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Abstract 

The brain’s functional connectivity architecture (functional connectome) is dynamic, 

constantly reconfiguring in an individual-specific manner and contributing to inter-individual 

variability in cognitive performances. However, to what extent genetic effects shape the dynamic 

reconfigurations of the functional connectome is largely unknown. This paper assesses whether 

dynamic connectome features are heritable, quantifies their heritability, and explores their 

association with cognitive phenotypes. We identified discrete connectome states from resting-state 

fMRI data (n = 1003 including twins and non-twin siblings) and obtained multivariate features, each 

describing temporal or spatial characteristics of connectome dynamics. We found strong evidence 

that the temporal features, particularly fractional occupancy (FO) and transition probability (TP), 

were heritable. Importantly, a substantial proportion of phenotypic variance of these features (35% 

of FO and 41% of TP) was explained by genetic effects. The effect was stable after adjusting for 

head motion, independent of global signal regression and the chosen number of states, and absent 

in surrogate data. Contrarily, the data did not provide robust support for heritability of spatial 

features suggesting that genetic effects primarily contribute to how the connectome transitions 

across states, rather than the precise way in which the states are spatially instantiated. Notably, 

temporal phenotypes also captured variability in cognitive performance. Overall, our findings 

demonstrate a link between genetic makeup and temporal reconfigurations of the functional 

connectome, suggesting that dynamic features may act as endophenotypes for cognitive abilities. 

In conclusion, we propose that connectome dynamics offer considerable potential as a theoretical, 

conceptual, and practical framework for linking genetics to behavior. 
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Introduction 

Inter-individual variability in the time-averaged (static) functional connectivity architecture 

of the human brain is subject-specific and predictive of cognitive abilities (1–4). With the increasing 

availability of large-sample fMRI datasets, significant genetic contributions to this static large-scale 

connectome architecture have been established. Specifically, the heritability of individual edge-

wise connections and networks of the functional connectome has been identified (5, 6). Moreover, 

topological properties of the static connectome, such as the modular organization, constitute 

heritable subject-specific traits and are linked to behavioral and cognitive traits (7, 8).  

However, the static architecture captures only part of the functionally significant properties 

of the connectome. In fact, the functional connectome as measured by fMRI exhibits flexible 

reconfigurations over the course of seconds to minutes (9, 10). These reconfigurations can be 

described as changes in connectivity strength between specific sets of brain region-pairs, forming 

recurrent connectome states. Such functional connectome states hold great significance as their 

time-varying (dynamic) characteristics have been linked to behavior and cognition as detailed 

below (11, 12).  

Because some of the same behavioral and cognitive features linked to connectome 

dynamics are also heritable (13), the exciting possibility emerges that the behaviorally relevant 

connectome dynamics may themselves have heritable characteristics. A fundamental question is 

which specific features of the functional connectome dynamics may be heritable. Especially in light 

of the virtually unlimited number of properties that characterize connectome dynamics, we argue 

that the focus should be on features that are of behavioral significance. 

In particular, specific dynamic changes in spatial features of the connectome shape 

behavior. An often reported observation is that variability of functional connectivity (FC) between 

the default-mode network (DMN) and top-down control regions affect behavioral outcomes (14, 15). 

Most notably, FC dynamics between the DMN and the frontoparietal network (FPN) have been 

linked to cognitive flexibility (16–18). Spatial connectome patterns can further be succinctly 

quantified as global topological properties of the connectome’s graph representation. A critical 

topological property is Modularity, which quantifies the balance between segregation (prioritizing 

processing within specialized networks) and integration (combining specialized information from 

various networks) (19). Modularity is the topological feature commonly associated with various 

behavioral outcomes (14, 20–23). 

Beyond these spatial features, specific temporal features of connectome dynamics have 

been very fruitful in the context of behavioral relevance (24). Specifically, the proportion of the total 

recording time spent in each connectome state (fractional occupancy, or FO) and the probability to 

transition between specific pairs of discrete states (transition probability, or TP) have been linked 
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to behavior (11, 12). Moreover, the time spent in two “metastates”, identified from hierarchical 

clustering of FO over fine-grained states, was found to be heritable (12). Temporal features are of 

particular interest to the current study of connectome dynamics as they characterize the trajectory 

of the connectome across state space rather than the states per se. 

Based on the above-described prior work establishing behaviorally consequential features 

of connectome dynamics, we chose to investigate two spatial and two temporal features: (1) FC 

between DMN and FPN (FCDMN-FPN); (2) Modularity; (3) FO; and (4) TP between states. Focusing 

on these features, we sought to answer (i) whether spatial and topological features of discrete 

connectome states are heritable; (ii) whether temporal features characterizing the spontaneous 

reorganization across these states are heritable; (iii) whether dynamic connectome features are 

inherited as individual traits or collectively as multivariate features; (iv) how much of the individual 

phenotypic differences can be accounted for by genetic influence; and (v) how inter-individual 

variability in such dynamic features contributes to differences in cognitive abilities. To answer these 

questions, we studied resting-state fMRI data from the Human Connectome Project, including 

monozygotic and dizygotic twin pairs, non-twin sibling pairs, and pairs of unrelated individuals. We 

extracted discrete brain states, estimated their dynamic features, fitted quantitative genetic models 

to the features, and quantified their association with cognition. 

 

Results 

Fig. 1 illustrates the overall approach and analyses performed for each subsection of the 

Results. 

 

Fig. 1. An overview of the method pipeline. We used minimally preprocessed resting state BOLD 

timeseries from 139 group-ICA-derived regions covering cortical and subcortical areas of the 
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cerebrum as provided by the Human Connectome Project. [Section I] We applied a hidden Markov 

modeling (HMM) approach to extract four discrete connectome states (or six states for replication, 

respectively). Four multivariate features describing the connectome dynamics were obtained at the 

subject level. Multivariate temporal features were defined as the proportion of the total recording 

time spent in each connectome state (fractional occupancy, or FO) and the probability matrix of 

transitioning between every pair of discrete states (transition probability, or TP). Multivariate spatial 

features were defined as the functional connectivity between default mode and frontoparietal 

networks (FCDMN-FPN) and global modularity (Q). All state-specific features (i.e., FO, FCDMN-FPN, and 

Q) differed significantly across states. [Section II] We tested whether genetically related subjects 

had more similar multivariate features than genetically less related subjects. The similarity of each 

feature between a given pair of subjects was quantified as Euclidean distance. Distance values 

entered a one-way ANOVA of the factor sibling status with the four levels of monozygotic twins (MZ; 

120 pairs), dizygotic twins (DZ; same-sex 65 pairs), non-twin siblings (NT; 169 pairs), and pairs of 

unrelated individuals (88 pairs). [Section III] To estimate the heritability and quantify the genetic 

effects, we employed the structural equation model (i.e., genetic variance component model) to 

partition the phenotypic variance of a trait into additive genetic (denoted A), common environmental 

(denoted C) and unique environmental components (denoted E), where a narrow-sense heritability 

(h2) is quantified as the proportion of variance attributed to the genetic factor (A). Particularly, the 

path A depends on the genetic similarity between twins: whereas MZ twins are genetically identical 

(path denoted MZ = 1), DZ twins share half of their genetic information (path denoted DZ = 0.5) 

based on the supposition of Mendelian inheritance. To accommodate our multivariate features in 

the model, we computed the distance between the position of the feature and a null model-derived 

tangent point in multivariate space. [Section IV] Canonical correlation analysis was used to find 

modes of population covariation between multivariate dynamic connectome features and cognition. 

This analysis was performed on dimensionality reduced connectome features (three components 

from principal component analysis (PCA)) and behavioral data (four factors from factor analysis). 

 

I. Discrete connectome states have distinct spatial and temporal features 
We applied a hidden Markov modeling (HMM) approach to extract four discrete 

connectome states, i.e., whole-brain connectivity patterns that repeatedly appear at different time 

points, in a data-driven fashion (Fig. 2) (25). Since HMMs require an a priori selection of the number 

of states (K), we chose two values of K within the range of prior HMM literature (K = 3 to 12 (12, 

25–31)) with the reasoning that robust heritability effects should be observable for both Ks (cf. Me

thods). We report outcomes for K = 4 in the following and provide replicated results of K = 6 in SI 

Appendix.  
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We performed a one-way ANOVA (factor state) of the connectome states’ temporal and 

spatial features of interest to assess whether the HMM has successfully inferred states with 

distinguishable network organization. Specifically, we tested the strength of FC between DMN and 

FPN (FCDMN-FPN), the degree of global modular organization (Newman’s Modularity (32)), and the 

proportion of time spent in each state, that is, Fractional Occupancy (FO).  

Fig. 2 shows that the connectome states differed with respect to FCDMN-FPN (F(3, 3976) = 

399.41 with P = 1.18e-217), Modularity (F(3, 3717) = 189.65 with P = 1.96e-114), and FO (F(3, 3996) = 

105.00 with P = 1.98e-65). Regarding temporal characteristics, the distribution of FO over the states 

as well as the TP between states were not random (tested for the four- and six-state models against 

surrogate data, SI Appendix, Fig. S10). These results show that the spontaneous connectivity time 

course can be described as a (non-random) sequence of four (respectively six) connectome states, 

differing from each other in spatial organization and global topology.  

 

 

Fig. 2. HMM-inferred connectome states. (A) Group-level functional correlation matrices based 

on 139 regions covering cortical and subcortical areas of the cerebrum for four HMM-derived states. 

The rows and columns represent regions and are organized according to the corresponding ICNs 

(visual network (VIS), sensory-motor network (SMN), dorsal attention network (DAN), 

salience/cingulo-opercular network (CON), limbic network (Limbic), frontoparietal network (FPN), 

and default mode network (DMN)). Each element of the matrix is a z-scored Pearson’s correlation 

coefficient representing the functional connection between the corresponding regions. (B) Bar plots 
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of the mean of FCDMN-FPN, Modularity, and FO for each state from all 1003 subjects. F values are 

reported for one-way ANOVAs of the factor state for each variable. *** indicates p < 10-60. 

 

II. Multivariate temporal features of the dynamic connectome are heritable. 
All state-specific features that differed significantly across states in the above-described 

analysis (FCDMN-FPN, Modularity, and FO), as well as TP between these states, were then tested for 

heritability. We treated the 1 × K vectors of FCDMN-FPN, Modularity, FO, and K × K matrix of TP as 

multivariate features. To avoid statistical pitfalls of multiple comparisons, we limited heritability 

analyses to this hypothesis-driven selection of phenotypes (with additional exploratory analyses 

detailed below).  

We tested whether genetically related subjects had more similar multivariate features than 

genetically less related subjects. The similarity of each multivariate connectome feature between a 

given pair of subjects was quantified as Euclidean distance (Materials and Methods – Comparison 

of multivariate features). Distance values entered a one-way ANOVA of the factor sibling status 

with the four levels of monozygotic (MZ) twins, same-sex dizygotic (DZ) twins, non-twin (NT) 

siblings, and pairs of unrelated individuals. Note that all pairs are uniquely defined so that none of 

the subjects overlap between groups. 

Fig. 3A shows the heritability of temporal features of the connectome dynamics. 

Specifically, multivariate FO (F(3, 438) = 22.65, P = 1.19e-13) and TP (F(3, 438) = 17.91, P = 5.57e-11) 

phenotypes were more similar among MZ twins than DZ twins, followed by NT siblings and pairs 

of unrelated individuals. The effect of sibling status on multivariate dynamic connectome features 

was stable after adjusting for head motion parameters and independent of GSR and the chosen 

number of states (see SI Appendix – Independence of heritability from parameter choices, Fig. S2). 

Further, no effect of sibling status was observed in surrogate data with preserved static cross-

covariance structure; FO (F(3, 438) = 1.30, P = .27) and TP (F(3, 438) = 1.14, P = .33). 

Contrary to the temporal features, we did not find robust evidence for the heritability of 

multivariate spatial features. In particular, outcomes of equivalent ANOVAs for FCDMN-FPN (F(3, 438) = 

3.40, P = 0.018) and Modularity (F(3, 438) = 3.47, P = 0.016) were small in effect size and dependent 

on the chosen number of states and global signal regression (SI Appendix – Independence of 

heritability from parameter choices, Fig. S3). The lack of heritability was confirmed by variance-

component genetic analysis (see section III.).  
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Fig. 3. Heritability of multivariate dynamic connectome features. To assess heritability, we 

compared the multivariate features across monozygotic twins (MZ; 120 pairs), dizygotic twins (DZ; 

65 pairs), non-twin siblings (NT; 169 pairs), and pairs of unrelated individuals (88 pairs). F values 

are reported for one-way ANOVAs of the factor sibling status (four levels). A) Temporal connectome 

features, specifically the multivariate FO and TP phenotypes, were more similar among MZ twin 

pairs than DZ twins, followed by NT siblings and pairs of unrelated individuals. This influence of 

sibling status on multivariate dynamic connectome features as reflected in strong statistical 

outcomes was stable irrespective of GSR and the chosen number of states. B) On the other hand, 

for the spatial connectome features FCDMN-FPN and Modularity, evidence for heritability was not 

robust. Despite weakly significant difference across sibling groups in the four-state model visualized 

here, the pattern in the six-state model was incompatible with expectations of a heritable phenotype 

(cf. Fig. S4). Similarly, despite weakly significant differences in Modularity found here in the four-

state model, the effect was absent in the six-state model (see Fig. S4). 

 

To ensure that the lack of robust outcomes for spatial features was not driven by a narrow 

choice of such features, we further performed exploratory ANOVAs to assess the heritability of FC 

between DMN and the two other major top-down control networks (SI Appendix – Exploring 

heritability of DMN connectivity to other networks, Fig. S4), as well as a data-driven selection of 

edges (SI Appendix – Exploring heritability with network-based statistics, Fig. S5). Again, ANOVA 

outcomes were either dependent on the number of states and GSR or inconsistent with 

expectations in that DZ twins showed less similarity than NT siblings, suggesting that these spatial 

features may not be heritable. Potential reasons for such inconsistencies are discussed in the SI 

Appendix.  

Interestingly, the individual components of multivariate features were not heritable (Fig. 

S7); that is, none of the state-wise dynamic connectome phenotypes differed by sibling status (i.e., 

no heritability effect), even though they showed clear differences across connectome states (See 

Fig. S6 for the main effect of connectome states, in line with results of Fig. 2B). Therefore, the 

findings demonstrate that the temporal features of the dynamic connectome are heritable, 
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regardless of the spatial features of the connectome states, only as multivariate patterns 

encompassing all states, not as individual state-specific components. 

 

III. Heritability accounts for substantial variance in multivariate dynamic connectome 
features across individuals. 

We employed a structural equation modeling (33) to estimate the extent to which inter-

individual differences in a phenotype are driven by genetic or environmental factors. The classical 

genetic variance component modeling quantifies the contribution of genetic factors to univariate 

phenotypes. However, our above-described ANOVAs suggest that temporal characteristics of 

connectome dynamics are inherited as multivariate phenotypes (Fig. 3A) rather than individual 

components (Fig. S7). We, therefore, adjusted the variance component modeling of univariate 

features to accommodate multivariate phenotypes by focusing on the position of the feature in 

multivariate space (cf. Fig. 1). For converging results from an alternative approach (34) for 

multivariate features, which, however, does not account for collinearities among the univariate 

components, see SI Appendix – Alternative multivariate genetic variance component model. 

The ACE model showed that a substantial portion of variance of multivariate temporal 

dynamic connectome features was explained by the genetic effect (Table 1). The additive genetic 

effect (A) of FO was estimated as .35, resulting in a narrow-sense heritability of h2 = .35 (i.e., 

accounting for 35% of the total phenotypic variance). The additive genetic effect of TP was 

estimated as .41, resulting in a narrow-sense heritability of h2 =.41, again accounting for a 

substantial proportion of inter-individual variance in this measure. Note that the impact of common 

environment (C) was estimated as zero for both FO and TP. For both of these features, the fitness 

of the nested models was not significantly better than the full ACE model. We interpret these 

outcomes to suggest the involvement of substantial genetic contributions to the temporal features 

of connectome dynamics. 

Contrary to the temporal features, the variance component modeling of the spatial features, 

FCDMN-FPN and Modularity, did not support a genetic effect. The h2 of FCDMN-FPN was .21, but with a 

wide 95% confidence interval crossing zero ([-0.30, 0.72]). No heritability was found for Modularity 

(h2=0). This confirms the lack of robust heritability effect observed from the ANOVA (Fig. 3 and Fig. 

S3) for FCDMN-FPN and Modularity. 

 

IV. Temporal phenotypes of the dynamic connectome are associated with cognition 
Finally, canonical correlation analysis (CCA) was used to relate the cognitive measures to 

temporal phenotypes of the dynamic connectome. The CCA, performed on three principal 

components of dynamic connectome phenotypes and four factors of cognitive measures, revealed 
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three modes of covariation (Fig. 4A). All modes were highly significant (against 10,000 

permutations, p < 10-4 (Fig. 4B-D)) and robust after correcting for FD head motion parameter. We 

used post-hoc correlations between the discovered modes and the cognitive factors to evaluate 

the contribution of each factor to each mode, with respect to the temporal phenotypes of the 

dynamic connectome. The first mode with the highest significance was defined by negative weights 

for the “Language” (r = -.18) and “Memory” (r = -.16) factors, followed by “Impulsivity” (r = -.12) and 

“Cognitive control” (r = -.10) (Fig. 4E). The second mode was defined by a positive weight for 

“Cognitive control” (r = .08) (Fig. 4F). The third mode was not defined by any specific cognitive 

factors (Fig. 4G). These results indicate that temporal phenotypes of the dynamic connectome are 

related to cognitive performance. 

 

 

Fig. 4. Dynamic connectome features are related to cognition. (A) Canonical variable X was 

defined as three principal components, together explaining about 88.51% of the total variance in 

the temporal phenotypes of the dynamic connectome. Canonical variable Y was defined as four 

factors, together explaining about 55.10% of the total variance in the cognitive measures. Canonical 
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correlation analysis (CCA) revealed two significant modes of covariation between these two 

variables. (B-D) To assess the statistical significance of the discovered modes of covariation, we 

calculated 10,000 permutations of the rows of X relative to Y, respecting the within-participant 

structure of the data, and recalculated the CCA mode for each permutation in order to build a 

distribution of canonical variate pair correlation values (35). By comparing the outcome from the 

CCA of the true data to the shuffled data, we found that each mode of covariation discovered with 

the true data was highly significant (p < 10-4). (E-G) Post-hoc analysis showed the contribution of 

the respective variable to each mode. Left panels show the contribution of cognitive factor loadings 

to each mode, and right panels show the contribution of PC coefficients of connectome dynamics 

phenotypes to each mode. The X-axis is in ascending order of p-value. P < .05 was marked with 

an asterisk. F, factor loading; PC, principal component. 

 

Discussion 

Interest in time-varying dynamics of the functional connectome is extensive and fast-

growing owing to its potential contribution to cognitive processes and their inter-individual 

differences. Nevertheless, the growing literature on heritability of connectome features (see below) 

has largely left out the connectome’s inherently multivariate dynamic phenotypes. Because 

characterization of dynamic connectome reconfigurations involves multiple states, we defined 

multivariate dynamic phenotypes that wholistically incorporate all states. We show that multivariate 

dynamic features offer robust evidence of heritability (Fig. 2 and Fig. S2), contrasting scalar 

features (Fig. S7), and the cumulative weighted sum of the heritability of scalar features (34) (Table 

S2). Applying this multivariate approach to both temporal and spatial phenotypes, we demonstrate 

that temporal characteristics of the dynamic functional connectome are indeed heritable. Moreover, 

we provide the first quantitative heritability estimates and the first potential evidence for genetic 

effects on dynamic connectome features (Table 1).  

Previous studies using classical twin designs have found considerable genetic effects on 

multiple structural and static (i.e., time-averaged) functional connectome features of the human 

brain. Heritable features of the structural connectome include size (h2 = 23-60%) and topography 

(h2 = 12-19%) of ICNs (36), and average regional controllability as derived from network control 

theory (h2 = 13-64%) (37). Regarding the functional connectome, heritability has been established 

for static FC within canonical neurocognitive ICNs in several studies (h2 = 13–36% (38); h2 = 45-

80% (5); (h2 = 9-28% (39)). Further, genetic effects have been reported for topological properties 

of the static functional connectome, such as global efficiency (h2 = 52-62%), mean clustering 

coefficient (h2 = 47-59%), small-worldness (h2 = 51-59%), and Modularity (h2 = 38-59%) (8). Of 

note, all these structural and functional studies estimated heritability separately for each univariate 
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connectome feature. 

Beyond the above-described studies on structural and static functional connectomes, 

heritability and quantitative estimation of the genetic impact have been largely unknown for 

connectome dynamics. A single study has demonstrated heritability of the ratio of time spent across 

two “metastates”, defined from hierarchical clustering of FO over a 12-state model (12). This finding 

is exciting in that it establishes the existence of a heritable temporal hierarchy of connectome 

dynamics. However, this study employed a univariate approach, and the multivariate features of 

the underlying states were not represented in the heritability assessment. Further, heritability of 

spatial characteristics of the dynamic states were not studied. Another important, open question is 

the magnitude of heritability, i.e., % variance of the dynamic features explained by genetic effects.  

In this study, we established heritability of multivariate dynamic connectome phenotypes 

and quantified this influence using structural equation modeling (33). Importantly, we found that 

heritability of temporal characteristics of state transitions was under substantial genetic influence. 

Specifically, the additive genetic effect on temporal phenotypes of the dynamic connectome was of 

high magnitude (h2 of 35% and of 41% for FO and TP, respectively). This strong heritability is in 

the range reported above for structural and static FC investigations. 

Interestingly, for both FO and TP the effect of common environment was estimated to be 

zero. To estimate the C factor, twin studies assume that environmental influences are common 

between MZ and DZ twins, and that the greater phenotypic similarity of MZs must therefore be due 

to their greater genetic similarity. However, both intrauterine and postnatal environments can differ 

as a function of zygosity (40). Therefore, the impact of common environment cannot be estimated 

with precision. Nonetheless, our estimated values suggest that the common environment is unlikely 

to have a sizeable influence on these phenotypes. 

Importantly, we showed that the heritable dynamic features explained inter-individual 

differences in cognitive abilities. An association with cognition has been previously demonstrated 

for multiple structural (37) and static functional connectome features (39, 41, 42). A few studies 

have shown the link between functional connectome dynamics and cognitive measures (11, 12). 

Consistent with these previous studies and further supporting the potential genetic overlap between 

connectome dynamics and cognition, our study has demonstrated the association between 

multivariate temporal dynamic connectome phenotypes and cognitive measures. Crucially, the 

cognitive measures that we investigated in our study are themselves known to be heritable in the 

HCP cohort (13). This may suggest that the dynamic connectome features identified in our study 

are potential endophenotypes for cognitive abilities.  

In contrast to the temporal features, we found that heritability was not robustly supported 

for the spatial features of the dynamic connectome states. Beyond the hypothesis-driven spatial 
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features (FCDMN-DAN and Modularity) we tested for the heritability of additional features (i.e., FCDMN-

DAN, FCDMN-CON, and data-driven clusters of connections) using ANOVAs and structural equation 

modelling, and none were consistently significant across methodological choices (See SI Appendix 

– Exploring heritability of DMN connectivity to other networks and Exploring heritability with 

network-based statistics). In principle, this null result may be a false negative due to limited signal-

to-noise ratio, limited statistical power, etc. However, the sufficient statistical power for temporal 

features together with the convergence of outcomes from the ANOVA and component modeling 

points in the direction of lack of effect for spatial features. We cautiously interpret our data to 

suggest that genetic effects primarily contribute to how the connectome transitions across different 

states, rather than the precise way in which the states are spatially instantiated in individuals. 

Our study is subject to several limitations and methodological considerations. The available 

sample size is relatively small for a heritability study. This limitation notwithstanding, the confidence 

intervals demonstrate that the sample size was sufficient to establish the genetic effect on FO and 

TP with high confidence. Another consideration is that our adaptation of genetic component 

modeling for multivariate features requires a careful setting of the tangent point. We demonstrated 

convergence of heritability estimates from the genetics model and the ANOVA approach, which is 

independent of the tangent point. Thereby, we confirmed that the tangent point of the genetic model 

was chosen properly.  

 In conclusion, taking a multivariate approach, our study provides robust converging 

evidence for a substantial genetic effect on transitions between whole-brain connectome states 

and the proportion of time spent in each state. Our findings may further indicate that the individually 

specific instantiation of the states’ spatial layout is not heritable. Further, by establishing the 

association between heritable dynamic connectome features and heritable cognitive traits, this 

study identifies TP and FO in the resting human brain as potential endophenotypes for cognitive 

abilities. As such, these features may inform future studies into connectome-based biomarkers of 

and treatment targets for disorders involving aberrations in the respective cognitive domains. 

 

Materials and Methods 

Neuroimaging and Behavior Dataset  
We used the Washington University-University of Minnesota (WU-Minn) consortium of the 

Human Connectome Project (HCP) S1200 release. Participants were recruited, and informed 

consent was acquired by the WU-Minn HCP consortium according to procedures approved by the 

Washington University IRB (43). Details of the HCP data collection protocol (44, 45) and cognitive 

measures (46) are described elsewhere. 

From the S1200 HCP data release, following analyses used the data from all 1003 healthy 
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adult subjects (aged 22-37 y, 534 females) having four complete resting-state fMRI runs (4800 total 

timepoints). The subjects include 120 monozygotic (MZ) twin pairs, 65 same-sex dizygotic (DZ) 

twin pairs, 169 non-twin (NT) sibling pairs, and 88 pairs of randomly matched unrelated individuals. 

Note that all pairs are uniquely defined so that none of the subjects overlap between groups. All 

1003 subjects entered HMM estimation of discrete connectome states, while 884 subjects entered 

heritability so as to avoid dependencies across members of families with > 2 subjects. We included 

all 14 cognitive measures, which are summary scores for either a cognitive task or a questionnaire, 

under the cognition domain provided by the HCP (see S1 Table for more detailed description for 

each variable, and Fig. 1A for their phenotypic correlation structure). The measures were 

normalized to zero mean and unit variance. Of the selected 884 subjects, 879 subjects had 

complete data for the 14 cognitive variables measuring cognitive performance. 

 

Neuroimaging Data Preprocessing 
All imaging data were acquired on a customized Siemens 3 T Skyra at Washington 

University in St. Louis using a multi-band sequence. Each 15-minute run of each subject’s rfMRI 

data was preprocessed following the pipeline of Smith et al. (44, 47); it was minimally preprocessed 

(43) primarily using tools from FSL (48) and Freesurfer (49), and had artifacts removed using 

ICA+FIX (50, 51). Inter-subject registration of cerebral cortex was carried out using areal-feature-

based alignment and the Multimodal Surface Matching algorithm (‘MSMAll’) (52, 53). For feeding 

into group-PCA, each dataset was then temporally demeaned and had variance normalization 

applied (54). We used the preprocessed HCP dataset that retains the global signal (referred to as 

‘non-GSR data’), and no additional preprocessing was performed. HCP provides averaged BOLD 

time-series for regions of group-ICA-based parcellations. From the various group-ICA model orders 

provided by HCP, we chose the highest model order with 300 ICs, which better separates the 

individual regions of the intrinsic connectivity network (ICN) than the lower-order models. We 

retained all regions of the cerebrum (139 ICs), excluding the cerebellum and brainstem. These 

regions were then labeled according to canonical neurocognitive ICNs (55) (SI Appendix- 

Parcellations, Fig. S1).  

Hidden Markov modeling  
We applied HMM to the above-described minimally preprocessed region-wise BOLD time-

series, resulting in K discrete states of whole-brain connectivity patterns and associated state-

specific time-courses. The HMM assumes that the time series data can be described using a hidden 

sequence of a finite number of states. Here, the states represent unique connectivity patterns that 

repeatedly appear at different time points. Using the HMM-MAR (multivariate autoregressive) 

toolbox (https://github.com/OHBA-analysis/HMM-MAR), states were inferred from region-wise 
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BOLD time-series temporally concatenated across all subjects. Whereas the states are estimated 

at the group level, each subject has a characteristic state time course that indicates the time points 

at which a given state is active. Following common practice, we ran HMM five times (for a given K) 

over all 1003 subjects to obtain a model that better represents a wider population and selected the 

run with the best fitting model, i.e., lowest free energy (25, 29, 31).  

HMMs require an a priori selection of the number of states, K. Generally, the objective is 

not to establish a ‘correct’ number of states but to identify a number that describes the dataset at 

a useful granularity (29). To this end, we chose Ks of 4 and 6 based on prior literature. Specificall

y, previous HMM literature on brain states has used K ranging from 3 to 12 (12, 25–31). We chos

e two values of K within the range of this prior literature, reasoning that robust heritability effects s

hould be observable for both. Note that our choice of K is also close to the K of 5 ~ 7 often identifi

ed as optimal in studies using clustering methods as an alternative to HMM (24, 56–58).  

 

Comparison of multivariate features 
For each subject and HMM-derived state, we calculated FO (the cumulative total time spent 

in a given state), FCDMN-FPN (the mean connectivity across all regions of DMN with those of FPN), 

and Newman’s Modularity (quantifying the level of segregation of each connectome state into 

modules (32), by applying canonical ICNs (55) as the modular partition and using the greedy 

algorithm the Brain Connectivity Toolbox (59). Further, we estimated the transition probabilities 

across all state-pairs (TP matrix) for each subject.  

All of these features are multivariate: FO (1 × K), TP matrix (K × K), FCDMN-FPN (1 × K), and 

Modularity (1 × K), where K denotes the chosen number of discrete connectome states. To 

investigate whether each of these features is heritable as a multivariate phenotype, we estimated 

their similarity between subject pairs using Euclidean distance (60). This distance measure 

preserves the positional relationship between the elements within each multivariate variable. The 

genetic influence on the Euclidean distance was tested using an ANOVA of the factor sibling status 

with four levels (i.e., MZ twins, DZ twins, NT siblings, and pairs of unrelated individuals).  

Additionally, we examined whether heritability of the features was indeed driven by their 

multivariate patterns rather than their individual components. Specifically, we individually estimated 

the similarity of the FO, FCDMN-FPN and Modularity values of each state, and TP values of each state 

pair, as their simple difference across subject pairs. These difference values entered a two-way 

ANOVA of the factors sibling status and connectome states. 

 

Null model 
We simulated fifty different new state time courses of the same size as the original 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445378


16 

 

(estimated) state time courses using the simhmmmar function provided by HMM-MAR toolbox 

(https://github.com/OHBA-analysis/HMM-MAR). Note that fifty is a robust number compared to 

previous work (e.g., Vidaurre et al. (12) applied four simulations). These surrogate datasets 

preserve the static cross-covariance structure of the original dataset but have randomized state 

distribution. Then, we ran an HMM inference run with K = 4 and K = 6, respectively, for each 

surrogate dataset and recomputed the dynamic connectome features at the group- and subject-

level, respectively. Fig. S10 shows that the non-random distributions of features over states 

observed in the original dataset are absent in the surrogate dataset. 

 

Quantification of heritability  
The ACE genetic model is a structural equation model that compares the variance-

covariance matrices between MZ and DZ twins. The approach assumes that MZ twins have 

identical genomes, whereas DZ twins share, on average, half of their genetic information. Assuming 

that environmental factors influence both types of twins to a similar extent, the variance of a given 

phenotype can be partitioned into three latent components: additive genetic variance (A), resulting 

from additive effects of alleles at each contributing locus; shared environmental variance (C), 

resulting from common environmental effects for both members of a twin pair; and unique 

environmental variance (E), resulting from nonshared environmental or individual-specific factors 

(61). Following the parsimony principle, nested models, specifically AE and CE, were fitted by 

dropping C or A, respectively. Statistical significance of nested models was assessed by a 

likelihood ratio test, and the fitness of models was tested on the basis of a change in Akaike’s 

Information Criterion (AIC) (62).  

We conducted the variance component modeling using twinlm in the R package mets 

(http://cran.r-project.org/web/packages/mets/index.html), adjusting for age, sex, and FD (63). As 

the variance component model finds the relationship between twin pairs, the model requires each 

subject to have a singular value for each variable. Therefore, the subject-wise phenotypes were 

obtained by first finding a suitable Euclidean space for a given multivariate feature by taking the 

mean value of that feature from 50 surrogate datasets (See methods section on null model) as the 

tangent point. For each subject and feature, Euclidean distance from this tangent point was 

obtained for variance component modeling.  

 

Canonical correlation analysis  
Canonical correlation analysis (CCA) finds maximum correlations (or a mode of population 

covariation) between multidimensional data wherein potential relationships may be present (64). 

This is a more principled approach compared to conducting all potential correlations and correcting 
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for multiple comparisons. We used CCA to relate the cognitive measures to phenotypes of the 

dynamic connectome as previously applied the static connectome (11, 12, 35). We trained CCA on 

the multivariate variables with reduced dimensionality, including three principal components for 

dynamic connectome features and four factors for the cognitive measures. We used post-hoc 

correlations between the modes discovered by the CCA and the cognitive factors to evaluate the 

contribution of each factor to the given mode. We further assessed the statistical significance of 

the discovered modes of covariation by performing permutation testing with 10,000 permutations. 

See SI Appendix – canonical correlation analysis for details. 
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Tables 

Table 1. Variance-component model parameter estimates of the dynamic connectome features. 

Phenotype Model h2 (95% CI) A (95% CI) C (95% CI) E (95% CI) -2LL AIC χ2 ∆df p 

FO ACE .35 (.20, .50) .35 (20, .50) .00 (0.0, 0.0) .65 (.50, .80) -518.86 -504.86    

 AE .35 (.19, .50) .35 (.20, .50)   .65 (.50, .80) -518.86 -506.86 2.4e-10 1 1.0 

 CE     .27 (.14, .41) .73 (.59, .86) -516.57 -504.57 2.29 1 .13 

TP ACE .41 (.27, .55) .41 (.27,.55) .00 (0.0, 0.0) .59 (.45, .73) -513.43 -499.43    

 AE .41 (.27, .55) .41 (.27, .55)   .59 (.45, .73) -513.43 -501.43 8.1e-12 1 1.0 

 CE     .33 (.21, .46) .67 (.54, .79) -510.89 -498.89 2.53 1 .11 

All models were adjusted for age, sex, and head motion. A, Additive genetic effect; C, common environmental effect; E, Unique/non-shared enviro

nment effect; -2LL, twice the negative log-likelihood; AIC, Akaike’s information criterion; df, degrees of freedom; χ2, chi square, ∆df, change in degr

ee of freedom between the full model and the nested model; p, χ2 test in model fitting. The AE and CE models are nested within the ACE model. E

ach nested model is compared with the fully saturated model. The fitness of models was tested based on a change in AIC (for a change of df of 1, 

the statistically significant change in χ2 is 3.84). h2, the narrow-sense heritability estimated as σ2A/(σ2A + σ2c + σ2E); CI: Confidence Interval (lower b

ound, upper bound). 
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