1	Development and Application of Cas13a-based Diagnostic Assay for Neisseria
2	Gonorrhoeae Detection and Identification of Azithromycin Resistance
3	Hao Luo ^{1, #} , Wentao Chen ^{1, #} , Zhida Mai ¹ , Xiaomian Lin ¹ , Jianjiang Yang ¹ , Lihong Zeng ¹ ,
4	Yuying Pan ¹ , Qinghui Xie ² , Qingqing Xu ² , Xiaoxiao Li ³ , Yiwen Liao ¹ , Zhanqin Feng ¹ ,
5	Jiangli Ou ¹ , Xiaolin Qin ¹ , Heping Zheng ^{1, *}
6	Affiliations:
7	1. Dermatology Hospital, Southern Medical University, Guangzhou, China, 510091
8	2. Anhui Medical University, Hefei, China, 230022
9	3. Medical College of China Three Gorges University, Yichang, China, 443002
10	[#] Hao Luo and Wentao Chen contributed equally to this work. Author order was
11	determined by drawing straws.
12	* Corresponding authors: Heping Zheng, <u>zhhpf@hotmail.com</u>
13	Running title: SHERLOCK for Neisseria Gonorrhoeae molecular diagnosis
14	
15	Keywords:
16	Neisseria Gonorrhoeae, SHERLOCK, CRISPR/Cas13a, molecular diagnosis,
17	azithromycin resistance identification

18 Abstract

19	Gonorrhea caused by Neisseria gonorrhoeae has spread world-wide.
20	Antimicrobial-resistant strains have emerged to an alarming level to most antibiotics,
21	including to the ceftriaxone-azithromycin combination, currently recommended as
22	first-line dual therapy. Rapid testing for antimicrobial resistance will contribute to clinical
23	decision-making for rational drug use and will slow this trend. Herein, we developed a
24	Cas13a-based assay for N. gonorrhoeae detection (porA target) and azithromycin
25	resistance identification (A2059G and C2611T point mutations). We evaluated the
26	sensitivity and specificity of this method, and 10 copies per reaction can be achieved in
27	porA detection and C2611T identification, with no cross-reactions. Comparison of the
28	Cas13a-based assay (porA target) with Roche Cobas 4800 assay (n=23 urine samples)
29	revealed 100% concordance. Isolated N. gonorrhoeae strains were used to validate the
30	identification of A2059G and C2611T resistance mutations. All tested strains (8 A2059G
31	strains, 8 C2611T strains, and 8 wild-type strains) were successfully distinguished by our
32	assay and verified by testing MIC for azithromycin and sequencing the 23S rRNA gene.
33	We adopted lateral flow for the SHERLOCK assay readout, which showed a visible
34	difference between test group and NC group results. To further evaluate the capability of
35	our assay, we tested 27 urethral swabs from patients with urethritis for N. gonorrhoeae
36	detection and azithromycin-resistance identification. Of these, 62.96% (17/27) strains

2

were detected with no mutant strains and confirmed by sequencing. In conclusion, the
novel Cas13a-based assay for rapid and accurate *N. gonorrhoeae* detection combined
with azithromycin drug resistance testing is a promising assay for application in clinical
practice.

41

42 Introduction

43 Gonorrhea is a common bacterial sexually transmitted infection (STI) in the world, 44 caused by Neisseria gonorrhoeae [1]. As estimated by the World Health Organization 45 (WHO), there were 78 million global cases in 2012 and 86.9 million cases in 2016 46 worldwide [2, 3]. The prevalence of N. gonorrhoeae has increased rapidly and remains a 47 public health concern. In the absence of an effective vaccine, antibiotic treatment is critical to cure and slow the spread of *N. gonorrhoeae* infections [4, 5]. However, due to 48 49 the use and abuse of antibiotics, antimicrobial resistance (AMR) of N. gonorrhoeae has 50 emerged to all first-line therapeutic drugs used to date [4-7]. In particular, AMR to 51 azithromycin and ceftriaxone currently used as first-line dual therapy has been reported 52 as a cause of treatment failure in both the United Kingdom and Australia [8, 9], and the 53 resistance has shown a gradual increasing trend according to the gonococcal surveillance 54 program data from Europe and the United States [10, 11]. There is, therefore, a need for 55 clinicians to rapidly acquire resistance data for antibiotics, which could help manage 56 rational drug use and further slow the development of drug resistance.

57

58	Traditional antimicrobial resistance detection methods are mainly culture-based. The
59	quantitative agar dilution method which can determine the minimum inhibitory
60	concentration (MIC) of antimicrobials is recognized as the 'gold standard' method, but
61	complicated protocol steps and long turnaround times hinder its development to satisfy
62	clinical requirements [1, 6]. To achieve this goal, non-culture-based nucleic acid
63	amplification tests (NAATs) have been introduced and are being developed. Sequencing
64	technology has been widely used to identify plasmid-mediated or
65	chromosomally-mediated drug resistance to discover antimicrobial resistance towards
66	penicillin, ciprofloxacin, tetracycline, azithromycin, extended-spectrum cephalosporin,
67	and multidrug resistance [6, 12]. With the discovery of a strong correlation between
68	single nucleotide polymorphisms (SNP) and drug resistance in N. gonorrhoeae, more
69	convenient assays have been established [13-17]. These methods generally use PCR to
70	amplify target genes, and combine with specific probes, high resolution melting (HRM)
71	analysis, or mass spectrometry to differentiate specific point mutations. The protocol is
72	time-saving, however, large precision instruments are necessary to ensure accurate
73	temperature control and results also require skilled evaluation.

74

75	Cas13a was first described by Zhang et al. and exploits endonuclease activity of target
76	RNA and collateral cleavage activity of the target sequence [18]. Based on this principle,
77	the SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) was developed,
78	which combines recombinase polymerase amplification (RPA) and Cas13a in an
79	isothermal system with single molecule sensitivity, high specificity, single-base
80	resolution, and convenient acquisition of results [19]. Given the advantages of this
81	technology, SHERLOCK is becoming a potential tool for rapid diagnostic testing of
82	emerging infectious diseases, and has been developed for the diagnosis of Plasmodium,
83	SARS-CoV-2, Ebola virus, and Lassa virus [20-22]. Thus, this robust Cas13a-based
84	diagnostic tool may satisfy the requirements of N. gonorrhoeae detection and antibiotic
85	resistant-SNPs identification in clinical practice.
86	
87	Azithromycin combined with ceftriaxone is the currently recommended treatment for <i>N</i> .
88	gonorrhoeae given the increasing MIC of ceftriaxone [23] and the emergence of
89	high-level azithromycin resistance strains in various geographical regions showing a
90	tendency to spread to other areas [24-30]. The main cause of elevated azithromycin
91	resistance has been highly correlated with A2059G and C2611T mutations in the 23S
92	rRNA subunit of the bacterial ribosome [31-33]. Herein, we attempt to develop and apply
93	this Cas13a-based method to develop a rapid and accurate assay for N. gonorrhoeae

5

- 94 detection and azithromycin resistance identification that will contribute to rational drug
- 95 use by clinicians.

96

- 97 Materials and Methods
- 98 **Ethics approval**

99 All human samples used for this study were evaluated and approved by the Ethics

- 100 Review Committee at Dermatology Hospital of Southern Medical University (2020056).
- 101 Culture and azithromycin susceptibility testing
- 102 The N. gonorrhoeae strains used to verify azithromycin resistance were isolated from
- 103 clinical samples of patients from Guangzhou, China and were identified by Gram
- 104 Staining, oxidase, catalase, and sugar fermentation tests. Isolates were cultured in
- 105 Thayer-Martin medium and incubated in 5% CO2 in a 37°C incubator.
- 106 Antimicrobial susceptibility to azithromycin was tested using the agar dilution method,
- 107 according to WHO recommendations [34]. Briefly, all strains were cultured for 18 h and
- 108 adjusted to a 0.5 McFarland standard suspension, and the cultures were then multipoint
- 109 inoculated onto antimicrobial agar plates containing different drug concentrations.
- 110 Sample preparation
- Clinical urine samples were collected and stored at 4°C temporarily before DNA
 extraction. Urethral swabs were collected and stored in DNA/RNA Shield (Zymo
 Research; R1100-250) and 4°C for temporary storage before DNA extraction. Genome

114 DNA extraction was carried out using the HiPure Bacterial DNA Kit (Magen; D3146-02)

115 according to the manufacturer's instructions. Extracted genomic DNA was stored at -20°C

116 until use.

- 117 Clinical urine specimens for Roche COBAS 4800 NG/CT tests were prepared according
- 118 to Roche's standard operation protocols.
- 119 Serial dilutions of dsDNA (porA, A2059G, C2611T) were prepared by using Q5
- 120 High-Fidelity DNA Polymerases (New England Biolabs; M0492S) to amplify the target
- 121 gene in a total reaction volume of 50 μ L (25 μ L of 2× Master Mix, 2.5 μ L of each 10
- 122 μM primer, 2 μL of DNA template, and 18 μL ddH2O). PCR was performed as follows:
- initial denaturation at 98°C for 30 s, then 35 cycles at 98°C for 10 s, 60°C for 20 s, and 72°C
- 124 for 30 s, followed by 72°C for 2 min. After amplification, PCR products were verified
- 125 and purified following agarose gel electrophoresis. The Universal DNA purification kit
- 126 (TIANGEN; DP214) was used according to the manufacturer's protocol to extract target
- 127 DNA from agarose gel. Purified dsDNA was quantified using the Qubit dsDNA HS
- 128 Assay Kit (ThermoFisher; Q33230) and stored at -20°C until use. PCR primers used to
- 129 produce dsDNA are reported in **Table S2**.

130 **Protein expression and purification of Cas13a**

LwCas13a expression and purification were carried out according to the protocols
described by Zhang et al. with some modifications [35]. Briefly, LwCas13a expression
vectors (NovoPro Bioscience; V010159) were transformed into Rosetta (DE3) Competent

134	Cells (Tiangen; CB108). Competent cells containing LwCas13a vectors were inoculated
135	into LB Broth media (Sangon Biotech; A507002) containing 50 μ g/mL ampicillin
136	(Sangon Biotech; A100339) and grown at 37°C, 220 rpm until the OD600 reached 0.6.
137	Isopropyl-beta-D-thiogalactopyranoside (Sangon Biotech; B541007) was added to the
138	media at a final concentration of 0.5 mM to induce protein expression. Cells were then
139	centrifuged at 4°C, and cell pellets were harvested and stored at -80°C for further
140	purification.
141	Protein purification was performed at 4°C. Cell pellets were crushed and purified with
142	His-tag Protein Purification Kit (Beyotime Biotechnology; P2226). Then incubated at 25°C
143	for 3 h with SUMO protease (Novoprotein; PE007-01A) to digest SUMO tag. Purified
144	Cas13a protein was stored at -80°C in storage buffer (50 mM Tris, 600 mM NaCl, 5%
145	glycerol, 2 mM DTT, pH 7.5). All purification steps were analyzed and confirmed by
146	SDS-PAGE and Coomassie Blue staining (Sangon Biotech; C510041). The concentration
147	of protein was quantified using the BCA Protein Assay Kit (Beyotime Biotechnology;
148	P0012S).

149 crRNA preparation

For crRNA preparation, oligonucleotides containing the T7 promoter sequence, spacers (complement to target RNA), and the crRNA core sequence (bind to Cas13a) were designed by SnapGene 4.1.9 and NCBI BLAST, and synthesized by Sangon Biotech. Synthetic ssDNA (100 μ M) binds to short T7 primer sequence (100 μ M) by gradient

154 annealing from 95°C to 25°C with cooling rate of 0.1°C/s. The product was then 155 transcribed to crRNA using HiScribe T7 Quick High Yield RNA Synthesis kit (New 156 England Biolabs; E2050S) incubating at 37°C overnight. Transcribed crRNA was 157 purified using RNA XP Clean Beads (Beckman; A63987), and the concentration was 158 quantified using the Qubit RNA HS Assay Kit (ThermoFisher; Q32852). crRNA was 159 stored at -20°C until use. All crRNA used in this study are reported in Table S2. 160 **Recombinase Polymerase Amplification** 161 Recombinase Polymerase Amplification (RPA) primers were designed by SnapGene 162 4.1.9 and NCBI BLAST according to the TwistAmp Assay Design Manual instructions, 163 which downloaded official can be from the website 164 (https://www.twistdx.co.uk/en/support/ manuals/twistamp-manuals), with the condition 165 that primers must flank the crRNA target region. RPA primers were synthesized by 166 Sangon Biotech. The forward primer contained the T7 promoter sequence for initiating 167 the transcription. TwistAmp Basic (TwistDx; TABAS03KIT) was used to amplify the 168 target DNA. In a total reaction volume of 25 µL (containing 1.2 µL of each 10 µM primer, 169 14.75 µL of rehydration buffer, 1.25 µL of Magnesium Acetate (MgOAc), 1 µL of input, 170 and 5.6 µL ddH2O). The mixture was run at 37°C for 2 h and then subjected to Cas13a 171 detection assays. All RPA primers used in this study are available in Table S2.

172 LwCas13a collateral detection

173 Cas13a detection assays were mainly performed according to the protocol described by

9

174	Zhang et al. [19]. Briefly, the assay was carried out in a 25 μ L reaction volume consisting
175	of 40 mM Tris-HCl (pH7.5), 9 mM MgCl ₂ , 1 mM rNTPs (New England Biolabs;
176	N0466L), 50 U RNase inhibitor (New England Biolabs; M0314L), 37.5 U T7 RNA
177	Polymerase (New England Biolabs; M0251L), 225 nM crRNA, 45nM purified LwCas13a,
178	125 nM RNA reporter (5'-6FAM-UUUUU-BHQ1-3' as described by Gootenberg et
179	al.[36]), and 1.25 μL RPA reaction solution was added to the above mixture. The reaction
180	mixture was allowed to incubate at 37°C for 3 h in a 96-Well Half-Area Microplate
181	(Corning; CLS3694-100EA). Fluorescence emission (excitation 490 nm/detection 520
182	nm) was tested every 5 min.

183 Lateral flow readout

184 The lateral flow dipstick (Milenia Biotec; MGHD 1) was used to acquire the results of 185 Cas13a collateral cleavage, which was based on the cleavage of the FITC-RNA-Biotin 186 reporter. It basically replaces the RNA reporter used in the system described above, with 187 a new RNA reporter (5'-FITC-UUUUUUUUUUUUUUUUUBiotin-3' described by Myhrvold 188 et al. [37]), and then was subjected to the same process. Subsequently, a 20 µL volume of 189 Cas13a detection solution was added and the reaction mixture was incubated at 37°C for 190 3h in 80 µL dipstick buffer, with thorough mixing. A lateral flow dipstick was inserted 191 into the mixture to obtain the results.

192 Sanger sequencing

193 The 23s rRNA gene of *N. gonorrhoeae*, which contains the A2059G and C2611T point

194	mutations, was amplified using the Q5 High-Fidelity DNA Polymerases (New England
195	Biolabs; M0492S). In a 25 μL reaction volume, comprised of 12.5 μL of 2x Master Mix,
196	1.25 μL of each 10 μM primer, 1 μL of input, and 8 μL ddH2O. PCR was performed as
197	follows: initial denaturation at 98°C for 30 s, then 35 cycles of 98°C for 10 s, 64°C for 20
198	s, and 72°C for 30 s, followed by 72°C for 2 min. PCR products were verified by Sanger
199	sequencing (Sangon Biotech). The results of sequencing were blasted in SnapGene 4.1.9.
200	PCR primers are available in Table S2.
201	Analysis of fluorescence data
202	Prism 8 software (GraphPad, La Jolla, CA, USA) was used for visualization of results
203	and data analyses. Data are presented as mean \pm SEM and were tested for normality with
204	the Shapiro-Wilk test. Differences were considered significant at P -values < 0.05.
205	
206	Results
207	Schematic of Cas13a based N. gonorrhoeae detection and azithromycin resistance
208	identification
209	The SHERLOCK assay was performed as established by Zhang et al. [19], and combined
210	RPA and Cas13a to create an isothermal detection system. The target sequence was

the template to be used to initiate subsequent RNA transcription. Synthetic crRNA guided

211

amplified by RPA, and the T7 promoter was appended to the front of the RPA product as

213	the Cas13a protein to recognize the specific target and enable its RNA cleavage and
214	collateral cleavage activities (Fig. 1) [18]. For N. gonorrhoeae detection, we selected
215	porA as the target as was frequently used to identity N. gonorrhoeae in other methods [17,
216	38-40]. Based on the characteristics of its single-base resolution, we constructed two
217	crRNA sequences that could identify A2059G and C2611T separately. Although a single
218	synthetic mismatch of crRNA pairing to the target enabled the assay to identify the
219	A2059G mutation (Fig. S1A), this design failed to achieve the identical results for the
220	detection of the C2611T mutation. Thus, we introduced one more synthetic mismatch of
221	crRNA for C2611T mutation testing (Fig. S1B-D). Both crRNA designs were
222	successfully utilized for 23s rRNA mutations detection.

223 Evaluation of the Cas13a-based method with sensitivity and specificity

224 To determine the sensitivity of the *N. gonorrhoeae* detection and azithromycin resistance identification assay, we prepared serial dilutions of dsDNA template, ranging from 10^{0} 225 $copy/\mu L$ to 10^5 copies/ μL (**Table 1**). The RPA step included the addition of 1 μL input of 226 227 dsDNA template, which was then transferred to the mixture for Cas13a detection. 228 Detection of 10 copies/µL was achieved for porA and C2611T identification (Fig. S2A, 229 S2E). For A2059G identification, the detection limit was an order of magnitude lower, at about 10^2 copies/µL (Fig. S2C). We further evaluated the specificity of the assay using a 230 231 panel of urogenital tract pathogenic bacteria (n=12) and Neisseria meningitides (Table 2).

No cross-reactivity was observed for both *N. gonorrhoeae* detection and azithromycin
resistance identification (Fig. S2B, S2D, S2F). All RPA primers and crRNA sequences
had been confirmed by BLAST before we tested its specificity. The SHERLOCK exhibits
robust capability for *N. gonorrhoeae* detection and azithromycin resistance identification.

236 Validation of *N. gonorrhoeae* detection in clinical urine samples

237 Twenty-three clinical urine samples with low concentrations previously tested using the 238 standard procedure of the Roche Cobas 4800 NG/CT test were used to validate the 239 performance of SHERLOCK. DNA was extracted from urine samples after centrifugation 240 and a maximum volume of 6.6 µL of DNA was amplified by RPA, followed by Cas13a 241 detection. The method was repeated using 3 technical replicates and the fluorescence 242 signal of each sample was normalized against the negative controls. Using this method, a 243 total of 12 of 23 positive samples were detected, showing a 100% coincidence rate with 244 the Roche assay (Fig. 2). The fluorescence signals of 3 samples (samples 3, 6, 10) were 245 weaker than other specimens, but still could be distinguished with the negative control.

246 Validation of azithromycin resistance identification

A2059G mutant strains (n=8), C2611T mutant strains (n=8), and wild-type strains (n=8) isolated from clinical specimens were used to validate Cas13a-based SNPs detection. We measured the MICs of azithromycin in each strain and sequenced their 23S rRNA gene (**Fig. 3, 4**). Strains containing either the A2059G or C2611T point mutation were more

251	likely to be a high-level azithromycin-resistant strain. Of the 8 A2059G isolated strains,
252	all 8 strains had MICs of >1 mg/L, and 5 A2059G strains had MICs \geq 512 mg/L. Of the 8
253	C2611T isolated strains, 7 had MICs of >1 mg/L and 3 C2611T strains had MICs \geq 512
254	mg/L. Compared with mutant strains, the wild-type strains possessed lower MICs,
255	corresponding to ≤ 1 mg/L in 7 strains and the MIC of the remaining strain was 4 mg/L,
256	which was above the average MICs of all mutant strains. We extracted DNA of all
257	mutant and wild-type strains to validate this Cas13a-based assay. Paired with A2059G
258	crRNA or C2611T crRNA, this assay successfully differentiated all 8 A2059G mutant
259	strains and 8 C2611T strains from 8 wild-type strains (Fig. 3, 4). Sixteen strains
260	harboring A2059G and C2611T mutations were identified by exhibiting a higher
261	fluorescence intensity than wild-type strains by our assay (Fig. S3A, S3B). Thus, we
262	successfully applied Cas13a based assay in azithromycin resistance identification.

263 Lateral flow for *N. gonorrhoeae* detection and azithromycin resistance identification

We applied lateral flow to provide a more convenient readout tool. The FAM and BHQ1 markers in the RNA reporter were replaced by FITC and Biotin. Compared to the fluorescent intensity detection, the lateral flow is inserted directly into the reaction liquid instead of using a specific device or instrument for the readout of results. The lateral flow contains a control band and a test band. Generally, a positive test will show only one test band or two bands (test band and control band), due to its different cleavage efficiency which will result in varying amounts of cleaved RNA reporter captured by the antibody in the test band. We tested lateral flow for porA detection, A2059G identification, and C2611T identification separately (**Fig. 5A-C**). Three positive groups generated visual signals in the test bands, while all wild-type groups and the no-input group only showed a single control band.

Applying Cas13a based *N. gonorrhoeae* detection and azithromycin resistance identification in urethritis

277 To confirm the efficacy of the assay in clinical specimens. We collected 27 urethral 278 swabs from patients with urethritis requiring differential diagnosis for potential 279 gonococcal infection and to determine whether azithromycin was still effective and this 280 information is important for the clinician. We extracted DNA from urethral swabs 281 directly and then tested all 27 samples with the SHERLOCK assay (Fig. 6). Overall, 282 62.96% (17/27) samples showed porA positivity, and the fluorescence intensity of 17 283 samples was higher than that of the negative samples and the no-input group. We further 284 tested for azithromycin resistance with A2059G crRNA and C2611T crRNA, and no 285 mutant strain was discovered in the 17 porA positive samples. For 27 specimens, we 286 sequenced the 23S rRNA gene and the results showed a 100% coincidence rate with our 287 assay (Table S1). Sequencing data demonstrated that 17 porA positive samples were 288 wild-type strains and no signals were detected in 10 porA negative samples.

289

290 Discussion

291 Antimicrobial resistance is the largest concern in the treatment of gonorrhea, with its 292 decreasing susceptibility to antibiotics used in previous or current treatment approaches 293 [5]. Treatment failures have been reported to the current first-line drug combination of 294 azithromycin and ceftriaxone [8, 9], and represent a significant treatment challenge to 295 clinicians. Rapid information regarding antimicrobial resistance would be beneficial to 296 rational drug use in the clinic and would slow this growing trend. Traditional 297 culture-based drug resistance methods have been widely used in the clinical laboratory 298 and are of great importance in antimicrobial resistance surveillance, although the testing 299 is time-consuming and is unable to meet clinical requirements rapidly [41]. Newly 300 NAATs-based assays may overcome some of the disadvantages of culture-based methods 301 and can be applied to identify antimicrobial resistance associated mutations 302 simultaneously. Current molecular methods to identify mutations are mainly based on 303 specially designed probes, HRM analysis, and mass spectrometry [13, 16, 17]. Compared 304 with culture-based antimicrobial resistance detection methods, these methods effectively 305 shorten assay times, but still present several limitations. If the alteration in gene has little 306 impact on Tm values or GC content, for example, C to G variations, the method would be 307 invalidated, moreover, short insertions or deletions may make the method unreliable [17, 308 42]. Furthermore, these assays are essentially PCR-based and require PCR amplification
309 instruments coupled with other detection equipment, which limits the convenience and
310 flexibility of the assay. Thus, the development of an assay with ultra-high resolution is
311 desired for distinguishing mutant from the wild-type.

312

313 CRISPR/Cas molecular diagnostics have been developed and applied for testing various 314 organisms, including SARS-CoV-2, HPV, Zika virus, Dengue virus, Ebola virus, and 315 plasmodium [20, 21, 37, 43, 44]. Benefiting from its high specificity, sensitivity, and 316 ability to identify SNP with the isothermal process, we have adopted a Cas13a-based 317 strategy for N. gonorrhoeae detection and antimicrobial resistance identification in this 318 study. The SHERLOCK contains two nucleic acid amplification steps: DNA 319 amplification by recombinase polymerase amplification and RNA amplification by T7 320 transcription. With double signal amplification cycles, this strategy allowed to detect low 321 levels of N. gonorrhoeae. Cross-reactivity is the major concern of currently developed 322 diagnostic methods [12]. Attempts have been made to introduce two targets to uniquely 323 identify a species, but this approach complicates the assay [13, 15-17]. The combination 324 of specially-designed RPA primers and crRNA makes the whole reaction extremely 325 specific. As expected, our assay exhibited high specificity in testing a panel of 326 non-gonococcal bacteria. In addition, our Cas13a-based assay showed an excellent

17

327	concordance rate with the Roche Cobas assay currently used for clinical urine samples.
328	With regard to SNPs detection, assay has been developed that exploits CRISPR/Cas13a
329	technology to recognize single point mutations [19, 36, 45]. Our Cas13a-based assay
330	achieved a sensitivity of 10 copies per reaction, which is more sensitive than previous
331	HRM-based assays [46]. The diagnostic capability of the Cas13a-based assay has also
332	been examined by testing clinical isolates harboring the SNP mutation. This isothermal
333	assay which relies on a reaction temperature of 37°C over the entire process without
334	complex equipment has a great potential to be applied as a POCT device.

335

336 Azithromycin is a widely used macrolide antimicrobial agent and primarily acts on domain V of the 23S rRNA gene. Previous studies and our observation have revealed that 337 338 N. gonorrhoeae strains harboring A2059G and C2611T mutations in the 23s rRNA gene 339 are strongly associated with high-level azithromycin resistance [28, 32, 33, 47-49]. 340 Sixteen N. gonorrhoeae isolates containing 23s rRNA mutations were utilized to evaluate 341 the performance of our assay. The results showed that our Cas13a-based assay could 342 provide drug resistance information in real-time. We also tested a small number of 343 urethral swabs collected from the clinic in Guangzhou, China. In porA-positive(17/27) 344 urethral swabs from patients with urethritis, no 23s rRNA mutant was identified, which is consistent with previous reports, indicating that the high-level azithromycin-resistant N. 345

gonorrhoeae has not wildly spread in Guangzhou, China [14, 16, 17]. Because of the
ongoing use of ceftriaxone and azithromycin dual therapy, the surveillance of 23s rRNA
mutation is still a requirement.

349

There are several limitations to our study. We only tested a small number of samples and limited sources of clinical specimen. Cervical, anus, and pharynx specimens should be considered in further study. Moreover, the cost of SHERLOCK is higher than HRM-based method, though lower than most reported assays to date. In summary, we developed a CRISPR/Cas13a-based assay for *N. gonorrhoeae* detection and azithromycin resistance identification with great potential for providing drug resistance information to assist clinical diagnosis and treatment.

357

358 Acknowledgments

This work was supported by grants from the Overseas Famous Teacher Project of Guangdong Provincial Department of Science and Technology (No. 2020A1414010136), Medical Science and Technology Research Fundation of Guangdong Province (No. A2019010 and No. A2021139), Guangdong Traditional Chinese Medicine Research

363 Project (No. 20191230 and No. 20211277), Guangdong Provincial Medical Research

364	Fund (No. B2020149), Scientific Research Initiative Project of Southern Medical
365	University (Project of Youth Science and Technology Personnel Training, No.
366	PY2018N100), Key scientific research platforms and research projects of colleges and
367	universities in Guangdong Province (No. 2018KQNCX025). The funders had no role in
368	study design, data collection and analysis, decision to publish, or preparation of the
369	manuscript.

370

371 Author contributions

372 Conceived and designed the study: HL and HPZ. Collected samples: ZDM, XML, JJY,

373 JLO, QQX, and ZQF. Isolation of clinical strains: LHZ, YYP, QHX. Tested

374 Susceptibility to azithromycin: XML, XXL, and YWL. Performed the laboratory work:

HL. Analyzed the data: HL and WC. Wrote the initial draft of the paper: HL and WC.

376 Funding supported the study: XLQ, XML, and HPZ. All authors viewed and contributed

to the final paper.

378

379 Competing interests

380 The authors declare no interest of conflicts.

381

382 **Reference**

- Unemo M, Seifert HS, Hook EW, 3rd, Hawkes S, Ndowa F, Dillon JR.
 Gonorrhoea. Nat Rev Dis Primers 2019; 5(1): 79.
- Rowley J, Vander Hoorn S, Korenromp E, et al. Chlamydia, gonorrhoea,
 trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull
 World Health Organ 2019; 97(8): 548-62p.
- 388 3. Newman L, Rowley J, Vander Hoorn S, et al. Global Estimates of the Prevalence
 and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on
 Systematic Review and Global Reporting. PLoS One 2015; 10(12): e0143304.
- Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: Drug Resistance,
 Mouse Models, and Vaccine Development. Annu Rev Microbiol 2017; 71:
 665-86.
- Suay-García B, Pérez-Gracia MT. Future Prospects for Neisseria gonorrhoeae
 Treatment. Antibiotics (Basel) 2018; 7(2).
- 396 6. Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the
 397 21st century: past, evolution, and future. Clin Microbiol Rev 2014; 27(3):
 398 587-613.
- WHO Guidelines Approved by the Guidelines Review Committee. WHO
 Guidelines for the Treatment of Neisseria gonorrhoeae. Geneva: World Health
 Organization Copyright World Health Organization 2016., 2016.
- 402 8. Eyre DW, Sanderson ND, Lord E, et al. Gonorrhoea treatment failure caused by a
 403 Neisseria gonorrhoeae strain with combined ceftriaxone and high-level
 404 azithromycin resistance, England, February 2018. Euro Surveill 2018; 23(27).
- 405 9. Whiley DM, Jennison A, Pearson J, Lahra MM. Genetic characterisation of
 406 Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet
 407 Infect Dis 2018; 18(7): 717-8.
- 408 10. Gonococcal antimicrobial susceptibility surveillance in Europe, 2018. Available409 at:
- 410 <u>https://www.ecdc.europa.eu/en/publications-data/gonococcal-antimicrobial-susce</u>
 411 <u>ptibility-surveillance-europe-2018</u>. Accessed April.
- 412 11. Sexually Transmitted Disease Surveillance 2018. Available at:
 413 <u>https://www.cdc.gov/std/stats18/gisp2018/default.htm</u>. Accessed April.
- 414 12. Donà V, Low N, Golparian D, Unemo M. Recent advances in the development
 415 and use of molecular tests to predict antimicrobial resistance in Neisseria
 416 gonorrhoeae. Expert Rev Mol Diagn 2017; 17(9): 845-59.
- Li Y, Xiu L, Liu J, et al. A multiplex assay for characterization of antimicrobial
 resistance in Neisseria gonorrhoeae using multi-PCR coupled with mass
 spectrometry. J Antimicrob Chemother 2020; 75(10): 2817-25.

420 14. Trembizki E, Buckley C, Donovan B, et al. Direct real-time PCR-based detection
421 of Neisseria gonorrhoeae 23S rRNA mutations associated with azithromycin
422 resistance. J Antimicrob Chemother 2015; 70(12): 3244-9.

- 423 15. Donà V, Smid JH, Kasraian S, et al. Mismatch Amplification Mutation
 424 Assay-Based Real-Time PCR for Rapid Detection of Neisseria gonorrhoeae and
 425 Antimicrobial Resistance Determinants in Clinical Specimens. J Clin Microbiol
 426 2018; 56(9).
- Peterson SW, Martin I, Demczuk W, et al. Multiplex real-time PCR assays for the
 prediction of cephalosporin, ciprofloxacin and azithromycin antimicrobial
 susceptibility of positive Neisseria gonorrhoeae nucleic acid amplification test
 samples. J Antimicrob Chemother 2020; 75(12): 3485-90.
- 431 17. Xiu L, Li Y, Wang F, et al. Multiplex High-Resolution Melting Assay for
 432 Simultaneous Identification of Molecular Markers Associated with
 433 Extended-Spectrum Cephalosporins and Azithromycin Resistance in Neisseria
 434 gonorrhoeae. J Mol Diagn 2020.
- 435 18. Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component
 436 programmable RNA-guided RNA-targeting CRISPR effector. Science 2016;
 437 353(6299): aaf5573.
- 438 19. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with
 439 CRISPR-Cas13a/C2c2. Science 2017; 356(6336): 438-42.
- Lee RA, Puig H, Nguyen PQ, et al. Ultrasensitive CRISPR-based diagnostic for
 field-applicable detection of Plasmodium species in symptomatic and
 asymptomatic malaria. Proc Natl Acad Sci U S A 2020; 117(41): 25722-31.
- 443 21. Barnes KG, Lachenauer AE, Nitido A, et al. Deployable CRISPR-Cas13a
 444 diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nat
 445 Commun 2020; 11(1): 4131.
- 446 22. Joung J, Ladha A, Saito M, et al. Detection of SARS-CoV-2 with SHERLOCK
 447 One-Pot Testing. N Engl J Med **2020**; 383(15): 1492-4.
- 448 23. Update to CDC's Sexually transmitted diseases treatment guidelines, 2010: oral
 449 cephalosporins no longer a recommended treatment for gonococcal infections.
 450 MMWR Morb Mortal Wkly Rep 2012; 61(31): 590-4.
- 451 24. Salmerón P, Moreno-Mingorance A, Trejo J, et al. Emergence and dissemination
 452 of three mild outbreaks of Neisseria gonorrhoeae with high-level resistance to
 453 azithromycin in Barcelona, 2016-18. J Antimicrob Chemother 2020.
- 454 25. Holderman JL, Thomas JC, Schlanger K, et al. Sustained Transmission of
 455 Neisseria gonorrhoeae with High-Level Resistance to Azithromycin, Indianapolis,
 456 Indiana 2017-2018. Clin Infect Dis 2021.
- 457 26. Shimuta K, Lee K, Yasuda M, et al. Characterization of two Neisseria 458 gonorrhoeae strains with high-level azithromycin resistance isolated in 2015 and

459 2018 in Japan. Sex Transm Dis 2020. Palavecino EL, Kilic A, Schmerer MW, Dobre-Buonya O, Toler C, McNeil CJ. 460 27. 461 First Case of High-Level Azithromycin-Resistant Neisseria gonorrhoeae in North 462 Carolina. Sex Transm Dis 2020; 47(5): 326-8. 463 28. Liu YH, Wang YH, Liao CH, Hsueh PR. Emergence and Spread of Neisseria 464 gonorrhoeae Strains with High-Level Resistance to Azithromycin in Taiwan from 465 2001 to 2018. Antimicrob Agents Chemother 2019; 63(9). 466 29. Gernert KM, Seby S, Schmerer MW, et al. Azithromycin susceptibility of 467 Neisseria gonorrhoeae in the USA in 2017: a genomic analysis of surveillance 468 data. Lancet Microbe 2020; 1(4): e154-e64. 469 30. Banhart S, Selb R, Oehlmann S, et al. The mosaic mtr locus as major genetic 470 determinant of azithromycin resistance of Neisseria gonorrhoeae, Germany, 2018. 471 J Infect Dis 2021. 472 31. Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with 473 macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 474 2002; 46(9): 3020-5. 475 32. Chisholm SA, Dave J, Ison CA. High-level azithromycin resistance occurs in 476 Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA 477 genes. Antimicrob Agents Chemother 2010; 54(9): 3812-6. 478 33. Laumen JGE, Manoharan-Basil SS, Verhoeven E, et al. Molecular pathways to 479 high-level azithromycin resistance in Neisseria gonorrhoeae. J Antimicrob 480 Chemother 2021. 481 34. Organization WH. Manual for the laboratory identification and antimicrobial 482 susceptibility testing of bacterial pathogens of public health concern in the 483 developing Available word. at: 484 http://www.who.int/csr/resources/publications/drugresist/en/IIAMRmanual.pdf?u 485 a=1. 486 35. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: 487 nucleic acid detection with CRISPR nucleases. Nat Protoc 2019; 14(10): 488 2986-3012. 489 Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. 36. 490 Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and 491 Csm6. Science 2018; 360(6387): 439-44. 492 Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics 37. 493 using CRISPR-Cas13. Science 2018; 360(6387): 444-8. 494 Peterson SW, Martin I, Demczuk W, et al. Molecular Assay for Detection of 38. 495 Genetic Markers Associated with Decreased Susceptibility to Cephalosporins in 496 Neisseria gonorrhoeae. J Clin Microbiol 2015; 53(7): 2042-8. 497 39. Shipitsyna E, Zolotoverkhaya E, Hjelmevoll SO, et al. Evaluation of six nucleic

498 acid amplification tests used for diagnosis of Neisseria gonorrhoeae in Russia
499 compared with an international strictly validated real-time porA pseudogene
500 polymerase chain reaction. J Eur Acad Dermatol Venereol 2009; 23(11): 1246-53.

- 50140.Bissessor M, Whiley DM, Fairley CK, et al. Persistence of Neisseria gonorrhoeae502DNA following treatment for pharyngeal and rectal gonorrhea is influenced by503antibiotic susceptibility and reinfection. Clin Infect Dis 2015; 60(4): 557-63.
- 504 41. Goire N, Lahra MM, Chen M, et al. Molecular approaches to enhance
 505 surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol 2014;
 506 12(3): 223-9.
- 507 42. Wittwer CT. High-resolution DNA melting analysis: advancements and limitations. Hum Mutat **2009**; 30(6): 857-9.
- 509 43. Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes
 510 indiscriminate single-stranded DNase activity. Science (New York, NY) 2018;
 511 360(6387): 436-9.
- 512 44. Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of
 513 SARS-CoV-2. Nat Biotechnol 2020; 38(7): 870-4.
- 45. Wang S, Li H, Kou Z, et al. Highly sensitive and specific detection of hepatitis B
 virus DNA and drug resistance mutations utilizing the PCR-based
 CRISPR-Cas13a system. Clin Microbiol Infect 2021; 27(3): 443-50.
- 517 46. Donà V, Kasraian S, Lupo A, et al. Multiplex Real-Time PCR Assay with
 518 High-Resolution Melting Analysis for Characterization of Antimicrobial
 519 Resistance in Neisseria gonorrhoeae. J Clin Microbiol 2016; 54(8): 2074-81.
- Wind CM, Bruisten SM, Schim van der Loeff MF, Dierdorp M, de Vries HJC,
 van Dam AP. A Case-Control Study of Molecular Epidemiology in Relation to
 Azithromycin Resistance in Neisseria gonorrhoeae Isolates Collected in
 Amsterdam, the Netherlands, between 2008 and 2015. Antimicrob Agents
 Chemother 2017; 61(6).
- 48. Ryan L, Golparian D, Fennelly N, et al. Antimicrobial resistance and molecular
 epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in
 Ireland, 2014-2016: focus on extended-spectrum cephalosporins and azithromycin.
 Eur J Clin Microbiol Infect Dis 2018; 37(9): 1661-72.
- Jacobsson S, Golparian D, Cole M, et al. WGS analysis and molecular resistance
 mechanisms of azithromycin-resistant (MIC >2 mg/L) Neisseria gonorrhoeae
 isolates in Europe from 2009 to 2014. J Antimicrob Chemother 2016; 71(11):
 3109-16.
- 533

534 Figure legends

Fig. 1 Schematic overview of the SHERLOCK assay. Illustration of LwCas13a combined with RPA for detection of *N. gonorrhoeae*. The target gene was amplified by RPA and appended with the T7 promoter. The unpurified RPA product is added to the Cas13a system. Once crRNA was matched the transcribed RNA target, Cas13a cleaves the RNA reporter and the reporters emit a fluorescent signal.

541 SHERLOCK assay in clinical urine samples compared to verification using the Roche

Fig. 2 Validation of the SHERLOCK assay for urine samples. The performance of

542 Cobas 4800 (NG/CT test).

540

Fig. 3 Identification of the SHERLOCK assay for the identification of the A2059G point mutation. Sixteen *N. gonorrhoeae* strains were tested to measure their MICs for azithromycin and then assayed for 23S rRNA for 2059 and 2611 point mutations. Extracted DNA was tested by SHERLOCK assay directly.

Fig. 4 Evaluation of the SHERLOCK assay for C2611T point mutation detection. Sixteen *N. gonorrhoeae* strains were evaluated to determine MICs of azithromycin and were then
assayed for 23S rRNA 2059 and 2611 point mutations. Extracted DNA was tested by
SHERLOCK assay directly.

551 **Fig. 5** The SHERLOCK assay using lateral flow readout for the detection of *N*. 552 *gonorrhoeae*. (A) Lateral flow readout system applied to the SHERLOCK assay for the 553 detection of the porA gene. (B) Lateral flow result for the detection of the A2059G point 554 mutation. (C) Lateral flow result for the detection of the C2611T point mutation.

Fig. 6 Fluorescence intensity of *N. gonorrhoeae* SHERLOCK assay for the detection of gonococcal urethritis. The performance of the CRISPR/Cas13a-based assay for using urethral swab samples from patients with urethritis for identification of porA, A2059G, and C2611T.

Fig. S1 Schematic diagram illustrating the crRNA design for the detection A2059G and C2611T. (A) crRNA for the identification of A2059G and one synthetic mismatches are highlighted. (B) crRNA for the identification of C2611T; one synthetic mismatches are highlighted in crRNA1 and two synthetic mismatches are highlighted in crRNA2. (C) Fluorescence intensity of crRNA1 and crRNA2 for the detection of C2611T and wild-type template (n=3 technical replicates). (D) The ratio of fluorescence intensity of C2611T to WT.

Fig. S2 Sensitivity and specificity of the SHERLOCK assay for the detection of porA, A2059G, and C2611T. (A) Sensitivity of porA gene detection (n=3 technical replicates, two-tailed Student t-test; ns, not significant; **, p < 0.01; ****, p < 0.0001; bars represent mean ± SEM). (B) Specificity of porA detection (n=3 technical replicates). (C) Sensitivity of A2059G detection (n=3 technical replicates, two-tailed Student t-test; ns, not significant; ****, p < 0.0001; bars represent mean ± SEM). (D) Specificity of A2059G detection (n=3 technical replicates). (E) Sensitivity of C2611T detection (n=3

technical replicates, two-tailed Student t-test; ns, not significant; ***, p < 0.001; ****, p
< 0.0001; bars represent mean ± SEM). (F) Specificity of C2611T detection (n=3
technical replicates).

576	Fig. S3 Fluorescence intensity relative to azithromycin resistance mutation strain
577	detection. (A) Fluorescence intensity of the SHERLOCK assay for the detection of 16
578	Neisseria gonorrhoeae strains (8 A2059G mutant strains and 8 wild-type strains) for
579	A2059G detection. (n=3 technical replicates, two-tailed Student t-test; ns, not significant;
580	*, p < 0.05, ***, p < 0.001; ****, p < 0.0001; bars represent mean \pm SEM). (B)
581	Fluorescence intensity of 16 N. gonorrhoeae strains (8 C2611T mutant strains and 8
582	wild-type strains) for C2611T detection. (n=3 technical replicates, two-tailed Student
583	t-test; ns, not significant; ****, $p < 0.0001$; bars represent mean \pm SEM)
584	

585

586 Figure

587	Fig. 1	Schematic	overview	of the	SHERLOC	K assay.
001		~~~~~	0.01.10.0	01 111	STILL 0 0	

Fig. 2 Validation of the SHERLOCK assay for urine samples.

	-51 -01 -02 -02 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04	•	•		•	•	•	•	•	•	•	* 	*		•••••••	••••••	••••••			•••••					•••••••				
591	Roche Cobas 4800 results	+ Sample-1	+ Sample-2	+ Sample-3	+ Sample-4	+ Sample-5	+ Sample-6	+ Sample-7	+ Sample-8	+ Sample-9	+ Sample-10	+ Sample-11	+ Sample-12	- Sample-13	- Sample-14	- Sample-15	- Sample-16	- Sample-17	- Sample-18	- Sample-19	- Sample-20	- Sample-21	- Sample-22	- Sample-23	No input				
592																													
593																													
594																													
595																													
596																													
597	Fig. 3 Ide	nti	fic	atio	on	of	the	e S	HI	ER	LC	C	K	ass	ay	fo	or ti	he	ide	ent	ifio	cat	ioı	10	f tl	he .	A2()590	31
598	mutation.																												

601 **Fig. 4** Evaluation of the SHERLOCK assay for C2611T point mutation detection.

⁶⁰⁸ gonorrhoeae.

611 Fig. 6 Fluorescence intensity of *N. gonorrhoeae* SHERLOCK assay for the detection of

616 per reaction)

Assay	104	10 ³	10 ²	10 ¹	10 [°]	Wild type ^a
porA	3/3	3/3	3/3	3/3	0/3	N/A
A2059G	3/3	3/3	3/3	0/3	0/3	0/3
C2611T	3/3	3/3	3/3	3/3	0/3	0/3

617 ^aN/A, not applicable

618

619 **TABLE 2** Specificity of porA detection and 23S rRNA point mutation identification

	Assay ^a						
Organism	porA	A2059G	C2611T				
porA	Pos	N/A	N/A				
A2059G template	N/A	Pos	Neg				
C2611T template	N/A	Neg	Pos				
Neisseria Meningitidis	Neg	Neg	Neg				
Treponema pallidum	Neg	Neg	Neg				
Herpes Simplex Virus-1	Neg	Neg	Neg				
Herpes Simplex Virus-2	Neg	Neg	Neg				
Human Papilloma Virus-2	Neg	Neg	Neg				
Human Papilloma Virus-7	Neg	Neg	Neg				
Candida Albicans	Neg	Neg	Neg				
Trichomonas Vaginalis	Neg	Neg	Neg				
Chlamydia Trachomatis	Neg	Neg	Neg				
Ureaplasma Urealyticum	Neg	Neg	Neg				
Mycoplasma Humanum	Neg	Neg	Neg				
Escherichia Coli	Neg	Neg	Neg				
Enterococcus Faecalis	Neg	Neg	Neg				

620 ^aPos, positive; Neg, negative; N/A, not applicable.

622 Supplementary Data

- 623 Figure
- 624 Fig. S1 Schematic diagram illustrating the crRNA design for the detection A2059G and
- 625 C2611T.

Fig. S2 Sensitivity and specificity of the SHERLOCK assay for the detection of porA,
A2059G, and C2611T.

Fig. S3 Fluorescence intensity relative to azithromycin resistance mutation straindetection.

648 **Table S1** Applying Neisseria gonorrhoeae SHERLOCK for detection of urethritis

Comple ID			Assay ^a			
Sample ID	Clinical diagnosis	роА	A2059G	C2611T	Sanger sequencing	
S1	urethritis	Pos	Neg	Neg	WT	
S2	urethritis	Pos	Neg	Neg	WT	
S3	urethritis	Pos	Neg	Neg	WT	
S4	urethritis	Pos	Neg	Neg	WT	
S5	urethritis	Pos	Neg	Neg	WT	
S6	urethritis	Pos	Neg	Neg	WT	
S7	urethritis	Pos	Neg	Neg	WT	
S8	urethritis	Pos	Neg	Neg	WT	
S9	urethritis	Pos	Neg	Neg	WT	
S10	urethritis	Pos	Neg	Neg	WT	
S11	urethritis	Pos	Neg	Neg	WT	
S12	urethritis	Pos	Neg	Neg	WT	
S13	urethritis	Pos	Neg	Neg	WT	
S14	urethritis	Pos	Neg	Neg	WT	
S15	urethritis	Pos	Neg	Neg	WT	
S16	urethritis	Pos	Neg	Neg	WT	
S17	urethritis	Pos	Neg	Neg	WT	
S18	urethritis	Neg	Neg	Neg	N/A	
S19	urethritis	Neg	Neg	Neg	N/A	
S20	urethritis	Neg	Neg	Neg	N/A	
S21	urethritis	Neg	Neg	Neg	N/A	
S22	urethritis	Neg	Neg	Neg	N/A	
S23	urethritis	Neg	Neg	Neg	N/A	
S24	urethritis	Neg	Neg	Neg	N/A	
S25	urethritis	Neg	Neg	Neg	N/A	
S26	urethritis	Neg	Neg	Neg	N/A	
S27	urethritis	Neg	Neg	Neg	N/A	

^aPos, positive; Neg, negative; N/A, not applicable.

650 ^bWT, 23S rRNA wild type strain

651

652 **Table S2** Primer and crRNA sequences

Sequence ID	Target gene	Sequences (5'-3')					
			this study				
porA-RPA-F	porA	GAAATTAATACGACTCACTATAGGGCCGGAACTGGTTTCATCTGATT	RPA				
porA-RPA-R	porA	GATTTTCCGGTTTCAGCGGCAGCATTCAAT	RPA				
norA orBNIA	norA		CRISPR/Cas				
	ροιΑ		13a				
A2059G-RPA-	A 2059C		PDA				
F	A20000		NA				
A2059G-RPA-	A 2059C		PDA				
R	A20390						
A2059G-crRN	A2059G		CRISPR/Cas				
А	A20000		13a				
C2611T-RPA-	C2611T	GAAATTAATACGACTCACTATAGGGCCCAAGGGTATGGCTGTTCGCCATTTAAAG	RPA				
F	020111		NA				
C2611T-RPA-	C2611T	TTACAACCGGTACACCAGAGGTTCGTCCAC					
R	020111						
C2611T-crRN	C2611T	GATTTAGACTACCCCAAAAACGAAGGGGGACTAAAACAGAGGCCAAACTGTCTCACGACGTTT	CRISPR/Cas				
A-1	020111		13a				
C2611T-crRN	C2611T	GATTTAGACTACCCCAAAAAACGAAGGGGACTAAAACAGAGGCCTAACTGTCTCACGACGTTT	CRISPR/Cas				
A-2	020111		13a				
porA-F	porA	ATTCAGACCGGCATAATACACATCC	PCR				
porA-R	porA	TAATGTGGCTTCGCAATTGGGT	PCR				
A2059G-F	A2059G	GTGCCGGAAGGTTAATTGAA	PCR				
A2059G-R	A2059G	CAGGGTGGTATTTCAAGGAC	PCR				
C2611T-F	C2611T	CTGCGAGACCGACAAGTC	PCR				
C2611T-R	C2611T	GTCTCGAACGACCCTTTAG	PCR				
23SrRNA-F	23SrRNA	ACGAATGGCGTAACGATGGCCACA	Sequencing ¹				
23SrRNA-R	23SrRNA	ттсетссастссеетсстсета	Sequencing ¹				

653 1. Ng LK, Martin I, Liu G, Bryden L. Mutation in 23S rRNA associated with macrolide

654 resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2002
655 Sep;46(9):3020-5