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Abstract 1 

Visualisations and analyses of cellular and subcellular organelles in biological cells is crucial for the study of 2 

cell biology. However, existing imaging methods require the use of exogenous labelling agents, which prevents 3 

the long-time assessments of live cells in their native states. Here we propose and experimentally demonstrate 4 

three-dimensional segmentation of subcellular organelles in unlabelled live cells, exploiting a 3D U-Net-based 5 

architecture. We present the high-precision three-dimensional segmentation of cell membrane, nucleus 6 

membrane, nucleoli, and lipid droplets of various cell types. Time-lapse analyses of dynamics of activated 7 

immune cells are also analysed using label-free segmentation.  8 

  9 
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 3 

Introduction 10 

There is a high demand for the quantification of the morphological dynamics in a live cell and its subcellular 11 

organelles among numerous research topics in quantitative cell biology1, 2. Recent advances in microscopic 12 

techniques have created a new era for image-based cell volume quantification3-5. Fluorescence-based confocal 13 

imaging is the most popular for live-cell quantification, offering high flexibility of organelle markers and 14 

correlated fluorophores.  15 

Quantitative phase imaging (QPI) is a powerful method to observe the morphology of a live specimen without 16 

any perturbation; this includes dye staining or fluorescence protein expression6. Recently developed three 17 

dimensional (3D) QPI techniques provide the 3D refractive index (RI) distributions, containing quantitative 18 

information on the concentration of a material, and have been exploited in various applications including 19 

biomolecular condensates7, biotechnology8, microbiology9, and cell biology10. Although the 3D QPI image can 20 

provide the physical properties corresponding to each voxel, a universal and versatile segmentation method is 21 

required to simultaneously monitor quantitative dynamics in a whole cell and its organelles. To this end, there is 22 

a need for techniques to discriminate specific organelles within a cell and discriminate each cell unit from its 23 

neighbouring cells. 24 

To provide such a cell segmentation mask in 3D QPI, previous works have widely used conventional approaches 25 

such as the threshold-based Otsu segmentation, transforming a 3D image to a two-dimensional (2D) image by 26 

maximum intensity projection, and filtering in 3D volume organelle segmentation11-13. However, this algorithm 27 

may rarely be applied to the organelle segmentation of QPI images due to the lack of organelle specificity from 28 

the intensity and the low variation of numerical contrast. As the RI is an intrinsic value determined exclusively 29 

by the concentration of a certain material, the RI range can easily overlap among different compartments within 30 

a cell.  31 

In recent years, machine learning techniques based on cell and organelle morphology have been adopted to 32 

overcome these problems in 3D QPI imagery. In particular, deep-learning approaches based on a large amount 33 

of data rather than specific features have been utilised, including nucleus segmentation14, spermatozoon 34 

segmentation15, and lipid droplet segmentation16. These semantic segmentation methods should use single-cell 35 

images for cell analysis due to the absence of a method to distinguish individual cell units. To overcome this 36 

limitation of semantic segmentation in cellular studies, several studies have proposed cell-by-cell segmentation 37 
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to track the immunological synapse of immune cells17 or analyse sperm cells15. However, as these methods 38 

mainly focus on the segmentation of specific cell types or organelles, their applicability is limited in a few 39 

analyses. To be used in various applications, it is necessary to develop a robust model that accurately segments 40 

individual cells and organelles among numerous cell types. 41 

This study presents a universal framework for the label-free, quantitative analysis of live cells; this study has 42 

three major contributions. First, to simultaneously monitor the quantitative dynamics of whole cells and 43 

organelles, an automatic segmentation framework using deep learning and cell characteristics in 3D QPI images 44 

was proposed. The proposed automated segmentation framework consists of a "multi-organelle segmentation" 45 

model that segments multiple organelles within a cell and a "cell-by-cell segmentation" model that distinguishes 46 

individual cells from neighbouring cells. Second, we verified that this model has spatio-temporal robustness 47 

among numerous adherent and suspension cell lines, popular among biologists. The proposed framework did not 48 

target a specific organelle, but rather it learned the relationship of organelles within a cell, by considering 49 

multiple organelles simultaneously. As such, it showed stable performance even within a variety of cells not 50 

used for learning. In particular, the cell-by-cell segmentation model operated in various cell lines without being 51 

limited to specific cells, based on the cell membrane and nuclear information. Finally, we demonstrate 52 

quantitative analyses of RAW 264.7 cells utilising morphological and biochemical properties by exploiting the 53 

linear correlation among RI, protein density, and the proposed segmentation models. The results suggest that the 54 

proposed method offers a new analytical approach for automatic cell studies.55 
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 5 

Results 1 

Deep-learning-based multi-organelle and cell-by-cell segmentation model 2 

The proposed analysis process for live cells was primarily composed of two processes. First, we generated 3 

segmentation masks for individual cells and their organelles. Then, we obtained the morphological and physical 4 

properties (e.g., volume, surface area, and concentration), using each created segmentation mask and its RI 5 

values. 6 

To this end, we utilised data-driven, deep-learning techniques. Specifically, we used two different 3D 7 

convolutional neural networks: one for the multi-organelle segmentation model, and the other for the cell-by-8 

cell segmentation model, as depicted in Figure 1. The multi-organelle segmentation model predicts the 9 

segmentation mask of four organelles from the input 3D RI tomogram (Figure 1a); the nucleus, nucleolus, 10 

plasma membrane, and lipid droplet (Figure 1b). We selected these four organelles because they are commonly 11 

used in cell analysis. By learning various tasks simultaneously, the model learns the characteristics of individual 12 

organelles and their relationship with each other. This multi-task learning prevents overfitting18 and significantly 13 

reduces computation time, compared to training each task separately. 14 

The cell-by-cell segmentation model divides the membrane mask of the entire cell into the mask of each cell. 15 

The model uses the nuclear and membrane masks obtained from the multi-organelle segmentation model results 16 

(Figure 1c). Assuming that each cell has at least one nucleus, a nucleus mask was used as the seed to separate 17 

individual cells. The membrane mask was used to distinguish regions between non-cell and cell areas. The 18 

details of the model are described in the Online Methods section. 19 

We measured 129 3D QPI images of live NIH3T3 cells to train and evaluate the segmentation models described 20 

above. To generate ground-truth masks of the collected 3D QPI imagery, three expert biologists manually 21 

annotated the masks of individual cells and their four organelles using the open-source software called Insight 22 

Segmentation and Registration Toolkit (ITK)-Snap19. Thereafter, we split collected data into 105 training and 24 23 

evaluation datasets. Additionally, we used four different cell lines (A549, MDA-MB-231, HeLa, and RAW 24 

264.7) that were not used for training to confirm model generalizability, whereby each cell line was extracted 25 

from a different organ. A549 is a human lung carcinoma cell line, MDA-MB-231 is a human breast 26 

adenocarcinoma cell line, HeLa is a human cervical adenocarcinoma cell line, and RAW 264.7, a mouse 27 

macrophage cell line; nine 3D QPI images were captured for each cell line. These cell lines were used because 28 
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 6 

these cells represent the characteristics of other organs and because they have widely used cell lines in 29 

biological laboratories. The preparation of cell lines and the process of generating QPI data are detailed in the 30 

Online Methods section.  31 

The Dice score was used to quantitatively measure the segmentation performance of the model. This is the most 32 

frequently used metric in image segmentation, quantifying the similarity between the ground truth and 33 

prediction masks (Eq. 3). The average Dice score of cell instance segmentation for the five cells was 0.758, 34 

while the average Dice score of membrane segmentation was 0.831. For the NIH3T3 and RAW 264.7 cells, the 35 

difference between the Dice score of membrane segmentation and that of cell-by-cell segmentation was 36 

marginal. However, for the remaining cells, the Dice score of cell-by-cell segmentation was slightly lower than 37 

that of membrane segmentation. As these cell lines were characterised by confluent growth, the resulting cell-38 

by-cell segmentation tasks were very difficult. Likewise, the Dice scores of the nucleus segmentation for the 39 

NIH3T3 and Raw 264.7 cells were higher than the remaining cells. The variation in the Dice score for nucleolus 40 

segmentation was relatively small; this is because the RI of the nucleolus is similar between cells. The Dice 41 

score of the lipid droplet segmentation was far lower than other organelles, as the volume of the lipid droplet 42 

was relatively small compared to the other subcellular organelles. A small portion of false-positive and false-43 

negative predictions may significantly reduce the Dice score when the total volume of the mask is small. 44 

Next, we conducted a qualitative assessment using experts (Figure 2). The cell-by-cell segmentation model 45 

performed well in the A549, MDA-MB-231, HeLa, and RAW 264.7 cell lines, which were not used for training. 46 

Each of the five cell lines had different shape characteristics in the subcellular organelles. NIH3T3 has a small 47 

apparent nucleus, a small number of nucleoli, and a long and overlapping membrane structure. The A549 cells 48 

also had an evident trim nucleus, although they possessed one or two large nucleoli, and had thin membrane 49 

with large lipid droplets. The HeLa cells have a large prominent nuclear membrane and a small number of 50 

nucleoli in the nucleus, with a thicker membrane than A549 cells. The MDA-MB-231 cells were possessed, but 51 

it has one or two large nucleoli. The morphology of RAW 264.7 cells completely differed from that of the four 52 

other cell lines; the size of RAW 264.7 cells was smaller than that of the other five cell lines; moreover, the 53 

RAW 264.7 cells had a spiky circular membrane. The size of the nucleus was sufficiently large to make up most 54 

of the cells. We applied the model to cell lines with different characteristics and observed that it worked very 55 

well with various cell lines. Additionally, the masks produced by 3D cell segmentation showed better 56 

morphological features of cells and subcellular organelles (Figure 3).  57 
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 7 

Quantitative cell analysis using segmented masks  58 

To analyse live cells, we utilised volume, surface area, and concentration. Volume was computed by multiplying 59 

the total number of voxels in the segmentation masks and the volume of the 3D QPI image. To compute surface 60 

area, we constructed a triangular mesh from the 3D segmentation masks. Concentration was calculated as per 61 

Equation (1): 62 

 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = (
1

𝑁
∑ 𝑛𝑖

𝑁
𝑖 − 𝑛0) /𝑅𝐼𝐼          (1) 63 

where 𝑁 is the index of the set of the segmentation mask; 𝑛𝑖 is the RI of the voxel; 𝑛0 is the RI of the 64 

surrounding media (1.3337); the RII is a constant set as 0.135 for the lipid droplet and as 0.19 for the remaining 65 

organelles.  66 

Macrophages are white blood cells that play an essential role in the innate immune system. Macrophages 67 

phagocytose bacteria, secreting proinflammatory and antimicrobial mediators20. Macrophages induce the 68 

transcription of genes that encode proinflammatory regulators, such as the transcription factor activator protein 1 69 

(AP-1), and the c-Jun N-terminal kinase (JNK). This is achieved through exposure to environmental stimuli, 70 

known as macrophage activation21. Activated macrophages are also known to change phenotypes, although the 71 

details are not well defined. Activated macrophages have two different phenotypes depending on exposure 72 

stimuli: M1 and M2. Macrophage polarisation causes different behaviours in the immune system, and alters cell 73 

shape differently22. Although the critical relationship between cell shape and the function of macrophages has 74 

been studied, there is little research on the quantitative analysis of shape changes in whole cells and subcellular 75 

organelles. We hypothesised that macrophage activation would affect gene and protein expression, and the 76 

morphology and physical characteristics of cells and subcellular organelles. To achieve this, a mouse 77 

macrophage cell line, RAW 264.7, was used as a model, and macrophage activation was induced through 78 

treatment with bacterial lipopolysaccharides (LPS).  79 

Without requiring secondary assays, 3D QPI was able to directly observe and calculate morphological and 80 

biochemical changes in activated RAW 264.7 cells. The 3D RI tomogram of LPS-treated RAW 264.7 cells 81 

showed that activated cells undergo dramatic morphological changes within 24 h (Supplementary Figure 2). The 82 

control RAW 264.7 cells were characterised by the circular shape of a typical macrophage cell, slightly attached 83 

to the bottom of the culture dish. However, 8 h after LPS treatment, these RAW 264.7 cells began expanding in 84 

volume and attached themselves to the bottom of the dish. At 24 h, the attached cells formed lamellipodia and 85 
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 8 

granules in the cytosol (Supplementary Figure 2). We attempted to track and calculate the changing parameters 86 

of RAW 264.7 cells for 8.5 h during the activation process as these RAW 264.7 cells dynamically altered their 87 

shape during the initial response to LPS treatment.  88 

The 3D RI tomogram of LPS-treated RAW 264.7 and untreated control cells were acquired every 30 min for up 89 

to 8.5 h on a 3D QPI microscope in label-free states. The 3D cell segmentation was conducted with every time-90 

lapse image, generating subcellular organelle masks (Figure 4a). The generated masks represent the changing 91 

phenotype of the activating macrophage process. The membrane masks perfectly represented the spreading 92 

morphology of activated macrophages overtime in 3D. Figure 4a shows that the verified volume of activated 93 

macrophages had become bigger and wider through the membrane mask. In addition to the xy slices, the yz, and 94 

xz slices enabled easy identification of the increased volume of the cell membrane through the generated mask. 95 

The subcellular organelle masks of the nucleus and nucleolus and lipid droplet were acquired from label-free 96 

holographic imagery. Although the size of the nucleus appears to grow along the cell membrane, retention trends 97 

were observed in the nucleolus compared to the membrane and the nucleus. The most noticeable changes were 98 

observed in lipid droplets; during inflammation, when macrophages recognise inflammatory stimuli such as 99 

bacterial LPS, they induce the accumulation of cholesterol esters and triglycerides in their own body23. The 100 

model was able to precisely separate lipid droplets, and these represent the increasing size of the fat and lipid 101 

droplets, as shown in previous studies. At 0 min, the number and size of lipid droplets were small, while 8.5 h 102 

after LPS exposure, the size and number of lipid droplets had increased. Figure 4b presents the mean changes in 103 

the RI value for the RAW 264.7 cells during the LPS-induced activation process. We measured the protein 104 

concentration, surface area, and volume of individual masks from the RI value, tracking these parameters 105 

overtime. Consistent with the cell spreading observed in Figure 4a and Supplementary Figure 2, the volume and 106 

surface area of RAW 264.7 cells significantly increased after 8 h activation. The mean RI of the RAW 264.7 cell 107 

membranes commenced decreasing immediately after LPS treatment, and continued to decrease steadily after 108 

8.5 h of time-lapse measurements. Although the protein concentration of the membrane decreased, the surface 109 

area and volume of the membrane increased gradually for 8.5 h (Figure 4a). The nucleus, similar to the 110 

membrane, tended to decrease RI and protein concentrations. While the volume and surface area of the nucleus 111 

increased, it was confirmed that the volume and area of the nucleolus slightly increased at the beginning, and 112 

was maintained for 8.5 h. For the lipid droplets with very high RI compared to other subcellular organelles (e.g., 113 

the nucleus and nucleolus), it was observed that the RI was maintained during the activation process for 8.5 h. 114 
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The surface area and volume of lipid droplets increased during macrophage activation compared to the control 115 

cells, similar to the membrane and nucleus. These observations suggest that LPS-induced changes in 116 

macrophages occur phenotypically, and manifest in physical changes. We compared the individual masks of 117 

subcellular organelles from the start point to end point of time-lapse data (Figure 4c). The mean RI of each 118 

organelle decreased rapidly for 8.5 h, although the volume and surface area increased. The results indicate that 119 

RAW 264.7 cells were increasing in size while losing their concentration during the activation process. This 120 

occurred throughout the whole cell and in subcellular organelles, including the nucleus, nucleolus, and lipid 121 

droplets.  122 

123 
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 10 

Discussion and Conclusion 124 

The results show that the proposed framework, combining 3D QPI with deep neural network-based 125 

segmentation models, enables label-free 3D live cell analysis in an automated manner. The proposed framework 126 

predicts the segmentation mask of organelles within individual cells and uses RI to provide physical and 127 

morphological information on cells and organelles. In particular, to automatically segment each cell, we 128 

assumed that each cell had at least one nucleus. We used the predicted nucleus segmentation mask of the cell as 129 

seed information to distinguish each cell. The proposed framework did not target specific organelles. Rather, it 130 

predicted multiple organs concurrently. By training the model to segment several organelles simultaneously, the 131 

model learned the relationship of organelles and showed stable performance even in various cell lines not used 132 

for training. We also demonstrated that existing biological knowledge may be confirmed through the proposed 133 

framework by automatically tracking and observing cell dynamics in time-lapse data. 134 

To the best of our knowledge, this work is the first of its type to analyse various 3D cell organelles 135 

simultaneously and automatically at an instance level. An immediate future research priority lies in further 136 

improving model performance. Introducing Bayesian neural networks23 and stable learning methodologies using 137 

uncertainty prediction24, 25 should be considered for a more robust model. In future research, this framework 138 

should be expanded to refine the predicted segmentation masks utilising user interactions. When combined with 139 

cell lineage tracking technology, changes in the temporal differentiation process of cells may be automatically 140 

monitored. In addition, it can support real-time analysis by improving the efficiency of networks to process large 141 

3D imagery. 142 

 143 

144 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.23.445351doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445351
http://creativecommons.org/licenses/by/4.0/


 11 

Online Methods 145 

Deep-Learning Models 146 

Subcellular organelle segmentation  147 

The multi-organelle segmentation model uses a 3D RI tomogram image as input and predicts the binary mask of 148 

four organelles: the nucleus, nucleolus, membrane, and lipid droplets (Supplementary Figure 1). We train the 149 

model to predict the mask of four different organelles simultaneously, as opposed to training an independent 150 

model for each organelle. This approach, known as multi-task learning, improves the overall performance of 151 

multiple tasks18. In addition, the model training time was drastically reduced by using only a single model. 152 

3D RI tomogram images have high resolutions, varying from 100×600×600 to 260×860×860 voxels. As such, 153 

training the subcellular organelle segmentation model using the entire volume requires a huge graphics 154 

processing unit (GPU) memory. For this reason, during the training phase, we initially resized the input 3D RI 155 

tomogram to 128×512×512 voxels. Then, we randomly sampled patches of 64×128×128 from the resized 3D 156 

RI tomogram and utilised these as inputs. The model predicted the probability map for each subcellular 157 

organelle producing an identical resolution to the input patch. 158 

During the inference phase, we resized the input to 128×512×512 voxels and applied a 64-size symmetric 159 

padding. We cropped the input image from the centre along the z axis with the size of 64. Then, we uniformly 160 

generated patches of 64×128×128 with a stride of 128 and obtained probability maps for each patch. We 161 

reconstructed the predicted patches into the entire volume of the image by stitching patches using a spline 162 

kernel. Following this, we removed the padding area from the stitched probability maps and restored them to the 163 

original resolution. Finally, we obtained the segmentation mask by binarising the probability map using a 164 

threshold of 0.5. 165 

Cell-by-cell segmentation  166 

To predict the instance masks of cells, the cell-by-cell segmentation model utilises segmentation masks of the 167 

nuclei and the membrane predicted by the subcellular organelle segmentation model. The nuclei mask was used 168 

as prior information regarding the number of cells and their approximate location. The membrane mask 169 

prevented the model from predicting the background area as the cell. The model initially separated the predicted 170 

nuclei mask into the instance masks of the nucleus, 𝑛𝑖 ∈ 𝑅𝐷×𝐻×𝑊, where i ∈ {1, … , k} indicates the index of 171 

nuclei; and 𝑘 is the total number of nuclei. As the nuclei of cells were separated, the instance masks of the 172 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.23.445351doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445351
http://creativecommons.org/licenses/by/4.0/


 12 

nucleus were simply obtained using a connected component algorithm. Then, we selected the 𝑖th nucleus 173 

instance mask, 𝑛𝑖, and considered this a positive map, 𝑝𝑜𝑠𝑖; the remaining nuclei instances were considered a 174 

negative map, 𝑛𝑒𝑔𝑖. We concatenated the membrane mask, 𝑚, and 𝑝𝑜𝑠𝑖 and 𝑛𝑒𝑔𝑖 to 𝐼, predicting the 175 

instance probability map (xi) of the cell that includes the selected nucleus instance (ni). 176 

During the training phase, we randomly selected one nucleus instance and trained the model to predict the 177 

instance mask of the selected cell. During the inference phase, the model repeated this process for each nucleus 178 

and finally obtained the instance mask by assigning the index of the nucleus that has the highest probability: 179 

M = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,… 𝑁𝑥𝑖, where 𝑁 is the number of nuclei. We considered a voxel as the background if the 180 

highest probability was lower than the 0.5 threshold. 181 

In contrast to the subcellular organelle segmentation task, the patching strategy was not applicable to the cell-182 

by-cell segmentation task as the whole-cell shape was critical when predicting the instance mask. Therefore, we 183 

downsized inputs to 128×128 in the x and the y axes, and cropped the resized inputs along the z axis to the size 184 

of 64. Then, we restored the predicted instance mask to the original size of the inputs. 185 

Network architecture and training details  186 

The 3D U-Net-based architecture was adopted26, and this was demonstrated to have impressive performance in 187 

biomedical image segmentation tasks, as per these models. Specifically, we employed the Scalable Neural 188 

architecture search (ScNas)27, which automatically designs the architecture optimised for 3D cell image 189 

segmentation. ScNas identifies network parameters and micro-level architectures by utilising a stochastic 190 

sampling algorithm. Similar to the U-Net, the constructed networks were composed of encoder and decoder 191 

cells; encoder cells extract feature maps at multiple scales by gradually downscaling resolution, while decoder 192 

cells up-sample the extracted feature maps to the original resolution and classify the label of voxels. Each cell 193 

consists of repeated stacks of 3D convolutional layers, a rectified linear unit (ReLU), pooling operations, and 194 

normalisation layers; we utilised the constructed networks for subcellular organelle and cell-by-cell 195 

segmentations.  196 

We selected the activation and normalisation functions of ScNas as Leaky-ReLU28 and instance normalisation29, 197 

respectively. The size of the initial feature map, the number of layers, and the feature map multiplier were set to 198 

12, 8, and 3, respectively. Hyper-parameters of the network were adjusted using a grid search algorithm. The 199 

models were implemented in Python 3.7, using the PyTroch 1.4 framework on an 8 V100-32G GPU machine. 200 
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Several data augmentation strategies were applied, such as random flipping, cropping, and rotation. In 201 

particular, the input image was rescaled from 0.5 to 2 to handle varying resolutions of 3D RI tomography. We 202 

utilised the Adam30 optimiser with the learning rate of 0.001, and reduced the learning rate by the factor of 5 if 203 

there was no improvement in the validation metric for 30. To train the models, we combined the Dice loss and 204 

the binary cross entropy (BCE) loss; this is defined as: 205 

𝑙 = 𝑙𝑑𝑖𝑐𝑒 + 𝑙𝑏𝑐𝑒 ,   𝑙𝑑𝑖𝑐𝑒 =
2 ∑ 𝑝𝑖

𝑁
𝑖 𝑔𝑖

∑ 𝑝𝑖
𝑁
𝑖 ∑ 𝑔𝑖

𝑁
𝑖

,   𝑙𝑏𝑐𝑒 = −
1

𝑁
∑ 𝑔𝑖

𝑁
𝑖 ⋅ log(𝑝𝑖) + (1 − 𝑔𝑖) ⋅ log(1 − 𝑝𝑖)        (2) 206 

where 𝑁 is the number of voxels; and 𝑝𝑖and 𝑔𝑖 indicate the predicted probability and the ground-truth label 207 

of the 𝑖th voxel, respectively. For the multi-organelle segmentation task, we trained the model to conduct 208 

multiple tasks simultaneously; thus, the loss for each subcellular organelle was calculated and the sum of all 209 

losses was determined. For cell-by-cell segmentation, we simply computed the loss between a selected instance 210 

mask and its prediction. 211 

Metrics  212 

For quantitative evaluation, we adopted a Dice coefficient that measures the similarity between the predicted 213 

mask and the corresponding ground-truth mask; this coefficient is defined as:  214 

𝐷𝑖𝑐𝑒(𝐺, 𝑃) = 2
|𝐺∩𝑃|

|𝐺∪𝑃|
,         (3) 215 

where 𝐺 is the ground-truth mask; and 𝑃 is the predicted mask. For the cell-by-cell segmentation task, the 216 

Dice coefficient score, 𝐷𝑖𝑐𝑒(𝑃𝑖 , 𝐺𝑗), was determined for all pairs of instance masks associated with the 217 

prediction and the ground-truth. Then, we applied the Hungarian algorithm31 to assign the prediction (𝑃𝑖) to 218 

ground-truth (𝐺𝑗), which had the highest Dice score. 219 

Cell line and cell culture  220 

The NIH3T3, A549, HeLa, and RAW 264.7 cell lines were purchased from the Korean Cell Line Bank (KCLB, 221 

Seoul, Korea) and cultured in Dulbecco’s modified Eagle’s medium (DMEM; high glucose) (Hyclone, 222 

SH30243) supplemented with 10% (vol/vol) fetal bovine serum (FBS; Hyclone, SH30084) and 1% antibiotic-223 

antimycotic solution (Thermo Fisher Scientific). The MDA-MB-231 cells were purchased from the Korean Cell 224 

Line Bank (KCLB, Seoul, Korea) and maintained in RPMI-1640 medium (Hyclone, SH30027) supplemented 225 

with 10% (vol/vol) FBS (Hyclone, SH30084) and antibiotic-antimycotic solution (Thermo Fisher Scientific).  226 
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LPS treatment in RAW 264.7 cells and plating on TomoDish  227 

Precisely, 30 µL of LPS (100 µg/mL stock, List Biological Laboratories) from Escherichia coli was added to 3 228 

mL of Dulbecco's Modified Eagle Medium supplemented with 10% FBS and 1% antibiotic-antimycotic; 229 

3.0×105 RAW 264.7 cells, a mouse macrophage cell line, were counted and added to a 15 mL tube, and cells 230 

were centrifuged at 100 × g for 5 min to collect cell pellets. The supernatant medium was removed using 231 

suction, and the cell pellet was gently resuspended in 3 mL of LPS-containing medium. Then 3 mL of medium 232 

with RAW 264.7 cells were moved to the TomoDish (Tomocube, Inc.).  233 

The 3D QPI  234 

The 3D RI images of cells were obtained using a commercial holotomography (HT-2H, Tomocube Inc., 235 

Republic of Korea), based on Mach-Zehnder interferometry equipped with a digital micromirror device (DMD). 236 

A coherent monochromatic laser (  = 532 nm) was divided into two paths, a reference and a sample beam, 237 

using a 2×2 single-mode fibre coupler. A 3D RI tomogram was reconstructed from multiple 2D holographic 238 

images acquired from 49 illumination conditions, a normal incidence, and 48 azimuthally symmetric directions 239 

with a polar angle (64.5°). The DMD was used to control the angle of the illumination beam impinging on the 240 

sample32. The diffracted beams from the sample were collected using a high numerical aperture (NA) objective 241 

lens (NA=1.2, UPLSAP 60XW, Olympus). To compensate the missing cone issue due to the limited NA, a 242 

regularization algorithm based on non-negativity was used33. The off-axis hologram was recorded using a 243 

complementary metal oxide semiconductor image sensor (FL3-U3-13Y3MC, FLIR Systems). The visualisation 244 

of the 3D RI maps and its correlative 3D fluorescence signal with red pseudo-colour was carried out using 245 

commercial software (TomoStudioTM, Tomocube Inc.). The details on the principle and reconstruction 246 

algorithms can be found elsewhere34, 35. 247 

Time-lapse imaging using a holotomography microscope  248 

Prior to 3D QPI imaging, the HT-2H (Tomocube, Inc.) was turned on to warm up the laser for at least 30 min. 249 

Additionally, the carbon dioxide (CO2) gas mixer and temperature controller were turned on to maintain a 250 

temperature of 37°C and an atmosphere with 5% CO2 in the TomoChamber (Tomocube, Inc.). The water 251 

reservoir of the TomoChamber (Tomocube, Inc.) was filled with autoclaved distilled water to maintain humidity 252 

during imaging. 253 

Immediately after LPS treatment, RAW 264.7 cells containing TomoDish were mounted on the TomoChamber, 254 
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and this chamber was then gently mounted on the HT-2H stage. Then, the HT-2H was calibrated, and the 255 

acquisition tab was used to begin setting up time-lapse imaging. For RAW 264.7 cell time-lapse imaging, 3D 256 

QPI images were taken at 15 different positions every 30 min for 17 counts; this was completed in 8.5 h to 257 

acquire 3D QPI time-lapse imagery. 258 
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Figure Legends 350 

 351 

Figure 1. Overview of the multi-organelle segmentation and cell-by-cell segmentation models. (a) From the 352 

input 3D Tomogram, multi-organelle segmentation model predicts segmentation masks of four subcellular 353 

organelles: the membrane, nucleus, nucleolus, and lipid droplets. (b) Cell-by-cell segmentation model predicts 354 

instance masks by utilising the predicted membrane and nucleus masks. (c) Examples of predicted segmentation 355 

masks.  356 

 357 

 358 
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359 

Figure 2. Quantitative results and examples of Dice scores with corresponding prediction and ground-360 

truth masks. (a) The numbers indicate Dice scores between prediction and ground-truth masks; the 2D slices of 361 

prediction masks and ground-truth masks are overlaid. (b) 3D masks of predictions and ground-truth. (c) 362 

Quantitative results on the NIH3T3, RAW 264.7, HeLa, MDA-MB-231, and A549 cells. 363 

  364 
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365 

Figure 3. Examples of qualitative results for the NIH3T3, A549, MDA-MB-231, HeLa, and RAW 264.7 366 

cells. (a) 3D Input Tomogram. (b) Segmentation masks of cell instances. (c) Segmentation masks of membrane. 367 

(d) Segmentation masks of nucleus and nucleolus. (e) Segmentation masks of lipid droplet. (f) Merged 368 

segmentation masks of four subcellular organelles. (g) Zoomed-in patches of inputs. 369 
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 370 

Figure 4. Application to time-lapse imagery of RAW 264.7 cells. (a) Horizontal plane and coronal plane view 371 

of RAW 264.7 cells overtime (0, 2, 4, 8 h). Each panel represents the RI tomogram and segmentation masks of 372 

the membrane, nucleus, nucleolus, and lipid droplet. (b) The black line and the light shades show the control, 373 

LPS-untreated RAW 264.7 cells (n=9), while the red line and the dark shades show LPS-treated, activating 374 

RAW 264.7 cells (n=12). The mean RI and mean protein concentration decreased by activation, while mean 375 

surface area and mean volume increased during activation. (c) Box plots representing the minimum to maximum 376 

and showing all points of the mean volume of subcellular organelles in the RAW 264.7 cells. 377 
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