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Abstract1

The population diversity in India contains a treasure of clinically relevant rare mutations2

which may have evolved differently in different subpopulations. While there are many sub-3

groups present in the nation, the publicly available database like the 1000 Genome data (1KG)4

contains limited samples for indian ethnicity. Such databases are critical for the pharmaceutical5

and drug development industry where the diversity plays a crucial role in identifying genetic6

disposition towards adverse drug reactions. A qualitative and comparative sequence and7

structural study utilizing variant information present in the recently published, largest curated8

Indian genome database (Indigen) and the 1000 Genome data was performed for variants9

belonging to the kinase coding genes, the second most targeted group of drug targets. The10

sequence level analysis identified similarities and differences among different populations based11

on the SNVs and amino acid exchange frequencies whereas comparative structural analysis of12

IndiGen variants was performed with pathogenic variants reported in UniProtKB Humsavar13

data. The influence of these variations on structural features of the protein, such as structural14

stability, solvent accessibility, hydrophobicity, and the hydrogen-bond network were investigated.15

In-silico screening of the known drugs to these Indian variation-containing proteins reveal16

critical differences imparted in the strength of binding due to the variations present in the17

Indian population. In conclusion, this study constitutes a comprehensive investigation into the18

understanding of common variations present in the second largest population in the world, and19

investigating its implications in the sequence, structural and pharmacogenomic landscape.20

Introduction21

The presence of single nucleotide polymorphisms imparts a genetic basis of human complex22

diseases and human phenotypic variations [A.J. Marian, 2013]. As per various reports, SNPs23

are found to be responsible for defining the risk of an individual’s susceptibility to various24

drug responses and illnesses [Alwi, 2005]. The distribution of allele frequency of SNPs provides25

relevant information about the evolution, migration, and genetic structure of a population26

[Sanghera et al., 2008]. Most of the genetic variant-related data come from databases like the27
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1000 Genome database, GnomAD, Exac Database, containing ethnicity-wise variant information28

which is largely Eurocentric. It is so because majority of the studies that are performed to29

associate genetic variants with diseases, like the Genome-Wide Association Studies (GWAS) have30

been conducted mainly on the European population (78%) followed by Asian(10%), African(2%),31

Hispanic(1%), and other ethnicities (<1%) [Sirugo et al., 2019] neglecting the Indian population.32

It creates an information bias leading to a population-specific disease assessment analysis leaving33

the African and Indian populations under-studied and under-consulted. These population-34

specific SNPs deviate in variation patterns from other over-represented populations causing35

health and diagnosis disparities[Chan et al., 2015] [Wei et al., 2012].36

Adverse drug reactions (ADRs) are a major contributor to morbidity and mortality. The37

presence of a genomic variation in genes coding for drug transport and metabolism have been38

associated with inter-individual differences in drug response and ADR risks. Several SNP-related39

studies have shown that variants can modulate the efficacy of a drug leading to adverse drug40

reactions (ADRs) [Impicciatore et al., 2001] [Sanghera et al., 2008]. Drug Gene Interaction41

Database (DGIdb) organizes the drug-gene interactions from various papers, databases and42

web resources[Freshour et al., 2021]. dbSNP, a curated database alone contains 38 million SNPs43

which makes timely maintenance, integration, and correction a cumbersome process [Sherry44

et al., 2001]. SNPs are a vital and decisive factor for finalizing a therapeutic approach and45

selection of drug and their dosages [Alwi, 2005]. European population being primary conduct of46

drug trials prior to approval and marketing of drugs could be one of the factors on the occurrence47

of ADRs[Clinical and Guidelines, 2006]. Hence, this prioritizes the need for population-specific48

pharmacogenomic analysis and integration of gene, drug, pathway, and potential drug-target49

related information.50

Genetic studies of populations from the Indian subcontinent are important due to India’s51

large share of the global population, complex demographic background, and unique social52

structure. Indo-genomic variation is fascinating due to the diverse ancestral components, social53

categorization of people, endogamy practised in different cultures, and dynamic and ancient54

admixture events that the Indian population has experienced over a long period of time.[Bamshad55

et al., 2001]. Reports suggest that the population expansion in India (post-agriculture) has led56
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to the emergence of a huge amount of genomic diversity exceeding the genetic diversity of the57

whole of Europe[Sengupta et al., 2016]58

The practice of endogamy in various communities disturbs the frequency of a disease in59

different sub-groups of the Indian population [Nakatsuka et al., 2017], indicating that genetic60

divergence can also affect the efficacy of the drug. Globally, India is the largest generic drug61

provider [Bhosle et al., 2016](16). Regardless of the Indian genetic diversity, the current62

healthcare system in India follows the same drug therapy as in Europe and America. The use63

of genetic information, experiments, and other types of molecular screening helps a practitioner64

to choose an appropriate therapy for the first time, avoiding the time-consuming and expensive65

trial-and-error medication cycle. Extensive research on the population diversities and related66

SNPs causing the different inter-individual drug responses is the need of the hour for efficient67

treatment design. IndiGen programme was initiated with an aim to collect sequencing data68

of thousands of individuals from diverse ethnic groups in India and develop public health69

technologies applications using this population genome data[Jain et al., 2021].70

In our present work, we conducted the first exhaustive and comparative study of common71

Indian-specific variants (using IndiGen data) with other populations to identify the population-72

specific variations causing a difference in drug responses and ADRs. This pharmacogenomic73

study was executed by keeping a focus on druggable genes of kinase’s family, the second most74

targeted group of drug targets after the G-protein coupled receptors [Bhullar et al., 2018].75

The human genome encodes 538 protein kinases[Berndt et al., 2017]. Many of these kinases76

are associated with deadly diseases like cancer [Paul and Mukhopadhyay, 2012]. Most of the77

kinase targeting drugs have been tested and approved based on the trials done on European78

populations and it is possible that the same drugs might exhibit a deviation in efficacy and79

response on Indian population. The presence of a SNP in functionally important genes have80

higher chances of deleterious impact by either affecting drug-gene interaction or by causing81

structural changes at the protein level leading to disruption of the drug-binding sites [Lee, 2010].82
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As a result, interpreting the number of mutations and their effect on the structure, stability, and83

function of the protein is crucial. Any destabilising non-synonymous SNP (nsSNP) will cause84

the drug’s metabolic process to be disrupted. This study was carried out at both sequence and85

structure level to examine the effect of missense mutations in Drug-Gene interaction as well as86

the structural changes caused by these mutations at the protein level.The sequence-level analysis87

was implemented to perceive the similarities and differences among different populations based88

on the single nucleotide variants (SNVs) and amino acid exchange frequencies. The effect of these89

variants on structural properties of the protein, like structural stability, solvent-accessibility,90

hydrophobicity, and the hydrogen-bond network were measured by utilizing different structural91

analysis tools. Any modification in protein-ligand binding due to the presence of SNVs was92

analyzed by molecular docking method. A comparative structural analysis was conducted93

using UniProtKB Humsavar data.This work will help us understand the variability caused by94

these variants and thus could guide us in deciphering the effect of SNP in the efficacy of the95

drug-protein/gene interaction.96

Results97

Indian variations in the kinome landscape98

To first get an overview of the Indian variations present in the druggable kinome landscape, an99

exhaustive annotation of variation containing 545 kinase coding genes found in the IndiGen data100

and the families along with the number of drugs associated with them were mapped (Figure101

1). It was observed that despite having more drug-gene interactions, very few genes from the102

atypical protein kinases family contained missense mutations. The SNVs in a conserved protein103

region can influence the protein structure and its stability and can affect the protein-protein104

or protein-drug binding affinity. A gene with more variation and multiple marketed drugs has105

a greater tendency of causing ADRs. It was found that the tyrosine kinase family, which has106

a maximum (1978) number of FDA-approved drugs consists of the maximum (5013) number107

of variations. The class of kinases other than TK (Tyrosine Kinase) like the CMGC (cyclin-108

dependent kinase (CDK), mitogen-activated protein kinase (MAPK), glycogen synthase kinase109
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(GSK3), CDC-like kinase (CLK), TLK (Serine/threonine-protein kinase tousled-like 1) and AGC110

(PKA, PKC, PKG) contain a large number of variations i.e., 10518, 1193, and 2943 respectively111

but the number of drugs with known Drug-Gene interactions were limited to 213, 185, and112

339, which was comparatively less than the Tyrosine Kinase family. The CK1(casein kinase 1)113

class among all others contains the lowest (275) number of variations and lowest (18) drug-gene114

interactions. Kinase families associated with 545 kinase coding genes with number of drugs and115

SNPs observed in each class are shown in Supplementary Table S10.116

Analysis of the sequence-level differences of Indian variations in context with117

other populations118

The genetic variation pattern in the Indian population was elucidated by generating an amino119

acid exchange matrix for all SNPs reported for 545 druggable kinase genes in IndiGen data.120

Figure 2A represents an amino-acid exchange matrix for the Indian population where the X and121

Y axis correspond to amino acids at the reference and alternative alleles in IndiGen data. Results122

from the analysis revealed that nearly 68% of Arginine(R) converts to Tryptophan (W) i.e., a123

hydrophobic amino acid converting to a basic polar amino acid. Similarly, 58% of Cystine (C)124

observed at reference SNP sites gets converted into Tyrosine (Y) i.e, a polar uncharged amino125

acid converting to polar aromatic amino acid. Other amino acid conversions with moderate126

frequency (40-50%) were Leucine(L) to Phenylalanine(F) both non-polar amino-acids, Lysine(K)127

to Glutamic acid(E) which involved basic to acidic conversion, and Asparagine(N) to Aspartic128

acid(D), an amidic to acidic conversion. It was worth noticing that regardless of having a129

maximum number of codons (6) coding for Serine(S) and Leucine(L), the amino acid exchange130

for these two residues were comparatively lower than Tyrosine (Y) and Tryptophan (W) which131

have only one associated codon.132

In order to comprehend the inter-conversion distribution of the chemical groups present133

in mutating amino acids and develop a coherent relation of these amino-acid exchanges with134

physicochemical property, a chemical shift analysis was performed. The mutating amino acids135

were classified on the basis of their R-groups into 12 chemical classes (Aliphatic, Hydroxyl,136

Cyclic, Aromatic, Basic, Acidic, Sulpho, Amides, Non-polar, Uncharged polar, Hydrophobic137
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Fig 1. Dendrogram representation kinase coding genes in IndiGen data using KinMapbeta. The circle
size represents the number of drug molecules available for a gene with known drug-gene interaction. The
class of kinase is highlighted with a unique colour and the colour gradient in each data circle represents
the number of variations present in IndiGen data for that gene.

, and Hydrophillic). In Figure 2B, X axis represents 12 chemical classes while on the Y-axis138

the distribution of the delta amino acid count of reference and altered amino acids for each139

chemical class (shown by 12 colors)has been shown. It can be observed that most of the residues140

from the hydrophobic class (Gly, Ala, Val, Pro, Leu, Ile, Met, Trp, Cys, and Phe) have mutated141

to either nonpolar (Gly, Ala, Val, Pro, Leu, Ile, Met, Trp, Phe), other hydrophobic (Gly, Ala,142

Val, Pro, Leu, Ile, Met, Trp, Phe, Cys) or aliphatic (Gly, Ala, Val, Leu, Ile) amino acid classes.143
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Fig 2. Sequence Analysis using SNPs reported for 545 druggable kinase Coding genes in IndiGen Data:
A. Amino-acid exchange matrix for reference and altered amino acids of SNPs in Indigen data. B.
Chemical shift observed among the reference and altered amino acids at SNP sites reported in Indigen
data. C. Chemical changes observed among the reference amino acid in RefSeq(hg38) and altered amino
acids at SNP sites reported in Indigen data. D. Scatter plot of mutability scores for each amino acid
type in Indigen data

Inter-class or intra-class amino acid exchanges were also explored by looking at the classes144

associated with the peaks of each of the distributions. Intra-class conversions were observed for145

amino-acids belonging to hydrophilic, hydrophobic, and non-polar classes (peaks for the same146

class) supporting conservative replacement[French and Robson, 1983]. Additionally, several147

mutating amino acids have shown inter-class conversions such as aliphatic and hydroxyl amino148

acids converted to hydrophobic or non-polar amino acids as well as amino-acids in basic and149

acidic classes have converted to amino-acid from hydrophillic class. It was observed that many150

amino-acids have shown tendency for conversion to an amino-acid belonging to non-polar or151

May 23, 2021 8/40

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.23.445314doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445314
http://creativecommons.org/licenses/by-nc-nd/4.0/


hydrophobic amino acids(6/12 classes). The distribution for hydrophilic class was slightly152

different from others with a very prominent peak at basic class, indicating that these amino153

acids are more likely to exchange with the basic amino acids like Lys, Arg and His, apart from154

intra-class conversions.155

In support of this, one more analysis was performed in which the reference amino-acids156

were taken as per RefSeq hg38 sequence whereas altered amino-acid at the same SNP site was157

taken from Indigen data. These amino-acids were classified into six different chemical classes158

(Aliphatic (Gly, Ala, Val, Leu, Ile), Hydroxyl (Ser, Thr), Cyclic (Pro), Aromatic (Phe, Tyr,159

Trp), Basic (Lys, Arg, His) and Acidic (Asp, Glu)) to avoid any repetition of amino acids. The160

difference in amino-acid counts at the SNP site for each class was then plotted. In Figure 2C,161

Y-axis represents six chemical classes of amino acids with respect to the amino acid counts in162

RefSeq(hg38) and IndiGen data. This chemical shift analysis confirms that there is a net loss163

in basic, cyclic and aliphatic amino acid class whereas a net gain is observed in the hydroxyl,164

aromatic and acidic amino acid classes. It is important to note here that while the hydroxyl,165

Aromatic and Acidic amino acid class contains 2,3, and 2 amino acids respectively, it still166

contributes to the net gain; while the aliphatic class, with maximum number of amino acid,167

showed a net loss in amino acid count. This clarifies that the net gain or loss in any amino acid168

class is independent of its size.169

In order to understand the relationship between the mutational frequency of a specific170

amino acid with its frequency of occurrence in the IndiGen data, a mutability score for each171

amino acid type was calculated. In Figure 2D, mutability scores for amino acids observed172

in IndiGen data are shown. The plot shows that Arginine (R) is the most observed amino173

acid with >0.15 frequency of occurrence whereas Tryptophan(W) is the least observed residue174

at the reference SNP site in IndiGen data. Amino acids like Valine, Serine, and Threonine175

have shown a greater propensity to get mutated as compared to other amino acids. These176

observations are also in agreement with the inferences made from the amino acid exchange177

matrix(Figure 2A). In Figure 2A, Arginine(R) can be seen as the most mutable amino acid178

with the greatest amino-acid exchange frequency( maximum frequency - 0.68) and Tryptophan179

as the least mutable amino-acid (maximum frequency-0.14).180
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After establishing an in-depth description of the Indian population, a comparative sequence181

analysis was performed for the variants in IndiGen data with other populations, such as182

European (EUR), American (AMR), African (AFR), South Asian (SAS), and East Asian (EAS)183

populations from the 1000 genome data. In Figure 3A, we observe that the mutation from184

Cystine(C) to Tyrosine(Y), and Arginine(R) to Tryptophan(W) was quite prevalent in all the185

populations except in American(AMR). A similar pattern of amino acid exchange and mutability186

is observed among different population although the frequencies varied.187

Reports have suggested about the relationship between allele frequency and ethnicity of188

SNPs[Mattei et al., 2009, Mori et al., 2005]. Allele frequency(AF) plot (Figure 3B) was generated189

by calculating the minor allele frequency of variants in each ethnic group so as to explore how190

these variants differed among different populations(Indian and 1000 genome populations). The191

analysis revealed that allele frequency curve followed by SNPs in IndiGen and South-Asian192

were quite similar and comparatively different from others with very high AF for some variants193

belonging to GRK4 gene,i.e, Y292A and V486A. This indicates there is a considerable difference194

in allele frequency between Eurocentric and the understudied (AFR, Indian) populations. A195

similar AF plot (Figure 3C) was generated by comparing allele frequencies for SNPs in IndiGen196

data with their allele frequencies in different publicly available databases.197

In order to identify all the common and rare population-specific SNPs among variants of198

different population, analysis was carried out using SNPs reported for twelve genes present in199

our structure data (without any allele frequency filter). In Figure 3D, a Venn diagram showing200

unique and common SNPs for twelve genes among different populations (Indian, SAS, EUR,201

AFR, EAS and AMR) is shown. It was observed that the IndiGen variants have very less202

overlap with the variants of other population(majorly European and South Asian) in 1000203

genome data indicating specificity of IndiGenic variants. These non-overlapping variants draw a204

distinction between Indian and 1000 genome population. The South-Asian population contains205

samples for Gujrati Indian from Houston (GIH), Punjabi from Lahor, Pakistan (PJL), Bengali206

from Bangladesh (BEB), Sri Lankan Tamil from the UK (STU) and Indian Telugu from the207

UK (ITU). Despite containing variants from Indian ethinicity, South-Asian SNPs have shown208

less overlap with IndiGenic variants supporting the hypothesis that specific subgroups have209
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conserved mutation that has spread through that population and evolved differently through210

time [Christensen et al., 2003]. This observation stresses on the fact that behavioural and211

environmental changes(epigenetics) might lead to genetic differences among populations.212

Upon having an in-depth understanding of the effects of variations on the sequence, we next213

explored the effect on the protein’s structure. Firstly, protein domain analysis was done to find214

out the number of SNPs falling within the domains and the number of SNPs that are falling215

before and after the domains(Figure 3E). In order to understand the impact of SNVs at protein216

structure, the protein sequences were divided into three parts – domain regions, post-domain217

region and pre-domain region, indicating the position of a variant based on its presence before,218

within or after protein domain. It was observed that for Indigen data 952 variants were falling219

within the domain while 226 variants for were present in post domain region whereas only twelve220

variants were observed in the pre-domain region. Similarly for variants in 1000 genome data for221

European, American, African, East Asian and South Asian populations were categorised into222

pre-domain, post domain and within domain variants. Surprisingly all the populations from223

1000 genome and Indigen data revealed a larger bias for a SNV to fall in within the protein224

domain or post-domain region as compare to pre-dromain region.225

Structure level comparison of IndiGen and Disease-causing variants226

To further understanding the SNV’s effect on the protein structures, IndiGen structure dataset227

was constructed by taking into account only variants of druggable kinases lying within the228

crystal length, thus giving only twelve kinase genes and corresponding 22 variants. Disease229

causing variants corresponding to these 12 genes were extracted from Humsavar data (217230

variants) and compared. The structural characteristics like distribution of solvent -accessibility,231

secondary structure, conservation score and change in hydrophobicity of variants/variant232

residues in IndiGen structure data and Humsavar data were compiled and compared. For233

solvent accessibility comparison (in Figure 4A), a cutoff of 5% solvent exposure was applied234

onto the Naccess results for variants in both datasets to distinguish between buried and exposed235

residues. The results revealed most mutations are observed in the exposed residues in both the236

datasets. This is in line with the conventional study shown by a group that states more than237
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Fig 3. A. Comparing the trend of amino acid exchange among different populations from 1000 genome
project and with Indian population. The heatmap was generated on the basis of the allele frequency of
variants in IndiGen and other populations of 1000 genome data. The colour intensity of each cell is
proportional to the frequency of amino acid exchange from one specific amino acid to another among all
the databases. B. Comparing IndiGen specific variations (22 variants) with allele frequency ≥10%
different populations with 1000 genome data. On the X-axis common IndiGen variants qualifying the
filters used for structure data are shown with gene and variant names( 22 variants) whereas on the
Y-axis, allele frequency for these variants in IndiGen and other populations is plotted. C. IndiGen
specific SNPs(22 variants) with AF≥ 10% observed in different databases like 1000 genome project,
Genome AD exome data and Exac database; with IndiGen variations on X-axis and their allele
frequencies in different databases on Y-axis. D. Venn-diagram of common Indian variants (allele
frequency (AF) ≥10%) among different populations. E. Variations lying pre-, within and post domain
was mapped where the angle of the lines are a function of the number of variations, with the y-axis
”Domain” location as zero, and where larger variations in a population shall bear larger weight.
Variations were plotted on the basis of their distance from post and pre-domain location.
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60% of solvent exposed SNPs have a disease association[Gong and Blundell, 2010]. In IndiGen238

data, 81.8% of variant residues (22 residues) were found to be exposed which was roughly equal239

to solvent exposure of residues in Humsavar data with 81.1% exposed residues (74 residues). No240

appreciable difference was observed in solvent accessibility for variants in both datasets. The241

secondary structure preference of variants in both the datasets revealed that variant residues242

in IndiGen data have a slight preference to occur on alpha-helix part of the protein while the243

variants in Humsavar data share equal secondary structure preference for their occurrence either244

in alpha-helix or in loop/random coil of a protein (Figure 4B).245

Residue conservation scores for variants in IndiGen structure data (22 residues) and in246

Humsavar data (74 residues) were calculated using Consurf [Ashkenazy et al., 2016]. A density247

plot showing the distribution of conservation score for variants in both the datasets is shown in248

Figure 4C. The Humsavar density curve follows nearly normal distribution while the IndiGen249

curve follows a bimodal distribution with two peaks. Moreover, the median line divides the area250

under the curve into two equal halves. The median line for Humsavar data (0.007) was present251

closer to 0 than IndiGen data’s median (0.358). Hence, in order to elucidate the percentage252

of residues with more or less conservation, a threshold value of -1/+1 relative conservation253

score was considered. It was observed that the percentage of highly conserved residues (with254

Consurf conservation score greater than -1) was more in Humsavar distribution (steeper) than255

in IndiGen. Likewise, the percentage of highly variable residues (with conservation score >1)256

adhering to the area under the curve on the right of +1 was more for IndiGen data than for257

Humsavar data, indicating that Humsavar data has a higher percentage of residues that are258

involved in variations, being more conserved.259

The distribution of change in hydrophobicity from reference to altered residue for variants260

in Humsavar and IndiGen structure data is shown in Figure44D. The medians for both the261

distributions were found next to each other and very close to 0, suggesting that the percentage262

of variations with increase or decrease in hydrophobicity is almost equal in both the datasets.263

In order to find out the percentage of residues with some significant change in hydrophobicity,264

a threshold value of -2 was considered for increase in hydrophobicity whereas +2 threshold was265

taken for decrease in hydrophobicity. It was observed that the percentage of varying residues266
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with significant increase in hydrophobicity was observed for IndiGen structure data whereas the267

percentage of residues with significant decrease in hydrophobicity was found for Humsavar data.268

Effect of SNVs on structural properties of the protein269

Structural stability of generated variants270

Prior to investigation of the structural properties of nsSNPs in IndiGen Structural Data,271

the thermodynamic stability of minimized native and mutant structures was evaluated using272

FoldX. The influence of genetic variation on protein’s stability and flexibility was predicted273

using Dynamut by calculating ∆ ∆G (change in folding energy) value for all the 22 variants.274

Dynamut implements normal mode analysis for predicting the effect of SNP on native protein275

structure. The results from Dynamut revealed that 11/22 variants had ∆ ∆G negative suggesting276

destabilization after mutation. The FoldX and Dynamut energy values were visualized in the277

alluvial plot and shown in Figure 4E. The plot shows 12 genes, their native protein structures278

(PDB IDs: 4YHJ, 5TQY, 3NYO, 6GQ7, 4TNB, 6BFN, 3GC9, 6BDN, 6I83, 4EYJ, 3NRU and279

3D2R) and 22 mutants linked with their corresponding energy values. The gene names and280

the PDB codes for native protein structures were shown in the first two columns followed by281

∆G (in kcal/mol) for all natives given by FoldX and ∆ ∆G (in kcal/mol) given by Dynamut282

for all the variants. The PDB names in the plot were arranged on the basis of the decreasing283

number of mutations reported for them. As per Dynamut predictions, a mutant F454A of284

PDB code 4YHJ has shown ∆ ∆G of -2.767 kcal/mol (Destabilizing) and change in Vibrational285

Entropy Energy between Wild-Type and mutant (∆ ∆S-Vib) as 1.178 kcal.mol-1. K-1 showing286

an increase of the molecular flexibility after mutation.287

Secondary Structure Annotation and Relative Solvent Accessibility of mutated288

residues289

The secondary structure of a protein includes largely α-helix and β-pleated sheet structures,290

which is involved in local interactions between stretches of a polypeptide chain. The ability291

of a protein to interact with other molecules depends on amino acid residues located on the292

surface with high solvent accessibility. Any alterations in these residues may affect the protein’s293
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Fig 4. Comparison of structural characteristics of variants in IndiGen and Humsavar data: A. Solvent
accessibility for the variants in both datasets. B. Secondary structure in which each of the variants
occurs in both datasets. C. Conservation score and ∆Hydrophobicity distribution of variants in
Humsavar and IndiGen data. D. The area under the curve present on the left of -2 (∆Hydrophobicity)
belongs to the percentage of residues for which a significant increase in hydrophobicity after mutation
was observed while the exact opposite was observed for percentage of residue present on the right of +2
on x-axis. E. Alluvial plot representing FoldX Energy plot for 12 native PDBs (δ G Native column) and
change in folding energy for 22 variants (δ δ G) by Dynamut (in kcal/mol). F. Sunburn Plot
representing secondary structure assignment done by DSSP for mutant residues. G. Treemap showing
relative solvent accessibility calculated by Naccess for mutated residues. H. HBPLUS results showing
the number of hydrogen bonds made by mutated residue before mutation (green -bar), after mutation
(blue-bar), and ∆H-bonds (yellow bars)
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functioning thereby increasing the importance behind the study of structural properties of294

mutated residues. Solvent accessibility (using Naccess) and the secondary structure properties295

(using DSSP) of mutated residues were studied. The Figure 4F is a sunburn plot showing296

results for secondary structure assignment by DSSP. The plot consists of four concentric circles297

with innermost circle comprising 12 PDB IDs, second-inner circle comprising 3-letter code of298

reference amino acid present at mutant site, third-inner circle shows the mutant position and299

outermost circle contains the secondary annotation for that residue given by DSSP. The color300

coding was done on the basis of native PDBs. Majority of the variants were found to be present301

in alpha-helix region as compared to other regions of the protein.302

In the Figure 4G, the results obtained from Naccess for relative solvent accessibility of303

mutated residue was represented by a Treemap. The area of rectangles represents the relative304

solvent accessibility scale associated with mutated residue. All 12 PDB IDs are shown with 12305

different colors forming a hierarchy. The color-coding was done on the basis of associated PDB306

IDs. The relative solvent accessibility of two mutated residues belonging to PDB code 4YHJ307

(Y53I and C215I) was zero hence not shown in the figure. The area of rectangle for R275H and308

V486A mutants of 3GC9 and 4YHJ pdbs were largest with rel. solvent accessibility more than309

75 suggesting that these two reference amino acids, arginine of 3GC9 at 275th position and310

valine at 486th position were relatively more accessible than others. The results from this plot311

disclosed that there were 5 residues with more than 60 relative solvent accessibility (Arginine,312

Valine, Phenylalanine and Serine) belonging to 3GC9, 4YHJ, 6BDN and 6BFN PDB IDs.313

Effect of SNP in hydrophobicity and hydrogen bonding314

A single amino acid change may result in alteration of hydrophobicity or disruption of the315

hydrogen-bond network thus modifying the structure and function of the protein as well[Kumar316

and Biswas, 2019]. The change in hydrophobicity observed in mutants in IndiGen structure317

data were arranged according to Fauchere and Pliska scale [FAUCHÈRE et al., 1988] (Supple-318

mental Fig S1-A). In the IndiGen structure data, 12 out of the 22 variants exhibited decrease319

in hydrophobicity whereas an increase in net hydrophobicity was observed in the rest. The320

number of hydrogen bonds made by the altered residue before and after the mutation were321
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calculated using the HBPLUS program (Figure 4H). Variants 4YHJ A142V showed a loss of322

1 hydrogen bond, while 4YHJ V292A, 6GQ7 T857A and 6I83 R982C resulted in loss of two323

hydrogen bonds.324

Effect of SNP on Ligand Binding325

Given the pharmacological importance of kinase proteins, molecular docking was performed to326

comprehend the effect of SNP in the drug-gene interaction. All FDA approved drugs available327

in DGIdb for genes present in IndiGen structure data were docked against the native and328

mutant protein structures. In 25 out of 62 protein-drug pairs, changes in binding affinity (0.7329

to -9.1 kcal/mol) was observed in native and mutant forms, whereas for remaining pairs, no330

change in binding affinity was observed. The Figure 5A represents the change in binding affinity331

observed for the 25 protein-drug pairs. In 20 protein-drug pairs a decrease in binding energy was332

observed while 5 pairs have shown an increase in binding-energy; indicative that the presence333

of an SNP destabilizes the complex. One protein-drug pair, T857A mutant of gene PIK3CG334

(PDB ID: 6GQ7), which when bound to drug Zinc sulfate (DrugBank id - DB09322) revealed a335

stark decrease in binding energy(-9.1 kcal/mol) when comparing the native- (-13.0 kcal/mol)336

versus mutant- (-3.9 kcal/mol) drug pair. These 25 protein-drug pairs with difference in binding337

affinity were further considered for binding site and ligand similarity.338

It was observed that the binding pocket of the ligands in native and mutant forms for their339

respective receptors was the same, stipulating that presence of SNP didn’t change the binding340

site of drugs with their target protein. A snapshot of the first pose of ligand docked in the341

protein was taken in PyMol for all native protein-drug complexex. The mutated residue in every342

complex is shown in red-color with sticks representation which was away from the binding pocket343

of the ligands in all cases(except in the case of 6GQ7-T857A). Ligand binding pockets (post344

docking) shown in mesh representation with different colors in Supplemental Fig S2-(A-G).345

In an attempt to find out the reason behind the huge decrease in binding affinity in case of346

mutant T857A(PDB ID: 6GQ7)-zinc-sulfate(DrugBank id– DB09322) complex the binding site347

residues of this drug in native and mutant complex were compared and visualized in PyMol348

[Schrödinger and DeLano] and LigPlot+ [RA and MB, 2011], shown in 5D. It was observed349
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that the location of the binding pocket-residues in mutant and native forms was unchanged350

and the main binding pocket was away from the mutated residue. However, a decrease in one351

hydrogen bond was observed in ligand interaction diagram of native and mutant complexes..352

Binding Site Similarity Analysis353

Fpocket was used to detect the binding pockets present in a protein structure [Le Guilloux354

et al., 2009]. For every protein in IndiGen structure data, the best binding pose of its ligand355

was considered as main pocket which aligned to detected pockets by Fpocket. Only the pocket356

which perfectly aligned were considered for the analysis (12 pockets). Pocket similarity score357

(distance between a particular pocket pair) for each protein-pocket pair was calculated using358

DeeplyTough tool shown in (Figure 5B). Similarity is proportional to the score, less negative359

means more similar.After applying a zscore cutoff (-/+0.70), all the pockets pairs were classified360

as similar, dissimilar or intermediate, resulting in 12 pairs of similar and dissimilar pockets. The361

difference in distribution of PS scores of similar and dissimilar pocket pairs is visible from the362

box plot in Figure 5C. Statistical test (Mann–Whitney U test) revealed statistically significant363

(p¡0.05) difference between the similar and dissimilar pocket pairs.364

Ligand Similarity/diversity Analysis365

The 25-protein drug pairs with delta binding energy observed after docking were considered for366

this analysis. In total there were five different PDB structures (6GQ7, 5TQY, 3GC9,4TNB,367

6I83) with five respective mutations and 24 drugs as shown in (Supplemental Table S7). All368

drug-like chemicals from our ligand dataset were considered for chemical similarity analysis.369

Two drugs- DB09332 (Zinc Sulphate) and DB00040 (Glucagon) were excluded in this analysis370

as zinc-sulfate contains counter-ion and glucagon is a peptide hormone. From this analysis,371

it was observed that all the associated drugs exhibit a great molecular diversity (Figure 6).372

The maximum pairwise similarity for Morgan2 fingerprints and MACCS fingerprints has a373

Tanimoto score of 0.40 and 0.70, respectively. On the other hand, the pairwise dissimilarity374

(1-similarity) for Morgan2 fingerprints and MACCS fingerprints has a Tanimoto score of 0.98375

and 0.90, respectively. The computational prediction platform ProTox-II, which includes376
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Fig 5. A. Bar plot showing docking results for 25 protein-drug pairs on x-axis and change in binding
affinity observed on y-axis. Blue bars represent a decrease in binding affinity and red bars represent
increase in binding affinity after mutation. B. Pocket Similarity Curve for proteins in IndiGen structure
data. C. Box-plot showing distribution of PS Scores of similar and dissimilar pocket pairs. Using
Mann–Whitney U test, p-value(0.000018) was calculated and used to interpret the result of the test. D.
Ligand interaction diagram of native 6GQ7(PIK3CG gene) and its mutant T857A bound to Zinc Sulfate
(DB09322) and main binding pocket (grey pocket) where majority of ligands docked.
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cheminformatics-based machine learning models for predicting 46 toxicity endpoints, was used377

to predict toxicity profiles of compounds/drugs. For the prediction of various toxicity endpoints,378

such as acute toxicity (LD50 values), hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity,379

immunotoxicity, adverse outcomes pathways (Tox21), and toxicity targets, ProTox-II integrates380

many statistical methodologies such as molecular similarity, pharmacophores, and fragment381

propensities, as well as machine learning models (off-targets). In vitro assays (e.g. Tox21 assays,382

Ames bacterial mutation assays, hepG2 cytotoxicity assays, Immunotoxicity assays) and in vivo383

cases were used to create the predictive models (e.g. carcinogenicity, hepatotoxicity). These384

models have been validated on separate external datasets and have shown to be effective and385

well-cited.[Banerjee et al., 2018].386

A B

C D

Fig 6. Heat maps representing drug pairwise similarity and dissimilarity. A. Ligand dissimilarity using
MACCS fingerprints. B. Ligand similarity using MACCS fingerprints C. Ligand dissimilarity using
Morgan fingerprints. D. Ligand similarity using Morgan fingerprints. Similarity and dissimilarity
(1-similarity) score is represented using Tanimoto coefficient (taking a value between 0 and 1, with 1
corresponding to maximum similarity)

As per the predictions made by ProToxII (Supplemental Table S10), it is observed that387

the mycophenolic acid (DB01024) which is an immunosuppresant drug , interacting with PDB388
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structure 6GQ7, mutations T857A, is hepatotoxic, immunotoxic and cytotoxic. It also inhibits389

SR-MMP(mitochondrial membrane potential) with a confidence score of 0.79. Another interest-390

ing observation is the drug Regorafenib (DB08896) which is also predicted to be hepatotoxic, and391

is active in two different stress response pathways SR-MMP, and SR-p53. Regorafenib is associ-392

ated with adverse events like hypertension, stomatitis, abnormal liver function.[Krishnamoorthy393

et al., 2015]. However, the exact mechanism of developing hypertension is not very well-defined.394

Abnormalities in liver function is also reported in case of Regorafenib[De Wit et al., 2014]. The395

drug progesterone (DB00396) is predicted to be active in six adverse outcome pathways(AOPs).396

Like progesterone, many other drugs can result in such molecular inhibition/ activation of397

NR-AR by progesterone, and can result in reduced AR signalling /impaired follicle recruitment398

as cellular or tissue level response and may be impaired fertility in organism[Pivonello et al.,399

2020]400

Phenotypic drug-drug similarity401

In order to look for phenotypically similar drugs in IndiGen data a list of protein IDs and drug402

molecules associated with them was considered (Supplemental Table S7). This information403

could be useful to get insights about similar drugs present in IndiGen structure data. A404

correlogram was plotted with drug names on x/y axis. The positive and negative correlation was405

shown by blue and red color circles. The color intensity and circle size depends on correlation406

coefficient. (Supplemental Fig S1-B). A strong correlation (more blues dots in Figure S1-B) can407

be observed from this plot indicating promiscuous nature of drugs (binding to multiple targets)408

or target proteins. For instance drugs Fulvestrant and Rizatriptan are chemically dissimilar409

(similarity score 0.20 in Figure 6). However, in terms of phenotypic drug-drug similarity - they410

are highly similar as they bind to the same protein target highlighting the differential binding411

ability of kinases to a set of fairly specific inhibitors.412

Protein-Protein Interaction Network and Biological Processes involved413

Since an evident decrease in binding energy was observed in case of T857A mutant of gene414

PIK3CG with drug Zinc sulfate (DrugBank id - DB09322), this difference in binding affinity can415
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affect the structure and functioning of this protein and others associated with it, thereby under-416

standing its significance and functions linked with is important. PIK3CG gene phosphorylates417

phosphatidylinositol 4,5-bisphosphate and generates phosphatidylinositol 3,4,5-trisphosphate418

(PIP3) which is responsible for the recruitment of PH domain-containing proteins to membrane,419

therefore activating signaling cascades involved in cell growth, survival, proliferation, motility420

and morphology[M. Christopher, 2016b]. PI3Ks play a pivotal role in human cancers leading to421

the discovery of small inhibitors of these lipid kinases.[Wang et al., 2015]. The physical and422

functional association of the protein PDB-6GQ7 were studied by giving the gene name (PIK3CG)423

as input to the STRING database.[Szklarczyk et al., 2019] The gene PIK3CG was found to424

have 10 predicted functional partners, i.e., HRAS, KRAS, NRAS, PIK3R6, PIK3R2 PIK3R5,425

PIK3R1, PIK3R3, AKT1 and PDPK1 shown in Supplemental Fig S3A. The information related426

to the biological processes in which these genes are involved was obtained from Gonet webserver427

[Pomaznoy et al., 2018], as shown in Supplemental Fig S3B.428

Discussion429

Adverse drug reactions are often associated with genes that are more prone to variations and430

targeted by multiple drugs. Firstly, to have a global understanding of the distribution of the431

common variations present in India, the kinome tree for all the druggable kinase genes was432

constructed (Figure 1). This revealed that tyrosine kinase class consisted large number of433

variations and was found to be associated with numerous drugs. Receptors tyrosine kinases434

(RTKs) are involved in broad range of functions such as proliferation, differentiation and435

apoptosis of cells and have been extensively used as drug target in cancer studies. Many of the436

tyrosine kinase inhibitors are antibody-based drugs used in treatment of tumors, malignancies437

and inflammatory diseases[Bennasroune et al., 2004]. The sequence based analysis(Figure 3B)438

of IndiGen variants disclosed that Indian population is genetically very different from the other439

populations. Conservative mutations can affect the protein’s stability which can modulate440

its functioning and catalytic pattern followed by it in different organisms[Rodriguez-Larrea441

et al., 2010]. Studies have shown there is a strong correlation between frequency of occurrence442
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of amino acids in the human genome and number of associated codons[Alwi, 2005]. On the443

contrary, observation made in amino-acid exchange matrix and chemical shift analysis(Figure444

2) suggested that mutation from one amino-acid type to other was independent of number of445

codons coding for any amino-acid. The changes in chemical classes for majority of amino-acids446

were found to be conserved indicating more intra-class mutations than inter-class mutations.447

The mutability plot (Figure 2D) revealed that Arginine (R) is more mutable than other amino448

acids and the probable reason behind this could be the presence of CpG dinucleotide in the449

codons coding for Arginine which is relatively vulnerable to mutations[M. Christopher, 2016a].450

Ancestry has a very important role to play in evolution of a SNP in different ethnic groups451

of a population. This also indicates that there is a relationship between allele frequency and452

ethnicity of the population. Even a fractional exchange of amino acids can have a completely453

different impact on different populations. Amino acid frequency comparison study stipulated454

that the variant frequency pattern followed a similar trend in all the populations except455

Indigen(Figure 3B). Some variants were found to be common in Indian population and rare456

in other populations(population-specific variants) indicating that it will be affecting Indian457

population with higher frequency than others(Figure 3D). On comparing allele frequency of458

Indian mutations with the ones present in publicly available databases it was inferred that many459

conserved mutations in IndiGen data are still understudied as none of the existing databases460

contains these mutations (referring to IndiGen data=samples from 1000 individuals of strict461

Indian ethnicity)(Figure 3C). Protein domain regions are stable conserved parts of a protein462

sequence and its 3D structure. Therefore, variants present inside the protein domains are more463

likely to affect the protein structure, stability and function. The comparative study of variants464

on the basis of their position with respect to domain location suggested that many Indian465

variants were present either within the domain or in the post-domain region.(Figure 3E)466

One of the most useful predictors of the phenotypic effects of missense mutations is protein467

structural information and stability. Missense mutations can disrupt protein structure and468

function in one of two ways: they can destabilise the entire protein fold or they can change469

functional residues, such as active sites or protein-protein interactions, and pathogenic mutations470

are enriched in both the buried cores of proteins and in protein interfaces[Gerasimavicius et al.,471
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2020]. Reports have claimed that buried amino acids are often observed to be associated with472

diseases and commonly observed in functional sites. [M. Christopher, 2016a]. On the contrary473

in relative structural analysis of IndiGen and Humsavar dataset it was found that residues474

with relatively higher solvent accessible surface were more prone to mutations.(Figure 4A) [M.475

Christopher, 2016a]476

Mutations that occur in properly structured part of a protein are more likely to be pathogenic477

than mutations that do not, due to their strong destabilizing effect on protein structure.478

According to stability analysis performed by Dynamut, 11 variants were found to destabilize479

protein’s structure and from 11 destabilizing variants, 7 were found to be present in the helix480

region of the protein. IndiGen variants occur more in the alpha-helix region while Humsavar481

variants share equal secondary structure preference for their occurrence either in alpha-helix482

or in loop/random coil of a protein.(Figure 4B) Several studies have suggested that secondary483

structure elements like sheets and helices vary a lot in their ability to tolerate mutations. This484

differential tolerance of mutations could be due to difference in number of non-covalent residue485

interactions within these secondary structure units.[Abrusán and Marsh, 2016].The conservation486

score distribution implied a higher percentage of residues with greater conservation in that487

Humsavar data than in IndiGen data. Since Humsavar variants are reported to be associated488

with a disease it his highly likely that their presence in highly conserved region could be a489

reason behind their disease occurrence. Hydrophobic interactions and hydrogen bonds are the490

two most prevalent interactions present in protein structure. Hydrophobes as the name suggests491

tend to isolate themselves from water molecules due to which many hydrophobic amino acids492

are often found to be buried inside the protein structure. Contrasting results were observed in493

hydrophobicity distribution with significant increase in hydrophobicity for IndiGen structure494

data whereas the decrease in hydrophobicity was found for Humsavar data. (Figure 4C)495

Occurence of SNPs at the ligand binding sites (LBSs) can influence protein’s structure,496

stability and binding affinity with small molecules. Interesting findings claimed that ligand497

binding residues have a significantly higher mutation rate than other parts of the protein [Kim498

et al., 2017]. In order to validate whether a single amino acid substitution can change the binding499

affinity of a ligand with its target protein or not, molecular docking of ligands(FDA approved500
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drugs) with native and mutant structure was performed. The docking results suggested that501

since the mutated residue was away from the binding pocket not much difference in binding502

affinity was observed in native and mutant forms except in T857A mutant in which a polar amino503

acid has converted to a non-polar amino acid leading to loss of two hydrogen bonds (4H), thereby504

decreasing the binding affinity of ligand(Zinc-sulphate) with protein. Binding site similarity505

analysis on the basis of PS score and Z score cut-off revealed that many drugs in our dataset506

share a similar binding site(Figure 6B). These drugs are more similar based on substructure507

features (local similarity) using MACCS fingerprints.(Figure 6). Moreover, the molecular508

diversity of 12 drugs binding to 6GQ7 (PIK3GA) suggest the promiscuous nature of the kinase509

and enabling insights which are relevant for understanding polypharmacology and negative510

side-effects. Further analysis of these and other inhibitors that bind to PIK3GA, clustered by511

phenotype information, can give us deeper insights into targeted kinase inhibitor design. The512

PPI and Gene Ontology analysis revealed that PIK3CG gene is functionally associated with ten513

other genes and most of them are involved in signal transduction, response to stress, anatomical514

structure development, immune system process, cellular protein modification process and515

biosynthetic process.(Supplemental Fig S3). PIK3CG gene is altered (Mutation, Amplification,516

Loss ) in 2.68% of all cancers. It is found to be associated with lung, colon, and endometrial517

adenocarcinoma, cutaneous melanoma, prostate cancer, and breast invasive ductal carcinoma.518

While in this study, we have explored common variants present in the Indian population,519

sampling lower allele frequencies shall be also useful, in the future, to understand the underlying520

fundamentals of rare diseases. Additionally, experimental validation of the findings in this study521

shall provide further credence to the results.This study on IndiGen variant data may assist in522

redesigning the healthcare system from “One Size Fits for All” to “Population or Individual523

Specific Drug System” and a big step towards the effective treatment of patients due utilisation524

of drugs with less side-effects.525
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Materials and Methods526

Variant Data collection527

The combined variant data of Indian population was curated from over 1029 whole genome528

sequences collected as part of the IndiGen programme to represent diverse Indo-ethnicities. The529

variant data comprised of single nucleotide variants and indels which were annotated using530

Annovar[Wang et al., 2010]. Only SNVs were considered for our study.531

Assembling druggable genes532

The Drug Gene Interaction Database (DGIdb) version 3 is a database that contains information533

on all currently approved drugs as well as other future targets of interest.[Freshour et al.,534

2021]. Genes were annotated in this database with respect to known drug-gene interactions and535

potential druggability. It normalizes its content from 30 open-source databases like DrugBank536

[Wishart et al., 2008], therapeutic target database (TTD)[Chen et al., 2002], PharmGKB537

[Boom et al., 2013], The Druggable genome and other web resources like Oncology Knowledge538

Base (OncoKB) [With et al., 2017], cancer genome interpreter (CGI) [Tamborero et al., 2018],539

etc. A list of 545 druggable kinases and associated FDA approved drugs was retrieved from540

the DGIdb using browse category search while limiting the categories to specific resources541

i.e ‘GuideToPharmacologyGenes’(Supplemental Table S1). The Guide to Pharmacology is542

a curated repository of ligand-activity-target relationships, with the most of its information543

derived from high-quality pharmacological and medicinal literature. This druggable kinase gene544

list was further enriched by adding features like Ensembl ID, PDB ID, RefSeq Match Transcript,545

gene start - gene end, Uniprot ID, sequence length and structure length etc. using BioMart546

resource [Smedley et al., 2009] and is automated using python.547

Data Preparation548

Sequence Data Preparation549

Dataset used for sequence analysis contained 545 druggable kinase genes and its associated550

variants. Protein sequences for these genes were downloaded from NCBI Genbank and mutant551
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sequences were prepared by adding the variants to the native sequence as per the Annovar data.552

Structure Data Preparation553

Structure Data was prepared by collecting all druggable kinase genes for which a crystallised554

protein structure (maximum crystal length) was available in UniProt [Bateman, 2019]. The555

variants from IndiGen data with an allele frequency ≥ 10%, falling within the crystal length556

were accounted for in this analysis. After applying these filters, 12 genes and their corresponding557

22 variants were left, and were referred to as IndiGen Structure data (Supplemental Table S4).558

In an attempt to conduct a comparative structural analysis, Humsavar (Human polymorphisms559

and disease mutations) data was taken. It lists all missense variants annotated in human560

UniProtKB/Swiss-Prot entries (Release: 2020 04 of 12-Aug-2020). In this data the variants561

were classified as disease causing (31132- 64.1%), Polymorphisms (39464-23%) and Unclassified562

(8381- 12.9%). The variants associated to the genes present in IndiGen Structure data were563

extracted from Humsavar complete list of variants. This dataset was referred to as Humsavar564

dataset which consisted of total 217 variants, and used for benchmarking structural analysis565

(Supplemental Table S5).566

Data Processing and Visualization567

Drug, Gene and Variant Tree568

The primary goal of this analysis was to have a quantitative and qualitative insight about569

frequency of occurrence of variation in family of kinases and availability of drugs against it.570

This will aid in gathering information related to the family of kinases with more variations571

and drugs reported. An online tool, KinMap [Eid et al., 2017], was used for an interactive572

exploration of kinase coding genes present in IndiGen data. The genes associated with 545573

druggable kinases, number of variations and drugs reported against each gene in DGIdb was574

given as an input to this tool.575
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Amino-acid Conversions and Mutabilities576

The tendency of conversion of an amino acid type to another type and identification of any577

pattern in this conversion can guide in understanding the change in physicochemical property578

of a protein sequence. This analysis was conducted using a python script and the reported579

variants for kinases were taken into account. The script generated a 20X20 matrix which gave a580

normalized count of each amino acid with respect to other amino acids i.e percent conversion581

of each amino acid. Normalized count = (Amino acid count in samples)/(Amino acid count582

from refseq)*100. This amino-acid exchange matrix was correlated with chemical properties of583

mutating amino acids by analysing the chemical shifts associated with variants among different584

populations and databases. The overall amino acid count for each class of amino-acids was585

summed up for reference and altered residues and the difference in the counts was called as586

chemical shift. The mutability of an amino-acid is defined as the ratio of total number of587

mutations for a specific amino acid in the data and the frequency of occurrence for that amino588

acid in the reference human genome.This mutational frequency was calculated for all the variants589

in IndiGen(AF >10%).590

Multiple Sequence Alignment and Protein Domain Analysis591

To understand the effect of SNPs on protein’s function it was checked whether the observed592

variation (SNPs) is conserved and falls under a protein domain or not. Clustal Omega [Sievers593

and Higgins, 2014] was implemented to perform the multi-sequence alignment (MSA). The594

protein sequence files in FASTA format were generated using a python script. For protein domain595

analysis, Pfam Scan (Embl-ebi n.d.) web server maintained by EMBL-EBI was used. A single596

file of all protein sequences in FASTA format was provided to it as input (default parameters).597

It gave an output file consisting of domain name, its start and end position corresponding to598

every input sequence (hmm name, hmm start, hmm end) and other information. Mutations599

which were observed within domain region (hmm start - hmm end) annotated as 0 for others600

the distance of mutation from domain region was also calculated.601
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Variant Protein Structure Generation602

Computational protein structure prediction helps in generating a three-dimensional structure603

of proteins. The prediction here is based on in-silico techniques and relies on principles from604

known protein structures mostly obtained by X-Ray crystallography, NMR Spectroscopy and605

physical energy function. Before proceeding to the structure analysis few filters were added to606

the base data. These filters were, 1. Availability of protein crystal structure, 2. Availability607

of drug molecules against the protein, 3. Crystal structure and sequence coverage ≥ 70%, 4.608

Allele frequency of the nsSNP observed in the IndiGen population ≥ 10%, 5. SNP coverage609

to the crystal structure. In view of the fact that the native crystal structure was already610

available in Protein Data Bank, we only require to mutate a single amino acid position by611

taking the reference and altered amino acids present in IndiGen structure data for a particular612

gene/protein. This single reference amino acid of the protein was mutated using rotkit function613

of PyMol that allows access to its mutagenesis feature. The crystal structure of the protein614

based on the requirements mentioned above were downloaded from RCSB PDB and mutated615

using the rotkit function. This process was automated by python code. It was followed with616

energy minimization and refinement of these mutant structures (22 variants) using Chimera617

[Pettersen et al., 2004]. The parameters used for minimization of energy include 1000 steepest618

descent steps with step size of 0.02 Ang and force-field AMBER ff14SB. For the assessment619

of structural stability of the native and mutant protein structures, FoldX [Schymkowitz et al.,620

2005] was implemented. FoldX calculates energy differences that come close to experimental621

values. The impact of mutations on protein conformation, flexibility and stability was predicted622

by Dynamut[Rodrigues et al., 2018]. The structural differences in native and mutant forms623

were analyzed using several tools like DSSP (28) for secondary structure annotation of mutated624

residue, HBPLUS(29) to study gain or loss of hydrogen bonds after the mutation and Naccess625

(27) to compare the solvent accessible surface area of the mutated residue.626

Molecular Docking627

Receptor-ligand docking was performed in order to study the drug-gene interaction and analyze628

the effect of SNP in binding affinity of drug with its target protein before and after the occurrence629
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of mutation. A set of kinase genes with FDA approved drugs available in DGIdb were taken into630

account. Only 7/12 genes (CHUK, EPHA7, GRK5, MAPK11, MAPK13, PI4K2B, PIK3CG)631

from IndiGen structure data were found to exhibit drug-gene interactions given drugs were632

FDA approved. The protein structure files (in Protein Data Bank as a PDB format) for these 7633

genes and their 7 modelled variants were considered as receptors. Since our dataset comprised634

62 ligands that were to be docked with 14 receptors, a virtual screening was performed using635

AutoDock vina[Trott and Olson, 2009]. The drugs/ligands were downloaded from DrugBank636

and PubChem [Kim et al., 2019] in PDB format. The preparation of receptors (removal of water,637

missing hydrogens,etc.) and ligand was followed with their conversion to PDBQT format. In638

the absence of any prior information about the target binding site, blind docking was performed639

for all the protein-ligand pairs. The docking was performed to the center of the binding cavity640

using Cartesian coordinates that differed for every protein calculated using PyRx[Dallakyan,641

Sargis; Olson, 2015]. The docking grid with a dimension of 60 Å x 60 Å x 60 Å was used in each642

docking calculation with an exhaustiveness option of 100 (average accuracy). The maximum643

number of binding modes to generate was kept 500 with an energy range of 20kcal/mol. 50644

iterations of these parameters for every target protein was followed.645

Binding site comparison646

Binding site similarity comparison was computed based on the fact that the binding sites on647

proteins are more conserved than the rest of the protein structure. Detecting ligand-binding sites648

similarities in globally unrelated proteins can help in the repurposing of new drugs, predicting649

side-effects, severe toxicity, and drug-target interactions. There exists a basic principle that650

similar pockets or cavities in a protein structure recognize similar type of ligands, so as to651

validate this principle, several protein-ligand binding site comparison methods are available652

which are utilized in many drug discovery scenarios, one such tool is DeeplyTough [Simonovsky653

and Meyers, 2020]. Since the proteins used in this work belong to the kinase family, it is highly654

likely that they share similar binding pockets. Fpocket [Le Guilloux et al., 2009] was used to655

locate all the binding pockets present in the protein. For every target protein, only those pockets656

which aligned to the best binding pose of docked ligand were given as input to DeeplyTough657
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for assessment of similar binding sites. This tool gave Pocket similarity score as an output for658

each input protein-pocket pair. Since the difference in PS score among the input pairs was659

very small, Z-score (orange line) was calculated for every PS-score in order to claim similar660

pocket pairs with some statistical significance. In order to classify the pockets pairs as similar,661

dissimilar or intermediate, a Z-score cut-off was considered (-/+0.70).662

Ligand similarity/diversity analysis663

Molecular similarity of the ligands (drugs) can be assessed using their structural features (e.g.,664

shared substructures, ring systems, functional groups, topologies, etc.) of the compounds665

and their representations in the N-dimensional chemical space. These descriptors are often666

defined by mathematical functions of molecular structures. In this analysis, MACCS (Molecular667

ACCess System) keys with 166 keys and circular -Morgan fingerprints with radius 2 were668

used[Fernández-De Gortari et al., 2017]. These fingerprint-based similarity computations were669

implemented using the popular chemoinformatics package RDkit [Bento et al., 2020] in python.670

Tanimoto similarity coefficient was used to compute a quantitative score in order to measure the671

degree of ligand similarity and dissimilarity (1-similarity)- using weighted values of molecular672

descriptors.673

Phenotypic drug-drug similarity674

The tendency of a drug to bind to multiple targets is called drug polypharmacology, it is well675

known property of drugs. Reports have suggested about the association of drug polyphamacology676

with the target protein family and binding site similarity of their primary targets [Jalencas and677

Mestres, 2013]. If two drug molecules target same gene product then they are expected to have678

similar activities and mechanism of action[Prinz et al., 2016]. Thus, repurposed form of similar679

drugs can act as alternative to the ones with adverse drug reactions. On the basis of drug-gene680

interaction data obtained from DGIdb several drugs were observed to have same target protein.681
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