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Abstract 

The FDA has recently approved high tumor mutational burden (TMB), defined by ≥10 

mutations/Mb, as a biomarker for the treatment of solid tumors with pembrolizumab, an immune 

checkpoint inhibitor (ICI) that targets PD1. However, recent studies testify that high TMB levels 

are only able to stratify ICI responders in a subset of cancer types, where the mechanisms 

underlying this observation have remained unknown. We hypothesized that the tumor immune 

microenvironment (TME) may modulate the stratification power of TMB (termed TMB power) 

in a cancer type, leading to this observation. To systematically study this hypothesis, we 

analyzed TCGA expression data to infer the levels of 31 immune-related factors characteristic of 

the TME of different cancer types. We integrated this information with TMB and response data 

of 2,277 patients treated with anti-PD1 or anti-PD-L1 ICI to identify the key immune factors that 

can determine TMB power across 14 different cancer types. We find that high levels of M1 

macrophages and low resting dendritic cells in the TME characterize cancer types with high 

TMB power. A model based on these two immune factors is strongly predictive of the TMB 

power in a given cancer type (Spearman Rho=0.76, P<3.6x10-04). Using this model, we provide 

predictions of the TMB power in nine additional cancer types, including rare cancers, for which 

TMB and ICI response data are not yet publicly available on a large scale. Our analysis indicates 

that TMB-High may be highly predictive of ICI response in cervical squamous cell carcinoma, 

suggesting that such a study should be prioritized. 

 

Main 

Immunotherapy has shown remarkable clinical benefit in many cancers. However, its benefit is 

limited to a subset of patients, raising a need for response biomarkers [1]. A frequently used 

biomarker is the tumor mutational burden (TMB), a measure of the total number of mutations in 

the coding regions of the genome [1-2]. The U.S. Food and Drug Administration (FDA) has 

recently approved pembrolizumab, an immune checkpoint inhibitor (ICI) targeting PD1, for 

individuals with TMB-High (defined as ≥ 10 mutations/Mb, TMB-H) solid tumors [3]. Despite 

this approval, the effectiveness of TMB-H as a biomarker for stratifying responders to 

immunotherapy, termed here TMB power, differs considerably across cancer types [4,5], and the 

mechanisms underlying these differences have remained unknown. The tumor microenvironment 
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(TME), including CD8+ T cells, dendritic cells, macrophages, B cells, T cell receptor (TCR) 

repertoire, and major histocompatibility (MHC) locus status, have been previously associated 

with the extent of immunotherapy response [6]. We thus hypothesized that differences in the 

immune activities in the TME of different cancer types may explain the variability observed in 

the TMB power across cancer types.  

 

To study this hypothesis, we first collated the largest publicly available cohort of ICI-

treated (anti-PD1/anti-PDL1) patient’s responses with TMB and demographic information, 

comprising 1959 patients [4, 5, 7, 8] together with an additional new cohort of 318 patients, 

comprising a total of 2277 patients across 14 cancer types. Analyzing this combined cohort, we 

first aimed to depict the association between TMB-H and patients’ response to ICI in each cancer 

type. To this end, we computed the difference in overall survival (OS) between patients with 

TMB-High vs TMB-Low, i.e., the Hazard ratio (HR) of survival, in each cancer type (Figure 

1A). The HR is significantly < 1 for 8 out of 14 cancer types (using P<0.05 as a significance 

threshold), testifying to overall higher survival in patients with TMB-H, however, its magnitude 

varies considerably across cancer types. A similar trend and variability are observed for 

progression-free survival (PFS) (Extended Figure 1). Repeating this analysis using the tumor 

response status and computing the odds ratio (OR) of objective response rate (ORR) between 

TMB-H vs low TMB patients, 5 out of 11 cancer types have a significant OR >1 (P<0.05, 

Figure 1B), testifying to a higher response rate in patients with TMB-H, but not in all cancer 

types. These observations are in line with previous findings [4,5], showing that the TMB-H 

biomarker based on a universal FDA-approved cut-off is predictive of response only in a subset 

of cancer types, with variable predictive power. We quantify the stratification power of TMB in 

identifying immunotherapy responders (termed TMB power) in each cancer type as 1/HR in 

terms of overall or progression-free survival and OR in terms of tumor response. 
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Figure 1. ICI response of TMB-H vs TMB low groups, for different cancer types. (A)

Hazard Ratio of overall survival (OS) (x-axis) between patients with high vs low TMB computed

using a Cox regression model. Cancer types having a significant hazard ratio are colored blue vs.

red, denoting cancer types for which the HR is not significant. Error bars represent the 95%

confidence interval and P-values were computed using a log-rank test. Cancer type abbreviations

follow those used in the TCGA [9]. The number of patients with each cancer type is provided in

the second column. (B) The results of a similar analysis using response status and the Odds

Ratio. Renal cell carcinoma (KIRC) is not reported in (A) as its HR cannot be computed

confidently. 

 

We next quantified the mean levels of various immune-related factors in the TME of a

given cancer type. To this end, we mined whole-exome sequencing and RNA sequencing data of

pre-treated samples for the above 14 cancer types from The Cancer Genome Atlas (TCGA). In

each cancer type, we estimated the mean levels of 31 different immune-related factors

(Extended Table 2) that have been previously reported to be associated with ICI response [10].

Those include: (1) tumor neoantigen characteristics, including neoantigen hydrophobicity,

intratumor heterogeneity, and neoantigen burden; (2) tumor microenvironment characteristics,

including the abundance of different immune cells, the cytolytic score, T-cell exhaustion, and

interferon-γ signatures, and T-cell receptor diversity, and finally, (3) checkpoint target–related
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variables, including PD-L1 protein expression, the combined positive score (defined as ratio of 

number of PD-L1 staining cells (tumor cells, lymphocytes, macrophages) out of the total number 

of viable cells) and fPD1 (the fraction of high PD1 staining tumors in a given cancer type).  

 

To identify the immune-related modulators of TMB power, we computed the correlation 

between the mean-levels of each immune factor described above and the three measures of TMB 

power based on OS, ORR, and PFS, across the 14 cancer types we studied (Figure 2A, B & 

Extended Figure 2A leftmost, in respective order). Four immune factors emerge as being 

correlated with the TMB power for all three outcomes measures (Figure 2C). Two modulators 

are positively correlated with the TMB power, including M1 macrophage levels (correlation 

strength with TMB power based on OS is Spearman Rho = 0.61, P = 0.02, Figure 2D-Top-left 

panel) and tumor purity levels (Spearman Rho = 0.44, P = 0.13, Figure 2D-Top-right panel). 

We termed them positive modulators. Two other modulators are negatively correlated with the 

TMB power (negative modulators), including the PDL1 combined positive score (Spearman Rho 

= -0.39, P = 0.19, Figure 2D-bottom-left panel) and resting dendritic cells (Spearman Rho = -

0.38, P = 0.21, Figure 2D-bottom-right panel). Repeating the above analysis using only cancer 

types with statistically significant hazard ratios or odds ratios (Methods) yields concordant 

findings, where the same four modulators are the top ranked (Extended Figure 2B-C). 
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Figure 2: Immune modulators of TMB power: (A) Correlation strength between TMB power 

based on overall survival (OS) and levels of immune-related factors across 14 cancer types, 

computed using Spearman Rho (x-axis). Green and red bars denote positive and negative 

modulators, respectively, and the intensity of the color denotes the strength of correlation. 

Significant correlations (P<0.05) are marker with “*” and four highly correlated modulators are 

shown in bold. (B) This analysis is repeated to identify modulators of TMB power based on 

tumor response status (ORR). (C) The strength of correlation with TMB power using ORR (x-

axis) and OS/ PFS (y-axis) is provided for each modulator, where the top four are highlighted 

and labeled. (D) Scatter plots showing the relationship between the mean levels of each of the 

four top modifiers in a cancer type (x-axis) and the TMB power (in terms of OS). The best fit 

line is provided in blue, where the shaded region denotes a 95% confidence interval. Renal cell 

carcinoma (KIRC) is not reported in (D) as its HR cannot be computed confidently.  

 

We next built a multivariate linear model predicting TMB power at a given cancer type 

based on the levels of the four top modulators identified above, assessing their aggregate 

predictive power in a leave-one-out cross-validation procedure. We built this model separately 

for all three measures of TMB power (OS, PFS, ORR). The models performing best across all the 

three measures of TMB power only used two features - M1 macrophage and resting dendritic 

cells levels predicting TMB power based on OS with a Spearman Rho = 0.76, P = 0.0036 

(Figure 3A). Adding the two remaining modulators does significantly not improve model 

performance. 

 

Using this two-feature linear model, we predicted the TMB power in 17 additional cancer 

types. These cancer types do not have publicly available TMB and ICI response data but their 

mean levels of M1 macrophage and resting dendritic cells could still of course be estimated from 

the TCGA cohort. We could confidently predict TMB power for 9 of these cancer types, where 

the two modulators’ levels were within the interpolation range of the regression (Methods). 

Notably, in 8 of these, the predicted TMB power was greater than that observed for lung cancer, 

where TMB-H patients have been shown to have a higher response rate and median survival in 

large clinical trials [11] (Figure 3B, Extended Table 3). The top ranked cancer types are TGCT 

(Testicular Germ Cell Tumors, TMB power = 2.95, two times higher than the TMB power 
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observed in lung cancer), DLBC (Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, TMB

power = 2.30, 1.6 times higher than the TMB power observed for lung cancer) and CESC

(Cervical squamous cell carcinoma, TMB power = 2.26, 1.6 times higher than the TMB power

observed for lung cancer). Among those, we think that cervical squamous cell carcinoma is

probably the most interesting cancer type to further test the utility of TMB-H as a biomarker, as

it has the highest overall immunotherapy response rate (20%, mined from [10]). 

 

Figure 3: Predicting TMB power across cancer types. (A) The correlation between observed

TMB power (y-axis) and its predicted value is, based on M1 macrophage and resting dendritic

cell levels. The best fit line is provided in blue, where the shaded region denotes the 95%

confidence interval. The spearman correlation and significance are provided at the left top

corner. (B) Predicted TMB power using this model (y-axis) in 9 additional cancer types (x-axis),

the blue dotted horizontal line shows the TMB power observed for NSCLC. 

Discussion 

We identified two key immune-related factors whose levels are associated with the ability of

TMB-H biomarker to stratify immunotherapy responders. Specifically, we find that high levels

of M1 macrophages and low resting dendritic cells are predictive of cancer types with high TMB
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power. Aligned with these findings, M1 macrophages have been reported to provide an anti-

tumor environment by fostering an inflammation response against tumor activating CD8 T cells, 

and thus their higher levels would likely augment the response to immunotherapy [12]. In 

contrast, resting dendritic cells provide a pro-tumor environment by inducing tolerance to tumor 

antigens via inducing T cell death or an anergic state (long-term inactivated state) or suboptimal 

priming, and thus their higher levels would likely suppress the response to immunotherapy [13, 

14]. 

 

One limitation of our study is that our analysis is based on immune factors computed by 

deconvolution of bulk tumor data, which even though now being an accepted practice employed 

in many studies, only reflects estimations of different cell populations in the TME. Second, we 

should note that our data analysis combined data on patients receiving different formulations of 

anti-PD1 and anti-PDL1 for statistical power, whereas the FDA approval is for pembrolizumab 

(anti-PD1) specifically. Consequently, we expect that our results would be further refined as 

single cell based measurements of immune cells abundance and activity in different cancer types 

become available. Interestingly, we note that when we tested the predictive power of our 

modulators at a patient-level within a cancer type in four different cohorts [15-19], we did not 

find them to be predictive of TMB power (Extended Figure 3). Thus, as with TMB-H levels 

themselves, the factors determining response to immunotherapy across different cancer types are 

very different from those determining the response of individual patients within a given cancer 

type [20]. 

 

Methods 

 

Data and preprocessing 

All patients provided informed consent to an MSK institutional review board-approved protocol, 

permitting the return of results from sequencing analyses for research. We collated the 1. A 

publicly available cohort of ICI treated (anti-PD1/PDL1) patient’s responses with TMB and 

demographic information, comprising 1959 patients, and 2. data from an additional 318 patients, 
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yielding a total 2277 patients across 14 cancer types. We removed the cancer types where all the 

patients have TMB < 10 mut/MB. 

 

Computing TMB power for each cancer type 

We first compute the hazard ratio (HR) of survival (overall and progression-free) and odds ratio 

(OR) of response rate between TMB-H vs low group. In case of overall and progression-free 

survival, the TMB power is 1/HR. And, in case of tumor response status, TMB power is defined 

as OR. 

 

Mean levels of Immune factors across samples of a cancer type 

These levels were mined from our previous publication [10] where a detailed methodology is 

provided. Please refer to the method section of [10]. We remove three immune factors - “active 

dendritic cells”, “resting NK cells”, and “active mast cell” from our initial immune factors set, 

due to low variance (0 in more than 50% of cancer types). 

 

Finding the immuno-modulators of TMB power 

The correlation between TMB power and mean-level of 34 immune-related factors was 

calculated using Spearman rank correlation (rho). From this analysis, four candidate modulators 

consistently strongly correlated with TMB power across 1. different measures of outcomes, 2. for 

both cancer types sets, A. all and B. only ones with significant HR, 3. Both Pearson and 

Spearman correlation methods are selected for further analysis.  

 

Multivariate regression model to predict TMB power 

We next built a multivariate linear regression model based on the above four modulators, using a 

standard leave-one-out cross-validation method. Here, we built a model using all possible 

combinations of features exhaustively and the performance of the prediction was evaluated based 

on Spearman rank correlation (rho). Using the best model, we next predicted TMB power for 17 

additional cancer types where it is unknown. Among these, we noted that feature values are in 

the interpolation range i.e. range which our model was trained on, for only 9/17 cancer types and 

thus we restricted our prediction for these cancer types. 
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Data and Code availability Statement 

The study’s scripts and data are provided to reproduce each step of results and plots in 

this GitHub repository. 
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