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Abstract 

The proportional recovery rule (PRR) posits that most stroke survivors can expect to reverse a 
fixed proportion of motor impairment. As a statistical model, the PRR explicitly relates change 
scores to baseline values – an approach that has the potential to introduce artifacts and flawed 
conclusions. We describe approaches that can assess associations between baseline and 
changes from baseline while avoiding artifacts either due to mathematical coupling or 
regression to the mean due to measurement error. We also describe methods that can 
compare different biological models of recovery. Across several real datasets, we find evidence 
for non-artifactual associations between baseline and change, and support for the PRR 
compared to alternative models. We conclude that the PRR remains a biologically-relevant 
model of recovery, and also introduce a statistical perspective that can be used to assess future 
models. 
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Intuition, experience, and data suggest that patients with worse motor impairment in the 
immediate post-stroke period will also typically see the largest absolute reductions in 
impairment during the first three to six months of recovery. However, rigorously quantifying 
this observation has proved challenging. The proportional recovery rule (PRR) was an early 
attempt to describe the relationship between initial impairment and recovery through the 
investigation of upper-extremity Fugl-Meyer assessments (FMA-UE) at baseline and at 
subsequent follow-up visits, with recovery defined as the change over time (Prabhakaran et al. 
2008; Krakauer and Marshall 2015). This work indicated that, on average, a large subset of 
patients recovered roughly 70% of the maximal potential recovery from impairment, but a 
biologically distinct and smaller subgroup recovered much less (“non-recoverers”). Since its 
introduction, the PRR has been applied across several neurological domains, implemented in 
various ways across studies, and evaluated using several different statistical metrics (Lazar et al. 
2010; Winters et al. 2015; Winters et al. 2017; Veerbeek et al. 2018; Byblow et al. 2015). In a 
recent article, we sought to reestablish the original conceptualization of the PRR as a 
regression model for describing of recovery from upper limb impairment (Kundert et al. 2019). 

The PRR has, in recent years, come under fire. Many of the criticisms hinge on statistical 
questions about the relationship between baseline values and change scores; a relationship 
that is often fraught, counterintuitive, and has confounded researchers and statisticians for 
decades. Bringing these issues to the fore and illustrating the ways they affect analyses of 
stroke recovery has spurred an important and informative debate. Specifically, there are 
questions about the usefulness of correlations in the case when there is mathematical coupling 
from inclusion of the baseline value in the change score, the distinction between population-
level descriptions and patient-level predictions; the usefulness of the PRR in functional domains 
other than upper-extremity motor control; the identification of “non-recoverers”, both 
prospectively and retrospectively; and the possibility that ceiling effects exaggerate 
associations or introduce non-linearity not accounted for by the PRR (Hope et al. 2018; Hawe, 
Scott, and Dukelow 2019; Bonkhoff et al. 2020; Bowman et al. 2021).  

The growing meta-literature discusses the PRR in an abstract way, focusing on a baseline 𝑥, a 
single follow-up 𝑦, the change 𝛿 = 𝑦 − 𝑥, and all the various correlations among them. Readers 
could be forgiven for asking how an intuitive formula for expected recovery spawned its own 
cottage industry, and why arguments about the PRR have become so esoteric. We suspect that 
many, by now, would prefer a simple judgment on the truth of the PRR without a winding 
statistical detour. We’re sympathetic to this perspective, but find the detour necessary as the 
nuanced and sometimes counterintuitive statistical arguments are critical to get right for the 
sake of furthering our understanding of the biological mechanisms of recovery.  

Our goals are to discuss the statistical issues relevant to the PRR clearly, to describe 
appropriate analysis techniques, and to resolve arguments where possible. We discuss valid 
but non-standard hypothesis tests for correlations, framed to distinguish true signal from 
artifact. This is not necessarily the same as distinguishing between the PRR and other models of 
recovery; we therefore evaluate competing models based on their ability to predict outcomes. 
Much of this discussion assumes that “recoverers” and “non-recoverers” can be differentiated, 
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and mainly focuses on models for recoverers. That said, the existence of distinct recovery 
groups complicates the quantification of recovery. We discuss the hazards of applying 
advanced statistical methods in settings where they aren’t justified by the data, and discuss 
ways of testing whether observed data are consistent with a hypothesized generating 
mechanism. Throughout, we use simulated datasets and data taken from several published 
studies of recovery to illustrate our statistical points. In some places, the discussion is 
unavoidably technical, but the aim is to focus on the details that are pertinent to the core 
question: Is there is a true systematic relationship between impairment and change in 
impairment after stroke? If the answer is yes, then this would imply that there is important 
biological work to be done to explain the mechanism for this phenomenological regularity. 

Results 

Limitations of the correlation between baseline and change as a measure 
of association 

Although the PRR is best understood as a regression model (Kundert et al. 2019), correlations 
between baseline and follow-up, and between baseline and change have often been used to 
summarize data and are presented as evidence for the rule. A focus on cor(𝑥, 𝛿), where 𝛿 = 𝑦 −
𝑥 is the change between follow-up (𝑦) and baseline (𝑥), is intuitive in the context of recovery. 
The value of this correlation can be effected in unexpected ways due to mathematical 
coupling, most broadly defined as the setting where one value (𝑥) is also included in the 
definition of the second (𝛿). The following relationship is known to hold: 

 
cor(𝑥, 𝛿) =

𝜎!cor(𝑥, 𝑦) − 𝜎"

*𝜎!# + 𝜎"# − 2𝜎"𝜎!cor(𝑥, 𝑦)
= 	

√𝑘cor(𝑥, 𝑦) − 1

*1 + 𝑘 − 2√𝑘cor(𝑥, 𝑦)
 

(1) 

This equation shows the dependence of cor(𝑥, 𝛿) on cor(𝑥, 𝑦) and the variance ratio 𝑘 = $!"

$#"
. 

The relationship between these quantities, visualized as a three-dimensional surface by Hope 
and colleagues (Hope et al. 2018), is shown as a contour plot in Figure 1. For reasons that will 
become clear shortly, we highlight the contour corresponding to 𝑘 = 1, where baseline and 
follow-up have equal variance. Other contour lines in this figure correspond to fixed values of 𝑘 
ranging between 0.01 and 4. 

An immediate observation from this plot is that the range of possible values for cor(𝑥, 𝛿) 
depends on cor(𝑥, 𝑦). When cor(𝑥, 𝑦) = 0, for example, cor(𝑥, 𝛿) is restricted to lie in [−1,0] 
rather than [−1,1]. By itself, this suggests that usual tests for the significance of a correlation in 
which the null value is assumed to be 0 are inappropriate for investigations of recovery. 
However, as we’ll see shortly, this does not suggest that hypothesis tests are impossible – only 
that more appropriate ones are necessary. 
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The dependence of cor(𝑥, 𝛿) on cor(𝑥, 𝑦) and 𝑘 = $!"

$#"
 is the basis for two related criticisms of 

using the correlation between baseline and change as a statistical measure of recovery. First, 
the canonical example of coupling is the setting in which when baseline (𝑥) and follow-up (𝑦) 
are uncorrelated and have the same variance. This situation is represented by the point on the 

surface where cor(𝑥, 𝑦) = 0 and the variance ratio 𝑘 = $!"

$#"
= 1. In this setting cor(𝑥, 𝛿) = −0.71 – 

a value that, for some, is unexpectedly high and casts doubt on any large correlation between 
baseline and change (Hope et al. 2018; Hawe, Scott, and Dukelow 2019). 

A broader argument relates to settings where measurements at follow-up have much lower 
variance than initial values, as is typically the case for studies of recovery. In cases where 𝑘 is 
small, cor(𝑥, 𝛿) may be “(non-trivially) stronger than cor(𝑥, 𝑦)” and therefore spurious or 
misleading (Hope et al. 2018). Settings with small values of 𝑘 have been described as 
“degenerate” in that cor(𝑥, 𝛿) will approach −1 (Bonkhoff et al. 2020); as Figure 1 makes clear, 
this is a concern for any value of cor(𝑥, 𝑦). 

The recognition of these statistical issues, and the role they have played in understanding 
recovery, reveals some limitations of using correlation to measure the association between 
baseline and change and produce evidence for the significance of this association. By itself, 
cor(𝑥, 𝛿) will give at best an incomplete understanding of recovery, and traditional hypothesis 
tests (focusing on 0 as a null value) are inappropriate. That said, these criticisms don’t 
invalidate the PRR – they aren’t even directly relevant to the PRR. Instead, they clarify the 
importance of understanding the relationship between cor(𝑥, 𝛿), cor(𝑥, 𝑦) and the variance 

ratio 𝑘 = $!"

$#"
; the importance of each these in the studies of recovery; and the use of 

appropriate summaries of the data. 

Distinguishing true and artifactual signals 

To paraphrase the previous section, when the variance ratio is small, large values of cor(𝑥, 𝛿) 
can arise from a wide range of cor(𝑥, 𝑦). It has been argued that high correlations between 
baseline and change are invalid unless they are accompanied by high correlations between 
baseline and follow-up. 

Refutation of this view has a long history in the statistical literature. Oldham (Oldham 1962) 
argues that a variance ratio other than 1 is evidence for some real effect or process: “Unless 
some agent has caused a change of standard deviation between the two occasions, 𝜎"# will 
equal 𝜎!#”. This argument is slightly more complicated when the outcome measure is bounded, 
a setting Oldham did not consider but that arises in stroke recovery. Heterogeneous recovery 
that depends on initial impairment could be the agent that causes a reduction in variance; 
alternatively, variance may be reduced because recovery is homogeneous but subject to 
ceiling effects or because the impairment scale is nonlinear. In any case, when 𝑘 < 1 the 
amount of recovery is related to the baseline value in a way that is not attributable to 
mathematical coupling, and differentiating between explanations is necessary after ruling out 
coupling. Oldham’s method, which derives from the role of the variance ratio in studies where 
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baseline and change are important, formalizes this concept and is a commonly-used approach 
for understanding the relationship between baseline and change; it will be presented in the 
next section. 

The value of cor(𝑥, 𝛿) depends on the variance ratio 𝑘 and on cor(𝑥, 𝑦). The variance ratio can 
be used as a measure of the extent to which recovery depends on baseline values, regardless 
of the value of cor(𝑥, 𝑦). Meanwhile, cor(𝑥, 𝑦) indicates whether follow-up values are related to 
baseline, regardless of 𝑘. Thus cor(𝑥, 𝑦) is relevant for questions of patient-level prediction 
although, as we’ll argue later, correlations are less useful than direct measures of prediction 
accuracy. 

We simulate four datasets with different values of cor(𝑥, 𝑦) and 𝑘: 

• A: cor(𝑥, 𝑦) = 0 and 𝑘 = 1 
• B: cor(𝑥, 𝑦) = .9 and 𝑘 = 1 
• C: cor(𝑥, 𝑦) = 0 and 𝑘 = .16 
• D: cor(𝑥, 𝑦) = .9 and 𝑘 = .16 

All datasets have 𝑥 values generated from a Normal distribution with mean 30 and standard 
deviation 14, and consist of 30 simulated subjects. Datasets A and B have follow-up values (𝑦) 
with mean 30, while datasets C and D have follow-up values with mean 53 (variances at follow-
up are determined by the variance ratio). The left panels in Figure 1 show baseline and follow-
up values (top row) and scatterplots of 𝛿 against initial impairment (bottom row), with initial 
impairment defined as 𝐹𝑀%&" − 𝑥 = 66 − 𝑥. The right panel indicates the placement of these 
datasets on the contour plot of cor(𝑥, 𝛿). 

 

Figure 1: The left panels show four simulated datasets, labeled A, B, C, and D. In the top row, panels 
show outcome values and baseline (x) and follow-up (y). In the bottom row, panels show change (delta) 
against initial impairment (66 - x). The right panel shows a contour plot of Equation 1, with contours 
corresponding to values of the variance ratio k and the contour for k = 1 highlighted. Points on this 
surface show correlation values obtained for Dataset A through D. 
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Dataset A is a canonical example of mathematical coupling, a setting that results in cor(𝑥, 𝛿) =
−0.71. Like Dataset A, Dataset C has cor(𝑥, 𝑦) = 0, but the variance ratio is lower. Given our 
emphasis on 𝑘 and on cor(𝑥, 𝑦), any debate about whether cor(𝑥, 𝛿) for this dataset might be 
called “spurious” is less relevant than (i) the true reduction in variance that results from 
recovery; and (ii) the true association between the baseline value and the magnitude of 
change. Indeed, despite the inability of the baseline value to usefully predict follow-up in 
Dataset C, these data represent in which baseline values can be used to predict change in a 
non-artifactual way, which is a setting that Oldham and many others since have argued is 
important (Oldham 1962; Tu and Gilthorpe 2007). 

In contrast, Datasets B and D have large cor(𝑥, 𝑦), which suggests an ability to predict follow-
up using baseline with some degree of accuracy. In Dataset B, change from baseline to follow-
up is constant with some patient-level noise, and accurate predictions at follow-up are a simple 
byproduct of that constancy. Dataset B is also, arguably, irrelevant: whether due to 
measurements that are truly nonlinear, ceiling effects, or proportionality, motor impairment 
recovery is marked by heterogenous recovery across subjects. 

Dataset D represents the least controversial scenario. There is recovery heterogeneity that is 
predictable based on initial values and results in a variance ratio that is less than one, and the 
initial values meaningfully predict outcomes at follow-up. This isn’t artifactual: the variance ratio 
and correlations don’t arise either from coupling or regression to the mean due to 
measurement error. Real data that are similar to these are suggestive of an underlying 
biological recovery process in which baseline values predict change and final outcomes.  

Taken together, the simulated datasets in this section illustrate the relationship between 
cor(𝑥, 𝑦), 𝑘, and cor(𝑥, 𝛿), as well as the kinds of observed data that can give rise to various 
combinations of these values. The examples highlight discrepancies between cor(𝑥, 𝑦) and 
cor(𝑥, 𝛿) to illustrate their shortcomings when viewed individually. We also identify a setting, 
typified by Dataset D, in which each measure suggests the presence of a relevant association. 
It is not the case that data like these necessarily imply that recovery follows the PRR. Other 
biological models could produce data similar to Dataset D, and how to compare competing 
models will be considered in later sections. 

Recasting Oldham’s method 

Equation (1) and Figure 1 show that cor(𝑥, 𝑦) and 𝑘 determine the value of cor(𝑥, 𝛿) in ways 
that can be counterintuitive. When cor(𝑥, 𝑦) = 0, for example, an appropriate null value for a 
hypothesis test of cor(𝑥, 𝛿) is -.71 rather than 0, because this corresponds to “no recovery” or 
𝑘 = 1; a table in the appendix provides null values for hypothesis tests of cor(𝑥, 𝛿) under a 
range of values of cor(𝑥, 𝑦). However, like others, we think the possible confusion around 
cor(𝑥, 𝛿) as a measure of evidence make it less suitable than other approaches. 

Oldham’s method suggests to use cor("'!
#
, 𝑥 − 𝑦), or simply cor(𝑥 + 𝑦, 𝑥 − 𝑦), in place of 

cor(𝑥, 𝛿). This correlation is zero, rather than −.71, in the canonical example of mathematical 
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coupling. Indeed, this correlation is zero if and only if 𝑘 = 1 – regardless of cor(𝑥, 𝑦), and even 
in many cases where measurement error or other processes might affect the ability to reliably 
measure outcomes at baseline and follow-up. Thus, Oldham’s method often guards against 
false conclusions due to mathematical coupling and regression to the mean due to 
measurement error. 

Instead of cor(𝑥 + 𝑦, 𝑥 − 𝑦), we prefer to focus on the variance ratio 𝑘. Values of 𝑘 that differ 
from 1 suggest non-artifactual associations between baseline and change. In parallel, we 
examine the correlation cor(𝑥, 𝑦), which is equal to zero under the null hypothesis that follow-
up values are uncorrelated with baseline. These are important but distinct; erroneous 
suggestions that very small values of 𝑘 produce spurious correlations seem to stem from 
conflating the two. We again emphasize that these tests are intended to assess whether 
correlations are “artifactual”, but not to evaluate support for the PRR in comparison to 
competing models. For instance, as noted by both (Hope et al. 2018) and (Hawe, Scott, and 
Dukelow 2019), Oldham’s method does not address the possibility of ceiling effects; in our 
view, determining which process gives rise to observed correlations comes after assessing 
whether those correlations are artifacts driven by coupling. 

Parametric hypothesis tests are available for both 𝑘 and cor(𝑥, 𝑦), but depend on assumptions 
that may be unmet in the context of stroke recovery. We also argue for specific null values of 
both 𝑘 and cor(𝑥, 𝑦), although other choices are possible; one might instead choose “random 
recovery” described in Lohse et al (2021) as a null distribution and identify corresponding 
values. Instead of a parametric approach, we suggest a resampling-based one that can 
compare to the null values we suggest, and we describe how this method can be used for 
other null distributions. See Methods for details. A web-based app is available to carry out this 
analysis (https://jeff-goldsmith.shinyapps.io/prr_dashboard/). 

Correlations, variance ratios, and regression 

Correlations have often been taken as evidence for the PRR. These are imperfect – cor(𝑥, 𝛿) 
can be counterintuitive even if, as we’ve seen, viable and appropriate analyses using 𝑘 and 
cor(𝑥, 𝑦) are available. More importantly, the PRR is best understood as a regression model in 
which initial impairment is used as a predictor of change. Null-value hypothesis testing in a 
regression-based view of the PRR can be difficult for reasons that are analogous to those for 
correlations; appropriate null values are non-standard. Here we suggest null value tests for 
regression coefficients and 𝑅# based on the understanding developed for correlations.  As with 
correlations, other null values (such as those observed for “random recovery”) are also 
possible. In later sections, we consider alternative ways to evaluate the PRR as a regression 
model. 

A simple linear regression of 𝛿 on ii = max− 𝑥, where max is the maximum possible value of 
the scale and max− 𝑥 is initial impairment, can be written 

𝛿 = 𝛽( + 𝛽)ii+ 𝜖. 
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The following expressions relate regression parameters and diagnostics to cor(𝑥, 𝑦) and 𝑘: 

• 𝛽)> = 1 − cor(𝑥, 𝑦)√𝑘 

• 𝑅# = cor(𝑥, 𝛿)# = ? *$+

,-.#*$+.)
@

#

 

From these, we conclude first that cor(𝑥, 𝑦) = 0 implies 𝛽)> = 1. This suggests that usual 
hypothesis tests of the slope which assume a null value of 0 should instead assume a null value 
of 1. Moreover, this test measures the association between baseline and follow-up, and slopes 
that differ significantly from one suggest that baselines can be used to predict follow-up 
values. Second, we see that the amount of variation explained depends on both cor(𝑥, 𝑦), 
through the estimated slope, and on the variance ratio; for example, in the canonical example 
of mathematical coupling, 𝑅# = 0.5. Resampling-based tests for the slope and 𝑅# can be 
performed analogously to those for 𝑘 and cor(𝑥, 𝑦) using these (or other) null values.  

Like cor(𝑥, 𝛿), 𝑅# should be interpreted with caution: the preceding expression provides a way 
to determine the expected or null 𝑅# for a given slope and 𝑘 = 1, which can be used as a frame 
of reference for observed 𝑅# values. 𝑅# values that depart from the null value may suggest 𝑘 ≠
1 and, by extension, changes that are related to baseline in a way that systematically reduces 
the variance ratio. As in the previous section, based on this analysis it will remain unclear 
whether a statistically significant difference is attributable to proportional recovery, ceiling 
effects, or some other process; distinguishing between models is the subject of later sections.  

The above expression for 𝑅# is in the context of a regression of change on initial impairment, 
which will differ from the 𝑅# arising from a regression of the follow-up value on the baseline 
observation. Because these 𝑅# values are the square of cor(𝑥, 𝛿) and of cor(𝑥, 𝑦), respectively, 
much of our previous discussion applies here. The initial value 𝑥 may explain a higher 
proportion of variation in 𝛿 than in 𝑦; this setting is not necessarily artifactual, and high 𝑅# in 
the regression of change on baseline can be important even when 𝑅# in the regression of 
follow-up on baseline is low, just as high cor(𝑥, 𝛿) can be important even when cor(𝑥, 𝑦) is low. 

The inclusion of the intercept 𝛽( in the simple linear regression differs from the usual 
formulation of the PRR and helps to establish clear connections between a correlation-based 
and a regression-based perspective. This is helpful for evaluating the results of past studies, 
especially results expressed in terms of percent variation explained, and refines the use of both 
correlations and regressions as evidence for the PRR.  

Similar to correlations and variance ratios, results from a regression-based analysis can, when 
understood correctly, help assess evidence for the PRR in a given dataset: establishing 
statistical significance using appropriate tests, along with evaluation of regression diagnostics, 
will suggest whether data are consistent with the PRR. However, all these approaches measure 
only linear associations, and neither compare the PRR to alternative models for recovery nor 
evaluate the ability of the PRR to make accurate predictions about patient outcomes.   
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Comparing distinct biological models for recovery 

The PRR was developed as a model to explain recovery from motor impairment after stroke. 
Quantitative results, illustrated in Dataset C, show it’s possible for recovery, defined as the 
change from baseline to follow-up, to be related to baseline values even when follow-up is not 
predicted well by baseline. But the ability to predict patient outcomes at follow-up is important 
in itself, and predictive performance can form a basis for comparing the PRR to alternative 
biological models for recovery. We suggest cross validation (CV) as a means to compare 
models, using median absolute prediction error (MAPE) in held-out data to measure predictive 
accuracy (lower MAPE values reflect higher prediction accuracy). Details are available in 
Methods.  

To illustrate how prediction accuracy might be used to distinguish between competing models 
for recovery, we generate three datasets under different recovery mechanisms and use CV to 
evaluate candidate models. The first two Datasets, which we’ll label C200 and D200, are 
generated using the same process as Datasets C and D above but consist of 200 patients. 
Dataset E200 is similar to Dataset B, but has a latent follow-up mean of 70 rather than 30. 
Follow-up values greater than 66 are subject to threshold, with randomness added to reflect 
small deviations from the maximum attainable value. That is, Dataset E200 implements large, 
constant recovery (with some noise) and imposes a ceiling.  

We consider three models for the association between 𝑦 and 𝑥. First, we assume that 𝑦 values 
are randomly distributed around a common mean value, and do not depend on 𝑥; this is an 
intercept-only regression model, and the mean of observed 𝑦 values is used to predict future 
outcomes. Second, we implement the PRR (without intercept) to estimate 𝛿 given 𝑥, with 𝑦 
taken to be 𝑥 + 𝛿. Third, we assume that 𝑦 depends on 𝑥, but allow the association to be 
smooth and nonlinear using a generalized additive model; in contrast to the PRR, this does not 
assume a constant recovery proportion, and focuses on predicting the follow-up value directly. 
These models are most appropriate for Datasets C200, D200, and E200, respectively, although the 
additive model also includes the intercept-only model and the PRR as special cases. 
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Figure 2: The top panels show three simulated datasets with true outcome values and baseline (x) and 
follow-up (y); a horizontal line indicates a ceiling on observed values. In the bottom row, panels show the 
observed (ceiled) value at follow-up against the baseline value. Fitted values from an intercept-only 
model (Int), a generalized additive model (GAM), and the PRR are show in the bottom row.  

The top row in Figure 2 show baseline and follow-up values and scatterplots of observed 
(ceiled) 𝑦 against 𝑥 (bottom row). The panels in the bottom row of Figure 2 clarify the 
relationship between the data generating mechanism and the ability of 𝑥 to predict 𝑦; in each 
panel, fitted values from each of the three candidate models are overlaid. Unsurprisingly, for 
Dataset C200, there is no apparent relationship between 𝑥 and 𝑦 – these data are generated 
under cor(𝑥, 𝑦) = 0. Dataset D200 is a case when baseline values are predictive of change and 
outcomes. In Dataset E200, the expected 𝑦 increases linearly with 𝑥 until reaching a plateau, and 
then is uniformly near the maximum value. 
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Figure 3: Each panel shows the distribution of median absolute prediction errors (MAPE) obtained using 
cross validation for each of three models. Panels correspond to the simulated datasets shown in Figure 
2. Models compared are an intercept-only model (Int), a generalized additive model (GAM), and the 
PRR. 

Figure 3 shows the result of our cross-validation procedure applied to Datasets C200, D200, and 
E200; panels show the distribution of MAPE across repeated training / testing splits. For Dataset 
C200, the intercept-only model is the best performer; the PRR suffers from the lack of an 
intercept, which produces a bias in the predictions. The additive model, meanwhile, is 
comparable to the intercept-only model, with a very slight increase in MAPE due to the 
flexibility of the model. For Dataset D200, the intercept-only model is the worst performer, while 
the (true) PRR and additive models are similar. Finally, for Dataset E200, only the additive model 
is flexible enough to capture the underlying non-linear association between 𝑦 and 𝑥. 

These results suggest that cross validation can effectively identify a best (or worst) model on 
the basis of prediction accuracy. When two or more models are similarly accurate, other 
considerations may be relevant. In Datasets C200 and D200, for example, the additive model 
contains the true, simpler model as a special case and is needlessly complex. We also 
emphasize a limitation of cross validation, which is the exclusive focus on prediction accuracy. 
This is analogous to using only cor(𝑥, 𝑦) to understand recovery, rather than cor(𝑥, 𝑦) and 𝑘 
together. As we have discussed elsewhere, dismissing observations like those in Dataset C200 as 
uninteresting because baseline does not predict follow-up would be a mistake: the correlation 
between baseline and change does not arise from mathematical coupling and may reflect 
important recovery mechanisms. We therefore suggest CV as one component of a careful 
analysis.  

Results for reported datasets 

We now evaluate three previously reported datasets in light of the preceding; see Methods for 
descriptions.  

Figure 4 illustrates each of these example datasets. In the left panels, we show observed FM 
values for patients at baseline and follow-up (top row), and scatterplots of change against 
baseline (bottom row). Throughout, we differentiate recoverers and non-recoverers as specified 
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in the original analyses. The right panel shows the contour plot of cor(𝑥, 𝛿), with points 
corresponding to observed values among recoverers for each dataset. These values cluster in 
the bottom right corner, with reasonably large values of cor(𝑥, 𝑦) and 𝑘 < 1. 

 

Figure 4: The left panels show three real datasets. In the top row, panels show outcome values and 
baseline (x) and follow-up (y); points are colored to indicate recoverers (purple) and non-recoverers 
(yellow) using the definitions from each paper describing the data. In the bottom row, panels show 
change (delta) against initial impairment (66 - x), again separating recoverers and non-recoverers. The 
right panel shows a contour plot of Equation 1, with contours corresponding to values of the variance 
ratio k and the contour for k = 1 highlighted. Points on this surface show correlation values obtained for 
the real datasets. 

We next conducted the bootstrap analysis on the subsample of recoverers to obtain inference 
for 𝑘 and cor(𝑥, 𝑦). We display the results using 1000 bootstrap samples for each dataset in the 
contour plot in Figure 5, showing the null value corresponding to random recovery for 
reference, and summarize the results using 95% confidence intervals in the Table 1. For each 
dataset, there is strong evidence that 𝑘 and cor(𝑥, 𝑦) differ from our suggested null values (1 
and 0, respectively), and from those corresponding to random recovery. That is, we have 
evidence both that recovery is related to baseline values in a way that reduces variance at 
follow-up, and also that baseline values are predictive of follow-up. 
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Figure 5: Each panel shows the results of the bootstrap procedure used to obtain inferences about the 
value of correlations and variance ratio. Red points are the values obtained for the full dataset, and blue 
points are values obtained in each of 1000 bootstrap samples; points are overlaid on the contour plot of 
Equation 1. 

Dataset Name 𝑘 cor(𝑥, 𝑦) 

Stinear & 
Byblow 

0.39 [0.27, 0.54] 0.73 [0.66, 0.79] 

Winters 0.07 [0.05, 0.09] 0.59 [0.49, 0.69] 

Zarahn 0.13 [0.03, 0.24] 0.75 [0.55, 0.92] 

Table 1: Values and 95% confidence intervals for 𝑘 and cor(𝑥, 𝑦) for each of three datasets. Confidence 
intervals are obtained through a bootstrap procedure with 1000 bootstrap samples.  

We compared the performance of three models in terms of predictive accuracy using cross 
validation. As for simulated data, we considered an intercept-only model, the PRR, and an 
additive model. For each dataset, we generated 1000 training / testing splits and summarize 
prediction accuracy using MAPEs. The plots below show the distribution of MAPE across splits 
for each model and dataset. Although it was not originally intended for prediction, the PRR 
consistently outperforms both competitors in terms of prediction accuracy. 
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Figure 6: Each panel shows the distribution of median absolute prediction errors (MAPE) obtained using 
cross validation for each of three models. Panels correspond to the datasets shown in Figure 4. Models 
compared are an intercept-only model, a generalized additive model, and the PRR. 

To provide some frame of reference for the MAPEs reported in Figure 6, in Table 2 we provide 
values for the percent of outcome variation explained by the PRR for each dataset.   

Dataset Name 𝑅! 

Stinear & Byblow 0.55 

Winters 0.35 

Zarahn 0.56 

Table 2: 𝑅! values reflecting the proportion of follow-up (𝑦) variation explained by the PRR for each of 
three datasets. Follow-up values are obtained by adding predicted change from the PRR to observed 
baseline values.  

The preceding results for 𝑘, cor(𝑥, 𝑦), and cross-validated MAPE suggest that data among 
recoverers is consistent with the PRR for each study. These results are not driven by coupling or 
regression to the mean, and a competing model for recovery, specifically, a non-linear 
association between baseline and follow-up, which might arise from near-constant recovery in 
the presence of a ceiling effect, does not produce more accurate predictions than the PRR. 

Distinguishing between recoverers and non-recoverers 

To this point, we have focused on recoverers under the implicit assumption that a biologically 
distinct group of non-recoverers exists and can be identified. This assumption is supported by 
prior studies of upper limb motor control and deficits in other domains (Prabhakaran et al 2008, 
Byblow et al. 2015, Winters et al. 2016, Zandvliet et al. 2020), and promising work suggests it is 
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possible to identify non-recoverers using baseline characteristics (Byblow et al. 2015). However, 
the identification of non-recoverers has not been approached in the same way across studies, 
and there is concern that data-driven methods can produce misleading results in some 
circumstances (Hawe, Scott, and Dukelow 2019; Lhose et al 2021). It is necessary to understand 
the limitations of some methods for data-driven subgroup identification before assessing 
related arguments about recovery and the PRR. 

Clustering refers to a collection of methods for unsupervised learning that has several 
weaknesses in the context of recovery. It is unclear what clustering approach is best, and 
results can be sensitive to this choice. Perhaps more critically, determining the “true” number 
of clusters present is imprecise and open to interpretation. Although tools like the Gap statistic 
(Tibshirani, Walther, and Hastie 2001; James et al. 2013) can provide guidance, the choice 
between one, two, or more clusters is not supported by hypothesis tests, confidence intervals, 
or other methods for statistical inference. Practitioners are encouraged to try several numbers 
of clusters and cautioned to be aware that there is rarely a single best selection (James et al. 
2013). Results are typically considered exploratory, and assessed for validity based on visual 
inspection or additional supporting information. As such, clustering can provide only limited 
evidence for or against the existence of recoverers and non-recoverers (or finer partitions of 
patients) when examining a specific dataset. At worst, one might simply assume that distinct 
recoverer and non-recoverer clusters exist and can be separated using clustering. Failure to 
critically examine this assumption using visual and quantitative data checks can yield 
misleading results. 

The weaknesses inherent to cluster identification can lead to flawed scientific conclusions. 
Hawe, Scott, and Dukelow (2019) and Lohse et al (2021) show how errors can arise using 
“random” recovery. Put briefly, random recovery assumes follow-up values 𝑦 are uniformly 
distributed between the baseline 𝑥 and the maximum possible value. If data arise via this 
mechanism and it is assumed that two groups exist, the use of clustering will often uncover one 
cluster that appears to follow the PRR with a recovery proportion of roughly 0.75. A dataset 
generated under random recovery and analyzed in this way is shown in the left panel of Figure 
7. 

Based on this, Lohse et al (2021) propose an approach for comparing the PRR to random 
recovery for an observed sample. Data under random recovery can be generated by drawing 
baseline values 𝑥 from the observed values with replacement (to mimic the distribution of 
baseline values in the sample) and then drawing follow-up values 𝑦 from a uniform distribution 
between the baseline 𝑥 and the maximum possible value. This simulated data can be analyzed 
through clustering followed by regression to obtain an observed slope in the “recoverer” 
cluster. By repeating this process many times, one can obtain the distribution of slopes in the 
“recoverer” cluster under random recovery. Treating this as a null distribution, Lohse et al 
(2021) argue, provides a way to quantify whether a slope obtained through the same analysis 
of real data is consistent with random recovery.  
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Figure 7: Both panels show change between baseline and follow-up against initial impairment (66 - 
baseline). Left panel shows data simulated under a ‘random recovery’ process, in which outcome values 
are drawn from a uniform distribution over the baseline value and ceiling. Right panel presents again 
data from Winters et al. 2015.  

However, a narrow focus on the distribution of slopes that arises from random recovery 
bypasses a critical question – whether the results of the clustering analysis themselves are 
consistent with random recovery. Put differently, one must first ask whether there is evidence 
for the existence of distinct clusters in observed data using random recovery to generate a null 
distribution. Viewing data generated under random recovery alongside data obtained in a 
study of upper limb motor control recovery, as in Figure 7, emphasizes this difference. While 
clustering can misleadingly identify a “recoverer” group when data actually follow random 
recovery, visual inspection suggests that an obviously different mechanism underlies the 
Winters dataset. The null distribution of within-cluster dispersion, rather than slopes, provides a 
way to quantify this difference; see Methods for details. Given the contrast between panels in 
Figures 7, it is not surprising that this approach rejects the null of random recovery for these 
data (p < 0.001).  

From this, we conclude that an inappropriate application of unsupervised learning (i.e. one that 
presumes two clusters exists) can produce misleading results. This problem is exacerbated by 
the lack of concrete statistical guidance for determining the number of clusters in a sample. 
(Similar issues can arise in other ways, for example from a definition of non-recoverers as those 
who recover less than expected under the PRR.) Simulations of random recovery, like those in 
Hawe, Scott, and Dukelow (2019) and Lohse et al (2021), are useful for illustrating these issues 
but should not be misinterpreted: the ability to produce slopes like the PRR through analyses 
of simulated data does not refute the PRR (or any other model of recovery). Nor does it argue 
against the existence of meaningful recoverer and non-recoverer groups. In many studies of 
upper limb motor control recovery, a distinct group of non-recoverers is clear from a 
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visualization of the data (and supported through appropriate hypothesis tests) or can be 
identified through a distinct biomarker, and does not artifactually arise through clustering.  

Discussion 

The PRR was discovered while examining for a possible regularity in the relationship between 
initial impairment, as measured by the FM-UE, and recovery in the context of upper limb 
paresis in the time shortly after stroke (Krakauer and Marshall 2015). It was understood as a 
description of the biological change process that underlies observed recovery, and 
subsequently evaluated in other recovery settings. Although it was not intended to form the 
basis for patient-level predictions, the strong correlations between initial impairment and 
recovery has suggested that accurate predictions are possible. At its core, the PRR models the 
association between baseline and change; this is always a fraught statistical problem, and 
recent publications on the PRR have revived longstanding concerns in the context of stroke 
recovery (Hope et al. 2018; Hawe, Scott, and Dukelow 2019; Bonkhoff et al. 2020). 

We have revisited the arguments for the PRR as a descriptive and predictive model, focusing 
on key statistical questions at each step. We identified scenarios in which observed correlations 
are “artifactual” – induced either by mathematical coupling or regression to the mean due to 
measurement error – versus those when they are real signals, emphasizing the variance ratio 
and tests similar to Oldham’s method. For non-artifactual signals, we used cross validation to 
compare models for recovery (e.g.  PRR versus constant recovery with a ceiling); this also 
provides a concrete metric for the clinical usefulness of predictions made by each method. 
Finally, we considered the problem of distinguishing recoverers from non-recoverers, and the 
limitations of unsupervised learning for this problem. 

Our findings in these datasets suggest that the association between initial impairment and 
change is non-artifactual, and the PRR is better as a biological and predictive model than a 
non-linear model that is able to capture associations that arise from constant recovery across 
patients with a ceiling on the outcome. These data also suggest that a biologically distinct 
group of non-recoverers exists. We distinguish between the usefulness of the PRR as a 
biological and a predictive model deliberately: biological models are important for 
understanding the recovery process itself, and accurate predictions are important in clinical 
care. Although the PRR is useful for both, it isn’t necessary that a single model address both 
considerations simultaneously. 

We acknowledge several limitations and caveats. The statistical considerations for recovery are 
nuanced and often counterintuitive. Our arguments deviate from usual null-value hypothesis 
testing, and recognize that zero is often not the appropriate null value. This is related to the 
important observation that “large” correlation values can arise in a variety of settings, which 
complicates but does not invalidate statistical approaches. While we distinguish between the 
usefulness of a model as either biological or predictive, our preferred method for comparing 
models is based only on their predictive accuracy. Cross validation can identify models that 
have better or worse predictive performance, but in itself does not examine the validity of 
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underlying model assumptions or ensure that better-performing models are accurate enough 
to make meaningful clinical predictions. Recoverers and non-recoverers should be identified in 
a way that is not artificial, and that does not serve to introduce evidence for a model of 
recovery that would not otherwise exist. Lastly, we recognize that not every dataset will be 
similar to those we presented; in those cases, we hope the tools we suggest will be used to 
evaluate the PRR against other models. 

The PRR provides an appealingly simple model for understanding recovery, even if the 
statistical approaches for evaluating it are not direct. We argue that the PRR is and will continue 
to be relevant as a model for recovery, but we agree with others that more complex analytic 
strategies are necessary to move beyond it. Recovery depends on factors other than initial 
impairment. The PRR estimates an average recovery proportion, but individuals will recover 
more or less than that average; determining whether this is “noise” or heterogeneity that can 
be predicted using other forms of measure at baseline is an important next step. Similarly, 
reliable techniques to identify non-recoverers at baseline are needed. Different outcome 
measures and different recovery settings may not be well described by the PRR. A specific 
focus on predicting long-term outcomes is an important goal; supervised learning methods 
may be helpful in this, although many of these methods have unclear interpretations. 

More complex models than the PRR do not inherently resolve the statistical issues we’ve raised 
and may in fact make them harder to identify. For example, it’s been suggested that mixed 
models could account for differences in baseline values and change across subjects in a way 
that avoids mathematical coupling by modeling baseline and follow-up values directly (Lohse 
et al. 2021; Bowman et al. 2021). This is true for a specific, non-standard numeric coding of visit 
times, but a more standard mixed model does not avoid coupling. Consider a model for 
outcome values at baseline (time = 0) and a single follow-up (time = 1) that includes both 
random intercepts and random slopes. When such a model is applied to Datasets A, C, and D, 
the random intercepts and slopes will be correlated; low random intercepts will suggest 
steeper random slopes in a way that mimics baseline and change scores. Put differently, to 
predict a follow-up value from baseline, one must use the baseline value to predict a random 
slope using the correlation between random effects. Distinguishing between mathematical 
coupling and recovery that changes the variance ratio remains a problem, but now one that 
involves the correlation of random effects. Alternatively, coding baseline as time = -0.5 and 
follow-up as time = 0.5 induces a model that mimics Oldham’s method, and avoids coupling 
based on similar arguments (Blance, Tu, and Gilthorpe 2005).  

Our point is not that mixed models are a wrong choice – in fact, we are enthusiastic about 
recent work that combines serial measurement, nonlinear trends, random effects, and mixture 
models (van der Vliet et al. 2020). Taken together, these elements can overcome many of the 
limitations introduced by studies that include only baseline and single follow-up observations. 
Serial measurements and careful modeling provide insight into patients’ recovery trajectory, 
reduce effects of measurement error, and identify non-recoverers early in the recovery process. 
Nonetheless, non-linear mixed models fit to serial measurements are not a panacea, and do 
not avoid the challenges described in this paper. The same fundamental issues that arise from 
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within-subject correlation and changing variances over time due to recovery and measurement 
ceilings should be considered when using this or any other model framework. Indeed, more 
complex models may serve to mask these basic issues by making them implicit rather than 
explicit. 

Allowing for differences in datasets, implementations, and performance criteria, our 
results are consistent with those reported in recent papers examining the PRR as a 
predictive model. Bonkhoff et al. 2020 fit several models to a subset of patients 
selected to mitigate ceiling effects and avoid including non-recoverers, and found that 
that PRR was among the best performing models in terms of out-of-sample prediction 
accuracy. The percent of outcome variation explained was lower in their work than in 
our analyses (21% vs 35-56%), leading the authors to suggest that the PRR may be 
better than other models but insufficient for making clinical predictions in the context 
of precision neurology. Our view is a less pessimistic take on the same information: that 
the PRR outperforms competing models (including those intended to account for 
ceiling effects) attests to its value, and the percent of outcome variation explained is 
suggestive of an important biological mechanism that should be investigated and 
understood— even if 𝑅! values are not as high as has been suggested. After all, if it 
were found that a risk factor accounted for greater than 20% of the variance in the 
chance of getting a disease it would immediately be investigated and prevention 
attempted. From the standpoint of clinical prediction, it seems likely that accurate 
models developed in the future will include initial impairment as a covariate, and may 
include a term that reflects proportional recovery. 

In light of this, we stress again that the PRR is intended as a model for recovery from a specific 
form of impairment as measured by the FM, and is best understood as an attempt to 
mathematically capture a component of the recovery process. The emphasis on change 
between baseline and follow-up is deliberate: biological recovery is a process that causes a 
change, which then leads to the final value. Understanding whether recovery varies across 
patients and what mechanism might drive such variability is a fundamental scientific question. 
That the PRR also has some value for predicting final outcomes is to be welcomed but not 
necessary for its biological importance. 

Applications of the PRR in studies of upper limb motor control recovery have often found that, 
averaging across recoverers, roughly 70% of lost function is regained in the time shortly after 
stroke. We’ve argued that this is attributable to spontaneous biological recovery (Cramer 2008; 
Zeiler and Krakauer 2013; Cassidy and Cramer 2017). The existence of such a mechanism does 
not imply that behavioral interventions are unable to improve patient outcomes. Instead, future 
clinical trials should seek to improve on the proportion of impairment reduction, reduce the 
proportion of non-recoverers, or induce changes that are distinct from (and better than) those 
expected under the PRR. 
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Conclusions 

Consideration of associations between baseline, follow-up, and change continues across 
domains despite the statistical challenges, and for good reason: these can be and often are 
related in ways that are not due to artifacts. Our goal here was to clarify statistical reasoning 
concerning the problem of relating baseline to change in the context of stroke recovery. It is 
for the reader to decide whether the work presented here is either a bumpy statistical detour 
or an interesting scenic route. In either case, rigor about this issue is essential for continued 
biological and clinical progress, and it would be unfortunate if the recent spate of papers leads 
to dismissal of the PRR out of either confusion or exhaustion.  

As a model that relates baseline values to change, the PRR requires the application of careful, 
and sometimes counterintuitive, statistical techniques. We have described well-established but 
non-standard approaches to distinguish between artifacts due to coupling from signals that 
arise from true associations, introduced tools to compare competing models for recovery 
based on their predictive accuracy, and elaborated on issues that can arise when using some 
data-driven methods to distinguish recoverers and non-recoverers. In our analyses of real data, 
we found evidence for signals not attributable to coupling and obtained better predictions 
using the PRR than a model that assumes constant recovery (with some noise) up to a ceiling. 
This suggests that the PRR is non-artifactual and remains relevant, at the very least, as a model 
for recovery. Future work should seek to both explain the mechanistic basis for PRR and 
improve upon it as a predictive model. 

Methods 

Reported Datasets 

Details of inclusion and exclusion criteria are available in the referenced literature. All patients 
received usual care according to evidence-based stroke guidelines for physical therapists, but 
no systematic interventions.  

• Stinear & Byblow: combined data from two studies. First, Byblow et al 2015 assessed an a 
priori prediction of proportional recovery based on corticospinal tract integrity using 
transcranial magnetic stimulation to determined motor evoked potential status (MEP+, 
MEP-) for 93 patients within 1 week of first-ever ischemic stroke stroke. FMA-UE were 
obtained at 2, 6, 12, and 26 weeks. Second, Stinear et al 2017 added data from recurrent 
ischemic stroke and intracerebral hemorrhage patients with new upper-limb weakness to 
form a larger dataset of 157 patients, all with known MEP status. Following this work, we 
define recoverers and non-recoverers as MEP+ and MEP-, respectively.    

• Winters: first ever ischemic stroke patients were recruited for the prospective cohort study 
entitled Early Prediction of functional Outcome after Stroke (EPOS) (Nijland et al 2010; 
Veerbeek et al 2011). Data comprise baseline (day 2 post-stroke) and follow-up (day 187 
post-stroke) FMA-UE observations for 223 patients; 211 were originally reported in Winters 
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et al 2015, with recoverers and non-recoverers identified using a hierarchical clustering 
based on average pairwise Mahalanobis distances. 

• Zarahn: data consist of patients with first time ischemic stroke with some degree of clinical 
hemiparesis (NIH stroke scale for the arm >=1). FMA-UE was assessed both at ~2 days 
post-stroke and ~3 months post-stroke and were originally reported in Zarahn et al 2011. 
We focus on the 30 patients in the imaged subsample with publicly available FMA-UE 
values. Recoverers and non-recoverers are determined using baseline FMA-UE > 10.  

Resampling approach for inference on cor(𝑥, 𝑦) and 𝑘 

We suggest a bootstrap procedure to obtain confidence intervals for cor(𝑥, 𝑦) and 𝑘. A single 
bootstrap sample can be constructed by selecting subjects (pairs of both 𝑥 and 𝑦 values) from a 
full dataset with replacement. Next, we compute the values 𝑘 and cor(𝑥, 𝑦) for the bootstrap 
sample. This is repeated a large number of times (e.g. 1000) to produce an empirical 
distribution for the quantities of interest, which can be used to derive corresponding 
confidence intervals. Simulations evaluating this approach suggest that coverage of 95% CIs is 
roughly 0.95 for moderate sample sizes.  

Our suggested null values for 𝑘 and cor(𝑥, 𝑦)  are 1 and 0, respectively, but other values can be 
used. For null hypotheses framed in terms of data generating mechanisms rather than 
parameter values, such as the “random” recovery null hypothesis (Lohse et al 2021), it can be 
difficult to derive the corresponding null values. In these cases, we suggest to obtain empirical 
values by generating a large dataset under the null and computing the 𝑘 and cor(𝑥, 𝑦) directly. 

Cross validation to compare models 

Data are divided into training and testing sets; training data are used to fit models, and these 
models are applied to data in the testing set to obtain predicted outcomes. The difference 
between predicted and observed outcomes in the testing data reflects each model’s ability to 
make accurate predictions of data not used in model development. Comparing models in 
terms of their median absolute prediction error (MAPE) is an established technique for 
choosing among candidate models, and the MAPE provides a measure of the anticipated 
prediction error for a given model. 

Cross validation has several possible implementations; here random training and testing splits 
are comprised of 80% and 20% of the data, respectively, and the training data is used to fit 
each model. Given model fits, predictions are made for the testing dataset and compared to 
actual outcomes, and the difference is summarized using the MAPE. This process is then 
repeated 1000 times, so that the distribution of MAPE across training and testing splits is 
obtained. 

Defining a null distribution for within-cluster dispersion 
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Although the Gap statistic does not allow for inference to determine the number of clusters 
within a sample, it provides a useful metric for comparing observed data to a null hypothesis of 
random recovery. Intuitively, for a given number of clusters 𝑘, the Gap statistic 𝐺𝑎𝑝(𝑘) 
compares the observed degree of within-cluster similarity to the expected degree of within-
cluster similarity under a reference distribution. Suppose a clustering analysis has produced 
clusters 𝐶), 𝐶#, … , 𝐶-. Assuming the Euclidean distance is used to measure distance between 
observations in the same cluster, we measure overall within-cluster dispersion using the pooled 
within cluster sum of squares around the cluster mean: 

𝑊- =I I ‖𝑧/ −	𝜇0‖#
1%	∈4&

-

05)

. 

Here, 𝜇0 is the within-cluster mean and 𝑧/ is the vector of observed values for subject 1 ≤ 𝑖 ≤ 𝑛 
(e.g. 𝑧/ = (𝑥/ , 𝑦/). 

The value of 𝑊- decreases as 𝑘 increases, regardless of whether additional true clusters are 
identified. The Gap statistic therefore standardizes 𝑙𝑜𝑔(𝑊-) to provide guidance on the choice 
of 𝑘 within a dataset. To standardize 𝑙𝑜𝑔(𝑊-), one compares the observed value to its 
expectation under a reference distribution:  

𝐺𝑎𝑝6(𝑘) = 𝐸6∗{𝑙𝑜𝑔(𝑊-)} − 𝑙𝑜𝑔(𝑊-)	. 

The expectation 𝐸6∗{𝑙𝑜𝑔(𝑊-)} is approximated through the analysis of multiple datasets 
simulated under the reference distribution. For each dataset one computes 𝑙𝑜𝑔(𝑊-

∗), and the 
expected value is taken as the average across these. The reference distribution in the 
calculation of the Gap statistic is often uniform over the range of each feature in the clustering 
analysis. In the context of recovery, this suggests a square over all possible values of 𝑥 and 𝑦 
rather than the triangular region defined by random recovery, but the spirit is similar.  

We use the Gap statistic to measure the strength within-cluster dispersion against that 
expected under a reference distribution. To compare observed data to a null distribution, we 
suggest a resampling-based approach to construct a null distribution for 𝐺𝑎𝑝6(𝑘). For random 
recovery, to construct a single resampled dataset, we suggest to sample observed 𝑥 values 
with replacement; generate corresponding 𝑦 values under random recovery; and obtain 
𝐺𝑎𝑝6∗(𝑘). This process is repeated many times, and the observed value 𝐺𝑎𝑝6(𝑘) is compared to 
the distribution of 𝐺𝑎𝑝6∗(𝑘). This process is very similar to one suggested by Lohse et al 2021, 
with the exception that we focus on evidence for clustering through 𝐺𝑎𝑝6(𝑘) rather that the 
distribution of slope values obtained in analyses of resulting clusters.  

The Gap statistic can be computed for any clustering method. By extension, our method for 
comparing the observed amount of within-cluster dispersion to that expected under a null 
distribution, can as well. In our analyses we follow recent literature, and use hierarchical 
clustering based on Mahalanobis distances between points. Simulations suggest that our 
testing approach achieves nominal size: when data are in fact generated under random 
recovery, we reject the null hypothesis 5% of the time under 𝛼 = 0.05. 
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Supplementary materials 
In the table below, we provide values of cor(𝑥, 𝛿) for a range of input values cor(𝑥, 𝑦), 
keeping 𝑘 fixed at 1. These are a result of equation (1) in the manuscript, and are 
intended to provide context for correlations between baseline and change that arise 
through coupling rather than as a result of a recovery process that affects the variance 
ratio. 

𝑘 cor(𝑥, 𝑦) cor(𝑥, 𝛿) 
1 0 -0.707 
1 0.1 -0.671 
1 0.2 -0.632 
1 0.3 -0.592 
1 0.4 -0.548 
1 0.5 -0.5 
1 0.6 -0.447 
1 0.7 -0.387 
1 0.8 -0.316 
1 0.9 -0.224 
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