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Abstract 
Fluorescence Lifetime Imaging (FLIM) is an intrinsically quantitative method to screen for protein-
protein interactions and frequently used to record the outcome of signal transduction events. With new 
highly sensitive and photon efficient FLIM instrumentation, the technique also becomes attractive to 
screen, with high temporal resolution, for fast changes in Förster Resonance Energy Transfer (FRET), 
such as those occurring upon activation of cell signaling.  

We studied the effects of siRNA-mediated individual knockdown of an extensive set of 22 different 
phosphodiesterases (PDEs) on baseline levels and agonist-induced changes of the second messenger 
cAMP. Using HeLa cells stably expressing our FRET-FLIM sensor we imaged many hundreds of cells at 
5 second intervals for each condition. Following segmentation of cells by the deep-learning 
implementation Cellpose, FLIM time traces were calculated and fitted for dynamic analysis with custom-
made Python scripts. Taking advantage of the quantitative FLIM data, we found very limited effects of 
PDE knockdown on baseline and agonist-induced peak levels of cAMP. However, cAMP breakdown in 
the decay phase was significantly slower when PDE3A and, to a lesser amount, PDE10A were knocked 
down, identifying these isoforms as dominant in HeLa cells. 

In conclusion, we present a robust platform that combines photon-efficient FLIM instrumentation with 
systematic gene knockdown and an automated open-source analysis pipeline. Our quantitative platform 
provides detailed kinetic analysis of cellular signals in individual cells with unprecedented throughput. 

Keywords: cell signaling, β-adrenergic receptor, Fluorescence lifetime, FRET, FLIM, cAMP, PDE, deep 
learning, Cellpose, dynamic screening. 

Introduction 
The genetic screens that have elucidated the roles of so many genes over the last decennia1–3 have, until 
recently, mostly relied on static end-point readouts such as cell viability or colony formation. However, in 
screens for genes involved in cell signaling and transient metabolic processes, static screening does not 
suffice, because the impact of such cell signals not only depends on the magnitude of the response, but 
also on its progression over time. Parameters like signal duration, inactivation, plateau phase and 
oscillatory behavior are essential for a complete understanding of signaling pathways. This necessitates 
genetic screens designed to capture the dynamics of signaling events, in short called “dynamic screens”. 
Thus, in recent years much effort has been invested into the development and improvement of 
methodology for dynamic screening3,4. Advanced live cell light microscopy is pivotal in these efforts, as it 
provides a large toolkit to address the dynamics of cellular processing in real time. These tools include 
time-lapse readout of single-cell morphological phenotypes by automated image analysis, and a variety of 
(fluorescent) indicators, both chemical dyes and genetically encoded indicators such as reporter constructs 
and FRET sensors. Combined with systematic genetic perturbations, imaging-based dynamic screening 
presents the state of the art in quantitative cell biology at the single cell level.  

Our lab has focused on FRET because it can be used to study almost every aspect of cell signaling. FRET 
is a powerful, time-proven technique to study dynamic protein-protein interactions and also a great 
readout for biosensors, which can be designed to study various steps of signal transduction cascades. 
Consequently, biosensors have been widely adopted by the scientific community since they first became 
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available in the early 2000s. For dynamic purposes, FRET is commonly detected either by ratiometry, in 
which the ratio of intensities of the FRET donor and acceptor are used to follow interactions, or by 
recording the donor fluorescence lifetime, i.e., the average time the donor stays in the excited state before 
returning to the ground state. While it is not easy to quantify FRET by ratiometry very precisely5, FLIM is 
a robust and inherently quantitative method for FRET detection which requires no additional calibrations 
or correction parameters6: interaction between donor and acceptor shortens the excited-state lifetime and 
is linearly related to FRET efficiency. 

Thus, FLIM is ideally suited to quantitatively study baseline and stimulated FRET values in individual 
cells and among different cell populations, yielding data that are directly comparable between different 
laboratories around the world. The flip side of the coin is that dedicated and highly complex hardware is 
needed to read out the sub-nanosecond differences in donor lifetime that are associated with FRET. 
Moreover, the first implementations of FLIM equipment were custom-made, photon-inefficient and too 
slow for fast dynamic events. Therefore, until recently FLIM recordings were the exclusive domain of a 
few expert laboratories. In particular, the low throughput of FLIM rendered it ineffective for dynamic 
FLIM screens. However, over the last decade researchers have collaborated with leading microscopy 
manufacturers to come up with commercial implementations that circumvent some of these issues. First, 
convenient turn-key instruments were developed that opened up FLIM to non-expert users. Second, 
several groups, including our own, have collaborated with industry to devise and implement much more 
photon efficient and faster instrumentation, both for confocal7 and wide field microscopy8. These 
improvements enable following large numbers of cells in real time, with high data content and minimal 
photodamage, and make FLIM a very attractive choice for FRET-based signaling studies. Moreover, 
these instruments should now enable using FLIM in dynamic screening applications.  

In this feasibility study, we developed a dynamic imaging-based screen and automated analysis for 
monitoring the activity of proteins involved in cellular signal transduction. We focused on the well-
characterized second messenger cyclic Adenosine Mono Phosphate (cAMP), an ubiquitous messenger 
that controls many different cellular processes, including cell differentiation, gene transcription, secretion 
and ion channel activity9. cAMP is formed upon activation of G protein-coupled receptors (GPCRs) that 
signal via Gαs subunit. Gαs triggers members of the Adenylate Cyclase (AC) protein family, a group of 
isozymes encoded by 10 different genes in mammals, which rapidly produce cAMP from cytosolic 
ATP10. cAMP then relays the signal to a set of effector proteins, which include Protein Kinase A (PKA), a 
hetero-tetramer consisting of 2 cAMP-binding regulatory subunits and 2 catalytic subunits. Other 
effectors include nucleotide-gated ion channels, exchange factors such as Epacs and Popeye domain 
containing proteins11. In addition, recent studies have provided compelling evidence that the time course 
as well as precise subcellular localization of cAMP increases plays a pivotal role in determining the 
outcome of the signaling cascade12–14. For example, PKA members are often anchored to specific target 
sites by a family of A-Kinase Anchoring Proteins (AKAPs), further fine-tuning the biological effects of 
cAMP. The extensive set of proteins involved in synthesis of and response to cAMP underscores the 
importance of this messenger.    

The kinetic properties of signaling are determined by the balance of production and degradation of cAMP. 
Cellular breakdown of cAMP is catalyzed by a family of specialized enzymes, the phosphodiesterases 
(PDEs). Based on their sequence relatedness, kinetics, modes of regulation, and pharmacological 
properties, the PDEs can be divided into 11 families15. In mammals, 3 of the 11 PDE families selectively 
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hydrolyze cAMP (PDEs 4, 7, and 8), 3 families are selective for cGMP (PDEs 5, 6, and 9), and 5 families 
hydrolyze both cyclic nucleotides with varying efficiency (PDEs 1, 2, 3, 10, and 11). Selectivity in this 
case is defined as high substrate preference at physiological concentrations. Genes for individual PDEs 
can have multiple promoters, and the transcripts are subject to alternative splicing, resulting in nearly a 
hundred different PDE messenger RNAs16. However, most cell types express only a subset of PDE family 
members (e.g. in HeLa cells: PDEs 1A, 2A, 3A, 3B, 4A, 4B, 4D, 5A, 6A, 6C, 6D, 7A, 7B, 8A, 8B, 10A 
are expressed)17. In addition, the activity of PDEs can be further regulated at the protein level, for 
example by other second messengers including cGMP, Ca2+ and other PDE isoforms generating crosstalk 
between second messenger systems18 and further increasing the complexity of cAMP signaling. 

In this study, we systematically investigated the breakdown efficacy of 22 different PDEs in HeLa cells 
by siRNA-mediated knockdown. siRNA-mediated knockdown has been proved to be an effective strategy 
to diminish PDE activity, as was shown by Willoughby et al, who focused on the role of PDE4 in 
HEK293 cells19.  We created cell lines stably expressing the Epac-based cAMP FRET-FLIM sensor, 
Epac-SH189, which was generated in our lab by a series of sequential refinements20,21. Epac-SH189 consists 
of most of the sequence of Epac-1, with mutations to render it catalytically dead as well as dislodge it 
from membranes by deletion of the DEP domain. This moiety further harbors a single point mutation, 
Q270E, which increases its affinity for cAMP. EPAC is flanked by FRET donor mTurquoise-2 and a 
tandem of dark Venus proteins as acceptor20 which specifically tailors EPAC-SH189 for FLIM analysis. 
Upon cAMP binding, the Epac moiety undergoes a conformational shift, which decreases FRET and 
thereby increases the donor lifetime. The high FRET span and photostability of this sensor made it ideal 
for rapid screening purposes when the photon budget is limited.  

In HeLa cells grown on 96-well plates, a specific PDE was suppressed in each well with a set of 4 
different siRNA oligonucleotides, administered 72 h prior to imaging. For completeness of the feasibility 
study, we included all PDE families, irrespective of their selectiveness for cAMP. We monitored the 
production and breakdown of cAMP using a Leica SP8 FALCON microscope7 for high-throughput and 
photon-efficient recording of donor fluorescence lifetimes. Cells were automatically segmented using an 
established deep-learning based segmentation protocol, Cellpose22, and the various kinetic properties of 
cAMP signals in the cell interior were extracted by custom-made Python analysis routines. The highly 
quantitative results of 6 independent screens identified two dominant PDE species in determining cAMP 
breakdown in HeLa cells.  

Materials & Methods 
Stable expression of Epac-SH189 biosensor 
HeLa cervical cancer cells (ccl-2) were cultured in DMEM (Gibco, 31966-021) supplemented with 10% 
FCS (Gibco, 10270). For creation of the stable cell line expressing the Epac-SH189 biosensor20 transfection 
of HeLa cells was performed with the Tol2 transposon system23. For transfection two plasmids are used: a 
cDNA with the transposase sequence and another cDNA with the following elements: Tol2, promoter, the 
puromycin resistance gene, gene encoding for Epac-SH189 and a second Tol2 sequence. 

HeLa cells were seeded on 6-well plates at approximately 10% density and transfected the next day. 1 μg 
of both plasmids was mixed with 6 μl FuGENE reagent (Promega E269A) in 200 μl serum free DMEM 
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and incubated for 30 minutes before adding the transfection mix to the cells. The cells were further 
incubated for 48 h and subsequently subjected to puromycin selection (1 μg/ml, SIGMA P8833). After 4 
days cells were sorted on a fluorescence-activated cell sorter (FACS) based on mTurq2 fluorescence 
intensity. 

Generating PDE knockdown cells 
Individual PDE gene knockdown was achieved by transfection with a pool of four exogenous short RNA 
duplexes (Table S1) with Lipofectamine® RNAiMAX cationic lipid formulation (ThermoScientific, 
13778030). After incubation for at least 48 h, cells were imaged in fresh serum-free F12 culture medium 
(Gibco, 21041-025) on 96 well cell culture microplates (Greiner Bio-one, 655090). 

Stimuli used in the screen 
Isoproterenol, Propranolol, Forskolin, IBMX (3-isobutyl-1-methylxanthine) and Cilostamide were 
purchased from Sigma-Aldrich. 

FRET detection for monitoring dynamic changes in cellular cAMP levels 
To monitor the production and breakdown of cAMP in real time, the donor (mTurquoise2) fluorescence 
lifetime of the Epac-SH189 FRET biosensor was measured by FLIM. This FLIM sensor features a tandem 
dark (i.e., non-emitting) Venus acceptor which allows recording a large part of the donor emission 
spectrum while minimizing contamination of the signal with acceptor emission20.  

FLIM experiments were carried out using a Leica TCS-SP8 FALCON confocal FLIM microscope7. The 
microscope was equipped with a humidified incubator with 5% CO2 at 37°C. Cells were excited with a 
pulsed diode laser (PicoQuant) at 440 nm, and photon arrival times were recorded with two HyD 
detectors, together covering the mTurquoise emission spectrum, adjusted to count photons at 
approximately equal rates (460-510 nm and 515-600 nm, respectively). In an additional channel, cell 
nuclei stained with 1 µM SiR-DNA (Spirochrome, SC007) for at least 45 minutes were imaged at 640 nm 
excitation, 650-725 nm emission, to support segmentation.  

The recorded photon arrival time histograms showed multi-exponential decay, indicating the 
superposition of different FRET states. These FLIM data are well described by a double-exponential fit: a 
high FRET state with a lifetime of 0.6 ns, and a low FRET state with a calculated lifetime of 3.4 ns. For 
the lifetime analysis, the images were binned (2x2 pixels) and the pixel photon arrival times were fitted to 
a double-exponential reconvolution function with fixed lifetimes at 0.6 ns and 3.4 ns using Leica LAS X 
software. The resulting two images contained the amplitudes of these two components and were saved as 
TIF files, reducing the amount of raw data more than 40-fold. 

For stimulation by photo-release of caged cAMP, cells were treated with DMNB-caged cAMP (4,5-
Dimethoxy-2-Nitrobenzyl Adenosine 3',5'-Cyclicmonophosphate, Molecular Probes, D1037) for at least 
30 minutes prior to imaging at a final concentration of 1 mM. Uncaging was with a 200 ms UV pulse 
from the Leica EL6000 lamp (4 mW, approximately 400 mW/cm2 in our experimental setup with the 20x, 
0.75 NA dry objective) using a DAPI_LP filter cube (380/40 nm, 405 nm dichroic) which was inserted in 
the confocal excitation path to enable UV illumination and confocal FLIM recording simultaneously. 
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Kinetic analysis using Python 
A graphical representation of the automated workflow and analysis pipeline is shown in Fig 2. All raw 
data is available on Zenodo24 and custom written software with the link to the corresponding Zenodo data 
repository can be found on our GitHub page25. These are the steps that are taken in the analysis, they can 
be repeated by running the software found online: 
1. Cells are segmented using the deep learning algorithm Cellpose22. Due to minimal cell movement 

during acquisition, intensity data from all frames can be combined. The mean intensity is sent to 
Cellpose for deep-learning based cell segmentation. 

2. Since the data contains the intensity of two fitted lifetime components, we calculate the weighted 
lifetime per frame using formula: 𝜏𝜏 =  0.6×𝐼𝐼𝐼𝐼𝐼𝐼1+3.4×𝐼𝐼𝐼𝐼𝐼𝐼2

𝐼𝐼𝐼𝐼𝐼𝐼1+𝐼𝐼𝐼𝐼𝐼𝐼2
, where τ is the average lifetime from the two 

fitted component amplitudes (Int1 and Int2). 
3. A lifetime trace is generated for each Region of Interest (ROI) in the labelmap, and fitted with the 

logistics function: 𝜏𝜏 =  𝜏𝜏0 + 𝜏𝜏𝑅𝑅
1+𝑒𝑒−4(𝑡𝑡−𝑡𝑡𝑚𝑚)/𝑟𝑟  , where τ0 is the value of the baseline lifetime, τR is the 

range of lifetimes, tm is the time at the midpoint and r is the breakdown time. r represents the time 
required to break down the entire range if the breakdown had been constant at the value of the 
midpoint. 

4. Goodness of fit was assessed by calculating the root-mean-square deviation (RMSD) and the 
corresponding mean absolute percentage error (MAPE). Only traces with MAPE below 1% were 
included in experiment evaluations and statistical analysis.  

5. In the final step of the analysis is the generation of the figures using individual Jupyter notebooks that 
can be found in the GitHub repository25. 

Comparison of Cell segmentation 
We initially used a conventional image analysis approach for cell segmentation by implementing Voronoi 
segmentation in an ImageJ macro (Github24), using the thresholded signal of nuclei stained with SiR-DNA 
as seeds. Each ROI created in this way was refined by restricting the ROIs with respect to size and 
intensity. Note that nuclear labeling proved not to be necessary for Cellpose segmentation. In comparing 
two independent segmentation runs, one with and the other without inclusion of the SiR-DNA channel, 
Cellpose yielded comparable high-precision labelmaps for all imaged FOVs. The results of Voronoi 
segmentation and Cellpose were in very good agreement, with the former providing significantly faster 
segmentation, at the expense of slightly reduced reliability and dependance on nuclear seeds. Since 
analysis time was not restrictive, we include segmentation with Cellpose in this study. For further details, 
see Fig. S1 and the text. 

Results 
Optimizing screening conditions and FLIM analysis 
We first set out to determine optimal conditions to acquire time-lapse FLIM images using the Leica SP8 
FALCON system. This system is designed for high-count rate Time-Correlated Single Photon Counting 
(TCSPC) and records mTurquoise2 lifetimes reliably at count rates in excess of 40 MHz per detector. We 
spread the mTurquoise2 emission over 2 HyD (hybrid detectors) by adjusting the spectrometer settings 
(see M&M), effectively doubling the maximum count rate. Global fitting indicated dominant lifetime 
components of 3.4 and 0.6 ns, indicating the superposition of two different FRET states. Saturation of the 
sensor with cAMP, as induced by the treatment of cells with the direct AC activator forskolin, changed 
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the relative magnitude of the two populations but not their lifetimes. All time-lapse images were therefore 
fitted with a n-Exponential Reconvolution model using two fixed lifetime components of 3.4 and 0.6 ns, 
and the intensities resulting from these fits were exported as tiff files.  

High signal to noise (S/N) ratio of lifetime measurements requires large numbers of photons to be 
collected per frame from each cell. However, possible photodamage, bleaching, and the necessary 
throughput set upper limits to the excitation power and acquisition time. To reliably resolve small 
differences in cAMP concentration, we aimed to achieve a lifetime repeatability (i.e., deviations of 
consecutive baseline readings in the integrated signal of each cell) of less than 50 ps RMS, even for dim 
cells. With the conditions detailed in M&M, actual observed RMS of ~25 ps, n=6500 cells, was achieved 
for most screens. As the lifetime span of the Epac-SH189 sensor ranges from ~2.0 ns in the resting state up 
to 3.3 ns when maximally saturated with cAMP, S/N ratio is thus better than 40:1. It can be seen in Fig. 1 
that this was sufficient to clearly resolve cell-to-cell variability in response to addition of norepinephrine 
(NE), which activates β-adrenergic receptors in HeLa cells. This S/N ratio also suffices to resolve cell-to-
cell variability in baseline lifetimes, and thus in resting cAMP concentrations. The lifetimes of FRET 
sensors at resting state appeared near-normally distributed (2.34 +/- 0.05 ns, mean +/- SD, n=154), Fig. 
1E. Interestingly, a small percentage of cells with slightly increased cAMP levels were found (Fig. 1, see 
arrows). When imaged 2 days after culturing, these cells usually grouped together, suggesting clonal 
differences in baseline cAMP levels in WT HeLa cells. We also noticed that in most cells cAMP levels do 
not return to the initial resting values after transient stimulation with NE. 

The required throughput is determined by both the temporal resolution necessary to capture cAMP 
dynamics (time-lapse interval) and by the number of cells to be recorded from. The latter depends on 
several factors, including cell-to-cell variability due to stochastic differences inherent in signal 
transduction cascades and on incomplete penetration of the genetic perturbations carried out in the screen. 
Most siRNA mediated knockdown experiments display considerable variability in gene silencing 
resulting in incomplete or even no detectable knockdown in a percentage of cells26. Our pilot studies 
showed that recording from a few hundred cells in a single FOV captured most of the variation in each 
well. To minimize the risk that factors such as ongoing aging of the medium and increasing cell 
confluency might bias the results, we decided to run each entire screen, i.e. 22 knockdown conditions + 
controls in duplicate (60 wells in total), within 6-8 hours. Under these conditions, we found near-identical 
lifetimes in the experiments recorded at the onset and at the end of the 6-hour long screen (Fig. S2). 
Together, these considerations led us to conduct the screens using a 20x dry objective, recording a single 
field of view with ~200-600 cells per well, and at 2 or 5 second time-lapse rate. 
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Figure 1: Detection of dynamic changes in cAMP levels in HeLa cells by FLIM. (A-C) Cells expressing 
the FRET-FLIM sensor Epac-SH189 are imaged at rest (A) and after stimulation with forskolin (FSK). (B) 
Calibration bar: lifetime in ns.  Panel (C) shows the ROIs (color-coded) for each individual cell, as 
segmented using Cellpose, overlayed with fluorescence intensity. (D) Single cell FLIM time-lapse traces 
extracted from the same experiment show the transient response to stimulation with a 20-s pulse of 100 
µM norepinephrine (NE). The bold black line represents the mean of all cells. NE was added at t=70 s 
and for calibration FSK was added at t=265 s. (E) Distribution of the baseline values (average of 20 
samples for each cell). Yellow arrows in A, D and E indicate cells with higher baseline lifetimes. 

Automatic extraction of kinetic parameters 
To optimize automated image analysis on a cell-by-cell base, we started by comparing algorithms for 
reliable segmentation of individual cells. We initially adapted standard image analysis methods by 
generating a dedicated Image J macro tailored to our cells. In essence, cell nuclei were detected by in vivo 
staining with SiR-DNA, followed by Voronoi segmentation to determine cell boundaries, which was 
based on the time-averaged intensity of the time-lapse images. This macro25 yielded good results, i.e. a 
~95% reliable segmentation of cells was achieved as judged by eye. However, while our experiments 
were in progress, a general algorithm for segmentation of cells based on deep-learning algorithms was 
reported22, the performance of which we tested against our own developments. In several independent 
experiments we found Cellpose22 to be superior in reliability compared to more conventional image 
segmentation algorithms, including our own developments (Fig. S1). It must be mentioned that Cellpose 
is unpractically slow for near-real time analysis, but as it delivered very good segmentation without 
needing nuclear staining, we adopted it for all off-line segmentation of data in this study (for details, see 
M&M). 

D
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For each individual cell (ROI), we extracted mean fluorescence intensity and donor lifetime (Fig. 1) 
values, along with data on ROI size and potential error conditions such as disturbances by dislodged cells 
and out-of-boundary conditions (detailed description in accompanying information on our Github page). 
These data also were used to calculate RMS noise values of intensity and lifetime signals. Moreover, after 
fitting the agonist induced responses of cells to a suitable model (Fig. 2 and M&M), dynamic parameters 
such as activation rates, peak values, decay properties and steady state value were extracted. 

Figure 2: Schematic overview of the FLIM screen for dynamic changes in cAMP. HeLa cells 
expressing FRET-FLIM sensors grown in 96-well plates are treated with siRNA pools for 48 hours. 
Fluorescence was read out using an automated Leica SP8-FALCON FLIM microscope. The time-average 
of fluorescence intensity was used for segmentation using Cellpose, whereas the fluorescence lifetime 
data were fitted with a double-exponential decay using fixed fast and slow components of 0.6 ns and 3.4 
ns, respectively. The magnitudes of those two components were exported to Python for further analysis. 
Based on the segmented ROIs, lifetime data were plotted for each individual cell, subjected to quality 
control, and agonist-induced changes were fitted with a suitable model. The fitting parameters are then 
summarized in descriptive plots.  

Next, we tested the reproducibility of our results with different batches of cells on different days. Our 
analysis showed excellent consistency of S/N ratio and calibration value following treatment with 25 µM 
forskolin. Baseline values were slightly more variable (Table S2), most likely reflecting small batch-to-
batch variations in basal cAMP levels. These observations stress the importance of carrying out signaling 
screens within a limited time span, i.e., preferably on a single day. 
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Caged-cAMP assay shows importance of PDE3A in regulation of cAMP breakdown 
We next set out to conduct a FLIM screen to investigate the roles of the roles of individual PDEs in 
breaking down cAMP. We initially studied the kinetics of cAMP changes in HeLa cells upon 
photorelease of caged cAMP. For that, HeLa cells stably expressing the Epac-SH189 were seeded in 96-
well plates, and using pools of 4 specific siRNAs against each isoform, individual PDEs were knocked 
down in duplicate wells. Cells were loaded with DMNB-caged-cAMP at 1 µM final concentration for 30 
min. Uncaging with a 200 ms UV pulse caused an immediate increase in intracellular cAMP levels, and 
thus in donor lifetime, which subsequently returned towards its baseline level (Fig. 3). Hundreds of cells 
within a single FOV were imaged every 2 s for at least 140 s (or longer, if slow recovery called for that) 
and acquired data was stored for analysis offline. 

 

Figure 3: Changes in donor lifetime of the Epac-SH189 sensor upon uncaging of cAMP. The time trace 
(right) is from the green cell indicated in the left. Cells were imaged every 2 s and uncaging was at 25 s 
using a 200 ms flash of UV light. Note quick degradation of cAMP by PDEs back to baseline levels. 
Orange line shows the logistic function fitted to the data. Fit parameters are indicated by dashed lines: 
minimum and maximum lifetime (horizontal lines), maximum slope (diagonal line); vertical dashed lines 
indicate the intersection between maximum slope and min/max lifetime. The reported breakdown time 
(black arrow) is the time between the vertical two lines. The lower right panel shows the fit residuals. 

Following segmentation, time-lapse FLIM traces for each ROI were individually fitted to a logistic 
(sigmoid) curve. For large numbers of cells, the data and fits were visually inspected to ensure proper 
fitting using a Python script (results_browser25). cAMP breakdown time was then calculated from the 
resulting fit parameters and plotted for each PDE knockdown condition (Fig. 4). From these data, it is 
apparent that knockdown of PDE3A markedly affects the breakdown time in these cells (85.5 ± 2.5 sec, 
versus 37.9 ± 0.5 sec in WT cells, (mean ± SEM; p<0.001, student t-test). Additionally, a smaller but 
significant effect of PDE10A knockdown on cAMP breakdown was seen (51.4 ± 0.8 sec, p<0.001). 

From the data in Fig. 4, it is also apparent that the calculated decay times for individual cells show 
considerable variability. As the S/N ratio within a single cell is excellent (compare e.g. the variability of 
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the initial 123 samples in the baseline in Fig. 4), the cell-to-cell variability in FLIM values likely has 
biological origin. Moreover, the extremely large span of the observations seen for knockdown of PDE3A 
and PDE10A suggest that lack of or incomplete PDE knockdown in individual cells is a further major 
determinant of variability in these wells. Furthermore, cell shape differences, e.g. in surface-to-volume 
ratios, are likely to affect cAMP clearance. This view is supported by the observation that very similar 
results were obtained when we repeated selected conditions, again in duplicate, a month later. 

 

Figure 4: Decay time of donor lifetime signals following UV-uncaging of cAMP in cells treated with 
siRNAs for the indicated PDEs. Note significantly slower breakdown upon knockdown of PDE3A, and a 
smaller, but still significant contribution of PDE10A.  Datapoints are fitted decay times of single cells. 
For each condition, the experiment was performed in duplicates, with cells grown, transfected, and 
assayed in two independent wells. Indicated are median value (vertical black line), mean value (green 
dotted line); boxes encompass middle 50% of values and whiskers represent 1.5 times the interquartile 
range. 

Next, we carried out a follow-up experiment to evaluate the effect of simultaneous knockdown of both 
PDE3A and PDE10A. Remarkably, knockdown of these two PDE genes in the same cell did not 
significantly slow down cAMP breakdown below the rate seen for PDE3A alone. This is perhaps 
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unexpected because in PDE3A knockdown cells there is still a considerable rate of cAMP clearance. 
Therefore, next we assayed cAMP breakdown in cells pretreated with two well-characterized PDE 
inhibitors, the nonspecific PDE inhibitor IBMX27 (100 µM) and the PDE3 family specific inhibitor 
cilostamide28 (1 µM) administered either alone or together. Both inhibitors slowed down cAMP 
breakdown to rates slightly below that of combined PDE3A/PDE10A siRNA treatment, and combined 
they caused a further increase in cAMP clearance times (Fig. 5). It is also noteworthy that unlike PDE 
knockdown, inhibitor pretreatments selectively wiped out the population of cells with fastest breakdown 
times, consistent with the notion that high variability in breakdown speeds in the population of PDE3A 
and PDE10A knockdown cells reflects incomplete knockdown by siRNAs. Intriguingly, despite inhibition 
of all PDEs, cAMP still eventually is cleared in these HeLa cells. The mechanisms involved remain to be 
elucidated in further studies.      

 

Figure 5: Breakdown of cellular cAMP after uncaging of DMNB-cAMP in HeLa cells. Datapoints 
represent the cAMP breakdown time values for all analyzed ROIs (individual cells) at a given condition. 
For each condition, the experiment was performed in duplicates, with cells grown, transfected, and 
assayed in two independent wells. Further details are as in Fig. 4.  

While analyzing these data, we noted that baseline donor lifetimes in cells pretreated with DMNB-cAMP 
showed considerable biological variability, ranging between 2.4 ns and 2.7 ns (Fig. S3A). In contrast, 
untreated cells had average lifetimes of 2.28 ns at rest and showed considerably less variability (Fig S3B). 
The difference increased when cells were incubated with increasing concentrations of DMNB-cAMP, 
indicating some leakiness (spontaneous decomposition of the caging group in the cells) of this compound. 
In line with this, baseline donor lifetimes in PDE3A knockdown cells and in PDE3A / PDE10A 
knockdown cells were significantly elevated in DMNB-cAMP treated cells (Fig. S4A), but not in 
untreated controls. Together, these data indicate that PDE3A also has significant activity when cAMP 
levels are only slightly increased in these cells. We also noted that in the vast majority of stimulated cells, 
cAMP levels eventually returned to their pre-stimulation value (Fig. S4 C, D). A similar observation 
holds true for PDE knockdown cells.  

We conclude that our screening platform is well suited to resolve even minor differences in kinetics of 
cAMP clearance kinetics, and that variability between experiments carried out several weeks apart is only 
minor. However, pretreatment with DMNB-cAMP appears to cause a significant disturbance of baseline 
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cAMP levels, and this effect was amplified when PDE3A was knocked down. We therefore redesigned 
the experimental paradigm to circumvent the confounding effect of caged cAMP.  

Dominant role of PDE3A is confirmed using transient activation of GPCR signaling 

Dynamic screens can also be carried out when AC is activated following stimulation of GPCRs with their 
cognate ligands. However, in such experiments it is much harder to dissect the contribution of PDEs in 
controlling the rate of cAMP clearance, because cAMP levels are also affected by the continued activity 
of proteins (GPCRs, G proteins and AC) upstream in the signaling cascade. Termination of Gαs activity is 
believed to happen in seconds29,30 and AC activity is strictly dependent on GTP-loaded Gαs. However, 
receptor inactivation is much slower and, in most cases, not complete: a small proportion of receptors is 
thought to recycle to the plasma membrane where they can become reactivated by the agonist and 
continue to signal31.  

Therefore, we adopted a protocol in which cells were stimulated with a receptor agonist, followed within 
10-15 s by addition of excess of a potent competitive antagonist. We chose β-adrenergic receptors as they 
form a well-characterized G-protein coupled receptor system32,33, and are endogenously expressed in 
HeLa cells. We first stimulated HeLa cells with 40 nM isoproterenol which caused a rapid rise in cAMP 
levels and subsequently added propranolol at 60 nM concentration which caused a sharp decline 
following the stimulation. Finally, 25 µM forskolin was added to directly stimulate AC and obtain a 
maximal sensor response as a control. Fig. 6A shows a representative single-cell lifetime trace along with 
a fitted logistic curve capturing the decay kinetics.  

 

Figure 6: Assessing receptor mediated cAMP pathway. (A) Overview of the β-adrenergic receptor 
signaling pathway and agents used to affect cAMP production and breakdown. (B) Donor fluorescence 
lifetime changes of the Epac-SH189 sensor (blue line) in a single HeLa cell after stimulation of the β-
adrenergic receptor with isoproterenol (40 nM) and subsequent blocking with the antagonist propranolol 
(60 nM). Forskolin (FSK) (25 µM) is added for calibration. Also shown is a logistic fit to estimate the 
cAMP breakdown time (orange). 

Importantly, we noted that cAMP decay rates as determined following this experimental protocol in WT 
cells were approximately equal to those measured after photorelease of caged cAMP. This implicates that 
following addition of propranolol, all upstream steps in the signaling cascade became inactivated within 
seconds. It was also confirmed that when propranolol was added as first stimulus, no detectable response 
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followed upon subsequent addition of isoproterenol. We therefore conclude that this experimental 
paradigm is well suited to study the role of PDEs in cAMP breakdown.      

Fig. 7 shows effects of individual knockdown of the same set of 22 PDEs assayed according to this 
protocol. Again, we find that PDE3A is the most prominent enzyme controlling cAMP breakdown in 
HeLa cells, followed by PDE10A. The effects of knockdown of other PDEs were not significant. 
Furthermore, the double knockdown of PDE isoforms 3A and 10A together is also in good agreement 
with the data from the first screen after photorelease of caged cAMP. Remarkably, however, the effects of 
PDE inhibitors IBMX and cilostamide appeared more pronounced as compared to the first screen. 
Eventually, in all cases cAMP levels returned towards baseline levels, indicating the activity of additional 
cAMP clearance mechanisms in these cells. 

 

Figure 7: Breakdown of cAMP for different knockdowns of PDEs upon brief stimulation of the β-
adrenergic pathway. For each condition, the experiment was performed in two independent wells. 
Further details are as in Fig. 4.  
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Finally, we tested for possible correlations between fluorescent properties of the cells, and outcome of the 
analysis. We found no evidence that cellular brightness affected donor baseline lifetimes for individual 
cells (Fig. S5). However, higher expression levels of the biosensor slightly prolonged cAMP breakdown, 
presumably due to the buffering effect of the Epac-sensor (Fig. S5).  We conclude that variability in 
cellular cAMP breakdown speeds appears to dominated by true biological variability and that the 
agonist/antagonist stimulation paradigm is well suited to study the dynamics of cAMP turnover in genetic 
screens. 

Discussion  
Dynamic FLIM screening is finally within reach  
The theoretical advantages of quantitative FLIM imaging for detection of FRET in screening applications 
have been long acknowledged: in principle, FLIM recording is insensitive to differences in expression 
levels of the sensor, sensor bleaching, excitation fluctuations and slight misfocusing. Moreover, because it 
is a single-channel technique, it also circumvents artifacts due to e.g chromatic aberration and sensitivity 
difference issues between channels which are often seen in ratio imaging. However, the practical 
implementation of FLIM in screenings has thus far been less than straightforward. This is because: first, 
until recently, available FLIM instrumentation has been either very slow or photon-hungry, and second, 
available FRET sensors most often are not optimized for FLIM read-out. In fact, FRET sensors have been 
almost exclusively optimized for ratio-imaging, and many sensors that offer a decent dynamic ratio 
change, show only a small lifetime change when assayed by FLIM20,21. Having spent significant efforts in 
improving both FLIM instrumentation and FRET-FLIM sensors, we here aimed to put these 
developments to the test and investigate the feasibility of a FLIM based dynamic screen. To this end we 
developed a screening platform and analysis pipeline to identify key PDE isoforms responsible for cAMP 
breakdown in HeLa cells.  

We acquired data from HeLa cells expressing Epac-SH189 with a high-speed TCSPC instrument, the Leica 
SP8-FALCON and set up an analysis pipeline to extract dynamic data on cAMP levels in individual cells. 
Hundreds of cells per condition were segmented, and single-cell time-lapse traces with lifetime 
information were analyzed and fitted to a suitable mathematical model. We found that FLIM recording 
was stable and reproducible, with RMS noise levels in single-cell calculated lifetimes of about 25 ps, and 
that the majority of observed variability between cells and from day to day represents genuine biological 
variations. In addition, due to the excellent sensitivity of the instrument, no bleaching was detectable after 
collecting hundreds of frames from a FOV and we found no indications for phototoxic stress on the cells. 
Thus, FLIM recording has now become sufficiently fast and sensitive for routine data acquisition in single 
cell time-lapse screening experiments.  

Setting up the proof-of-principle screen 

In order to characterize the roles of individual PDEs in HeLa cells, we employed two independent 
manners to induce transient increases in cytosolic cAMP levels. In initial screens, we uncaged DMNB-
caged cAMP using a brief flash of UV light. The ensuing increase in sensor lifetime rapidly decayed 
towards baseline, and speed differences in cAMP clearance reflected the effect of knockdown of specific 
PDEs and PDE inhibitors. Among 22 individual PDEs included in our screen, we found PDE3A and 
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PDE10A knockdowns to significantly slow down cAMP clearance. However, loading cells with DMNB-
cAMP caused an increase in baseline levels, most likely due to some leakiness (spontaneous hydrolysis) 
of the compound, potentially biasing the results. 

Therefore, we also tailored a protocol involving transient agonist-induced activation of GPCR signaling 
for screening purposes. GPCR signaling cascades encompass many different proteins at the cell 
membrane as well as in the cytosol, and cAMP metabolism following elevations due to receptor 
activation is highly complex. Upon stimulation with GPCR agonists, the time course of cAMP elevation 
is a mixture of AC activation and cAMP production on one hand, and cAMP clearance by PDEs on the 
other hand. Thus, the time course reflects direct aspects of Gαs activity, but also indirect aspects such as 
GPCR inactivation (desensitization) and crosstalk with additional signaling cascades that may become 
activated downstream of these receptors. In addition, spatial aspects of cAMP signaling are critical for 
cellular function34 and they may affect the kinetics of lifetime changes in our screen. Lefkowitz et al. 
showed a putative switching mechanism at β2-adrenergic receptors, where protein kinase A (PKA) 
activated by the Gαs-pathway subsequently phosphorylates the receptor and causes enhanced Gαi 
activation to limit further cAMP production, thereby  forming a negative feedback loop35. In summary, it 
is not a priori clear that the outcome of a PDE-knockdown screen using GPCR activation should be one-
to-one comparable to that of a cAMP uncaging screen. In an effort to focus on the role of PDEs in 
clearing cAMP from the cells, we adopted a protocol of transient GPCR activity using sequential agonist 
and antagonist stimulation. We stimulated β-adrenergic receptors, which are at the heart of a well-
characterized GPCR system32,33, and abrogated signaling with the selective antagonist propranolol within 
15 s. Interestingly, cAMP clearance rates following stimulation by this protocol appeared equally high as 
those following cAMP uncaging, indicating that Gαs signaling and AC activity cease within seconds 
following receptor inactivation. 

Data fitting  

In both designs of the screen, decay data were fitted with a sigmoid curve for pragmatic reasons. It may 
be argued that decay kinetics, certainly after cAMP uncaging, would approximate an exponential decay 
model if cAMP clearance is dominated by PDEs. However, different PDEs with potentially different 
affinities and expression levels would contribute to clearance and such a model would not accommodate a 
single value for enzymatic Vmax. More importantly, our data do not represent cAMP concentrations, but 
rather its binding to the Epac sensor, which itself is saturable. Finally, the observed cAMP breakdown 
curve is affected by the displacement kinetics of the agonist by propranolol. We therefore standardized 
fitting to a basic sigmoidal decay model. Fit residuals showed no systematic deviations, and Chi-squared 
values were around 1, indicating that the model validly describes the data. 

PDE3A and PDE10A are dominant in HeLa cells in both screening paradigms 

In both screening methods, PDE3A and to a lesser extent PDE10A, were unequivocally identified out of 
22 PDE isoforms as most important determinants of cAMP clearance. The relative importance of PDE3A 
has also been reported in several other cell types36–38, and thus this particular PDE isoform has become a 
potential drug target, most importantly in treatment of cardiovascular diseases and infertility39–41. Along 
with Cilostazol, an FDA-approved inhibitor for treatment of acute heart failure, alternative PDE3 
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inhibitors are currently being developed42,43. Also, several natural mechanisms by which PDE activity can 
be activated are currently under investigation for pharmacological manipulation42. Knocking down 
PDE10A alone also slowed down cAMP breakdown slightly but significantly. Nevertheless, rapid cAMP 
clearance was still observed both in cells treated with siRNA against PDE3A and PDE10A alone, or in 
combination. This indicates that other clearance pathways must be active. This view is supported by 
control experiments performed with the nonspecific PDE inhibitor IBMX27 and the PDE3-family specific 
inhibitor cilostamide28, which slowed down cAMP clearance to levels beyond those observed for the 
combined knockdown of PDE3A and PDE10A. It is intriguing that even in the presence of these two 
inhibitors together, cAMP levels still eventually decay towards baseline, suggesting the existence of 
additional, perhaps PDE-independent, clearance mechanisms.  

Limitations of the screen 

Two important caveats must be made when interpreting these results. First, our sensor reads out cytosolic 
cAMP and we thus focused on the dynamics of cAMP generation and degradation throughout entire cells. 
Note that the readout of average cytosolic cAMP levels does not recapitulate the complexity of localized 
cAMP signaling, which over the last 15 years has been studied by several groups. For example, the 
Zaccolo lab has systematically addressed roles of specific PDE isoforms and protein phosphatases in 
creating and regulating local pools of cAMP12,44,45, unveiling e.g. the role of nanoscopic heterogeneity in 
cAMP signals in optimized cardiac contractility upon adrenergic activation12. In addition, a recent study 
by Lohse et al. demonstrates that under basal conditions, a large pool of cAMP in cells is bound, resulting 
in low free cAMP concentrations46. Nanometer-sized domains of even lower cAMP levels may be created 
and maintained by individual PDEs. GPCR stimuli may act to increase the concentration of cAMP so as 
to flood nanodomains and thereby trigger downstream effects. More generally, the compartmentalized 
signaling orchestrated by ACs and PDEs allows different GPCRs to generate unique spatially restricted 
cAMP pools that activate defined subsets of localized PKA, that in turn phosphorylate key targets in 
signal propagation, leading to specialized cellular responses. All of these aspects are not properly 
reflected in the results of the current study.  

The second caveat is that the penetration of PDE knockdown by siRNAs is most likely far from optimal26. 
Although each gene was targeted by a pool of 4 different sequences, we have observed that control 
siRNA against lamin A provided marked depletion of this protein in up to 70% of cells, and even then, to 
varying degrees. Our screening data strongly suggest that PDE knockdown also has been variable, but this 
was not tested due to lack of availability of specific antibodies. In line with this interpretation, the effects 
seen with PDE inhibitors IBMX and cilostamide were more drawn out; for example, in Fig. 5 and 7 such 
pretreatment completely wiped out the fast-decaying population of cells. However, it is also conceivable 
that prolonged knockdown by siRNAs might have triggered compensatory mechanisms. For example, 
knockdown of PDE3A may cause other PDEs to partly take over its predominant role in cAMP 
breakdown. Such behavior would not be expected when cells are exposed to PDE inhibitors. Future 
studies using more state-of-the-art knockdown strategies such as the use of inducible degrons for 
depletion of PDE protein or CRISPR-Cas to completely knockout each PDE should address this point. 
The latter offers the added advantage that it is compatible with pooled microscopy screens, allowing for 
example addressing all PDEs in a single time-lapse experiment. 
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Final conclusions 
By combining high-end fluorescence lifetime imaging, a FLIM-optimized biosensor, deep-learning based 
cell segmentation and an automated analysis pipeline with systematic gene knockdown we achieved a 
robust screening platform for the systematic study of proteins affecting cellular signaling dynamics. Using 
open-source Python scripts and data structures, we illustrate the wealth of dynamic data delivered by 
quantitative time-lapse FLIM imaging. Whereas the multi-well format is particularly well suited for 
pharmacological characterization, including the analysis of effects of chemical libraries, the very 
quantitative nature of the obtained data should also be invaluable in extending such dynamic signaling 
screens to the pooled screening format. As such, we expect that this study will contribute to a substantial 
increase in throughput in signal transduction studies.     

Data availability 
All data can be found on Zenodo repository: https://zenodo.org/record/4772516#.YKVO-6gzaUk  
Custom software can be found on GitHub: https://github.com/Jalink-lab/pde-screen-2021  
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