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1 Abstract

The intensification of anthropogenic pressures have in-
creased consequences on biodiversity and ultimately
on the functioning of ecosystems. To monitor and
better understand biodiversity responses to environ-
mental changes using standardized and reproducible
methods, novel high-throughput DNA sequencing is
becoming a major tool. Indeed, organisms shed DNA
traces in their environment and this ”environmental
DNA” (eDNA) can be collected and sequenced us-
ing eDNA metabarcoding. The processing of large
volumes of eDNA metabarcoding data remains chal-
lenging, especially its transformation to relevant taxo-
nomic lists that can be interpreted by experts. Speed
and accuracy are two major bottlenecks in this criti-
cal step. Here, we investigate whether convolutional
neural networks (CNN) can optimize the processing of
short eDNA sequences. We tested whether the speed
and accuracy of a CNN are comparable to that of the
frequently used OBITools bioinformatic pipeline. We
applied the methodology on a massive eDNA dataset
collected in Tropical South America (French Guiana),
where freshwater fishes were targeted using a small re-
gion (60pb) of the 12S ribosomal RNA mitochondrial
gene. We found that the taxonomic assignments from
the CNN were comparable to those of OBITools, with
high correlation levels and a similar match to the re-
gional fish fauna. The CNN allowed the processing of
raw fastq files at a rate of approximately 1 million se-

quences per minute which was 150 times faster than
with OBITools. Once trained, the application of CNN
to new eDNA metabarcoding data can be automated,
which promises fast and easy deployment on the cloud
for future eDNA analyses.

2 Introduction

Ecosystem governance and management require in-
creasing the speed, accuracy and ease at which we
can collect and process biodiversity data (Dornelas et
al. 2019, Makiola et al. 2020), shifting the focus
from expert monitoring towards high throughput data
acquisition technology (Cordier et al. 2019). Con-
ventional biodiversity monitoring approaches rely on
the morphological identification of a limited number
of taxa. Yet these visual surveys are labor inten-
sive and require taxonomic expertise resulting in long
delays between sampling and results (McGee et al.
2019). They miss many species that are either small,
rare, cryptic or elusive (Iknayan et al. 2014) which
leads to false negatives impacting ecological interpre-
tations. Fortunately, our ability to rapidly generate
inventories of whole species communities is growing
with the emergence of environmental genomics, and
specifically environmental DNA (eDNA, Bohmann et
al. 2014, Thomsen and Willerslev 2015, Deiner et al.
2017, Cordier et al. 2020). All organisms living in
an ecosystem shed tissue material, which can be de-
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tected by environmental DNA metabarcoding (Taber-
let et al. 2012), offering an integrative view of ecosys-
tem composition (Ficetola et al. 2008, Deiner et al.
2017). Coupled with high-throughput DNA sequencing
methods, eDNA ’metabarcoding’ can serve the rapid
assessment and monitoring of biodiversity across all
levels of life (from prokaryotes to eukaryotes) (e.g.
Holman et al. 2021), with higher detection capacity
and cost-effectiveness than traditional methods (e.g.
Polanco Fernandez et al., 2021). The reads from high-
throughput amplicon sequencing of eDNA are com-
pared with reference barcode libraries allowing the es-
tablishment of taxonomic compositions directly from
environment samples (Taberlet et al. 2012). Moreover,
the resulting taxonomic lists can be linked with sec-
ondary information about taxa functional traits or phy-
logenetic position (Polanco Fernandez et al. 2021) and
can be used to assess ecosystem functioning and health
status (Cordier et al. 2020). While an increasing num-
ber of initiatives propose to use eDNA metabarcoding
routinely and globally to monitor ecosystems (Berry et
al. 2020), this would represent massive sequencing data
which will require novel fast, accurate, and automated
bioinformatic solutions.

As the laboratory molecular steps of eDNA metabar-
coding have gained in efficiency (Shokralla et al. 2012,
Thomsen and Willerslev 2015), the major bottleneck
and technical challenge shifted from the development
of efficient laboratory protocols to the processing of
large metabarcoding data sets sequenced from eDNA
into taxonomic lists (Dufresne et al. 2019). In par-
ticular, eDNA metabarcoding amplifies small DNA se-
quences (’barcodes’) typically of 80-300bp from the mi-
tochondrial genome, from Illumina sequencing technol-
ogy (Singer et al. 2019). This sequencing generates
a huge quantity of small sequence reads that require
fast and accurate bioinformatics processing to be inter-
preted (Ficetola et al. 2015, 2016). This bioinformatic
processing includes several steps (the merging of the
forward and reverse reads, demultiplexing, dereplicat-
ing, filtering by quality, removing errors) after which
the clean sequences are assigned to a taxonomic label
(Pagni et al. 2013, Dufresne et al. 2019, Marques et
al. 2020a). Taxonomic assignment then transforms se-
quence reads from eDNA into lists of taxa that can be
used by experts and policymakers for management de-
cisions (Sepulveda et al. 2020) based on the detection
of rare (Boussarie et al. 2018, Rojahn et al. 2021), en-
dangered (Gold et al. 2020), or invasive species for ex-
ample (Sepulveda et al. 2020). Yet, efficient algorithms
transforming eDNA reads into accurate taxonomic lists
are needed, potentially allowing parallel automatiza-
tion on cloud infrastructure for a broad application of
eDNA technology (Sato et al. 2018).

Compared with traditional bioinformatic approaches
(Mathon et al. 2021), machine learning could increase
the efficiency and capacity of eDNA reads treatment
to assign taxonomic labels (Nugent et al. 2020). Ma-
chine learning has revolutionized object classifications

in various biological applications from species identifi-
cation on images (Grünig et al. 2021) to rare species
distribution in habitats (Deneu et al. 2021). Taxo-
nomic groups represent discrete classes that can be re-
lated to sequence features, including the composition
and distribution of nucleobases within DNA sequences
(Helaly et al. 2019, Busia et al. 2020). For example,
k-mer summarises the counts of nucleotides within sub-
sequences of length k and, in combination with machine
classifications, have served for labelling sequences from
bacteria, archaea, fungi and viruses (Piro et al. 2020).
The association between k-mer features and taxonomic
classification can be trained in a neural network from a
reference genetic database (Piro et al. 2020), to predict
the label of any new sequence. Alternatively, Convolu-
tional Neural Network (CNN) can self-learn a broader
range of spatially organised DNA base-motif features
existing in the DNA sequences (Helaly et al. 2019).
The neural structure subsets signal from restricted re-
gion of the input data known as the receptive field and
can react to localized patterns in the sequence data.
The numeric encoding of the four DNA bases allows the
spatial placements of nucleotides to be interpreted by
the CNN. In particular, Busia et al. (2020) developed
a CNN, which trains a deep neural network to predict
database-derived taxonomic labels directly from query
sequences. Hence, preliminary use of machine learning
with DNA sequence data shows their potential for tax-
onomic classification (Busia et al. 2020, Kopp et al.
2020), but this method has been mainly used so far to
label longer amplicons (16S gene, up to 250bp, Busia
et al. 2020). How it can be adapted for the taxonomic
labelling of short sequence data from eDNA metabar-
coding remains to be evaluated.

The most computationally costly step in the processing
of eDNA metabarcoding is data cleaning (Mathon et al.
2021), and any computational gain from machine learn-
ing can only be reached if the CNN is robust to noisy
sequencing data. Raw sequencing data can contain
many errors including PCR substitutions or indel er-
rors (Schirmer et al., 2015, Schnell et al., 2015, Taberlet
et al., 2018). In existing eDNA bioinformatic pipelines
the classification of DNA reads into taxonomic labels is
applied after a long process of sequence processing and
cleaning (Mathon et al. 2021) where only high quality
reads are kept (Boyer et al. 2016). Thus data augmen-
tation by artificially introducing variation in sequences
within the reference database has been proposed to
build a more robust CNN (Busia et al. 2020) allowing
the processing of raw Illumina sequencing data. For
example, Busia et al. (2020) applied a data augmenta-
tion in the training phase by adding between 0.5 and
16% of mutations by switching DNA bases randomly.
While it was shown that moderate artificial noise ren-
ders the network more robust to potential sequencing
errors, setting an excessive value decreases the CNN
performance (Busia et al. 2020). In addition, a robust
CNN could be trained to tolerate the PCR tags and
the remaining primers as present in raw metabarcod-
ing data, but these aspects remain largely unexplored.
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A robust CNN could then be used to process and iden-
tify the sequences found within an entire metabarcod-
ing (fastq) file independently of assigning the identified
reads to each sample. If reliable, such a pipeline would
be a major addition to existing tools to process the
exponentially growing quantity of available metabar-
coding data in eDNA analyses.

Here we evaluated the training of a CNN on a ref-
erence database of genetic sequences and its ability to
rapidly and accurately process raw eDNA metabarcod-
ing data. More precisely, we aim to adapt CNNs to the
short sequences produced by eDNA metabarcoding and
test whether accuracy and speed of CNNs are compa-
rable to that of OBITools, a widely used bioinformatic
pipeline (Boyer et al. 2016). As a case study, we used
one of the largest standardized eDNA data set cur-
rently available for fishes corresponding to a multi-year
campaign effort to sample the tropical South American
rivers of French Guiana (Murienne et al. 2019). This
eDNA data set is associated with a quasi-exhaustive
reference database covering most of the known species
of the region for the ”teleo” region of the 12S rRNA
mitochondrial gene (Cilleros et al. 2019, Coutant et al.
2020). The freshwater ecosystems of French Guiana are
among the most species-diverse ecosystems for riverine
fishes globally (Albert & Reis 2011), and among the
least human impacted rivers on earth (Su et al. 2021).
A demonstration of a good performance in such diverse
ecosystems would provide a robust test for application
in other simpler ecosystems globally. Within this gen-
eral processing framework and using this case study, we
ask the following questions: (i) How does a CNN ap-
proach perform in the training of eDNA sequences clas-
sification for labels of the reference database; (ii) How
robust is the classification of a CNN applied directly
to the raw Illumina metabarcoding short sequences;
(iii) How do a classical metabarcoding pipeline and our
CNN approach compare with the pre-existing informa-
tion about biodiversity composition within two river
catchments with a long history of traditional sampling
effort? Accurate performance of the CNN across all
these steps would allow benchmarking the application
of machine learning for the processing of Illumina se-
quence data and would open a major bottleneck in bio-
diversity analyses.

3 Material and Methods

3.1 eDNA data collection and reference
database

As a test data set we used data collected in French
Guiana, a c. 80,000 square kilometers South Ameri-
can territory almost entirely covered by dense primary
forest (Supplementary Fig. 6). Equatorial climate as-
sociated with abundant rainfall created a dense hydro-
graphic network made of six major watersheds and sev-
eral coastal rivers that host a highly diverse fish fauna
with at least 368 strictly freshwater fish species (Le
Bail et al. 2012). eDNA field collections have been

initiated in 2014 and have continued until 2020. We
sampled over 200 sites (see Murienne et al. 2019 for
detail), where we filtered 30 liters of river water across
a flow filtration capsule using a peristaltic pump. For
the purpose of this study, we analyzed only the filters
collected in the Maroni and Oyapock rivers.

In each site we collected from one to ten filtration
capsules but in most sites two capsules were used (2x34
litres) using the protocol described in Cantera et al.
(2019) and Coutant et al. (2020). A peristaltic pump
(Vampire sampler, Burlke, Germany) and disposable
sterile tubing were used to pump the water through the
encapsulated filtering cartridges (VigiDNA 0.45 µM,
SPYGEN). The input part of the tube was held a few
centimeters below the surface in rapid hydromorpho-
logic units to allow a better homogenisation of DNA
in the water column. When filters began to clog, the
pump speed was decreased to avoid material damage.
To minimize DNA contamination, the operators re-
mained downstream from the filtration either on the
boat or on emerging rocks. After filtration, the cap-
sules were filled with a preservation buffer and stored
in the dark at room temperature for less than a month
before DNA extraction. The 12S rRNA ”teleo” gene
fragment (Valentini et al. 2016) was amplified by PCR
and sequenced on an Illumina platform generating an
average of 500,000 paired-end sequence reads per sam-
ple. The DNA extraction, amplification and sequenc-
ing protocol are described in Cantera et al. 2020.

We generated an eDNA reference database by com-
bining fish specimens caught using various fishing
gears. These data were complemented by fish collec-
tions carried out by environmental management agen-
cies (DGTM Guyane, Office de l’eau Guyane, Hydreco
laboratory), fish hobbyists (Guyane Wild Fish), and
Museum tissue collections (MHN Geneva). Although
rare for Guianese fishes, existing sequence data from
online databases (Genbank, Mitofish) were also in-
cluded. We extracted and sequenced the 12S riboso-
mal gene on the species collected. Our local reference
database has improved over the years (Cilleros et al.
2019, Cantera et al. 2019) and now covers over 368
species out of 380 estimated in the region, so an almost
full coverage which remains exceptional regarding the
main gaps globally (Marques et al. 2020b).

3.2 OBITools bioinformatic pipeline

As a standard processing pipeline we selected
OBITools (http://metabarcoding.org/obitools, Boyer
et al., 2016) which is commonly used in many eDNA
metabarcoding studies (Bylemans et al. 2018, Li et
al. 2021, West et al. 2021). Reads from the sequenc-
ing were processed following Valentini et al. (2016).
In short, the forward and reverse reads were assem-
bled using illuminapairedend with a minimum score
of 40 and retrieving only joined sequences. The reads
were then assigned to each sample using ngsfilter. A
separate data set was then created for each eDNA sam-
ple by splitting the original data set into several files
using obisplit. After this step, each sample was ana-
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lyzed individually before generating the taxonomic list.
Strictly identical sequences were clustered together us-
ing obiuniq. Sequences shorter than 20 bp were ex-
cluded using obigrep. Then we ran obiclean within
each PCR product for clustering. We discarded all se-
quences labelled as ‘internal’ corresponding most likely
to PCR substitutions and indel errors. Taxonomic as-
signment of the remaining sequences was performed us-
ing ecotag with the custom genetic reference database
relevant for the eDNA samples. Finally we applied an
empirical threshold to account for tag-jumps and spu-
rious errors.

3.3 Reference data augmentation and
training data set

The reference database has a full species coverage
but the number of DNA replicate sequences for each
species is limited as there are only 683 sequences for
368 species. This makes training a CNN challenging
for several reasons. The number of sequences per
species is not balanced, there are not enough sequences
to capture the entire inter- and intraspecific variation,
and the noise from the sequencing process is not
accounted for. To balance the data set using data
augmentation procedures we over-sampled the under-
represented species before training. To increase the
sequence variation, we implemented an inline sequence
mutation step similar to Busia et al. (2020). During
each training epoch all sequences were randomly
mutated. We added between zero and two random
insertions and deletions each as well as noise in the
form of a 5% mutation rate. This procedure further
reduces overfitting as no training sample is likely to
be repeated twice. For the evaluations, we either
added no augmentation or 2% noise and singular
insertions and deletions as we expected the PCR
amplification and sequencing to be better than the 5%
noise considered during the training.

For the direct application on the raw reads, an-
other data transformation was required. All sequences
processed in an Illumina machine retain the selected
primers and were tagged with 8bp long tags. During
the sequencing two bases from the plate attachment
sequence were often read as well. We therefore pre-
and appended the forward and reverse primers, and
the combined tags and attachment bps to the sequences
from the reference database. Specifically we added 10
bp of unknown bases to each reference sequence, rep-
resented by the IUPAC ’N’ code. This shifted the se-
quences to a position in the training input similar to
where they would occur in the Illumina data. While
there is a canonical read direction for DNA the read
directions during the sequencing randomly occurs in
either directions. Therefore we added the reverse com-
plement of all sequences to the final data set. As the
last step we truncated all sequences to 150bp for the
read length as fixed by the field metabarcoding data.

3.4 CNN training and evaluation using
split sampling

We investigate the performance of a Convolutional
Neural Network (CNN) approach trained on the ref-
erence database at the species level. To encode DNA
sequence information, each canonical base (A, C, T,
G) and IUPAC ambiguity codes are translated to an
appropriate four-dimensional probability distribution
over the four canonical bases (A, T, C, G) including
uncertain base reads (e.g. W and S). For example ’A’
becomes [1,0,0,0] or ’W’ equals [0.5, 0, 0, 0.5]. The
neural network was designed and optimized through
a series of tests that allow for the optimal set of cor-
rect DNA features to be selected. In particular, we
explored an exhaustive number of model sizes, includ-
ing one to three layers of 2d (depth-wise) separable
convolutions with 4-16 filters each, one to three fully-
connected layers with varying numbers of neurons each,
and a softmax activated output layer which produces a
probability distribution over all possible taxonomic la-
bels. We applied dropout regularization and used leaky
rectified-linear activation for all but the last layers.

We used TensorFlow (Abadi et al., 2015) to train
the CNNs with all the aforementioned data augmen-
tations. Due to the sparse dataset, we characterized
and evaluated the performance of the neural networks
by using three different methods. First, we applied a
cross-validation with random split-sampling from the
reference database. This establishes a proper sepa-
ration between the training and validation data, but
less than half the species in the reference dataset have
two or more sequences resulting in a reduced range
of species to be included. Here only 156 out of 368
possess more than two unique sequences are were con-
sidered for the split dataset. Next, we trained sev-
eral networks on the full reference data set with all
368 species and validated them on the original non-
augmented reference data. Finally, we derived more
synthetic data from the reference sequences similar to
the training augmentations and evaluated them with
the chosen network. We evaluated whether there are
systematic errors in the CNN performance. We further
investigated whether a binarisation threshold, where
we require a probability of the most likely prediction
to be above a certain value, can improve the classi-
fication performance. As we privilege the absence of
errors, i.e. less false positives, above the presence of
correct predictions we evaluated the effects of such a
binarisation threshold using the F-beta measure that
allows for a weighted trade-off between these errors. As
such we chose a small beta of 0.3 to heavily discourage
false positives at the cost of discarding more correct
results.

3.5 CNN application on demultiplexed
and cleaned samples

We tested the best trained CNN on the curated eDNA
reads after the application of the main cleaning steps of
the OBITools pipeline. In particular, from the Illumina
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raw output, the forward and reverse reads were as-
sembled using the illuminapairedend algorithm from
the OBITools package, after which only high quality
reads were kept, and demultiplexed across the differ-
ent eDNA samples. We applied the best trained CNN
at the species level on these curated eDNA samples.
We compared the taxonomic assignments performed
by the CNN to classic assignments using ecotag from
OBITools. We evaluated and applied different thresh-
olds for accepting species detection as a way to remove
spurious errors and wrong assignments (0, 5, 10, 25, 50,
75 and 100 reads in at least one PCR replicate). For
each eDNA PCR replicate, filter, and for the whole
rivers we ranked the taxonomic groups by the number
of reads recovered by each method and performed a
Kendall rank correlation. We ran one rank correlation
per eDNA sample and reported the median rank cor-
relation across all samples. In addition, we compared
the presence-absence using the kappa statistic measur-
ing general agreement of the methods for each sample.
We reported the median percentage and median kappa
values across samples. Then, across all eDNA samples,
we correlated the species richness obtained via CNN
with that obtained with OBITools. Each analysis was
performed at three different scales: the PCR replicate,
the filtration capsule and the river. Finally, we ordi-
nated species composition of each filtration capsule for
both methods using a Principal Coordinate Analysis
(PCoA) to compare differences in recovered composi-
tions among methods.

3.6 CNN application on the raw illu-
mina sequences

We applied the best CNN directly on the raw out-
puts from the Illumina sequencing, where we omitted
all the preprocessing steps from OBITools. The CNN
was expected to learn how to ignore the primer as it
is constant for all presented sequences. Furthermore,
the output sequences from the Illumina sequencer were
fixed in length (150bp) so we fixed the input width of
the CNN to this size. We systematically zero-padded
or truncated the input sequences to this length during
training, evaluation, and application. After the train-
ing with the reference database and the application on
fastq, we developed a custom code for the fast demul-
tiplexing of the reads. By focusing on the tag informa-
tion in the first few positions of the sequence and not
considering read errors in tags, we reduced the demul-
tiplexing to a few simple look-ups in a hash table (cur-
rently 5), therefore reducing computational time with
limited information loss. As in the previous test, we ob-
tained a list of taxonomic assignment for each eDNA
sample, which can be compared to species composi-
tion obtained with the OBITools pipeline. We further
applied a threshold approach obtaining predicted com-
position per sample for any threshold tested. As done
previously, for each eDNA sample, we ranked the taxo-
nomic groups by the number of reads recovered by each
method and performed a rank correlation. We reported
the median rank correlations across all the eDNA sam-

ples. In addition, we compared the presence-absence at
the species level using the overall kappa statistic mea-
suring general agreement of the methods for each sam-
ple. We further evaluated whether differences between
methods were more frequent in specific taxonomic fam-
ilies than others. Then, across all eDNA samples, we
correlated the species richness obtained via CNN com-
pared to that obtained with OBITools, and ordinated
species composition of each filter for both methods on a
PCoA. We evaluated the change in accuracy between
the CNN applied to curated reads compared to raw
fastq files.

3.7 Validation with existing biodiver-
sity knowledge on the region

We finally compared the species composition recovered
in the eDNA samples by CNN and OBITools to the
species, genus and family check lists of each river catch-
ment. Species lists for each catchment were obtained
based on an updated version of the catchment scale
species lists provided in Le Bail et al. (2012). From
this list, we updated the taxonomy and added novel
occurrences of known species based on fish catches by
several research and management organizations (see
above). Only collected specimens with validated tax-
onomy were considered to update this list, and detec-
tions using eDNA were not considered. We specifically
quantified the number of matching species, false pres-
ences and false absences from each method, taking the
checklists as references.

4 Results

4.1 CNN training and evaluation with
split sampling

The exploration of CNN complexity showed that larger
networks did not necessarily produce better results, in-
dicating low overfitting and that a CNN of moderate
complexity could learn the full structure contained in
the reference data (Supplementary data set 1). The
training and evaluation of the CNN with split sampling
only considered 156 species (out of 368) which had
more than two unique sequences. The optimal CNN
consisted of one convolutional layer of 4 filters with a
7x4 extend, 3 dense layers with 128 neurons each, and
the 156 neurons wide output layer. On the training
data, the networks achieved 92% accuracy with little
differences between the networks trained on the clean
and the augmented (”raw”) sequences. When applying
the CNN to held out data (316 sequences from the 156
species), we found a 91% accuracy on the clean data
and 89% on the augmented data. Using an optimized
0.9 binarisation threshold with the F-beta metric, the
accuracy rose to 98% at the cost of discarding 16% to
26% of the data respectively. We then used the entire
data set in the training, including the 368 species, and
repeated the analyses for clean and augmented data.
The optimal model size was similar to the previously
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Figure 1: F-beta measure (orange) based on the pre-
dictions of the CNN on synthetic data after the train-
ing phase, for each binarization threshold value. Pro-
portion of data discarded (blue) for each binarization
threshold . The dashed vertical line indicates the
threshold of 0.9, providing the highest F-beta value
with minimum data discard.

chosen networks, with a single convolutional layer of
4 filters with a 4x7 extend, followed by 2 dense layers
each 384 neurons wide. With these networks, train-
ing accuracy was similar to that of internal evaluation,
with 92%. Validating the networks on the clean and
augmented reference data yielded higher accuracy at
96% and 94% respectively. With a binarisation thresh-
old of 0.9, the accuracy rose to 99% for both the clean
and augmented networks at the cost of rejecting 9%
to 13% of all sequences evaluated (Fig. 1). We use a
binarisation value of 0.9 for all further evaluations.

4.2 CNN application on the raw and
cleaned eDNA data set

The Kendall Tau-b correlation between the number of
reads in OBITools and the CNNs increased when a
more stringent threshold on the minimum number of
reads per species in one PCR replicate was applied and
stabilised with a threshold of 50 per species and mini-
mal threshold were considered (Fig. 2). We applied a
threshold of 50 reads per species within a PCR repli-
cate in the following analyses. At the PCR replicate
level, the correlation between the CNN applied on raw
reads and OBITools was significantly higher than the
correlation between the CNN applied on clean reads
and OBITools, but that relation was inverted at the
filter level. When applying the CNN on raw reads we
found a median kappa value of 0.93 across all eDNA fil-
ters (range 0.79-0.99), with a slight difference toward
more species predicted by the CNN (median species
number 63), than OBITools (median species number
56) (Fig. 3). We found a median Kendall Tau-b rank
of 0.77 across all the eDNA filters (range of Kendall
Tau-b values 0.22-0.94). When applying the CNN on
the clean reads after OBITools, we found a signifi-
cantly higher median correlation (Kendall Tau-b 0.84,

Figure 2: Kendall Tau-b correlation coefficient between
the outputs of the CNN and OBITools. Left side of the
violin plots (blue) represent correlation values between
OBITools and the CNN applied on raw reads. Right
side of the violin plots (red) represent correlation val-
ues between OBITools and the CNN applied on clean
reads. The x-axis represents the threshold of mini-
mum read number per species to be considered present.
Stars represent a significant difference between the cor-
relation from the CNN applied on raw reads or clean
reads. The analysis was made at three levels: PCR
replicates (top), filters (middle) and rivers (bottom).

range=0.2-1), and median kappa value (0.96, range
0.83-1.0). The PCoA also indicated a better match
of filter taxonomic composition between the CNN ap-
plied on clean data and the OBITools (Fig. 4) (A) than
from the CNN applied on raw data and OBITools (B).

4.3 Validation with known biodiversity
in the region

The data synthesis across historical fish surveys yielded
351 species in the Maroni and Oyapock combined,
among which 293 are present in the reference database
and thus potentially detectable with eDNA. We used
a threshold of 50 reads for a species to be considered
as present in both pipelines. For both rivers combined,
the CNN applied on raw reads assigned 319 species,
among which 264 are known from historical records,
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Figure 3: Kappa correlation coefficient between the
outputs of the CNN and OBITools. Left side of the
violin plots (blue) represent correlation values between
OBITools and the CNN applied on raw reads. Right
side of the violin plots (red) represent correlation val-
ues between OBITools and the CNN applied on clean
reads. The x-axis represents the threshold of mini-
mum read number per species to be considered present.
Stars represent a significant difference between the cor-
relation from the CNN applied on raw reads or clean
reads.

while 55 were never recorded (Fig. 5a). The CNN and
OBITools detected 274 species in common, while the
CNN retrieved 21 species known from historical surveys
in these rivers that were not retrieved with OBITools,
but identified 24 species not known from the synthe-
sis nor identified by OBITools. The species detected
only by the CNN belong mainly to the Loricariidae, Ci-
chlidae, Characidae and Callichthyidae families. The
23 species known from historical records and not de-
tected by either eDNA method belong mainly to the
Loricariidae, Characidae, Apteronotidae and Anosto-
midae families. The two species detected only with
OBItools are from Cichlidae and Aspredinidae families
(Fig. 5b). The CNN applied on clean reads detected
293 species, of which 254 are present in the Maroni
and Oyapock synthesis, 276 were common with the
outputs of OBITools, 9 were found only with CNN
and synthesis, and 8 were found only by the CNN.

Figure 4: Principal Coordinate Analysis (PCoA) on
species composition similarity between filters. A, or-
dination of filter species composition similarity in the
outputs of the CNN applied on raw reads (blue) and in
the outputs of OBITools (yellow). B, ordination of fil-
ter species composition similarity in the outputs of the
CNN applied on clean reads (red) and in the outputs of
OBITools (yellow). Similarity matrices were built with
Bray-Curtis distances on reads abundance per species
per filter.

In the case of OBITools, 282 species were detected,
among which 249 are known from historical synthe-
sis, while 33 were never recorded in the Maroni or Oy-
apock (Fig. 5c). The species detected only by the CNN
belong mainly to the Characidae family. The species
known from historical records not detected by either
eDNA method belong to the Loricariidae, Characidae
and Apteronotidae families. The two species detected
only with OBItools are from Loricariidae and Cichli-
dae families (Fig. 5d). The same analysis at the scale
of each river provided similar results(Supplementary
Fig. 7-8). Hence, while both methods detected species
not found in historical sampling, the CNN is recovering
generally more species than the OBITools, which could
correspond to both new true observations or commis-
sion errors. The CNN applied on raw reads retrieved a
higher number of species that were not recorded from
historical records nor found with OBITools. For the
Maroni, the CNN applied on raw reads and the CNN
applied on clean reads retrieved 232 species in com-
mon, while 48 were found only with the raw reads and
16 only with the clean reads. For the Oyapock, 185,
66 and 18 species were found in common only with the
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raw reads and only with the clean reads, respectively
(Supplementary Fig. 9).

4.4 Computation time

For the CNN, we have to distinguish two computa-
tional efforts, which can be measured independently.
First, training the networks needs to be performed once
per reference database, and second, the application on
field data. Training a network on the augmented and
complete reference database currently takes around 10
minutes on an Nvidia Titan RTX GPU. Training a net-
work on the clean reference database is faster and takes
6 minutes on the same GPU. The training and appli-
cation time is dependent on the size of the input data
and network size. Applying the network to field data
processes around 1 million input sequences per minute
compared to only 20’000 input sequences per minute
for OBITools. A large part of the computational time
for the OBITools pipeline is dedicated to the alignment
(up to 80%) and demultiplexing (up to 15%) steps.
By training and applying a convolutional neural net-
work directly on raw reads, we can sidestep this issue
completely and achieve significantly faster processing
times and lower power consumption at the expected
cost of a slightly lower accuracy in the results overall.

5 Discussion

An emerging technical issue with eDNA application for
biodiversity monitoring is that, as sequencing technol-
ogy becomes cheaper and more affordable, the quantity
of data to be processed induces a major computing bot-
tleneck. Our study demonstrates the application of a
Convolutional Neural Network (CNN) to process short
eDNA sequence reads directly from raw sequencing Il-
lumina outputs. In only a few minutes, the software
can transform a raw fastq sequence data set in a species
list associated with each eDNA sample collected in the
field. The processing time of the CNN contrasts with
standard bioinformatic pipelines, which can require sig-
nificant computing time to process the raw reads into
taxonomic lists (Mathon et al. 2021). We further
show that the CNN approach delivers species compo-
sition roughly comparable to OBITools, and historical
knowledge. While limitations remain in the first appli-
cation presented here, future developments are likely
to improve the speed and accuracy at which CNNs can
translate raw metabarcoding data into taxonomic lists.
As the coverage of the reference databases may im-
prove in a near future (Marques et al. 2020b), CNNs
could offer an efficient way to revisit stored metabar-
coding data and increase biodiversity knowledge on
previously sampled sites. Together, machine learning
offers new possibilities for the taxonomic assignment
of short DNA sequences and transform fast collected
eDNA data into interpretable taxonomic-based indica-
tors for the use of stakeholders ( Cordier et al. 2020,
DiBattista et al. 2020, Sepulveda et al. 2020).

The CNN offers fast and accurate processing of a

large number of sequences applied directly on the raw
reads from the Illumina outputs. In classical bioin-
formatic pipelines, the processing from raw sequence
reads to taxonomic identifications include seven steps
(paired-end reads merging, demultiplexing, derepli-
cation, quality filtering, removal and correction of
PCR/sequencing errors, and taxonomic assignment)
expected to be essential to generate high quality results
from metabarcoding studies, but which can be compu-
tationally demanding (Bonder et al. 2012, Calderón-
Sanou et al. 2020) and challenging to articulate (Mar-
quez et al. 2020a). We show that the CNN can
embed all these steps in a single process applied di-
rectly on the raw Illumina reads when the CNN is
trained to handle noisy data. Moreover, for relatively
short eDNA markers (e.g. 60bp for the ’teleo’ marker
as used here), merging paired-end reads is not neces-
sary, which leads to a significant computational gain
(Mathon et al. 2021). While offering results roughly
comparable to those of OBITools, the CNN decreases
the processing time of the whole dataset analysis by a
factor of around 150. In a recent comparison, Bar-
que (https://github.com/enormandeau/barque) com-
bined with a fast demultiplexing module, allowed to
proceed over 15Mio reads in 30 minutes, while it took
17 hours for OBITools V1 (Mathon et al. 2021). As-
suming the same rate of our CNN of 1 Mio read per
minute on this data set the application of the CNN
would remain two times faster than the fastest exist-
ing bioinformatic pipeline in a single model (Mathon et
al. 2021). Our study presents a first successful adap-
tion of CNN to the processing of eDNA metabarcoding
data, but we foresee several avenues of optimization to
gain speed and accuracy, making it a promising tool for
scaling-up biodiversity inventories via eDNA (Berry et
al. 2019, Ruppert et al. 2019).

The training of CNN allows an efficient adjustment
to the reference database, avoiding the need to explore
a large number of parameters and arbitrary thresh-
olds as in classical bioinformatic pipelines. Existing
bioinformatic pipelines contain a variety of modules
(i.e. QIIME2, DADA2, Vsearch), each with its own
set of parameters (Bolyen et al. 2019, Callahan et al.
2016, Rognes et al. 2016). Selecting the appropri-
ate modules and parameters requires advanced knowl-
edge of the functioning of the program since changes
in those parameters can considerably modify the out-
puts (Flynn et al. 2015, Bonder et al. 2012, Brown
et al. 2015). The absence of an appropriate and au-
tomated method for parameter optimization (Alberdi
et al. 2018) often challenges the use of those pipelines
by non-specialists. In contrast, the application of a
CNN only includes a first step of training, where the
optimisation of the network is near automated, and
two independent steps for applying the CNN and de-
multiplexing the reads to reach to final taxonomic out-
puts per sample. During the learning step of a CNN,
only three parameters have to be set by the user: the
network size (number of layers, filters and units), the
learning rate and the augmentation values. During the
application step, only two parameters have to be set
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Figure 5: Species detections with the CNN, OBITools and in historical records, in the Maroni and Oyapock
rivers combined. A, overlap of species detections between the CNN applied on raw reads (blue), OBITools
(yellow) and historical records (grey). B, number of species per family, detected with only one method (CNN
on raw reads, OBITools or historical records). C, overlap of species detections between the CNN applied on
clean reads (red), OBITools (yellow) and historical records (grey). D, number of species per family, detected
with only one method (CNN on clean reads, OBITools or historical records)

by the user, the binarization threshold and the min-
imum number of reads per sample to be considered.
We expect that those steps can be near automated
within a user-friendly software as developed in other
machine learning application (Thuiller et al. 2009).
Given the relative ease in the training and application
of CNN, it could be transformed into an application
with a user-friendly interface and only a minimum of
actions required from the user. Hence, CNNs could
make eDNA metabarcoding data processing accessible
even to less trained users. And they could, for exam-
ple, be combined with the minion sequencer to provide
an instantaneous view of the biodiversity.

A CNN trained on a complete reference database
produced species composition congruent with the out-
puts of a popular bioinformatic pipeline, but showed
a tendency to predict more species than those of
OBITools and historical records. Compositional dif-
ferences in the outputs of pipelines have already been
highlighted (e.g. Brandt et al. 2021) and mainly re-
sulted from the detection of several false positives and
false negatives (Mathon et al. 2021). With a bina-
rization threshold of 0.9 optimized during the training,

we found congruent but slightly diverging results be-
tween OBITools and the CNN when applied to both the
raw and clean reads. While the CNN and OBITools
shared most of their recovered species, each method
detected a few species not detected by the other (Fig.
5). However, the CNN showed a general tendency for
overprediction compared to OBITools and historical
records, especially when applying it directly on the raw
sequencing data. Using the historical records as a base-
line, the CNN on clean reads reduces the detection of
species only found with the CNN, without decreasing
the number of species shared with OBITools or his-
torical records, suggesting false positives result from
noisy inputs. Specifically, the CNN on raw reads de-
tected a higher number of species from Loricariidae,
Cichlidae and Characidae families that are not found
with OBITools, which can come from sequencing errors
that are not denoised by the CNN. In the case of the
Cichlidae family, the short barcode we use is known
to be poorly resolutive (Taberlet et al. 2018), with
a lot of species sharing the same sequence (Polanco
et al. submitted), and our CNN cannot perform well
in this situation like all other pipelines. Moreover,
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Loricaridae and Characidae are the two most speciose
families from the Guianese fish fauna, with more than
50 species per family (Le Bail et al. 2012), and with
several new species occurrences recorded each year in
Guianese rivers (e.g. Brosse et al. 2019). Those two
families, together with Cichlidae are also known to host
cryptic and still unnamed species, as shown by Papa et
al. (2020) for the Maroni. This could also contribute
to the unattended species detection. Finally, we found
that the correlation between OBITools and CNN was
lower at the level of the filter, than at the level of the
PCR replicates when applying the CNN on raw reads,
but higher at the filter level when applying the CNN
on clean reads. Hence, appropriately combining the
PCR replicates could confer more robustness to the fi-
nal outputs of the CNN. Refinement of the network
could be added, so that the detection across multiple
PCR replicates can be used to compute the final like-
lihood.

Our study proposes a first application of CNN to
eDNA metabarcoding data, but several improvements
are required before broad scale future applications to
eDNA big data. The current CNN is learning from
species class and is forced to assign the sequences
to that taxonomic level. Thus, when presented with
conflicting sequences, the network might assign all of
them to a single species, or may split the probabilities
across several species, which could be then discarded
given the use of the 0.9 binarisation threshold. In
contrast, in case of conflict, OBITools can assign
sequences to higher taxonomic levels, allowing to keep
information related to these species with identical
sequences. In this case study, we were in the ideal situ-
ation where the reference database is almost complete
for the territory and the CNN can be improved to be
able to handle incomplete reference database and be
able to assign the read to other taxonomic levels or to
an unknown class, rather that forcing a species-level
identification and relying on the binarisation threshold
to reject unknown sequences. We could also improve
the CNN by implementing more stringent filters that
would reduce the number of false detections and
prediction errors. For instance, some filters for tag
jump handling included in previous pipelines for eDNA
matabracoding for fish (e.g. Cilleros et al. 2019) are
not included here. The CNN we present in this study
is a first proof of concept for the application of machine
learning on eDNA metabarcoding data, but further
improvements are possible, especially in regards to
dealing with inconsistent reference databases, and
implementation as a user-friendly interface.

5.1 Conclusion and perspectives

We demonstrate that we can use machine learning to
increase the speed and decrease the energy consump-
tion for processing eDNA metabarcoding data with
good accuracy on clean reads and slightly lower accu-
racy on raw reads. The highest computation time for
the CNN is on the training phase, but once trained,

the CNN can be used as a computationally efficient
tool for the application in the cloud facilitating the
analyses of the mass of eDNA data collected in future
biodiversity surveys. eDNA data are now produced at
an exponentially increasing rate. By its easy applica-
tion due to the reduced number of processing steps and
the automated learning of best suited parameters, a
CNN approach contrasts with other widely-used bioin-
formatic pipelines. Our work paves the way towards
computationally efficient and user-friendly online pro-
cessing pipelines that will allow the democratisation
of bioinformatic analyses of eDNA samples. Our work
is a major complement to the recent development and
standardisation of eDNA in the laboratory, which to-
gether allow for extending the use of eDNA in commu-
nity ecology and biogeography even for poorly known
ecosystems or lineages (Juhel et al. 2020), and install
eDNA as a standard monitoring tool (Jarman et al.
2018). It also reinforces its initial goal of quick and ef-
ficient application. We expect that the results from this
study will be scaled up to become a major toolkit for
ecological analyses of eDNA data possibly associated
with a cloud infrastructure and parallel computation
on GPU.
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J. B., Borrero-Pérez, G. H., Cheutin, M. C., Eme,
D.,...& Pellissier, L. (2021). Comparing environmental
DNA metabarcoding and underwater visual census to
monitor tropical reef fishes. Environmental DNA, 3,
142-156.

Polanco Fernández, A., Martinezguerra, M.M., Mar-
ques, V., Francisco Villa-Navarro,Borrero-Pérez, G.
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Supplementary

Figure 6: Map of the sampling locations in French Guiana. Sampling sites located on the Maroni river (red),
on the Oyapock river (orange), and on other rivers (black).
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Figure 7: Species detections with the CNN, OBITools and in historical records, in the Maroni river. A, overlap
of species detections between the CNN applied on raw reads (blue), OBITools (yellow) and historical records
(grey). B, number of species per family, detected with only one method (CNN on raw reads, OBITools or
historical records). C, overlap of species detections between the CNN applied on clean reads (red), OBITools
(yellow) and historical records (grey). D, number of species per family, detected with only one method (CNN
on clean reads, OBITools or historical records).
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Figure 8: Species detections with the CNN, OBITools and in historical records, in the Oyapock river. A, overlap
of species detections between the CNN applied on raw reads (blue), OBITools (yellow) and historical records
(grey). B, number of species per family, detected with only one method (CNN on raw reads, OBITools or
historical records). C, overlap of species detections between the CNN applied on clean reads (red), OBITools
(yellow) and historical records (grey). D, number of species per family, detected with only one method (CNN
on clean reads, OBITools or historical records).
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Figure 9: Species detections with the CNN, OBITools and in historical records. Overlap of species detections
between the CNN applied on raw reads (blue), the CNN applied on clean reads (red), OBITools (yellow) and
historical records (grey). Left for the Maroni river. Right for the Oyapock river.
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