[T@=pj)|p fl<e<L
j=l
L
I11—pj) ife=L+1
j=l
266 These conditional transition probabilities can be represented as a matrix T¢ (I, ¢), independent of the

s7  marker position m, with L rows corresponding to layers, and L 4 1 columns corresponding to the hidden

s states (L HBD states and one non-HBD state):

L—1 L
pr (L=p1)p2 (I1=p1)(L—p2)ps ... | 1(1_Pj) PL Hl(l—Pj)
1= 1=
= | L
0 p2 (1= p2)p3 S 2(1—pj) pL Hz(l—p])
J= J=
T.= = | L (14)
0 0 p3 (L=pij){pe II(1—py)
=3 =
0 0 0 PL 1 — PL

% 2.2.5 Initial state probabilities

20 The first row of T (eqns. 14 and 7) also corresponds to the vector of initial states probabilities § =
n {66}1’“_ 141 (e, 0. representing the probability to start the chain in the hidden state c) which can

o obtained from the full decision tree (e.g., Figure 2). We have:

lcl_[l (1- pj)] pe ife<L

273 (Sc = I (15)
IT @—p)) ife=L+1
j=1

214 We show in Appendix that the product dT™ = 4§, i.e., the Markov chain is stationary and the initial

as state distribution corresponds to the stationary distribution. These desired properties are also true for

26 the 1R model, but not in our previous MixKR model. Note also that, if L = 1, the Nested 1R model

13
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P(S,,= HBD,) = (1-p,) (1-p3) p, Hidden
States
1

Figure 3. Illustration of conditional transition probabilities after a coancestry change. The
illustration shows the conditional transition probability to reach the fourth HBD state after a
coancestry change occurring within the second layer.

27 reduces to the 1R model.

s 2.2.6 Parameter estimation

2o The N1R model is now implemented as the default model in the RZooRoH package (from version 0.3.1).
20 Following our previous work (Bertrand et al., 2019), we transformed the original parameters into new
s unconstrained parameters to rely on the L-BFGS-B optimizer implemented in the optim function from
22 the R stats package (R Core Team, 2013). Back-transformation on the original scale ensures that rates
23 are always positive and ordered (higher rates for older ancestral layers) and that mixing coefficients p;

s are comprised between 0 and 1. The new parameters are obtained as follow from the original parameters:

log(R;, — Ri—1) ifl<I<L
m = (16)
log(R;) ifl=1
Pl .
7 =log | —— ifl<L 17
, = log (1_pl) < (7)

2w 2.2.7 Estimation of the inbreeding coefficient

26 Following Leutenegger et al. (2003), the stationary distribution of the state probabilities § (eq. 15) can
27 be used to estimate the inbreeding coefficient. We must first define a reference population by deciding

28 which HBD classes are considered as truly autozygous. We could for instance consider that only layers

14
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20 with a rate R, smaller than a threshold T contribute to autozygosity, and that ancestors in layers with
20 Re > T are unrelated (see for instance in Solé et al. (2017)). The inbreeding coefficient with respect to

21 that base population, set approximately 0.5x T generations in the past (Druet and Gautier, 2017), is:

l
202 Fsor =Y 6 (18)
c=1

203 where [ is the most ancient layer with rate R; < T'. The inbreeding coefficient obtained with all layers
204 iS:
L
295 Fs=> 6 (19)
c=1
206 In addition, as opposed to our previous MiXKR models, the nested 1R model allows to estimate in-

207 breeding coefficients within each layer. Indeed, the equilibrium probability p; may directly be interpreted
26 as the inbreeding coefficient of the progeny of individuals from the most recent generation of the layer [
200 when individuals from the oldest generation of layer [ are assumed unrelated. This coefficient may also
0 be interpreted as the inbreeding accumulated within the time period covered by layer | and may thus be
s related to the effective population size over this same period. Contrary to the proportion of the genome
s associated to a specific HBD class, this measure is independent of inbreeding generated in more recent
303 generations.

304 Metrics defined for the previous MIXKR model (Druet and Gautier, 2017) and associated to the
ss realized inbreeding have also their counterpart in the new Nested 1R model. First, the realized inbreeding
w  F\% associated with each HBD class ¢ (c € (1,L)) can be defined as the proportion of the genome
s7  belonging to the class ¢ and is estimated as the average of the corresponding local state probabilities over

s all the M locus:

M
~ 1 ~
B =23 P(si=c18,Y) (20)
1=1
310 where © and Y represent respectively the estimated parameters of the model and the data.
311 Next, the genome-wide estimate of the realized individual inbreeding ﬁG is simply the average over

s the genome of the local estimates obtained for the M markers:

313 Fe =

)

=)=
WE

)

I

Mh

=2
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314 The realized inbreeding coefficients can also be estimated relative to different base populations by

a5 considering HBD classes with a rate B; < T as in Solé et al. (2017).

a6 2.3 Evaluation based on simulated data sets

sz 2.3.1 Simulations under the inference model

as To simulate data sets under the inference model, we used the same approach as in our first study (Druet
a0 and Gautier, 2017). Briefly, we simulated individual genomes consisting of 25 chromosomes of 100 ¢M.
20 Fach individual genome is modeled as a mosaic of HBD and non-HBD segments modelled under the 1R
a1 model (Equation 1), where p represents the proportion of HBD segments (equivalent to F, the inbreeding
s coefficient). The length of HBD and non-HBD segments was exponentially distributed with rate R. The
3 tested values for p were equal to 0.02, 0.05, 0.10, 0.20, 0.30 and 0.40, and those for R equal to 4, 8, 16,
a2 32 and 64. Genotypes were simulated for 25,000 bi-allelic SNPs (10 per cM) using emission probabilities
s (Equations 2 and 3). For each set of parameters, we simulated 500 individuals. More details are available
26 in Druet and Gautier (2017).

307 Individual inbreeding levels were estimated with a MIXKR model with 9 HBD classes with rates equal
»s  to {2, 4, 8, ..., 1024} and with a Nested 1R (N1R) model with 9 layers with the same rates, and using
20 the RZooRoH package (Bertrand et al., 2019). The mean absolute error (MAE) for each parameter of

a0 interest a (F, Fs, ¢) was computed to evaluate the models as:

MAE(e) = = |@n — o] (22)

3 where N is the number of simulated individuals, &,, is the estimated parameter value for individual n
33 and « is the corresponding simulated value.

33 The partitioning of the autozygosity in different HBD classes was evaluated by assessing whether the
s autozygosity was concentrated in HBD classes with rates R, close to the simulated rate R. Rates were
1 compared on a log, scale, resulting in a difference of -1, 0, 1 and 2 when R, is equal to R multiplied by

a7 respectively 0.5, 1, 2 and 4. The associated MAE was estimated as follows:

N L
1 ~
- MAE(logy(R)) = + ; 2 (9| 1og, R. — log, R| (23)
339 where \Tlgf) is the contribution of HBD class ¢ in individual n to its total HBD, evaluated at true HBD
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uo  positions, and L is the number of HBD classes or layers. This criteria evaluates whether the identified

sn HBD positions are assigned to the simulated HBD class.

w2 2.3.2 Simulations under a discrete-time Wright—Fisher process

u3 To simulate more realistic data relying on population genetic models, Druet and Gautier (2017) previously
us  used the program ARGON (Palamara, 2016) that implements a discrete-time Wright-Fisher process.
us Here, we used the same simulated data. Bottlenecks were simulated to concentrate inbreeding in specific
us  age classes (Druet and Gautier, 2017). Outside these events, N, was kept large to reduce the noise due
s to inbreeding coming from other generations. The simulation scenario is summarized in Supplementary
us  Figure 1. The ancestral population Py had a constant haploid effective population size equal to 20,000
19 (Neg). The time of population split Ts was set equal to 10,000 and the effective population size of the
0 first population (P;) outside the bottleneck was set to 100,000 (Ne;). Bottlenecks were simulated around
s generations Ty equal to either 16 or 64, and with effective population size (N;) equal to 20 or 50. A
2 single chromosome of 250 ¢cM length was simulated for 50 diploid individuals, and with a marker density
353 of 100 SNPs per cM. More details about the simulation procedure are available in Druet and Gautier
e (2017).

355 Individual inbreeding levels were estimated with MIxKR and N1R models with 13 HBD classes with

6 rates equal to {2, 4, 8, ..., 8192} as implemented within the RZooRoH package (Bertrand et al., 2019).

7 2.3.3 Application to estimation of inbreeding levels in the European bison

8 The N1R model was tested and compared to the MixKR model on a set of 183 genotyped European bison
0 with high inbreeding levels (Druet et al., 2020). These consisted of respectively 154 and 29 individuals
w0 from the Lowland and Lowland-Caucasian lines. Individuals from the first line experienced a stronger
s bottleneck as they trace back to fewer founders (see Druet et al., 2020, for more details). After data
2 filtering, each individual was genotyped for 22,602 autosomal SNPs. Partitioning of inbreeding levels
33 in different HBD classes was first compared with MixKR and N1R models with five HBD classes with
e rates equal to {4, 8, 16, 32, 64}. In order to assess robustness of results to model specifications, we also
365 applied models with 9 HBD classes (R, = {4,8,...,1024}). Analyses were carried out with the RZooRoH

w6 package (Bertrand et al., 2019).

17
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w« 3 Results

x 3.1 Simulations under the inference model

w0 We begin by comparing results obtained from analyses of the data simulated under the inference model
s with the MIXKR and N1R models. We expected our new N1R model to perform better in partitioning
sn  inbreeding in different HBD classes most particularly when inbreeding levels are high. This is confirmed
sz in Figure 4 that represents the MAE associated with R (eq. 22). With the N1R model, the MAE is
s higher when there are fewer segments to estimate parameters (small p and/or small R). When inbreeding
sa  levels are low (e.g., p < 0.1 in Figure 4), MAE are similar for both models whereas for large inbreeding
s levels, MAE starts to increase for the MixKR model whereas it continues decrease for the N1R, model.
s As a result, the proportions of true HBD positions associated with the class with R, corresponding to
s the simulated value is higher with the N1R than with the former MIXKR model when values of p are
ws  moderate to high (i.e., p > 0.1). In other words, a higher proportion of true autozyogisty is correctly
w associated to that HBD class with the N1R model (see Supplementary Table 1). As for the MAE, this
0 proportion decreased for high values of p with the MiXKR model whereas an opposite trend is observed
s for the N1R model, resulting in high differences. When p is high, the MIXKR model tends to assign
s autozygosity to classes with smaller R, rates, as we observed in real data sets. This is illustrated for four
33 scenarios with R = 16 in Supplementary Figure 2. Similar patterns are obtained in simulations with two
s8¢ distributions of HBD segments (Supplementary Figure 3), with a shift towards more recent HBD classes
s when using the MIXKR model.

386 In terms of estimation of realized inbreeding (F) and estimation of local HBD probabilities (¢;),
s7 - both models have very similar performances (Table 1). Hence, although the MIXKR and N1R models
s differ in their partitioning of inbreeding in different age classes, they remain equally accurate for the
0 estimation of inbreeding levels. Finally, the inbreeding coefficient Fj corresponding to the initial state
w0 probabilities (and the stationary distribution) displayed a low MAE, close to the values obtained with
s a 1R model in our previous study (Druet and Gautier, 2017). With the N1R model, the inbreeding
s coefficient Fj represents an unbiased estimate of the simulated p (Supplementary Figure 4), as opposed
33 to the sum of initial state probabilities of HBD classes from the MIXKR models that were clearly not a

su  proper estimator of p.

18
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Scenario Mean estimated values with N1R model MIxKR model
R |p 5 (MAE) Fy (MAE) MAE for ¢ 7 (MAE) MAE for ¢
(G (o)
4 0.02 0.021 (0.007) 0.021 (0.002) 0.002 (0.012) 0.021 (0.002) 0.002 (0.013)
4 0.05 0.053 (0.012) 0.054 (0.002) 0.003 (0.011) 0.054 (0.002) 0.003 (0.013
4 010 | 0.103 (0.017) | 0.103 (0.002) | 0.004 (0.010) || 0.103 (0.002) | 0.004 (0.012)
4 0.20 0.200 (0.023) 0.200 (0.002) 0.005 (0.009) 0.200 (0.002) 0.005 (0.010)
4 030 | 0.302 (0.026) | 0.301 (0.002) | 0.006 (0.008) || 0.301 (0.002) | 0.007 (0.009)
4 0.40 0.401 (0.028) 0.402 (0.002) 0.007 (0.006) 0.402 (0.002) 0.007 (0.008)
8 0.02 0.023 (0.007) 0.022 (0.002) 0.003 (0.026) 0.022 (0.002) 0.003 (0.027)
8 0.05 0.051 (0.011) 0.052 (0.002) 0.004 (0.025) 0.052 (0.002) 0.004 (0.027)
8 0.10 0.101 (0.014) 0.101 (0.002) 0.006 (0.023) 0.101 (0.002) 0.006 (0.024)
8 0.20 0.204 (0.019) 0.204 (0.002) 0.009 (0.019) 0.204 (0.002) 0.010 (0.020)
8 0.30 0.299 (0.021) 0.299 (0.002) 0.011 (0.016) 0.299 (0.002) 0.012 (0.017)
8 0.40 0.404 (0.023) 0.404 (0.002) 0.012 (0.013) 0.403 (0.002) 0.013 (0.014)
16 0.02 0.023 (0.006) 0.022 (0.002) 0.004 (0.064) 0.022 (0.002) 0.004 (0.065)
16 | 0.05 0.052 (0.008) 0.052 (0.002) 0.007 (0.055) 0.052 (0.002) 0.007 (0.056)
16 | 0.10 || 0.102 (0.011) | 0.102 (0.002) | 0.012 (0.048) || 0.102 (0.002) | 0.012 (0.050)
16 | 0.20 0.201 (0.015) 0.201 (0.002) 0.017 (0.040) 0.201 (0.002) 0.018 (0.041)
16 | 0.30 0.302 (0.017) 0.302 (0.003) 0.022 (0.032) 0.302 (0.003) 0.022 (0.034)
16 | 0.40 0.403 (0.018) 0.403 (0.002) 0.023 (0.027) 0.403 (0.002) 0.024 (0.028)
32 | 0.02 0.022 (0.005) 0.021 (0.002) 0.007 (0.139) 0.021 (0.002) 0.007 (0.140)
32 | 0.05 0.052 (0.006) 0.052 (0.003) 0.014 (0.120) 0.052 (0.003) 0.014 (0.121)
32 | 0.10 0.101 (0.008) 0.101 (0.002) 0.022 (0.103) 0.101 (0.002) 0.023 (0.105)
32 | 0.20 || 0.202 (0.011) | 0.202 (0.003) | 0.034 (0.081) || 0.202 (0.003) | 0.035 (0.083)
32 1 0.30 0.302 (0.012) 0.302 (0.003) 0.042 (0.066) 0.302 (0.003) 0.042 (0.067)
32 | 040 || 0.402 (0.014) | 0.402 (0.003) | 0.045 (0.053) || 0.402 (0.003) | 0.046 (0.055)
64 | 0.02 0.022 (0.004) 0.022 (0.003) 0.013 (0.283) 0.022 (0.003) 0.013 (0.284)
64 0.05 0.052 (0.005) 0.052 (0.003) 0.026 (0.243) 0.052 (0.003) 0.026 (0.244)
64 | 0.10 0.102 (0.007) 0.102 (0.003) 0.043 (0.204) 0.102 (0.003) 0.043 (0.205)
64 0.20 0.202 (0.008) 0.202 (0.003) 0.066 (0.160) 0.202 (0.003) 0.066 (0.161)
64 | 0.30 0.301 (0.010) 0.302 (0.003) 0.079 (0.128) 0.302 (0.003) 0.080 (0.129)
64 0.40 0.402 (0.010) 0.402 (0.003) 0.084 (0.103) 0.403 (0.003) 0.086 (0.104)

Table 1. Performance of the two models on data simulated under the 1R inference model.
The simulated genome consisted of 25 chromosomes of 100 cM with a marker density of 10 SNPs per
cM. Genotyping data for 500 individuals were simulated under the 1R inference model for each of 30
different scenarios defined by the simulated R and p values reported in the first two columns. The table
reports the mean estimated values and the Mean Absolute Errors (MAE) for the mixing proportions (p)
and the individual inbreeding (1/7’(\) The table gives also the MAE for the estimated local inbreeding

(¢1) either for all the SNPs ((El) or for those actually lying within HBD segments (Qb/ll-{;) These values

are reported for both models, with the exception of (p)
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Model == N1R == MixKR Rate — 4 — 8 16 =— 32 — 64
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MAE of the rate of selected HBD classes

0.00

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Simulated inbreeding coefficient

Figure 4. Concordance between simulated rates and partitioning in HBD classes. The
accuracy of partitioning is evaluated as the Mean Absolute Error between the log, of the simulated rate
and the log, of the assigned HBD classes. This is equivalent to measuring the deviation from the
simulated parameter in term of absolute value of log, of the ratio between rates of simulated and
estimated HBD classes. The comparisons are performed for different values of R and p.

s 3.2 Simulations under Wright-Fisher process

36 Analyses realized on data sets simulated under a more realistic model confirmed our first observations.
s7 For high inbreeding levels, the MIXKR model captures a large fraction of the autozygosity generated by
s the bottleneck (when N, drops to 20) into the more recent HBD class neighboring the class representative
s of the bottleneck period (e.g., class with R, = 64 for a bottleneck pertaining to the class with R. = 128,
wo 1.e., occurring 63 to 66 generations ago - Figure 5). This neighbouring class captures almost the same or
w1 even a larger fraction of autozygosity that the HBD class associated with the bottleneck. The pattern is
a2 less pronounced for milder bottleneck (N, =50 in Figure 5). With the N1R model, the class R, = 128
w3 representative of the bottleneck period captures the majority of the HBD segments in both cases. Similar
wes  results were obtained for more recent bottlenecks (Supplementary Figure 5).

405 The global partitioning of the genome in HBD-classes presents similar patterns (Supplementary Figure
ws 6). As the proportion of inbreeding in the HBD class associated with the bottleneck is always higher

w7 with the N1R model, the MAE associated with the rate of the selected HBD classes was lower than
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Figure 5. Partitioning of HBD segments related to the bottleneck in different HBD
classes. The partitioning are realized with the MiXxXKR and N1R models. Data were simulated with a
Wright-Fisher process, with a bottleneck in generations 63 to 66 expected to be associated with the
HBD class with Ry = 128. The applied model and the effective population size during the bottleneck
are indicated above the graphs.

with the MIXKR model (more so when the bottleneck was strong). With the N1R model, the MAE
values were respectively equal to 0.546, 0.786, 0.386 and 0.426 for the four different scenarios ({ N, = 20,
Ty, = 16},{Nep, = 50, T, = 16},{Nep, = 20, T}, = 64},{Nep, = 50, T}, = 64}), compared to 0.763, 0.793,
0.601 and 0.491 for the same scenarios with the MIXKR model.

As for the first simulations, the differences between models are mainly in the partitioning of au-
tozygosity in HBD classes. For instance, the average local HBD probabilities for segments associated
with ancestors present in different past generations are almost identical (Supplementary Figure 7). We

also confirm in Figure 6 that mixing coeflicients of the new model are interpretable and can be used to
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Figure 6. Inbreeding coefficients estimated as the equilibrium HBD distribution and for
different base generations. The inbreeding coefficients are estimated as the equilibrium
distributions, Fjs, obtained from the mixing coefficients p.. Only HBD-classes with a rate Ry < a
threshold T are used to estimate Fjs. This allows to set the reference population approximately 0.5 x T
generations in the past. Data were simulated with a Wright-Fisher process, with a bottleneck. The time
of the bottleneck and the effective population size during the bottleneck are indicated above the graphs.
The red star indicates the HBD-class associated to the bottleneck and the expected inbreeding levels
generated during the bottleneck.

ss  estimate the inbreeding coefficient F5. More precisely, we estimated Fs_p by adding sequentially each
a7 HBD-class in the estimation. We estimated the expected inbreeding accumulated during the bottleneck
as as 1 — (1 — ri)t, where N, is the diploid effective population size (here, N, = 20 or N, = 50) and
a9t = 4 is the number of generations of the bottleneck. We see that most of the inbreeding is captured
w20 by the HBD-class corresponding to the bottleneck and its close neighbours. As a result, Fs_1 remains

w1 relatively constant for generations before and after the bottleneck and increases sharply at the period of
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a2 the bottleneck. In addition, the estimated inbreeding levels match the expected values. Finally, we also

w23 observe inbreeding related to much more distant ancestors, accumulated over many more generations.

2 3.3 Application to real data

w5 Application of the two models on genotype data from two distinct lines of European bison, presenting high
w6 inbreeding levels, results in similar observations than applications to simulated data sets: partitioning of
w27 inbreeding in HBD-class is shifted towards more recent HBD-classes with the MixKR model compared
w28 to the N1R model (Figure 7A-B). Since for simulations the N1R performed better for the partitioning in
w2 HBD-classes, and since patterns are similar, the results from the N1R model fit probably better the reality.
a0 The shift was more pronounced when more HBD-classes were included in the model and the non-HBD
a1 class had consequently a higher rate Ry, and in the Lowland line where the inbreeding levels are higher.
a2 Higher shift for higher inbreeding levels were also observed with simulated data. With the MixKR model,
.33 the partitioning in different HBD-classes and the estimated mixing coefficients (Figure 7C-D) changed
s¢ according to the model specifications, whereas the N1R model proved robust to these changes (Figures
s TA-D). Note that we also fitted HBD-classes corresponding to HBD segments shorter than the shortest
s HBD segments than could be captured with the available density. As a result, the contribution of these
. classes remained null. As for the simulated data sets, the overall inbreeding levels estimated by the two
18 models were highly similar (Figure E-F), the difference being essentially the partitioning.

239 Analysis of real data with the N1R model confirmed that mixing coefficients can now be interpreted,
a0 with levels close to estimated HBD proportions in different classes, contrary to those obtained with the
w1 MIXKR model (Figure 7C-D). In addition, they can now be used to estimate the inbreeding coefficients,
a2 Fs or Fs_p. These inbreeding coefficients based on the equilibrium distribution and on the number of
a3 HBD segments are close to values of the realized inbreeding coefficient, Fz and Fg_r, corresponding to the
s proportion of the genome in HBD classes (Figures E-F). The mixing coefficients estimate the proportion
as  of HBD segments within a specific layer and provide an estimation of the inbreeding accumulated in that
ws layer, which depends also on the number of generations included in the layer.

w47 When inbreeding levels are lower, such as in cattle (see for instance in Solé et al. (2017)), differences
ws are smaller. This is illustrated in Supplementary Figure 8 on a Holstein data set including 245 individuals

wo  genotyped for 30,000 markers (Alemu et al., 2021).
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Figure 7. Estimation of inbreeding levels in the European bison.Inbreeding levels are estimated
in 154 Lowland individuals (panels A-C-E) and 29 Lowland-Caucasian individuals (panels B-D-F). Estimation
was performed with the MixKR and N1R models with 6 HBD-classes (MIX6R and N1R-5L) or with 10
HBD-classes (MIx10R and N1R-9L). A) and B) Proportion of the genome associated with different
HBD-classes averaged over all individuals from a population. C) and D) Estimated mixing coefficients for each
HBD class, averaged over all individuals. E) and F) Average estimated inbreeding levels. Only HBD-classes
with a rate Rr < a threshold T are used to estimate F'. This allows to set the reference population
approximately 0.57 generations in the past. The inbreeding coefficients are estimated as the proportion of the
genome in HBD-classes, F¢, or as the equilibrium distributions, Fj, obtained from the mixing coefficients p.
(only for the N1R model).
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« 4 Discussion

1 We herein proposed an improved model, we called the N1R model, for the characterization of individual
2 genomic inbreeding levels and its partitioning into different HBD-classes. Compared to our previous
3 MIXKR model (Druet and Gautier, 2017), the main improvement relied on a new modelling of the
»ss  transition probabilities which both resulted in better statistical properties in general, but also facilitated
ss  the interpretation of the mixing coefficients with initial state probabilities now corresponding to the
w6 stationary distributions. Although the estimation of both global and local inbreeding levels were almost
s identical between the N1R and the MiXKR models, the partitioning of inbreeding into different HBD-
s classes was clearly improved and the N1R model provided more accurate estimation of the relative
w0 contribution of each group of ancestors.

460 Our main objective was indeed to improve this partitioning, in particular for high inbreeding levels
w1 since we previously observed that in such cases, the partitioning could be shifted towards more recent HBD
w2 classes (Druet et al., 2020). This problem was caused in our previous MIxKR model by the difference of
w3 rates for HBD classes associated to recent ancestors (i.e., capturing large HBD segments) and the non-
ws  HBD class that resulted in high differences in their underlying mixing coefficients. More precisely, the
ws  non-HBD class had a very high mixing coefficient because it generally represented the main contribution
w6 to individual genomes and it was modelled with a large R, (i.e., as many short segments tracing back in
w7 the distant past). Conversely, mixing coefficients from recent HBD classes (long segments with low rates
ws R.) were very small as these segments were much less numerous than short HBD or non-HBD segments.
w0 Therefore, in the Markov chain, the probability to start a new recent HBD segment was extremely low and
an  needed to be supported by long stretches of homozygous genotypes. In these conditions, two consecutive
an recent HBD segments were systematically modelled as a single long HBD segments because transitions
a2 to new recent HBD segments were heavily penalized, explaining the overestimation of segment length
a3 and the incorrect HBD partitioning (a shift towards more recent HBD classes). Yet, the strength of this
s problem was expected to be a function of the frequency of consecutive HBD segments, and was thus only
a5 observed in simulated and real data sets with high recent inbreeding levels (Druet et al., 2020). We here
a  showed that using the same rates for HBD and non-HBD segments by modelling sequentially multiple
ar nested 1R models in our new N1R model allowed to solve this issue. This property is important to better

ws  interpret the results by determining which generations of ancestors mostly contributed to autozygosity.
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ao Our improved N1R model should also allow better estimation of the number of generations to the common
a0 ancestor for an HBD segment. Nevertheless, more work is required to quantify how precisely the age of
a1 individual HBD segments can be estimated with this or other similar approaches.

482 The new model is also more robust to the number and specifications (i.e., rates Ry) of the fitted classes
w3 in the sense that partitioning remains consistent when the rate of the non-HBD classes is modified. With
sss our previous MIXKR model, the choice of the rates associated with the non-HBD segments, often directly
s related to the number of fitted classes, might indeed influence the partitioning in HBD and non-HBD
s classes because higher rates (smaller segments) resulted in even higher mixing coefficients for the non-
w7 HBD class further penalizing the occurrence of two consecutive recent HBD segments (see above). The
ws  fact that the N1R model is less sensitive to model specifications is an important aspect because one of
0 the advantages of methods relying on HMM (Leutenegger et al., 2003; Vieira et al., 2016; Narasimhan
w0 et al., 2016; Druet and Gautier, 2017) is that fewer parameters need to be defined compared to rule-based
w1 ROH approaches, where these definitions might sometimes result arbitrary. In general, there is less need
w2 to optimize parameters, HBD probabilities indicate whether the evidence for autozygosity is strong or
w3 not. In our model, the number of classes and their range must still be defined but it affects mainly
w4 interpretation in terms of age of ancestors. To this respect, the robustness of the N1R model is highly
w5 valuable since in the previous MIXKR model partitioning could be affected by the definition of the last
ws  HBD class.

a07 Our newly developed N1R model allows the definition of new inbreeding coefficients based on the
w8 initial state probabilities. These inbreeding coefficients fit closer to the original definition by Leutenegger
w0 et al. (2003) since under the 1R model, the mixing coefficient can be interpreted as both the frequency
so  of HBD segment and the proportion of the genome that is HBD (i.e., the equilibrium distribution).
s Yet, this is slightly different from a direct estimation of the realized proportion of the genome in HBD
s segments (e.g., as obtained from the posterior HBD probability of each marker, see eq. 21), although both
s3  estimators are highly correlated. Interestingly, the mixing coefficients also provide direct estimators of
soe  the level of inbreeding associated with ancestors present in a specific period of time (corresponding to a
sos  layer in our model), independently on what happened in other more recent layers. In an ideal population,
sos  this inbreeding would directly be related to the number of generations and to the effective population
sor  size in the layer. These aspects must be further investigated and more work is required to understand

s which generations are captured by a specific layer, or the relationship with the underlying historical N.
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s0  In practice, the variation of mixing coefficients across layers could be used to monitor whether inbreeding
s 18 increasing or not, for instance in a conservation program as suggested by Druet et al. (2020).

511 Comparisons of our previous MIXKR and our new N1R models on genotyping data from European
sz bison were in agreement with trends observed on simulated data. The overall inbreeding levels were
si3 similar with both models but the partitioning was different, shifted towards more recent HBD classes
s with the MIXKR model. This shift was also more pronounced when inbreeding levels were higher and
sis when the rate of the non-HBD class was higher, matching our predictions (see above). This suggests that
sis  the new partitioning is more accurate, strengthening our initial conclusions that the contribution from
si7 - the most recent generations of ancestors to inbreeding is decreasing and that the restoration plan has
sis been successful to control inbreeding in European bison (Druet et al., 2020).

519 Finally, it is important to note that differences between our new N1R version of the model and the
s0 former MIXKR one in terms of interpretation only concern the partitioning of inbreeding when inbreeding
sa1 levels are high. For instance, differences would be minimal in most human populations. Even in cattle

s2 presenting moderate inbreeding levels, the impact on the partitioning remained limited.
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A Appendix

Here we show that in the N1R model, the Markov chain is stationary and the initial state distribution

corresponds to the stationary distribution, i.e.:

ST™ =6 (Ty' + TV Te) =6 (24)

where 4 is a row vector of dimension L+1. Let the (row) vector ¢ = {Ck}; 5 = 6T™. We want to
show that ¢, = & ( ok T t’gx’k) = 0 for all k € (1, L + 1), where tg% is the kth column vector of To™

and tTCT‘lx,k is the kth column vector of the matrix T;“Tc:
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To simplify notations in the above equation, we assume that [] (1 — p;) = 1. Still to keep notations
Jj=k

s2  general, for k = L + 1 we define pr+1 = 1 — pr. Note also that elements | > k of t’gx’k are all identical.
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Hence,
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The last equality follows from the nested model properties which consider each layer sequentially (see

L+1

the main text and Figure 2). Hence, Y. ¢; can be interpreted as the probability of starting a layer as old

=1

or older than ¢ which is also the probability of not having entered any of the successive layer more recent

L+1

k—1

thaniie. Y & = [[ (1 —p;). Note also that ) ¢ = 1. In addition, recalling that 6 = px [] (1 — p;)

L+1 i—1
I= 1‘ j=1
(eq. 15) and Z X, =1—elt
i=1

Cr

=1

dm (eq. 10), we obtain:

Jj=1

k k—1
= 5k67dem + Pk Z Xin H 1 - p])
=1 =1

= e I 4 py

k
1—PJ ZX:}@

=

= 5ke_R’“dm+5 1 — e Brdm

= I
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