
Leveraging a founder population to identify novel rare-population 
genetic determinants of lipidome 

 
May E. Montasser1, Stella Aslibekyan2, Vinodh Srinivasasainagendra2, 

Hemant K. Tiwari2, Amit Patki2, Minoo Bagheri2,3, James Perry1, Kathleen 
A. Ryan1, Donna K. Arnett4, Amber L. Beitelshees1, Marguerite Ryan Irvin2, 

Jeffrey R O'connell1 
 
1 Division of Endocrinology, Diabetes and Nutrition and Program for Personalized and 
Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 
Baltimore, MD, USA 
 
2 Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, 
USA 
 
3 Department of Cardiovascular Medicine, Vanderbilt University Medical center, 
Nashville, TN, USA 
 
4 Department of Epidemiology, University of Kentucky, Lexington, KY, USA 
 
 
 
 
 
 
 
 
ABSTRACT 
 
Identifying the genetic determinants of inter-individual variation in lipid species (lipidome) may 
provide deeper understanding and new insight into the mechanistic effect of complex lipidomic 
pathways in CVD risk and progression beyond simple traditional lipids. Previous studies have 
been largely population based and thus only powered to discover associations with common 
genetic variants. Founder populations represent a powerful resource to accelerate discovery of 
novel biology associated with rare population alleles that have risen to higher frequency due to 
genetic drift. We performed a GWAS of 355 lipid species in 650 individuals from the Old Order 
Amish founder population including 127 lipid species not previously tested. We report for the 
first time the lipid species associated with two rare-population but Amish-enriched lipid variants: 
APOB_rs5742904 and APOC3_rs76353203. We also identified novel associations for 3 rare-
population Amish-enriched loci with several sphingolipids and with proposed potential 
functional/causal variant in each locus including GLPTD2_rs536055318, CERS5_rs771033566, 
and AKNA_rs531892793. We replicated 7 previously known common loci including novel 
associations with two sterols: androstenediol with UGT locus on chromosome 2 and estriol with 
SLC22A8/A24 locus on chromosome 11. Our results show the power of founder populations to 
discover novel biology due to genetic drift that can increase an allele found in only a few 
subjects in even large samples such as UKBiobank to dozens in even samples as small as 650. 
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INTRODUCTION 
 
Identifying the genetic determinants of inter-individual variation in molecular lipid species 
(lipidome) may provide deeper understanding beyond traditional lipids and may lead to new 
insight into the mechanistic effect of lipid variants and their role in CVD risk and progression1. 
Previous studies tested lipidome genetic determinants either as a small part of large metabolite 
studies or in a small number of candidate lipid species (full list of studies available in 
Hagenbeek2), with the exception of a published study that performed a focused lipidome 
genome-wide association scan (GWAS) for 141 lipid species in 2,181 Finnish individuals. Here, 
we performed a GWAS in 650 individuals from the Old Order Amish founder population (Supp 
Table 1) using an expanded number of 355 lipid species from 14 classes that included 127 not 
previously tested for genetic association (Supp Table 2). The population-based Genetics of 
Lipid Lowering Drugs and Diet Network (GOLDN) study3-6 was used for replication and fine 
mapping, and publicly available association results databases from several large biobanks were 
used to look up the top results (Supp Table 6). We identified five rare-population but Amish-
enriched loci, three of which are novel, and replicated 7 previously known common loci including 
two loci with novel trait associations. These results demonstrate the power of detailed lipidome 
profiling in a founder population to identify novel rare variants enriched through genetic drift to 
accelerate lipid loci discovery and significantly advance our understanding of the genetic role in 
lipid biology. 
 
RESULTS 
 
Additive and dominant heritability 
The narrow sense heritability, defined as the ratio of additive variance to phenotypic variance, 
was estimated for each lipid species and traditional lipid using a mixed model with pedigree 
kinship covariance matrix. We also tested if dominance variance contributes to lipidome genetic 
architecture by comparing the additive model to a model that included a dominance and additive 
effect using a likelihood ratio test. No lipid species or traditional lipid showed significant 
dominant variance after Bonferroni correction (data not shown), indicating that the lipidomic 
genetic architecture is primarily additive. 
 
The full list of heritability estimates of the 355 lipidome with and without adjustment for 4 Amish-
enriched large effect lipid variants (APOB_rs57429047, APOC3_rs763532038, 
B4GALT1_rs5515646839, TIMD4_rs89895600310) (4V) is provided in Supp Table 2. Figure 1a 
shows that the heritabilities range between 0 and 0.7, with significant decrease when adjusting 
for the 4V as they account for a significant proportion of the phenotypic variance. The (near-) 
zero estimates reflect potential lack of power or low variability of the lipid species. The 
histogram suggests a bi-modal distribution with second mode near 0.55 driven mainly by 
sphingolipids including ceramides (Cer), sphingomyelins (SM) and glycosphingolipids (GlcCer). 
Figure 1b shows heritability estimates for each lipidome class with and without 4V adjustment. 
Each class has non-zero median heritability, and most classes show considerable variability. 
The highest heritability was reported for GlcCer (0.35 – 0.69) while acylcarnitines (ACT) was the 
lowest (0.01 - 0.22). Consistent with previous reports11-13, we found sphingolipids to have higher 
heritability than glycerolipids. The contribution of the 4V varied across class. The classes with 
the biggest difference were cholesteryl ester (CE), Cer, GlcCer, SM and 
phosphatidylethanolamine (PE) primarily driven by the LDL-increasing APOB_rs5742904 
variant. Many classes showed little change in median or variation, including triacylglycerides 
(TAG), where the overall impact of APOC3_rs76353203 null variant on heritability was small. 
The difference between the two variants can be explained by their different impact on traditional 
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lipids: APOC3_rs76353203 accounts for ~3% of the TG variance (h2=0.398 vs 0.368 adjusted) 
whereas APOB_rs5742904 accounts for ~18% of LDL-C variance (h2=0.68 vs 0.5 adjusted).  
  
Genetic contribution of traditional lipids to lipidome 
To estimate the genetic contribution of previously identified traditional lipid GWAS variants to 
lipidome variance, a SNP genetic relationship matrix (SNP GRM) was constructed using the 
variants and included with the kinship matrix in the mixed model for joint variance estimation. 
The impact of SNP GRM on the heritability estimates in the joint model compared to baseline 
heritability with no SNP GRM is shown in Figure 2. In general, known lipid GWAS variants had a 
small contribution to the genetic variation which vary between classes and by lipid SNP GRM 
within class. The greater the contribution of the SNP GRM to lipidome class variance, the lower 
the residual heritability estimates. For example, between lipid SNP GRM variability is small 
within sterols but significant within Lysophosphatidylcholines (LPC) and within 
Lysophosphatidylethanolamines (LPE). HDL and TG associated variants almost explain no 
variance of SM while LDL and TC associated variants explain over 15% of SM, which agrees 
with the role of SM and cholesterol in the structure of plasma membranes. TG associated 
variants explain a larger proportion of TAG than other lipid associated variants, as expected. 
 
Genetic and phenotype correlation  
Pairwise genetic and phenotype correlation for 355 lipid species and 4 traditional lipids 
combined are shown in Supp Table 3 and Supp Figure 1 (heatmap). In general, genetic and 
phenotypic correlation were lower between classes than within classes. SMs, TAGs, and 
diglycerides (DAGs) exhibited the strongest within class correlation, and as expected the 
strongest between class correlation was found for TAGs with DAGs. While TAGs exhibited the 
strongest within class correlation, we found that the correlation between TAG pairs where both 
species have >= 54 carbons and >= 4 double bonds were significantly stronger and less 
variable (p< 2.2E-16) than correlation between pairs where one or both species have < 54 
carbons and < 4 double bonds (Supp Figure 2). The phenotypic correlations have both smaller 
median values and less variance than genetic correlations even with larger number of pairs due 
to phenotypic correlations having greater precision since there is no maximum likelihood 
estimation required. 
 
The correlation with traditional lipids were also generally limited, with the exception of TAGs and 
DAGs that had the strongest positive genetic correlations with traditional TG, and the strongest 
negative correlation with HDL. These results are in line with a previous finding11 and explain the 
limited contribution of traditional lipid genetics to the lipid species (Figure 1b). This limited 
overlap highlights the value that lipid species would contribute to understanding CVD risk 
factors beyond traditional lipids14. 
 
Lipidome contribution to traditional lipids 
The estimated proportion of each traditional lipid variance explained by kinship and each 
lipidome class are shown in Supp Figure 3. The lipidome class was included in the mixed model 
by constructing covariance matrix between the species in the class (see Methods). All classes 
explained a significant proportion of lipid variation with different magnitudes (Supp Table 4). For 
example, while PC was the most statistically significant class for HDL and LDL, it was the 2nd 
for TC and the 3rd for TG. Not surprisingly, the most significant class across all lipids is TAG 
with TG. The least significant class on average was acylcarnitines (ACT). 
We also performed a sequential analysis to determine which lipidome classes jointly with the 
kinship explain the greatest amount of variance of each traditional lipid. Supp Table 5 shows the 
decomposition with the class, remaining unexplained heritability, and residual error variance 
estimates. HDL maxed out at 3 classes, LDL and TC at 5 classes and TG at 4 classes. 
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Compared to the single class model in Supp Table 4 the magnitude and precision of the 
estimates in the multi-class models may differ due to potential correlation between classes. The 
heritability estimates in the multi-class are reduced to less than 0.16 as more of the additive 
variance is accounted for by additional lipidome classes. The decomposition differs by lipid. TG 
is primarily composed of TAG (34%) with DAG and PC, accounting for ~ 5%, while the 3 other 
lipids have at least two classes with high proportions. LDL has the lowest residual variance at 
20% indicating the phenotypic architecture of LDL may be more influenced by lipidome than 
other lipids. Overall, the variance component analyses show that lipidome classes contribute a 
significant portion of the variance of traditional lipids but there remains 10-15% heritability 
unexplained by lipidome, which again indicate the differences in genetic architecture. 
 
GWAS results 
We performed a GWAS for 355 lipid species with ~8 million genetic variants in 639 Amish 
individuals with both phenotype and genotype information. We identified 12 significantly 
associated signals (p <4.5E-10, using 5E-08/110, based on the first 110 principal components 
explaining >95% of the variance in the 355 lipid species), five were Amish-enriched rare-
population variants, three of which not been previously reported, and seven were common 
variants that were previously associated with lipid species (Table 1, Figures 3,4). 
The genetic architecture of the Amish is characterized by long runs of homozygosity as a result 
of founder effects15, so the Amish-enriched associated loci are usually long haplotypes with 
many variants with strong LD, making it difficult to statistically separate variants to identify the 
potential causal variant. All results with p < 5E-08 are listed in Supp Table 6. 
 
a. Rare-general population but Amish-enriched loci 
The most interesting finding among the five Amish-enriched loci is a rare population missense 
variant rs536055318 (A263T) (MAF=0.07 vs 0.001 in the general European population) in an 
active transcription start site (aTSS) within the promoter region of the glycolipid transfer protein 
domain containing 2 (GLTPD2) gene on chromosome 17 that was strongly associated with 
lower level of SM(d40:0) (p =1.1E-12) and suggestively associated with SM(d36:0, d38:0). To 
the best of our knowledge, these 3 SMs have never been previously interrogated for genetic 
association. Another independent African enriched variant (rs73339979) downstream of 
GLTPD2 was previously associated with lower total and LDL cholesterol16. Also, a Finnish-
enriched GLTPD2 intronic variant (rs79202680) was recently associated with lower level of 
several SMs and reduced atherosclerosis11. 
 
The second interesting rare-population but Amish-enriched finding (MAF=0.04 vs 0.01) was on 
a 5Mb long haplotype on the short arm of chromosome 12 that was significantly and 
suggestively associated with lower levels of SM(d32:2) and SM(d30:1), respectively. Other 
independent variants in this region were previously associated with alanine, 1,5-anhydroglucitol 
(1,5-AG), and creatine, but not with any lipid species. One of the top variants is a splice donor 
missense variant (rs771033566, Val344Leu, p = 2.2E-14) in the ceramide synthase 5 (CERS5) 
gene and classified as disease causing by mutation taser. Another common coding variant in 
this gene was previously associated with increased systolic/diastolic blood pressure and 
hypertension17, 18. The sphingolipid metabolic pathway has been previously linked to blood 
pressure regulation and response to thiazide diuretics19-21, suggesting that CERS5 may affect 
blood pressure level through alteration of sphingolipids. 
 
Another Amish-enriched 8Mb long haplotype (MAF=0.04 vs 0.01 for the top variant) on the long 
arm of chromosome 9 was strongly associated with lower levels of all tested glucosylceramide 
species (GlcCer(d38:1), (d40:1), (d41:1), (d42:1), (d42:2)) except the one with the shortest acyl 
chain (GlcCer(d34:1)), which reflect the strong phenotypic correlation between the first 5 (r= 0.6 
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– 1.0) compared to their much lower correlation with GlcCer(d34:1) (r <0.2). Other independent 
variants in this region were previously associated with total cholesterol22, urate, p-
acetamidophenylglucuronide, and lysoPC.a.C28.02. Based on the pattern of the association 
results (Figure 4b), we expect the functional variant to be one of the top 27 variants with p-
values < 8.5E-16 and r2 > 0.75 with the top variant (Supp Table 7). These 27 variants are 
located within 9 genes (LINC00474, ATP6V1G1, C9orf91, LOC100505478, DFNB31, 
LOC101928775, DEC1, AKNA, and COL27A1), none of which are obvious candidate genes. 
Formal fine mapping analysis using PAINTOR23 with different parameters and functional 
information consistently identified the top associated variant (rs7863920, p=6.2E-18) to have the 
highest posterior probability of causality at 0.87. Functional annotation highlighted one intronic 
variant (rs531892793, p=3.9E-17) as a strong potentially functional variant. This variant is highly 
enriched in the Amish (MAF=0.04 vs 0.0001) and located in a promoter flanking region in the 
AT-hook transcription factor (AKNA) gene and has the top ENCODE DNase score of 1000 
indicating very strong evidence of a DNase hypersensitivity site24, an eigenPC score of 3.5 
indicating a strong functional prediction based on conservation and allele frequency25, and 
predicted to affect transcriptional factor binding with a 2a RegulomeDB classification26. The 
variant is located in a weak transcription site in the islet and skeletal muscle, in a genic 
enhancer region in liver tissue, and in an active enhancer region in adipose tissue27.  
 
We also have two well established Amish-enriched variants that we previously reported their 
strong association with traditional lipids, but have never been interrogated for association with 
lipid species. The first is the missense variant R19X (rs76353203) in the APOC3 gene that we 
first reported its association with lower TG, higher HDL, and cardioprotection8. In this analysis, 
we also report for the first time the significant association of this variant with lower levels of 3 
phosphatidylethanolamines (PE(36:2), (38:6), (34:2)) and the suggestive association with lower 
level of another PE, one di- and 3 triglyceride species. The second is the well-established 
Amish-enriched familial hypercholesterolemia (FH) causing variant R3527Q (rs5742904) in the 
APOB gene that was previously linked to LDL and TC by our group and others7, 28. As expected, 
this variant was significantly associated with increased levels of several cholesterol esters, 
sphingolipids and phospholipids while there was no association with acylcarnitine, fatty acids, 
sterols, and glycerolipids.  
 
b. Common known loci 
We also replicated 7 previously well-known lipid signals including UGT1A/3/10 genes on 
chromosome 2, ELOVL2 gene on chromosome 6, SLC22A8/A24genes and FADS genes on 
chromosome 11, LIPC region on chromosome 15, and 2 independent signals in the SPTLC3 
region on chromosome 20. 
 
A ~500kb haplotype at the end of chromosome 2 in a region with a cluster of several uridine 
diphosphate glucuronosyltransferase (UGT) genes was strongly associated with higher levels of 
androstenediol. UGT transforms small lipophilic molecules, such as steroids, bilirubin, 
hormones, and drugs, into water-soluble, excretable metabolites. Our top variant (rs887829) 
was previously associated with lower LDL22 and higher bilirubin29, however the association with 
androstenediol is novel.  
 
We also identified a novel strong association for a 300Kb haplotype on chromosome 11 with 
increased estriol level. The top associated variant (rs184061227, p=1.0E-15) located in a 
previously known region encompassing SLC22A8/A24, which are expressed only in kidney. 
This region was previously associated with etiocholanolone glucuronide (ETIO-G), which is an 
endogenous, naturally occurring metabolite of testosterone30. 
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The nearby FADS region on chromosome 11 was the most significant (p=6.3E-36) and 
associated with 29 different lipid species including many phosphatidylcholines and cholesterol 
esters consistent with previous reports2, 11. 
 
We also replicated 2 additional known common loci. The first within the fatty acid elongase 2 
(ELOVL2) gene on chromosome 6 was associated with PC(42:5) consistent with the previous 
association of the same variant with DHA_DPAN3 (docosahexaenoic acid, or DHA(22:5)), and 
(docosapentaenoic acid (DPA)(22:6) omega3)2. The second was the well-known lipid loci lipase 
C, hepatic type (LIPC) gene region on chromosome 15, associated with several 
phosphatidylethanolamines (PEs), similar to previous reports2, 11 
 
Finally, we replicated two overlapping but independent signals on chromosome 20 within the 
serine palmitoyltransferase long chain base subunit 3 (SPTLC3) gene that encodes a subunit of 
the SPTLC complex which catalyzes the rate-limiting step in sphingolipid biosynthesis. 
Consistent with previous reports2, 11, both signals were associated with several ceramides and 
sphingomyelins, the first signal is very common (MAF=0.47) and associated with decreased 
levels, while the second was less common (MAF=0.07) and associated with increased levels of 
lipid species. 
 
Replication/fine mapping in GOLDN 
Replicating Amish-enriched rare population loci can be a challenge due to the rarity or absence 
of variants in outbred populations. However, outbred populations can provide evidence of 
exclusion even when only a few copies are present as the LD between the causal and non-
causal variants that confounds the Amish signal is absent or reduced. If the causal variant is 
present, it will generally show strong validation with few copies depending on effect size, but 
non-causal variants will not replicate even if expected replication power is extremely high. The 
familial hypercholesterolemia causing APOB variant rs5742904_R3527Q7, 28 which is enriched 
in the Amish provides an extreme example. The variant increases LDL by ~50 mg/dl and has a 
p-value=7.8E-25 in our 639 Amish, and through LD generates genome-wide significant signals 
at 441 surrounding variants in a 10MB region. Those associations disappear when the Amish 
LD is accounted for in a conditional analysis with rs5742904 (Supp Table 7). When the 441 
variants are tested in GOLDN, which does not have rs5742904, they are non-significant, 
providing confidence they are non-causal. We also performed the same analysis with the 
APOC3 TG lowering causal variant rs76353203_R19X on chromosome 11, which is also absent 
in GOLDN, and all R19X LD-driven significant Amish variants were not significant in GOLDN. 
These two examples support applying this approach to the other 3 Amish-enriched loci that we 
identified, where the causal variant is unknown and most likely not in GOLDN.  Power 
calculations using the observed Amish effect size (or half to adjust for winner’s curse) can 
quantify exclusion thresholds for given variants found in outbred samples. The fine-mapping 
approach provides a reduced set of potential variants for future follow up.  
 
For common variants, look up in GOLDN provides direct replication. The basic demographic 
and clinical characteristics of the GOLDN replication cohort are presented in Supp Table 1. All 
GOLDN association results for our top results are listed in Supp Table 6. We had two novel trait 
associations for androstenediol and estriol. These two sterol lipids did not replicate in GOLDN, 
however, these two variants had p-values of 1.9E-04 and 2.9E-04 with PC (36.4) A, and PC 
(38.4), respectively. The other five known significant common loci in the Amish had p-values 
between 7.5E-03 and 1.4E-35 in GOLDN. 
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Full data for the 5 Amish-enriched loci with the GOLDN results are shown in Supp Table 7. The 
table and the locus zoom plots in Figure 4 show that each of these 5 loci is a long haplotype 
ranging from 4 Mb to 10 Mb. 
 
The GLTPD2 locus on chromosome 17 has 13 variants with P < 5.0E-08 (3 significant), 12 of 
which were not significant in GOLDN, despite all being common (MAF >0.07) and some with 
more carriers than Amish (MAC 110-389), while the missense top variant rs536055318 was 
absent. More importantly this top variant was the only one out of the 13 variants that was 
suggestively associated with lower level of TG in UKBB (p =6.9E-08), further supporting our 
hypothesis that it is the most probable functional variant in this region, pending experimental 
validation. 
 
The chromosome 12 locus haplotype extends ~5Mb with 38 significant variants, 15 of which 
have similar p-values ~E-14 due to the strong LD. The top variant was among 30 variants that 
did not replicate in GOLDN and hence can be excluded as potential functional/causal variants 
(in particular 18 variants with MAF >0.015 and power between 0.79 and 0.99 for significant 
replication). The splice donor missense variant (rs771033566, p=2.2E-14, Val344Leu) in the 
ceramide synthase 5 (CERS5) gene which is our best candidate for causal variant is absent in 
GOLDN. 
 
The chromosome 9 locus is an 8 Mb long haplotype with 202 significant variants, 27 of which 
were prioritized based on p-value and LD with the top variant. Only 4 of these 27 variants were 
present in GOLDN and none was significant including the top variant. Our best candidate causal 
variant AKNA_rs531892793 based on functional annotation was absent in GOLDN. 
 
Suggestive associations 
The GWAS yielded 246 suggestive associations (4.5E-10<p<5E-08) within 31 loci, 30 of which 
were previously reported. Among the top suggestive results, we identified an association 
between ACT(10.0) (p=3.5E-08) and common variants in the ACADM gene which encodes the 
medium-chain specific acyl-Coenzyme A dehydrogenase that plays a role in the fatty acid beta-
oxidation pathway and was previously associated with several carnitines (Supp Table 6). We 
also identified an association (p=1.3E-08) between GlcCer(d40.1) and common variants in the 
ATPase phospholipid transporting 10D (ATP10D) gene. Another independent signal in ATP10D 
was previously associated with several glycosphingolipids31. These 2 signals were also 
replicated in GOLDN (p=8.4E-07 and p=2.1E-05, respectively). These results provide added 
confidence that other signals in our suggestive interval may be true associations but require 
larger sample size to achieve significance. The only locus that may be considered novel, if 
replicated, was an association between Cer(d42.2)B and a rare variant (rs79384120, MAF 
=0.018, p = 8.3E-09) in the synuclein alpha interacting protein (SNCAIP) gene, that is linked 
with Parkinson’s disease32, 33, but no known link in this locus to any lipid trait. Ceramides play a 
role in the physiology and pathophysiology of the central nervous system34, this role may be 
genetically determined, at least partially, by SNCAIP. This variant did not replicate in GOLDN, 
indicating that it is either a false positive or the functional variant is another linked variant. 
 
Lookup of previously identified loci in our results 
While there are many published GWAS for metabolomics, Tabassum11 is the only published 
large GWAS that focused on lipidomics and has the most overlap with our study. Thus, we 
report our results for their top associated variant in Supp Table 8. In their Supp Data 2, 
Tabassum et. al.11 reported 3754 lipidomic-variant pair associations with p<5.0x10-8 comprising 
820 variants and 80 lipid species. For 702 variants present in our data, the top associated traits 
had p-values ranging from 0.051 to 6.3E-36, of which 219 (31%) met the Bonferroni replication 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445208doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445208
http://creativecommons.org/licenses/by-nc-nd/4.0/


significance threshold (0.05/702 =7.1E-05). We also report our association results for the same 
trait and variant for 1476 trait-variant pairs, of which 359 (24%) have p-value less than the 
Bonferroni replication threshold of 3.3E-05, and 1082 (73%) with p<0.05. These Bonferroni 
thresholds are conservative as they do not account for the correlation between lipid species and 
the LD between variants. This high level of consistency with previously reported loci highlights 
the quality of our data and confirms the generalizability of findings in a founder population to 
outbred populations. 
 
Association testing using lipidome compared to traditional lipids 
To assess the power of the lipidome to identify genetic signals compared to traditional lipids we 
tested the association of 226 known lipid associated variants available in Amish with both 
lipidome and traditional lipids using the same 639 Amish subjects. As previously reported11, the 
lipidome showed higher power in identifying the association signals compared to traditional 
lipids where only APOB had stronger association with LDL using the same sample size (Supp 
Figure 4). Similarly, when we tested the association between 1602 variants with p < 5.0 E-08 in 
any lipid species with traditional lipids in the same sample size, we found strong signals only for 
APOB and APOC3 (Suppl Table 9) and only APOB had stronger association with LDL. 
 
 
DISCUSSION 
 
Here we report the GWAS results for 355 lipid species, the largest number tested in a single 
study to date.  
 
We identified three novel rare-population variants that are enriched in the Amish on 
chromosomes 9,12 and 17 that have not been previously associated with any lipid species or 
traditional lipids. Leveraging results from the GOLDN study we were able to finemap large 
numbers of variants present on long Amish-enriched haplotypes to identify a potentially 
functional variant in a biologically plausible gene for each of the three loci.  
 
The first is a missense variant in the promoter of the GLTPD2 gene that is mainly expressed in 
liver and kidney and plays a role in the intermembrane transfer of glycolipids but not neutral or 
phospholipid35, consistent with its association only with SM(d40:0) in this study. While 2 
independent studies previously pointed to this gene11, 16, neither identified variant had an 
obvious functional mechanism. The position of this rare missense variant rs536055318 (A263T) 
in an aTSS within the promoter region of GLTPD2 can alter its expression leading to lower 
levels of SM and reduced atherosclerosis11. Moreover, rs536055318 was recently associated 
with lower levels of TG in UKBB with a suggestive p-value of 6.9E-08. This finding is consistent 
with previously observed changes in cellular lipid metabolism as a result of up and down 
regulating GLT protein36. Several SM species were previously associated with CVD37-39. 
Collectively, these findings suggest GLTPD2 as a potential therapeutic target for CVD 
protection. Future Mendelian Randomization studies may help to disentangle the direction of 
causality. This strong association (p=1.1E-12) with a lower level of SM(d40:0) was identified 
using only 650 Amish subjects, while it required 461,140 UKBB subjects to find a suggestive 
association with TG.  
 
The second is a potentially disease-causing splice donor missense variant (rs771033566, 
Val344Leu) in the CERS5 gene, associated with lower SM(32:2). Another common coding 
variant in this gene was previously associated with increased systolic/diastolic blood pressure 
and hypertension17, 18. The sphingolipid metabolic pathway was previously linked to blood 
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pressure regulation and response to thiazide diuretics19-21, suggesting that CERS5 may affect 
blood pressure level and drug response through alteration of sphingolipids, which may have 
personalized medicine implications. CERS5 is one of the six members of the ceramide synthase 
gene family which plays a major role in the sphingolipid metabolic salvage pathway1, and while 
many variants in CERS4 have been previously associated with several SMs1, this is the first 
association of a SM species with a CERS5 variant. 
 
The third is an intronic variant (rs531892793) that was associated with lower levels of 5 
glucosylceramide species with acyl chains of 38 or more carbons, but not with the species with 
34 carbons. This result is consistent with a recent study that found significantly increased serum 
levels of only glucosylceramide species with acyl chains of 38 or more carbons among CAD 
cases compared to controls14, but not with 2 shorter carbon species. This variant has very 
strong regulatory function prediction and is located in the widely expressed AKNA gene that 
encodes AT-hook transcription factor. This transcription factor is essential for normal 
development and immune function, as indicated by the gene name that means ‘mother’ in Inuit 
and Mayan language40. AKNA knock out mice were weak, short lived and suffered from 
systemic inflamation41. Other common variants in AKNA were previously associated with TC, 
HDL, ApoA1, ALT, AST, and testesterone16, 42-44. Collectively these data support our hypothesis 
that AKNA_rs531892793 is the best potential functional gene and variant in this locus, however 
more work is needed to confirm this result. 
 
Two well-known rare-population lipid variants that are Amish-enriched and previously reported 
by our group are the FH variant APOB_R3527Q and the cardioprotective APOC3_R19X. Given 
the rarity of these variants in the general population they have never been interrogated for 
association with lipid species. While this is the first report for the associations of these variants 
with lipidomics as detailed herein, these associations are not unexpected based on the structure 
and function of associated traditional lipids. The association of the missense rare population 
variant APOC3_R19X with lower TG, higher HDL, and cardioprotection8 was first reported by us 
and was later replicated in other studies45-48 and led to the development of APOC3 antisense 
molecules that are currently in phase III clinical trials for the treatment of hypertriglyceridemia49, 

50. Similarly, the three novel variants reported here may lead to novel treatment and/or 
personalized medicine once there is a large enough general population study for replication and 
functional study to prove causation. Replicating the association of these 3 novel variants would 
require larger sample sizes with similar lipid species measured and whole genome sequence 
data, which currently does not exist but may soon be available through large consortia like 
TOPMed51. 
 
We also replicated 7 previously well-known lipid signals including UGT, ELOVL2, 
SLC22A8/A24, FADS, LIPC, and 2 independent signals in the SPTLC3 gene, among these 7, 
we have 2 cases of novel trait associations in UGT and SLC22A8/A24. First, in addition to 
previous associations of UGT_rs887829 with lower LDL22 and higher bilirubin29, we also found 
an association with higher androstenediol. This pleiotropic effect may explain the inverse 
association of bilirubin with LDL52 and CVD protection53, 54. However, androstenediol taken as a 
dietary supplement was associated with increased LDL and unfavorable CHD risk in men 
participating in a high-intensity resistance training program55, pointing to the potential difference 
between beneficial endogenous effects of a genetic variant that both decreases LDL and 
increases androstenediol compared to the potential deleterious opposite exogenous effects of 
androstenediol as a dietary supplement. Second, we found the SLC22A8/A24 locus that was 
previously associated with ETIO-G to be associated with higher estriol. Estriol is a weaker form 
of estrogen, and interestingly, in UKBB, this region was associated with cholecystitis without 
cholelithiasis (inflamed gallbladder without gallstones). This association may be the underlying 
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inflammatory first step in the process that leads to two-fold increase gallstone formation in 
women of reproductive age or on birth control medication that have estrogen compared to 
males56, and may be informative in personalized medicine. This association is independent of 
the nearby FADS gene region that has been associated with gallstones57 and assumed to work 
through its effect on lipids. However, given the lack of replication in GOLDN, further 
investigation is warrented. 
 
The phenotype and genotype correlation pattern as well as the heritability estimates in our study 
were generally in line with other general population studies. This study also replicated many of 
previously identified common variants which highlight the generalizability of the Amish results to 
the general population, besides its added value in identifying rare population variants enriched 
by drift. While traditional lipids explained a small proportion of the variance of the lipidome, and 
the lipidome explained a significant proportion of the genetic variance in traditional lipids, the 
overlap was incomplete leaving a significant proportion in both sides remained to be explained. 
This limited overlap highlights the difference in the genetic architecture and the complimentary 
value in using both traditional lipids and lipidome in understanding lipid genetic architecture. 
 
While this study may be limited by a relatively small sample size, we were still able to identify 3 
novel rare-population variants. Larger sample size in Amish and other founder population will 
undoubtedly identify more rare variants which would be challenging to identify in the general 
population and can inform biological mechanisms and therapeutic targets relevant to all 
humans. While this GWAS included 355 lipid species, the largest to date, we excluded lipid 
species with low quality data, so more complete profiling is warranted for comprehensive 
interrogation. 
 
In conclusion, we identified novel associations for 3 rare-population Amish-enriched loci with 
several sphingolipids and were able to suggest a potential functional/causal variant in each 
locus including GLPTD2_rs536055318, CERS5_rs771033566, and AKNA_rs531892793. We 
report for the first time the association of several lipid species with 2 well-known lipid rare 
variants: APOB_rs5742904 and APOC3_rs76353203. We also report novel association for 2 
sterols with well-known common loci: androstenediol with the UGT locus on chromosome 2 and 
estriol with the SLC22A8/A24 locus on chromosome 11. These results strongly demonstrate the 
combined power of detailed lipidome profiling and founder populations to identify novel variants 
enriched through genetic drift that due to their general larger effect size can accelerate lipid loci 
discovery to significantly advance our understanding of genetic contribution to lipid biology. 
 
 
MATERIALS AND METHODS   
 
Study populations 
The Old Order Amish (OOA) population of Lancaster County, PA immigrated to the Colonies 
from Central Europe in the early 1700’s. There are currently around 40,000 OOA individuals in 
the Lancaster area, nearly all of whom can trace their ancestry back about 15 generations to 
approximately 750 founders. Investigators at the University of Maryland Baltimore have been 
studying the genetic determinants of cardiometabolic health in this population since 1993. To 
date, over 7,000 Amish adults have participated in one or more of our studies as part of the 
Amish Complex Disease Research Program58. The samples used in this study were participants 
of Heredity and Phenotype Intervention (HAPI) Heart Study59. Briefly, HAPI was initiated in 2002 
to identify the genetic and environmental determinants of responses (blood pressure, 
triglyceride excursion and platelet aggregation) to four short-term interventions including a cold 
pressor stress test, a high salt diet, a high fat challenge, and an aspirin therapy in a four-week 
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time period. HAPI recruited 1,003 OOA, and the interventions were carried out in 868 relatively 
healthy OOA adults (>= 20 years of age). Participants were asked to discontinue the use of all 
medications, vitamins and supplements for at least 7 days prior to the first visit and during the 
interventions, to fast at least 12 hours prior to their visit, and to restrain themselves from doing 
excessive physical activity on the morning of their appointment. Baseline blood drawn from 650 
participants was used for the lipidomic profiling in this study. The study protocol was approved 
by the institutional review board at the University of Maryland. Informed consent was obtained 
from each of the study participants. 
 
GOLDN (Genetics of Lipid Lowering Drugs and Diet Network), the largest study of postprandial 
dyslipidemia that offers NMR, clinical lipid, and lipidomic measures, was initiated to assess the 
interaction of genetic factors with environmental interventions (intake of a high-fat meal and/or 
fenofibrate treatment)60. Briefly, the study recruited European American families with at least 
two siblings from two field centers (Minneapolis, MN and Salt Lake City, UT) of the Family Heart 
Study (FHS). Participants were excluded if they 1) had fasting triglycerides (TGs) ≥ 1500 mg/dL, 
2) had a history of kidney, liver, pancreas, or gallbladder disease, recent myocardial infarction or 
revascularization, or nutrient malabsorption, 3) reported a current use of insulin, and 4) were 
pregnant or lactating. Of the 1327 participants who were initially screened, 1048 (including 546 
women) met the eligibility criteria and were included in the study. A written consent form was 
provided for each participant and the protocol of the study was reviewed and approved by the 
institutional review boards at the University of Utah, University of Minnesota, and Tufts 
University/New England Medical Center.  
 
Lipidomic profiling 
The technical details of the laboratory protocols, methods, and execution of the lipodomics 
experiments is described in our previous paper5 and reproduced here for completeness. 
 
Baseline HAPI and GOLDN lipidomics data includes neutral lipids and phospholipids that were 
collected using UPLC–QTOFMS at the West Coast Metabolomics Center at University of 
California Davis. The protocol for this measurement was described in detail elsewhere61, 62. 
Briefly, the whole process was divided into three steps: lipid extraction and separation, data 
acquisition and lipid identification. Methyl tert-butyl ether (MTBE), methanol, and water were 
used to extract plasma lipids. The quality control (QC) samples were method blanks and pooled 
human plasma (BioreclamationIVT). The separated non-polar phase was injected into a Waters 
Acquity UPLC CSH C18 (100 mm length × 2.1 mm id; 1.7 μm particle size) with an additional 
Waters Acquity VanGuard CSH C18 pre-column (5 mm × 2.1 mm id; 1.7 μm particle size) 
maintained at 65°C was coupled to an Agilent 1290 Infinity UHPLC (Agilent Technologies) for 
ESI positive and negative modes. Mobile phase modifiers included ammonium formate and 
formic acid for positive mode and ammonium acetate (Sigma–Aldrich) for negative mode. The 
same mobile phase composition of (A) 60:40 v/v acetonitrile:water (LC-MS grade) and (B) 90:10 
v/v isopropanol:acetonitrile was used for both positive and negative modes. An Agilent 6550 
QTOF with a jet stream electrospray source was employed for acquiring full scan data in the 
mass range m/z 65–1700 in positive and negative modes with scan rate of 2 spectra/second. 
Instrument parameters were as follows for the ESI (+) mode – gas temperature 325 °C, gas flow 
8 l/min, nebulizer 35 psig, sheath gas temperature 350 °C, sheath gas flow 11, capillary voltage 
3500 V, nozzle voltage 1000 V, fragmentor voltage 120 V and skimmer 65 V. In negative ion 
mode, gas temperature 200°C, gas flow 14 l/min, fragmentor 175 V, with the other parameters 
identical to positive ion mode. Data are collected in centroid mode at a rate of 2 scans per 
second. Injection volume was 1.7 μL for the positive mode and 5 μL for the negative mode. The 
gradient started at 15% B, ramped to 30% at 2 min, 48% at 2.5 min, 82% at 11 min, 99% at 
11.5 min and kept at 99% B until 12 min before ramping down to 15% B at 12.1 min which was 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445208doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445208
http://creativecommons.org/licenses/by-nc-nd/4.0/


kept isocratic until 15 min to equilibrate the column. The total run time was 15 min and the flow 
rate was 0.6 ml/min. Data were acquired in nine batches and every ten samples, one quality 
control sample was analyzed. MS1 data were acquired for all samples, and MS/MS data were 
acquired for a set of pooled samples. Data were processed with the Agilent Quant 7.0 software. 
Lipids levels were reported as chromatographic peak heights and the data were normalized 
using the SERRF method63. After normalization, the relative standard deviation of quality control 
samples is 4.7% and 3.4% for negative and positive mode respectively. Lipid identification was 
performed by converting the acquired MS/MS spectra to the mascot generic format (MGF) and 
then a library search using the in-silico MS/MS library LipidBlast. After quality control, 355 lipid 
compounds were included in the HAPI lipidomic GWAS and 328 in the GOLDN replication 
study.  
 
HAPI chip genotyping and imputation  
Genomic DNA was extracted from whole blood from 1856 individuals of the OOA and 
quantitated using picogreen. Genome-wide genotyping was performed with Affymetrix 500K 
(n=1252, including all HAPI participants) and Affymetrix 6.0 (n=604) arrays at the University of 
Maryland Biopolymer Core Facility. The BRLMM algorithm was used for genotype calling. Prior 
to imputation, the two chips were merged into a single file. Samples with call rate <0.93, high 
level of Mendelian error, or gender mismatch were excluded. Variants with >2% missing data, 
Hardy-Weinberg expectation (HWE) p-value < 1E-10, Mendelian errors >1% or with MAF < 0.01 
(N=366,169) were excluded. We also excluded variants on the Y chromosome and 
mitochondrial genome, palindromic variants with frequency >0.4, and variants that were not in 
the TOPMed Freeze 5b reference panel. These QC procedures left 1833 participants and 
307,238 variants in the genotype file for imputation. The genotype data were uploaded to the 
Michigan Imputation Server64 where the pre-phasing was performed using Eagle v2.465, and 
then imputation to the TOPMed Freeze 5b reference panel was performed using Minimac448. 
Following imputation, we excluded variants with imputation quality/INFO <0.9, MAF <0.0001 or 
deviation from HWE at p<1.0E-09. These processes left 7,917,357 variants for the association 
analysis with 639 samples with both phenotypes and genotypes. 
 
Whole-genome sequencing for GOLDN 
Whole-genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 
program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 
“NHLBI TOPMed: Genetics of Lipid Lowering Drugs and Diet Network” (phs001359) was 
performed at the North West Genomics Center, University of Washington. Centralized read 
mapping and genotype calling, along with variant quality metrics and filtering were provided by 
the TOPMed Informatics Research Center. Data management, sample-identity QC, and general 
study coordination were provided by the TOPMed Data Coordinating Center. Library preparation 
and whole-genome sequencing were performed on 967 GOLDN samples by North West 
Genomics Center, University of Washington. The NHLBI Informatics Resource Core at the 
University of Michigan performed alignment, base calling, and sequence quality scoring and 
variant calling of all TOPMed samples using the GotCloud pipeline66. Variant calling used a 
support vector machine (SVM) trained using known variants. Variants passing all quality filters 
with read depth at least 10 were delivered in BCF format and used for association analysis. 
Further variant QC included removing all sites in low-complexity regions67, and on the X 
chromosome. There were 835 GOLDN samples with both lipidome and WGS data and used for 
the GWAS. 
 
Phenotype preparation 
In HAPI, to adjust for potential technical artifacts and non-normality of raw lipidomic values, 
each lipidomic was first regressed in a linear model adjusting for age, age squared, sex, and 
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experimental technical artifacts including batch, box, row, position and plate, then the regression 
residuals were inverse normalized. No adjustment for medication was included as none of the 
HAPI subjects were on lipid lowering medication. These transformed lipidomic values were used 
in all Amish analyses. The identical procedure was applied to lipid phenotypes, excluding 
technical artifacts from the linear regression, to standardize analyses combining both lipid and 
lipidome. 
In GOLDN the exact same lipid panel was completed and an inverse rank normal transformation 
was used on each lipid class phenotypes.   
 
Variance decomposition 
Mixed model variance component analysis was used to partition observed phenotypic variance 
s2

p into causal components s2
k and residual error s2

e, that is, s2
p = s2

1 + s2
2+…+ s2

n+ s2
e. The 

variance components s2
k correspond to random effects bk assumed to follow multivariate 

Gaussian distribution bk ~N(0,s2
k Sk), with mean zero, covariance matrix Sk. The matrix Sk 

contains pairwise covariance values between subjects and the variance components s2
k are 

estimated using mixed model maximum likelihood methods incorporating corresponding 
covariance matrices. For interpretability the estimated variances s2

k are converted to the 
proportion of phenotypic variance explained, called lk, by dividing by the phenotypic variance 
s2

p, that is, lk= s2
k/s2

p. Likelihood ratio test (LRT) p-values can be used to compare nested 
models of different random effects to determine if the model with more components provides 
significantly better fit of the data. The LRT is applied using standard sequential procedures to 
build the most parsimonious causal component decomposition of the phenotypic variance using 
a predefined p-value threshold of 0.05. At each step LRT p-values are computed comparing the 
current best model with that model plus one of the remaining random effects. The current model 
is then updated with the remaining random effect with the smallest p-value. The procedure is 
repeated until no LRT p-value is less than 0.05. 
 
Additive and dominant heritability 
The pedigree kinship coefficient measures the expected probability that two subjects share an 
allele identical by descent given the pedigree structure. An Amish kinship covariance matrix was 
constructed using a single 14-generation pedigree that connects all 650 subjects back to their 
18th century founders. The Amish population structure provides unique opportunities to separate 
genetic and environmental effects important in lipidome as many distant relative pairs, such as 
cousins, share genes from the same founder but not common environments such as diet and 
lifestyle. A dominance covariance matrix was also constructed using the pedigree structure that 
measures the probability that two subjects share a genotype identical by descent. 
 
Data-derived covariance matrices 
In multivariate statistics the sample covariance matrix can be constructed using any set of 
variables measured across subjects. First consider the design or data matrix X that contains 
measured variables such as lipidome on subjects that is used in regression to estimate the 
effect of the variables as fixed effects. To construct the covariance matrix the variables in X are 
first mean centered and normalized to remove potential scale differences between them. Then 
the subject-by-subject sample covariance matrix S is defined as S=XX’, where X’ is the 
transpose of X. We describe details of how covariance matrices were constructed using genetic 
markers, lipidomics and lipids. 
 
Lipidome variance explained by known lipid variants 
To measure the proportion of lipidomic and traditional lipid variance due to genetic markers 
associated with HDL, LDL, TC and TG lipid levels, genetic relatedness matrices (GRM) were 
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constructed using SNPs identified from the literature as being genome-wide significant for each 
lipid plus known Amish-specific variants (APOB_rs57429047, APOC3_rs763532038, 
B4GALT1_rs5515646839, TIMD4_rs89895600310) (4V). The number of literature SNPs used 
were 99 for HDL, 77 for LDL, 97 for TC, and 73 for TG.  APOB, B4GALT1 and TIMD4 variants 
were included in the LDL and TC GRMs and the APOC3 variant in the TG and HDL GRMs. 
SNP genotyping was available on the 639 subjects with lipidomics. To estimate the genetic 
contribution of GWAS SNPs associated with lipidomic and traditional lipids as phenotypes a 
mixed model analysis was performed including kinship and lipid SNP GRM as random effects. 
 
Genetic and phenotypic correlation  
The software biMM68 was used to calculate additive genetic correlations between 359 variables 
(355 lipidomics and 4 traditional lipids (HDL, LDL, TC, TG)) on data from 639 subjects using the 
Amish kinship matrix. BiMM returns bivariate mixed model maximum likelihood estimates of 
genetic and environmental correlation that includes estimates of heritability of each trait genetic 
correlation between them allowing for residual errors between traits. BiMM does not constrain 
genetic correlation estimates to be in the range [-1,1], thus out-of-range correlations, which were 
common when one or both traits have low heritability, were set to missing as estimates were not 
deemed reliable. There were 7428 with values <-1.0 and 9020 with values >1.0. Out-of-range 
estimates are represented by white squares in the heatmap, and only 64,621 correlation are 
included in Supp Table 3.  R69 was used to calculate the pairwise phenotypic Pearson 
correlations for lipidomics and traditional lipids. 
 
Traditional lipid variance explained by lipidome classes 
Covariance matrices were constructed for each of the 13 lipid classes (ACT, CE, Cer, DAG, FA, 
GlcCer, LPC, LPE, PC, PE, PI, SM, TAG) using mean centered and normalized raw lipidomic 
values from each class in the data matrix X. These covariance matrices were used in a mixed 
model with traditional lipid (HDL, LDL, TG and TC) as the trait and kinship and lipidomic class 
as random effects. We estimated the marginal contribution of each lipid class separately and 
also performed a sequential analysis as described above to determine the best multi-class 
model fit for each lipid which estimates the joint proportion of traditional lipid variance accounted 
for by the lipidomic class. 
 
Association analyses  
In HAPI, genetic association analysis of inverse normalized lipid species was performed using 
linear mixed models to account for familial correlation using the genetic relationship matrix 
(GRM)70. The effect size for all traits are reported in standard deviation units for comparability. 
Multiple testing adjusted significance threshold of 4.5E-10 was determined by dividing the 
standard GWAS level of 5E-08 by the number of principle components (110) that explained 
>95% of the variance in the 355 metabolomic variables. All associations between 5E-08 and 
4.5E-10 were considered suggestive. The number of independent signals at each locus was 
determined using sequential conditional analysis. The novel loci were determined by 
conditioning on preidentified variants within 1Mb from the top associated variant.   
 
In GOLDN we performed a parallel linear mixed model analysis on the transformed lipid 
phenotypes in Saige-0.39 pipeline deployed in Encore analytics framework (i.e. Fast linear 
mixed model with kinship adjustment (saige-qt)). Pre-derived top 10 PCs from TOPMed WGS 
cohort was adjusted as covariates along with age, sex and center.  
 
Bonferroni corrected p-value of 1.3E-05 was used for GOLDN replication accounting for 3631 
trait-variant pairs of GOLDN association results included in Supp Table 6 
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Annotation and biobank lookups 
Look ups of top results in publicly available PheWAS databases including UK Biobank71-74, 
FinnGen75 and BioBank Japan76 was performed using the “Omics Analysis, Search and 
Information System” (OASIS)77, a web-based application for mining and visualizing GWAS 
results via integration with a broad spectrum of available data bases for functional annotation 
such as dbSNP78, gnomAD79, GTEx80, Open Targets Genetics81, and the UCSC Genome 
Browser82 to visualize their proximity to functional regions (e.g. binding sites, Dnase 
hypersensitivity sites, enhancer/promoter regions). 
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FIGURES 
 
Fig 1: Heritability of the lipid species. a, Histogram showing the heritability distribution for all 
lipid species. b, box plot for the heritability by class. Heritabilities presented as unadjusted and 
adjusted for 4 Amish-enriched lipid variants (APOB_rs5742904, APOC3_rs76353203, 
B4GALT1_rs551564683, TIMD4_rs898956003). Abbreviations: ACT acylcarnitine, CE 
cholesteryl ester, Cer ceramide, DAG diglycerides, FA fatty acids, GlcCer glycosphingolipids, 
LPC lysophosphatidylcholines, LPE lysophosphatidylethanolamines, PC phosphatidylcholines, 
PE phosphatidylethanolamine, PI phosphatidylinositol, SM sphingomyelin, TAG triglycerides, ST 
sterols, TRAD traditional lipids. 
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Fig 2: Contribution of previously identified lipid GWAS variants to lpidomics variance. 
Heritabilty estimates using kinship separately and then jointly with a SNP GRM for each 
traditional lipid. Outliers are suppressed from the plot for readability. Abbreviations: ACT 
acylcarnitine, CE cholesteryl ester, Cer ceramide, DAG diglycerides, FA fatty acids, GlcCer 
glycosphingolipids, LPC lysophosphatidylcholines, LPE lysophosphatidylethanolamines, PC 
phosphatidylcholines, PE phosphatidylethanolamine, PI phosphatidylinositol, SM 
sphingomyelin, TAG triglycerides, ST sterols. 
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Fig3: Lipidomic association results. a, Manhattan plot for the association results of all 355 
lipid species. Amish-enriched loci denoted in red, previously known signals denoted in blue and 
previously known signals with novel trait association and/or novel variant in known loci in green. 
Blue line marks a genome-wide suggestive threshold (5.0E-08) and red line marks a genome-
wide significant threshold (4.5E-10). b, GWAS results for all significantly associated lipid 
species in Amish-enriched loci. c, GWAS results for all significantly associated lipid species 
in previously known loci. Abbreviations: CE cholesteryl ester, Cer ceramide, GlcCer 
glycosphingolipids, PC phosphatidylcholines, PE phosphatidylethanolamine, SM sphingomyelin. 
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Fig4: Rare-population but Amish-enriched loci. Locus zoom for 5 loci in a, chromosome 2 
with SM(d34:1) b, chromosome 9 with GlcCer(d42:2) c, chromosome 11 with PE(36:2) d, 
chromosome 12 with SM(d32:2) and e, chromosome 17 with SM(d40:0). Abbreviations: GlcCer 
glycosphingolipids, PE phosphatidylethanolamine, SM sphingomyelin. 
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Table 1: Genomic loci significantly associated with lipid species 
 

 
 
 
A1: Non-coded allele 
A2: Effect allele 
A2_freq: Effect allele frequency 
a: Effect size in standard deviation units 
Position: Variant position according to hg38 
In bold: novel locus, or novel trait in a known locus 
Cer: ceramide 
GlcCer: glycosphingolipids 
PC: phosphatidylcholines 
PE: phosphatidylethanolamine 
SM: sphingomyelin 
 
 
 
 
  

SNP position A1/A2 A2_Freq_Amish A2_Freq_Eur Top associated trait Effecta P value gene type effect P value

Rare-population Amish-enriched loci
rs5742904 2:21006288 C/T 0.0634 0.0004 SM(d34:1) 1.22 7.89E-25 APOB missense - -
rs7863920 9:115987317 G/A 0.0433 0.0169 GlcCer(d42:2) -1.14 6.22E-18 LINC00474 intergenic - -
rs76353203 11:116830637 C/T 0.0219 0.0008 PE(36:2) -1.45 6.29E-13 APOC3 nonsense - -
rs147698408 12:50001009 T/C 0.0447 0.0159 SM(d32:2) -1.06 1.79E-14 RACGAP1 intronic - -
rs536055318 17:4790207 G/A 0.0762 0.0014 SM(d40:0) -0.76 1.14E-12 GLTPD2 missense - -

Common known loci
rs887829 2:233759924 C/T 0.4194 0.3272 androstenediol 0.44 1.23E-15 UGT1A,3,10 intronic -0.02 7.25E-01
rs3778167 6:11033235 T/C 0.2771 0.4233 PC(42:5) -0.40 3.65E-10 ELOVL2 intronic -0.24 3.78E-06
rs174578 11:61838027 T/A 0.2515 0.3552 PC(37:4) -0.78 6.33E-36 FADS2 intronic -0.43 2.32E-14
rs184061227 11:63073643 A/G 0.0555 0.0714 estriol 0.98 1.05E-15 SLC22A24 intergenic -0.22 2.70E-02
rs10468017 15:58386313 C/T 0.2621 0.2869 PE(36:4) 0.48 7.32E-15 LIPC intergenic 0.28 2.76E-07
rs1321940 20:12979237 A/G 0.5239 0.6014 Cer(d43:1) -0.69 3.37E-32 LOC101929486 intergenic -0.45 2.95E-19
rs360525 20:13020644 G/A 0.0728 0.1240 Cer(d43:1) 0.86 5.34E-15 SPTLC3 intronic 0.19 7.58E-03

GOLDN results

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445208doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445208
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Tables (in Excel file) 
 
Supplementary Table 1: Demographic and clinical characteristics (mean (sd)) of the HAPI 
discovery cohort and the GOLDN replication cohort. 
 
Supplementary Table 2: Heritability estimates and genomic inflation factor of the 355 lipidomic 
species tested in the discovery GWAS.  
 
Supplementary Table 3: Pairwise phenotype (upper triangle) and genetic (lower triangle) 
correlation between lipid species and traditional lipids. Blank genetic correlations indicate the 
maximum likelihood estimates were outside valid correlation bounds. 
 
Supplementary Table 4: Single lipidome contribution to traditional lipids. 
Results from joint estimate of heritability and lipidomic class variance for each traditional lipid.  
 
Supplementary Table 5: Cumulative lipidome contribution to traditional lipids. 
Results from forward sequential variance component model was run starting with heritability, 
then at each step the LRT p-value of the current model vs. the current model with a remaining 
lipid class was computed. The lipid class with lowest p-value was then added to the current 
model. The process continued until the best LRT p-value > 0.95.  
 
Supplementary Table 6:  All GWAS results with p-value <5.0E-08 in the Amish and GOLDN 
replication association results. 
 
Supplementary Table 7: Results of the significant (p<4.5E-10) 5 Amish enriched loci in the top 
associated trait and GOLDN replication association results for the same trait and variant.  
 
Supplementary Table 8: Amish association results for Tabassum results 
 
Supplementary Table 9: Association results of the 1602 top lipidomic associated variants with 
four traditional lipids HDL, LDL, TC and TG.  
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Supplementary Figures 
 
Supplementary Figure 1: (in a separate pdf for readability) heatmap for pairwise phenotype 
(upper triangle) and genetic (lower triangle) correlation between lipid species and traditional 
lipids. White squares in the heatmap represent genetic correlation estimates outside the interval 
[-1,1] that were set to missing. Such estimates are due to one or both traits having low 
heritability, thus, reducing power to estimate genetic correlation robustly. 
 
 
Supplementary Figure 2: Box plot comparing genetic and phenotypic correlations of all 
triacyclglycerol (TAG) species stratified by number of species (0,1 or 2) in the correlation 
containing 54 or more carbons and 4 or more double bonds. N is the number of pairs in the 
group. 
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Supplementary Figure 3: Lipidome contribution to traditional lipids. The heritability (h2) and the 
proportion of lipid class variance (Lipidomic class) estimated from a variance component model 
including lipid class species as a random effect. The exact estimates are in Supplementary 
Table 4. Abbreviations: ACT acylcarnitine, CE cholesteryl ester, Cer ceramide, DAG 
diglycerides, FA fatty acid, GlcCer glycosphingolipid, LPC lysophosphatidylcholine, LPE 
lysophosphatidylethanolamine, PC phosphatidylcholine, PE phosphatidylethanolamine, PI 
phosphatidylinositol, SM sphingomyelin, TAG triglyceride. 
 
   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445208doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445208
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 4: The association of known lipid variants with lipid species (The top 
Manhattan plot ) and traditional lipids (the bottom Manhattan plot ) 
Both the number and statistical significance is greater in the lipidomic plot, showing the higher 
power of lipidomics compared to traditional lipids to identify genetic associations. Abbreviations: 
ACT acylcarnitine, CE cholesteryl ester, Cer ceramide, DG diglycerides, FA fatty acid, GlcCer 
glycosphingolipid, LPC lysophosphatidylcholine, LPE lysophosphatidylethanolamine, PC 
phosphatidylcholine, PE phosphatidylethanolamine, PI phosphatidylinositol, SM sphingomyelin, 
TAG triglyceride. 
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