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ABSTRACT 

In genetics and related fields, huge amounts of data, such as genome sequences, are 

accumulating, and the use of artificial intelligence (AI) suitable for big data analysis has 

become increasingly important. Unsupervised AI that can reveal novel knowledge from 

big data without prior knowledge or particular models is highly desirable for analyses of 

genome sequences, particularly for obtaining unexpected insights. We have developed a 

batch-learning self-organizing map (BLSOM) for oligonucleotide compositions that can 

reveal various novel genome characteristics. Here, we explain the data mining by the 

BLSOM: unsupervised and explainable AI. As a specific target, we first selected 

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) because a large 

number of the viral genome sequences have been accumulated via worldwide efforts. 

We analyzed more than 0.6 million sequences collected primarily in the first year of the 

pandemic. BLSOMs for short oligonucleotides (e.g., 4~6-mers) allowed separation into 

known clades, but longer oligonucleotides further increased the separation ability and 

revealed subgrouping within known clades. In the case of 15-mers, there is mostly one 

copy in the genome; thus, 15-mers appeared after the epidemic start could be connected 

to mutations. Because BLSOM is an explainable AI, BLSOM for 15-mers revealed the 

mutations that contributed to separation into known clades and their subgroups. After 

introducing the detailed methodological strategies, we explained BLSOMs for various 

topics. The tetranucleotide BLSOM for over 5 million 5-kb fragment sequences derived 

from almost all microorganisms currently available and its use in metagenome studies. 

We also explained BLSOMs for various eukaryotes, such as fishes, frogs and 

Drosophila species, and found a high separation ability among closely related species. 

When analyzing the human genome, we found evident enrichments in transcription 

factor-binding sequences (TFBSs) in centromeric and pericentromeric heterochromatin 

regions. The tDNAs (tRNA genes) were separated by the corresponding amino acid. 

  

INTRODUCTION 

The Kohonen self-organizing map (SOM), an unsupervised neural network algorithm, is 

a powerful tool for the clustering and visualization of high-dimensional complex data 

on a two-dimensional map (Kohonen et al., 1996). We modified the conventional SOM 

for genome informatics based on batch learning to make the learning process and the 

resulting map independent of the order of data input (Kanaya et al., 2001). The 

batch-learning SOM (BLSOM) is suitable for high-performance parallel computing and 

thus for big data analysis (Abe et al., 2003, 2006a). It is also worth mentioning that we 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/


can obtain unexpected insights by daring to leave knowledge discovery to AI. By 

analyzing the compositions of short oligonucleotides (e.g., 4- and 5-mers) in a large 

number of genomic fragments (e.g., 10 kb) derived from a wide variety of species, the 

BLSOM enables the separation (self-organization) of the genomic sequences by species 

and phylogeny and identifies oligonucleotides that significantly contribute to the 

separation (Abe et al., 2003, 2006c; Iwasaki et al., 2013b; Bai et al., 2014; Kikuchi et al., 

2015). In an analysis of the genomic fragments of a wide range of microbial genomes, 

over 5 million sequences were successfully separated by phylogenetic groups with high 

accuracy (Abe et al., 2020). A BLSOM program suitable for PC cluster systems is 

available on the following website: http://bioinfo.ie.niigata-u.ac.jp/?BLSOM. 

In our previous analysis of all influenza A strains, the viral genomes were separated 

(self-organized) by host animals based only on the similarity of the oligonucleotide 

composition, even though no host information was provided during the machine 

learning process (Iwasaki et al., 2011a, b): unsupervised AI. Notably, the BLSOM is 

also an explainable AI that can identify diagnostic oligonucleotides, which contribute to 

host-dependent clustering (self-organization). When studying the 2009 swine-derived 

flu pandemic (H1N1/2009), we detected directional time-series changes in the 

oligonucleotide composition due to possible adaptations to the new host, namely, 

humans (Iwasaki et al., 2011a), and these findings have shown that near-future 

prediction was possible, albeit partially (Iwasaki et al., 2013a). We found similar 

time-series changes in the oligonucleotide composition for ebolavirus, MERS 

coronavirus (Wada et al., 2016, 2017) and SARS-CoV-2 (Wada et al., 2020b; Ikemura et 

al., 2020; Iwasaki et al., 2021; Abe et al., 2021). In the present paper, SARS-CoV-2 

genomes, which are of great interest to society, were used as an operative example to 

illustrate how this unsupervised explainable AI supports efficient knowledge discovery 

from big sequence data. 

 

Analyses of SARS-CoV-2 To confront the global threat of COVID-19, a massive 

number of SARS-CoV-2 genome sequences have been decoded and published by 

GISAID (Elbe and Buckland-Merret, 2017; https://www.gisaid.org/). SARS-CoV-2 is an 

RNA virus with a rapid evolutionary rate, and based on variant types, eight clades have 

already been defined by GISAID, but the diversity may be far greater. Due to the 

current explosive increase in available sequences, we must develop new technologies 

that can grasp the whole picture of big-sequence data and support efficient data mining. 

We have recently analyzed time-series changes in short and long oligonucleotide 

compositions in a large number of SARS-CoV-2 genomes and found many 
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oligonucleotides that are expanding rapidly in the virus population, which allowed us to 

predict candidate advantageous mutations for growth in human cells (Wada et al., 

2020b; Ikemura et al., 2020). Furthermore, the oligonucleotide BLSOM can classify the 

virus sequences into not only the known clades but also their subgroups (Abe et al., 

2021). After the above-mentioned publications, a large number of sequences of this 

virus have continued to accumulate and will exceed one million. These big data, which 

have been acquired through worldwide efforts, are valuable not only for dealing with 

the current and future epidemics of infectious viruses but also for basic research in 

genetics and related fields. In this paper, we first used SARS-CoV-2 sequences, 

including the new sequences, to explain how unsupervised explainable AI enables 

knowledge discovery from a massive number of genome sequences. 

 

BLSOM of short oligonucleotides In this study, approximately 0.7 million 

SARS-CoV-2 genomes, which were isolated from December 2019 to February 2021, 

were analyzed, and the polyA-tail was removed prior to the analysis. Figure 1 shows 

BLSOMs for di- to hexanucleotide compositions in all viral genomes; importantly, no 

information other than the oligonucleotide composition was provided during the 

machine learning step (unsupervised AI). The total number of grid points (i.e., nodes) 

was set to 1/100 of the total number of viral genomes. After learning, to determine 

whether the separation achieved with the BLSOM was related to known clades 

published by GISAID, grid points containing genomes of a single clade are colored to 

indicate each clade, and grid points containing those of multiple clades are displayed in 

black. As shown in Fig. 1A, a major portion of grid points on the dinucleotide BLSOM 

are black, but a major portion of the grids on penta- and hexanucleotide BLSOMs are 

colored, showing the good classification power of the BLSOMs (Figs. 1A and 1Bi). 

Notably, the grid point where even one other clade-derived sequence is mixed is 

displayed in black, despite of the condition that an average of 100 sequences per grid 

point was set. This condition may be very strict; thus, in the hexanucleotide BLSOM 

shown in Fig. 1Bii, each grid point was colored to show the clade with the highest value, 

and the separation (self-organization) by clade is more clearly shown. 

 

Explainable AI The BLSOM is an explainable AI that can identify diagnostic 

oligonucleotides responsible for the observed clustering through the use of heat maps 

(Abe et al., 2003, 2006c). Eight examples of heatmaps for a hexanucleotide BLSOM are 

shown in Fig. 1Biii; here, the representative vector for each grid point is composed of 

4,096 (= 46) variables, and the contribution level of each variable at each grid point can 
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be visualized as follows: high (red), moderate (white) and low (blue). For example, 

CAGUAA has a high occurrence (red) primarily in GR territories (yellow green in Fig. 

1B), but CAGUAG, which differs from the former by one base (underlined), has a low 

occurrence (blue). When considering all 6-mer patterns (refer to Supplementary Fig. S1), 

we observed many cases in which red/blue patterns were reversed for a pair of 6-mers 

with a one-base difference, as observed in Fig. 1Biii. 

It should be mentioned that most 6-mers exist in multiple copies in the viral genomes; 

thus, the one-base difference yielding the red/blue reverse pattern could not be 

connected uniquely to a mutation in the viral genome. In other words, extending the 

oligonucleotide length until most k-mers are present as one copy per genome should 

connect one-base difference to one mutation. Thus, we calculated occurrences of long 

oligonucleotides in the viral genomes and found that when the length was extended to 

15-mers, most showed one copy per genome; i.e., if a 15-mer BLSOM yields a 

clade-specific separation (self-organization), this explainable AI will identify the 

mutations involved in the separation (Wada et al., 2020b; Ikemura et al., 2020). The 

15-mers, however, include over one billion types (415), and over 0.3 million types were 

found even for those that appeared in the viral genomes. A strategy for dimension 

reduction is essential for efficient data mining by a BLSOM. 

 

Time-series analysis for dimension reduction A major internal structure, such as a 

clade, has arisen as a result of mutations that have occurred after the start of the 

epidemic and rapidly increased their population frequency. To study the formation of 

such internal structures using a 15-mer BLSOM, 15-mers in which no mutations have 

been found or those in which mutations have occurred but did not significantly expand 

in the virus population can be excluded from the analysis. Therefore, we first tabulated 

viral strains from each month of collection and calculated the occurrence of each 

15-mer in the viral population. For each month, we calculated the increase in occurrence 

from December 2019 and selected 15-mers whose increase reached at least 10% in the 

population of each month; the reason for using the frequency of each month was to 

obtain information at intermediate stages of the pandemic (Wada et al., 2020b). After 

combining the results for each month and excluding duplicates, 891 different 15-mers 

were obtained. The BLSOM can analyze far more variables with no difficulty. Because 

various European-originated variants have shown worldwide spreads, the above 

time-series analysis was also performed for European strains, and 118 new 15-mers 

were obtained. When these are added, we may perceive the near-future trends of the 

global epidemic more acutely, and the following BLSOM was made using the 1009 
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15-mers (Fig. 2Ai); notably, the BLSOM can be used only for oligonucleotides of 

interest. 

 

BLSOM for 15-mers  In Fig. 2Ai, each grid point of the BLSOM for the 1009 

15-mers has 100 genomes on average, as above-mentioned in Fig. 1. Grid points that 

contain even one genome from another clade are shown in black, but most are colored, 

which shows that the BLSOM achieves good separation by clade, even though the 

number of oligonucleotides has been reduced by approximately a quarter compared to 

that obtained with the hexanucleotide BLSOM (4096 variables): usefulness of 

dimension reduction. Nevertheless, it is also clear that a significant portion was marked 

in black. Investigation of these black points revealed that they frequently contained the 

O (Other) clade sequences that GISAID did not classify as known specific clades. We 

believe that significant numbers of O-clade sequences can be classified into known 

clades (Ikemura et al., 2020). In Fig. 2Aii, each grid point was colored to indicate the 

clade with the highest value. 

Based on the U-matrix (Fig. 2B) used in the conventional SOM analysis (Ultsch, 

1993), the Euclidean distance between representative vectors of neighboring grid points 

can be visualized by the degree of blackness, and a larger distance is reflected by a 

higher degree of blackness (Iwasaki et al., 2013c). Notably, the boundary of the clade 

territory is visualized by a clear black line, and clear black lines are also observed inside 

the GR clade territory, indicating the existence of its subgrouping; the GR territory is 

very large, which reflects that GR sequences account for more than 60% of the total 

sequences. To clarify whether these GR subgroups have biological significance, we next 

investigated the time-series changes as follows. In Fig. 2C, using the BLSOM shown in 

Fig. 2A, sequences of different collection months are displayed. The comparison of 

March 2020, when almost all clades first appeared, with January 2021 showed that their 

sequences presented differential locations, and August 2020 showed an intermediate 

pattern. The existence of such time-series changes shows that the separation on the 

BLSOM has biological significance, as previously reported by Abe et al. (2021). 

 

Mutations responsible for separation into clades and their subgroups  We 

subsequently examined the 15-mers that contributed to separation on the BLSOM 

shown in Fig. 2 using the heatmap method explained in Fig. 1Biii. Importantly, we 

could identify mutations responsible for the separation into clades and their subgroups 

because all 15-mers that have rapidly expanded have one copy in the genome. Because 

the 1009 patterns include many similar patterns and are very complex as shown in 
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Supplementary Fig. S2, efficient data mining appears to be difficult. Therefore, we 

introduce the BLSOM for the 1009 heatmaps. As a typical AI image processing, each 

heatmap can be converted to vectorial data of the dimension corresponding to the 

number of pixels, which was 6570 (approximately 1% of the total number of genomes) 

in the present analysis. When we created a BLSOM for the vectorial data of the 

heatmaps (abbreviated heatmap BLSOM), most grid points are black (Fig. 3A), which 

indicates that many heatmap patterns are very similar to each other. An examination of 

the black grid points revealed that one grid point was often composed of heatmaps of 15 

different 15-mers, which were shifted by one base and added up to a 29-mer in total. A 

homology search (blastn) of the 29-mer against the standard SARS-CoV-2 sequence 

(NC_045512) showed a mutation in the center of the 29-mer, i.e., we could identify the 

involved mutations. When referring to all grid points on the heatmap BLSOM, the 

number of the attributed sequences was mainly a multiple of 15 or close to it. We 

subsequently explain actual cases in more detail. 

  For the No.1 grid point in Fig. 3A, heatmaps of 60 (= 15 x 4) 15-mers were found; 

thus, four 29-mers were obtained from these 60 15-mers, as above-mentioned. The 

blastn analysis of these four 29-mers against the standard viral sequence identified four 

independent mutations. Table 1 shows the 29-mer sequences before and after the 

mutation and details of the mutation, as well as the four 15-mer sequences with the 

mutation at the center, for which actual heatmaps are presented in Fig. 3Ci. Although 

minor differences were found in the periphery of the GV territory, 15-mers with these 

four different mutations show a highly similar pattern (No. 1 in Fig. 3Ci). Fig. 3B shows 

the aforementioned U-matrix again. In addition to the GV territory, there are small red 

spots, which show differences among the four mutations. Importantly, over 0.6 million 

genomes were separated on a single BLSOM; thus, if a region of interest is found (e.g., 

red spots outside the GV territory), features of the corresponding genomes (e.g., the date 

and region of the strain collection) can be immediately displayed because this AI is 

equipped with various tools to enable efficient data mining. 

  For the No. 2 grid point in Fig. 3A, 45 (= 15 x 3) 15-mers were found, and their 

heatmap patterns (No. 2 in Fig. 3Ci) are very similar to those of No. 1, although small 

areas were missing in the GV territory. The resultant three 29-mers and corresponding 

mutations identified by blastn are also shown in Table 1. Figure 3Cii shows a monthly 

time-series analysis of a total of seven 15-mers presented in Fig. 3Ci, where 0 on the 

horizontal axis corresponds to December 2019 (the epidemic start) and other numbers 

show the elapsed months since the start. Their occurrences have increased worldwide 

since August 2020, until they reached a peak in November and decreased thereafter. 
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Since these seven 15-mers show very similar time-series changes, the seven mutations 

of interest have increased and decreased, linking to each other. These mutations should 

include both advantageous mutations that increase infectivity and/or proliferation and 

neutral mutations that hitchhike the former mutations (Ikemura et al., 2020). The 

exploration of the seven mutations in Table 1 identified two nonsynonymous mutations 

and five synonymous mutations. The three mutations of No. 2 in Fig. 3Cii, where the 

red region is slightly missing, are synonymous mutations; thus, these may be neutral 

mutations. An AI that can visualize all genomes on a single map can support this type of 

prediction. 

  In the case of four grid points (No. 3 ~ 6 in Fig. 3A), 15 15-mers were attributed to 

each point, resulting in four 29-mers in total (Table 1). For four respective 15-mers in 

Table 1, most areas of GRc (a subgroup of GR) are red, but there are some differences 

in their periphery and spots in other clade territories (Fig. 3Di). Their time-series 

changes (Fig. 3Dii) are very similar to each other but different from those shown in Fig. 

3Cii. As Figs. 3Ci and Di, we have introduced examples of heatmaps with relatively 

simple patterns among those in Supplementary Fig. S2 and identified mutations that 

expanded rapidly in the population. More analyses on the mutations have already been 

published (Wada et al., 2020b; Ikemura et al., 2020). Undoubtedly, the analysis aiming 

to distinguish between advantageous and neutral mutations becomes important, and the 

present AI is thought to be useful for this purpose. Extensive data of mutations observed 

for SARS-CoV-2 have been published by various sources, e.g., Alam et al. (2021) and 

COG-UK / Mutation Explorer (http:// http://sars2.cvr.gla.ac.uk/cog-uk/). 

 

Use of preformed BLSOMs for analyses of newly-obtained sequences  One 

distinctive characteristic of SARS-CoV-2 is the rapid increase in sequence data, and 

GISAID has very recently added a new clade, GRY, which corresponds to variants 

originating in the UK and rapidly expanding worldwide. We have examined how the 

sequences belonging to the new clade are related to those analyzed in Fig. 2A. In Fig. 

3E, the GRY sequences newly downloaded at the end of March 2021 (over 30,000 

sequences), most of which were not included in the BLSOM in Fig. 2A, were mapped 

onto the BLSOM, i.e., for each GRY sequence, we looked for the grid point with the 

closest Euclidean distance. Most GRY sequences were mapped to the small area 

indicated by the arrow in Fig. 3B (arrowed also in Fig. 3E); here, the number of GRY 

sequences attributed to each grid point is indicated by the height of the vertical bar (3D 

display), and almost all GRY sequences were mapped in the GRY territory arrowed in 

Fig. 3B. The sequences downloaded at the beginning of February 2021 contained some 
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GRY sequences, and these formed the small area in Fig. 2A. A BLSOM can provide 

information on sequences that were not included in its formation, and this mapping 

method is useful in metagenome analyses described below. So far, we have explained 

how the present AI can analyze big sequence data by explaining various methods in 

detail. Next, in connection with these detailed methodological strategies, we introduce 

examples of data mining from various prokaryotic and eukaryotic sequences. 

 

Large-scale BLSOMs and their use in metagenome studies  The BLSOM algorithm 

is suitable for high-performance parallel computing, and large-scale analyses, such as 

those that analyze most of the genome sequences currently available, is possible when 

using high-performance computers (Abe et al., 2006a). In Fig. 4A, the tetranucleotide 

composition of over 5 million 5-kb fragments of almost all microorganisms (including 

viral sequences) available in INSDC (DDBJ, ENA/EBI and NCBI) was analyzed by a 

BLSOM (Abe et al., 2020). In INSDC, only one strand of complementary sequences is 

registered, and the strand is chosen rather arbitrarily in the registration of fragment 

sequences. When investigating general characteristics of genome sequences, differences 

between two complementary strands are usually not important. In Fig. 4A, we 

constructed a BLSOM after summing frequencies of a pair of complementary 

oligonucleotides (e.g., AAAA and TTTT) in each fragment (Abe et al. 2005); BLSOM 

for this degenerate set of a pair of complementary tetranucleotides is abbreviated as 

DegeTetra BLSOM. Most of the sequences were separated (self-organized) with high 

accuracy according to their phylogeny with no information concerning phylogeny 

during the machine learning process (unsupervised AI). When such a large-scale 

BLSOM is created, the phylogeny of the metagenomic sequence can be predicted by 

mapping the large number of metagenomic sequences on the preformed BLSOM. 

We previously used this strategy to classify sequence fragments derived from 

environmental samples of the Sargasso Sea reported by Venter et al. (2004). Since a 

certain portion of Sargasso sequences may be derived from eukaryotic genomes, we 

constructed a DegeTetra BLSOM with 5-kb sequences from prokaryotes, unicellular 

eukaryotes and fishes (Fig. 4Bi); for details, see Abe et al. (2005). The power of 

BLSOM to separate prokaryotic from eukaryotic sequences was very high; only 0.1% 

prokaryotic sequences were classified into eukaryotic territories (■). Next, we mapped 

Sargasso sequences longer than 1 kb on this BLSOM (Fig. 4Bii), as explained for the 

3D display in Fig. 3E. While a major portion of the Sargasso sequences (■) were 

classified into prokaryote territories, 9.9% were classified into eukaryotic territories that 

corresponded mainly to territories of unicellular eukaryotes. 
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This mapping method may have some disadvantages that even sequences derived 

from very novel phylotypes were attributed to any of known ones. To solve this issue, 

we next constructed a DegeTetra BLSOM with the species-known prokaryotic 

sequences plus Sargasso sequences (Fig. 4Ci). Grid points that contained only Sargasso 

sequences are indicated by (■), and the number of Sargasso sequences classified into 

these grid points is indicated by the height of the vertical bar (Fig. 4Cii). It is clear that a 

large portion of Sargasso sequences belongs to novel phylogenetic groups. In Fig. 4Ciii, 

the number of Sargasso sequences that got into grid points containing species-known 

sequences is indicated by the height of the bar distinctively colored to show the 

species-known phylotype (Abe et al., 2005). 

The strategies explained in Figs. 4B and 4C have been used in various metagenome 

studies (Hayash et al., 2005; Uchiyama et al., 2005; Abe et al., 2006b; Uehara et al., 

2011), including the detection of diverse pathogenic virus sequences from tick-derived 

metagenome sequences (Nakao et al., 2013). Dick et al. (2009) developed a slightly 

different type of SOM “ESOM (emergent SOM)” and obtained clear phylotype-specific 

classification of metagenomic sequences by analyzing several acidophilic biofilms in 

the Richmond mine. 

 

Analyses of various eukaryotic genomes  It is also interesting to see to what extent 

BLSOM can separate genome sequences of closely related species. Figure 4D shows 

DegeTetra BLSOM of 100-kb fragments from 15 vertebrates including nine fishes, and 

most sequences were separated by species with high accuracy (Iwasaki et al., 2014). 

Using heatmaps, such as explained in Figs. 1 and 3, we found that coelacanth has a 

distinctly lower frequency of CG-containing oligonucleotides than other fishes: an 

evident CG deficiency, as typically found for tetrapod. We also reported BLSOMs for 

38 eukaryotes (Fig. 4E) (Abe et al. 2006c), 12 Drosophila species (Fig. 4F) (Abe et al., 

2014), eight frogs (Katsura et al., 2021) and 13 plant species (Abe et al., 2009) and 

found high separation ability even for closely related species. 

 

Analyses of the human genome  Unsupervised AI can be used without prior 

knowledge or models, and we dare to leave the main data mining to the unsupervised 

explainable AI, which allows for unexpected knowledge discovery. Using 

pentanucleotide compositions of 50- and 100-kb and 1-Mb fragment sequences from the 

human genome, we explored the possibility of chromosome-dependent separation 

(Iwasaki et al., 2013c; Wada et al., 2015, 2020a). Although we first thought it was 

impossible, we obtained interesting patterns for these three lengths. Figure 5Ai shows a 
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50-kb case; grid points that contained only sequences from a single chromosome are 

colored, and those that contain sequences from plural chromosomes are shown in black. 

Most grid points were black, but four relatively large areas, as well as many small areas, 

contained characteristic colored grid points, and interestingly, the four areas were found 

to be composed of sequences derived from centromeric and pericentromeric 

heterochromatin regions (Iwasaki et al., 2013c); in the case of many small regions, 

sequences derived from subtelomeric heterochromatin regions were often found. 

A heatmap analysis of the pentanucleotide BLSOM showed that the four large 

characteristic areas were evidently enriched in eight pentanucleotides that are known to 

be consensus-core sequences of diverse transcription factor-binding sequences (TFBSs) 

(Iwasaki et al., 2013c). Once the AI provides this information, we can analyze it more 

directly using a standard distribution map along each chromosome. Figure 5Aii displays 

the occurrences of the eight TFBS-core pentanucleotides in three chromosomes, and the 

TFBS-cores are clearly enriched in centromeric and pericentromeric regions, which are 

marked with a broad brown bar just below the horizontal axis. Importantly, this 

characteristic distribution pattern was observed in all chromosomes except chrY 

(Iwasaki et al., 2013c; Wada et al., 2020a).  

For more direct analysis, we subsequently analyzed actual TFBSs, instead of the 

consensus-core pentanucleotides. By searching for human TFBSs through Swiss 

Regulon Portal (Pachkov et al. 2013), 189 hexanucleotide, 977 heptanucleotide and 

3,946 octanucleotide TFBSs were found. When analyzing hexanucleotide TFBSs, their 

clear enrichment in centromeric and pericentromeric regions was observed as in Fig. 

5Aii, whereas the combination of the enriched TFBSs varied among chromosomes; for 

details, see Wada et al. (2020a). Because the size of these enriched regions was at the 

Mb-level, we named the regions “Mb-level TFBS islands”. In centromeric and 

pericentromeric regions, the Mb-level enrichment in a group of CG-containing 

oligonucleotides (e.g., CG surrounded by A/T-rich sequences) was also observed (Fig. 

4Dii); thus, these were named “Mb-level CpG islands”; actual sequences of the enriched 

oligonucleotides also varied among chromosomes (Wada et al., 2015). 

 

BLSOMs with TFBSs  In the case of 977 hepta- and 3,946 octanucleotide TFBSs, the 

number of variables is so large that it is practically impossible to perform a distribution 

map analysis of all TFBSs along all chromosomes. BLSOM, however, can analyze 

compositions even of 3,946 octanucleotide TFBSs in all chromosomes at once (Wada et 

al., 2020a). Figure 5Bi shows a BLSOM that analyzes the octanucleotide TFBS 

occurrences in 1-Mb sliding sequences with a 50-kb step. By restricting the 
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oligonucleotides to TFBSs alone, characteristics of centromeric and pericentromeric 

regions became more prominent, and the sequences in these regions formed a large 

special area on the left side. Due to the 50-kb sliding step, the total number of 1-Mb 

sequences was almost the same to that in Fig. 5Ai where 50-kb fragments were 

analyzed, but the patterns were very different from each other for the following reasons. 

The TFBS occurrences in neighboring 1-Mb sequences off by 50 kb are very similar to 

each other, and therefore, sequences belonging to one chromosome can be visualized as 

a single stroke-like trajectory. Actually, in the large specific area, 1-Mb sequences 

derived from centromeric and pericentromeric regions of one chromosome give the 

colored dotted lines. Eight examples of heatmaps show chromosome-dependent 

enrichment in individual TFBSs (Fig. 5Bii), which is related in part to the 

chromosome-dependent difference in alpha-satellite monomer sequences (Hayden et al., 

2013; Aldrup-MacDonald et al., 2016; Sullivan et al., 2017). Centromeric and 

pericentromeric regions are poor in protein-coding genes; thus, the evident enrichment 

in TFBSs was unexpected. In the previous paper (Wada et al., 2020), we proposed a 

model that their enrichment in the Mb-level structures (Mb-level TFBS islands) support 

interchromosomal interactions in interphase nuclei (Lieberman-Aiden et al., 2009; 

Dekker & Misteli, 2015). 

 

Analyses of tRNAs, proteins and codon usage 

We will next explain what a BLSOM can tell us about short sequences such as tRNAs. 

Even if the result is unpredictable, we dare to leave knowledge discovery to AI. We 

have created a database (tRNADB-CE) of tRNA genes (tDNAs) obtained from all 

microbial genomes available (Abe et al., 2011, 2014), and we next explain a 

pentanucleotide BLSOM of approximately 0.4 million tDNA sequences in the database 

(Iwasaki et al., 2017). There are 1024 types of pentanucleotides, and sequences of 

tDNAs are clearly shorter than 100 nt; thus, most pentanucleotides do not occur in each 

tDNA. For these particular data consisting mostly of zeros, the obtained result was 

rather unpredictable. After training only with the pentanucleotide compositions, the grid 

points that contained tDNAs of one amino acid were colored. Interestingly, most tDNAs 

were separated by amino acids with high accuracy (Fig. 5Ci). Referring to heatmaps 

(Fig. 5Ciii), the oligonucleotides that contributed to the separation by amino acid were 

found to correspond primarily to the recognition sequences of the aminoacyl-tRNA 

transferase, which have been designated identifier or identity (Ardell, 2010), as well as 

the anticodon and surrounding nucleotides, i.e., the identifiers appear to be assignable 

without experiments (Iwasaki et al., 2017). Interestingly, a minor proportion of tDNAs 
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were located outside the main territory of each amino acid on the BLSOM (Fig. 5Cii), 

and these exceptional tDNAs often belonged to phylogenetic groups that grow in 

special environments (Iwasaki et al., 2017). The BLSOM can provide insight into 

identifiers even for these poorly characterized species. An analysis of large numbers of 

tDNAs from a wide range of phylotypes will enable this type of characteristic research. 

As introduced in Fig. 3A, the BLSOM can analyze vectorial data other than 

oligonucleotide compositions, and the peptide composition of proteins is analyzable. In 

fact, Ferran et al. (1994) investigated di- and tripeptide compositions using the Kohonen 

conventional SOM. Although the study was conducted at a time when a limited number 

of protein sequences (approximately 2000) were known, the proteins were separated by 

function. In addition, rather than using 20 different amino acids separately, 11 groups, 

into which amino acids with similar physicochemical properties were classified, 

achieved better separation. We created BLSOMs of di-, tri- and tetrapeptides for over 

80,000 prokaryotic proteins and obtained separation reflecting COGs (Clusters of 

Orthologous Groups of proteins), which are known to be functional groups (Abe et al., 

2009). In support of the previous research, a better separation was obtained after 

grouping into 11 groups. However, a mixed trend of separation reflecting phylogeny 

was detected, and the situation becomes further complicated for proteins with multiple 

functional domains. Although it has already been used to study the diversity in enzymes 

related to secondary metabolic pathways in plants (Ikeda et al., 2013), the scope of its 

use is currently limited, and further development is needed. BLSOM can also be applied 

to the studies of codon usage in protein genes (Kanaya et al., 2003; Kosaka et al., 2008). 

 

CONCLUSION AND FUTURE PERSPECTIVES 

In genetics and related fields, most studies have been conducted by creating models and 

hypotheses and then testing them. However, in the big data era, this principle may not 

be sufficient for the data mining of big data. Models and hypotheses must rely on 

existing knowledge, which make it difficult to obtain unexpected insights. Here, we 

have explained the strategy of entrusting knowledge discovery to AI, which appears to 

become increasingly important. In big data analyses, the research conducted by large 

groups using high-performance computers is becoming the norm, and somewhat 

unfortunately, the contributions of individuals and small groups are decreasing. With the 

help of AI, individuals and small groups can discover distinctive knowledge from big 

data. The research presented here, with the exception of those shown in Figs. 4A~C, can 

be conducted on PC-level computers. A BLSOM program suitable for PC systems is 

available on the following website: http://bioinfo.ie.niigata-u.ac.jp/?BLSOM. 
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  The main purpose of this paper was to show how an unsupervised explainable AI can 

enable knowledge discovery from big data. To help readers envision applications to 

their own topics, various examples and research strategies were explained in detail. The 

present research strategies can be applied to AI algorithms other than the BLSOM, and 

similar or better data mining will become possible. The Kohonen SOM, which serves as 

the basis of the BLSOM, was developed during the second AI boom and is a classic 

technology. In the current third AI boom, a wide variety of new technologies are being 

developed and playing active roles in practical fields. For an example of image 

processing, image classification has made great strides due to its practical importance, 

but the reasons for why AI is achieving such highly accurate classification are unclear 

for us (black box). This may not be a problem regarding the practical use, but in 

scientific studies, the reason for the classification is important. The third-generation 

explainable AI will be definitely developed. On the machine side, quantum computers, 

which excel at combinatorial optimization problems, have become practical. The 

BLSOM algorithm appears to somewhat resemble the combinatorial optimization 

problem; hence, AI-based genome analyses using quantum computers will be realized 

sooner than expected. Such advanced technologies should be quickly introduced to the 

studies with social importance, such as observed for the rapid technological 

development of COV-19 vaccine production. In such an era, interdisciplinary 

collaborative research and appropriate education will become increasingly important. 
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LEGENDS TO FIGURES 

Figure 1  BLSOMs for di- to hexanucleotide compositions in SARS-CoV-2 genomes. 

(A) BLSOMs were constructed for di- to pentanucleotide compositions in 655,802 viral 

genome sequences. The total number of grid points (nodes) was set to 1/100 of the total 

number of genomes. Grid points that include sequences from more than one clade are 

indicated in black, and those containing sequences from a single clade are indicated in a 

clade-specific color: G ( ), GH ( ), GR (■), GV (■), L (■), S (■), V ( ) and O (■). (B) 

BLSOMs for hexanucleotide composition. (i) Each grid point was displayed as 

described in A. (ii) Each grid point was colored for showing the clade with the highest 

value. (iii) Heatmaps for four pairs of hexanucleotides with one-base difference. More 

examples are presented in Supplementary Fig. S1. 

 

Figure 2  BLSOM for 1009 15-mers. The number of grid points was set as described 

in Fig. 1. (A) (i and ii) Each grid point was displayed as described in Fig. 1A and Bii, 

respectively. (B) U-matrix. The subgroupings in GR follow the dark black lines of 

U-matrix, while the others are primarily determined by heatmaps presented in 

Supplementary Fig. S2. (C) Sequences of three different collection months were 

displayed, and each grid point was marked as described in Fig. 1A. 

 

Figure 3  15-mers responsible for the separation according to clades and their 

subgroups. (A) BLSOM of heatmaps for 15-mer BLSOM presented in Fig. 2. Grid 

points (nodes) that contain one 15-mer heatmap are colored in red, and those including 

more than one heatmap are indicated in black. Four Grid points in focus are numbered. 

(B) The same to the U-matrix shown in Figure 2B, but the small GRY territory is 

marked with an arrow. (C) 15-mers contributed to formation of the GV territory: their 

heatmaps and monthly time-series changes (i and ii, respectively). Results of 15-mer 

sequences after mutation, which are listed in Table 1, are presented. In the time-series 

analysis, different 15-mers gave very similar patterns; thus, the symbols distinguishing 

individual 15-mers were not explained. (D) 15-mers contributed to formation of the 

GRc territory. Their heatmaps and time-series changes (i and ii, respectively) are shown 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/


as described in (C). (E) Mapping of newly downloaded GRY sequences on the 15-mer 

BLSOM presented in Fig. 2. The number of sequences mapped to each grid point is 

indicated by the height of the vertical bar: 3D display. 

 

Figure 4  Oligonucleotide BLSOMs of various prokaryotic and eukaryotic genomes. 

(A) DegeTetra BLSOM of microorganisms of 40 phyla/classes; for details, see Abe et al. 

(2020). Grid points containing sequences of a single phylotype are indicated in 

phylotype-specific colors. (B) DegeTetra BLSOM of 211,000 and 210,600 5-kb 

sequences of 1,502 prokaryotes and 12 eukaryotes, respectively. (i) Grid points that 

contain sequences from a single prokaryotic phylotype are indicated in 

phylotype-specific colors, and those that contain only eukaryotic sequences are 

indicated in color (■); for details, see Abe et al. (2005). (ii) Metagenome sequences from 

Sargasso Sea (Venter et al., 2004) were mapped on this BLSOM, and square root of the 

number of Sargasso sequences mapped on each grid point is indicated by the height of 

the bar in color (■). (C) DegeTetra BLSOM of species-known prokaryotic sequences 

and Sargasso sequences. BLSOM was constructed with 211,000 5-kb prokaryote 

sequences plus 218,000 Sargasso sequences after normalization of the sequence length; 

for details, see Abe et al. (2005). (i) Grid points that contain sequences from a single 

known phylotype are indicated in phylotype-specific colors, those that contain only 

Sargasso sequences are indicated in color (■), and those that include species-known and 

Sargasso sequences or those from more than one known phylotype are indicated in 

black. (ii) Square root of the number of Sargasso sequences classified into each grid 

point containing no species-known sequences is indicated by the height of the bar in 

color (■). (iii) Square root of the number of Sargasso sequences that were classified into 

grid points containing species-known sequences is indicated by the height of the bar 

distinctively colored to show the phylotype. (D) DegeTetra BLSOM of 100-kb 

sequences of 15 vertebrates including nine fishes. For details, see Iwasaki et al. (2014). 

(E) DegeTetra BLSOM of 100-kb sequences of 38 eukaryotic genomes. For details, see 

Abe et al. (2006c). (F) DegePenta BLSOM of 100-kb sequences of 12 Drosophila 

species. After grouping the 12 species into five phylotypes, grid points are colored for 

showing the phylotypes; for details, see Abe et al. (2014). 

 

Figure 5 Analyses of the human genome and tDNAs. (A) Pentanucleotide BLSOM of 

50-kb sequences derived from the human genome. (i) Grid points containing sequences 

from more than one chromosome are indicated in black, and those containing sequences from a 

single chromosome are indicated in chromosome-specific colors; for details, see Iwasaki et al. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/


(2013c). (ii) Occurrences of eight TFBS-core pentanucleotides per Mb are plotted on 

three human chromosomes; a pair of complementary pentanucleotides were summed. 

Genomic regions of centromeric and pericentromeric constitutive heterochromatin are 

marked with a brown bar just below the horizontal axis; for details, see Iwasaki et al. 

(2013c). (B) BLSOM for 3946 octanucleotide TFBSs. A pair of complementary 

octanucleotide were summed. (i) Occurrences in 1-Mb sequences sliding with a 50-kb 

step were analyzes; for details, see Wada et al. (2020a). Grid points are marked as 

described in Ai. (ii) Eight examples of heatmaps to show the contribution level of each 

TFBS in each node. (iii) Occurrences of CG-containing pentanucleotides per 1 Mb are 

plotted as described in Aii. (C) Pentanucleotide BLSOM for bacterial tDNAs. (i) Grid 

points containing tDNAs of multiple amino acids are indicated in black, and those 

containing tDNAs of a single amino acid are colored; for details, see Iwasaki et al. 

(2017). (ii) Grid points containing tDNAs of individual amino acids on the Penta 

BLSOM are visualized separately with the color used there; Arg (■), Ile (■) and Met (■). 

(iii) An example of heatmaps of diagnostic pentanucleotides responsible for amino-acid 

dependent clustering: ATAGA for Arg. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.23.445371doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445371
http://creativecommons.org/licenses/by/4.0/

