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Abstract - Target capture emerged as an important tool for phylogenetics and popula-

tion genetics in non-model taxa. Whereas developing taxon-specific capture probes requires

sustained efforts, available universal kits may have a lower power to reconstruct relationships

at shallow phylogenetic scales and within rapidly radiating clades. We present here a newly-

developed target capture set for Bromeliaceae, a large and ecologically-diverse plant family

with highly variable diversification rates. The set targets 1,776 coding regions, including

genes putatively involved in key innovations, with the aim to empower testing of a wide

range of evolutionary hypotheses. We compare the relative power of this taxon-specific set,

Bromeliad1776, to the universal Angiosperms353 kit. The taxon-specific set results in higher

enrichment success across the entire family, however, the overall performance of both kits

to reconstruct phylogenetic trees is relatively comparable, highlighting the vast potential of

universal kits for resolving evolutionary relationships. For more detailed phylogenetic or pop-

ulation genetic analyses, e.g. the exploration of gene tree concordance, nucleotide diversity

or population structure, the taxon-specific capture set presents clear benefits. We discuss the

potential lessons that this comparative study provides for future phylogenetic and population

genetic investigations, in particular for the study of evolutionary radiations. Keywords—

target capture, plant radiation, Bromeliaceae, Tillandsia, population structure, phylogenomics
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1 Introduction1

Targeted sequencing approaches have emerged as a promise to studying evolutionary2

relationships in non-model taxa, enabling researchers to retrieve large data sets whereas re-3

quiring few genomic resources (Bossert & Danforth, 2018; Escudero, Nieto-Feliner, Pokorny,4

Spalink, & Viruel, 2020; Soto-Gomez et al., 2019). Using custom DNA baits, the method5

largely retrieves the same loci across a wide taxonomic scale, obtains comparable and merge-6

able data sets, and may be combined with genome-skimming (E. M. Lemmon & Lemmon,7

2013; Weitemier et al., 2014). Pre-existing knowledge of the targeted loci further provides8

opportunities to address specific questions on both deep and shallow timescales (Hale, Gard-9

ner, Viruel, Pokorny, & Johnson, 2020; A. R. Lemmon, Emme, & Lemmon, 2012). Finally,10

the method does not necessarily require a reference genome, is highly cost-effective, and with11

the ability to sequence herbarium samples, reduces the need for extensive sampling cam-12

paigns (Blaimer, Lloyd, Guillory, & Brady 2016; Hale et al. 2020; Weitemier et al., 2014).13

Target capture has been successfully applied to resolve phylogenies in diverse groups, from14

arthropods such as bees (Xylocopa, Blaimer et al., 2016; Apidae, Bossert et al., 2019) and15

Araneae (Hexathelidae, Hedin, Derkarabetian, Ramı́rez, Vink, & Bond, 2018) to mammals16

(Cetacea, McGowen et al., 2020), and in numerous plant groups (Heuchera, Folk, Mandel,17

& Freudenstein, 2015; Gesneriaceae, Ogutcen et al., 2021; Zingiberales, Sass, Iles, Barrett,18

Smith, & Specht, 2016 to name a few). The method’s utility for studies at micro-evolutionary19

scales has been to date marginally explored, but several studies pointed at a good ability20

to analyse genomic diversity and estimate population genomic parameters (Choquet et al.,21

2019; Christmas, Biffin, Breed, & Lowe, 2017; de La Harpe et al., 2019; Derrien & Ramos-22

Onsins, 2020; Sanderson, DiFazio, Cronk, Ma, & Olson, 2020). Nonetheless, the development23

of probes for target enrichment may pose several challenges: first, the need to identify regions24

conserved enough to ensure recovery, yet polymorphic enough to provide ample information25
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(Soto-Gomez et al., 2019; Villaverde et al., 2018). Second, probe design requires detecting26

regions without pervasive copy number polymorphism (Kadlec, Bellstedt, Maitre, & Pirie,27

2017; A. R. Lemmon et al., 2012), a particular challenge for angiosperms and other groups,28

where duplication events are ubiquitous (Van de Peer, Mizrachi, & Marchal, 2017).29

In contrast, universal kits offer an attractive alternative that require reduced efforts30

to establish, and provide comparable data sets across wider ranges of taxa (Johnson et al.,31

2019; Kadlec et al., 2017). Such kits were designed to retrieve single-copy markers, for32

example, in the broad scope of amphibians (Hime et al., 2021), anthozoans (Quattrini et al.,33

2018), vertebrates (A. R. Lemmon et al., 2012) or angiosperms (Johnson et al., 2019). In the34

latter example, the Angiosperms353 kit is designed to target 353 single-copy sequences across35

angiosperms. So far the kit has been employed successfully in resolving phylogenies, including36

but not limited to Nepenthes (Murphy et al., 2020), Schefflera (Shee, Frodin, Cámara-Leret,37

& Pokorny, 2020) and the rapid radiation of Burmeistera (Bagley, Uribe-Convers, Carlsen,38

& Muchhala, 2020), establishing the kit as an eminent tool in macroevolutionary research.39

Its utility at microevolutionary levels is yet to be fully realized, although several works40

established its suitability to deliver informative signals at a lower taxonomic level (Beck et al.,41

2021) and in acquiring population genomics parameters (Slimp, Williams, Hale, & Johnson,42

2020). The use of highly-conserved markers in a universal kit may, however, limit resolution43

power. Generally, taxon-specific baits are expected to deliver a higher information content44

and hence more accurate results (Kadlec et al., 2017), as enrichment success is known to drop45

with the level of divergence between sequences used for probe design and the targeted taxa46

(Liu et al., 2019). However, a study comparing the power of the universal Angiosperms35347

kit and a taxon-specific kit to resolve phylogenomic relationship in Cyperaceae reported48

surprisingly similar performance (Larridon et al., 2020). It remains to be established whether49

these findings apply to other taxa and other evolutionary scales, including at population50

level, where ample genomic variability is required to resolve intra-specific relationships and51
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investigate patterns of genetic differentiation.52

Until recently, the technology available to investigate evolutionary questions in rapidly53

evolving groups featuring high net diversification rates has presented major obstacles, in par-54

ticular for non-model groups. Decreasing costs of sequencing coupled with an ever-growing55

plethora of bioinformatic tools for data processing and downstream analysis has led to an in-56

crease in the use of methods like whole-genome sequencing, RNA sequencing and restriction57

site associated DNA sequencing (RAD-Seq) in lieu of traditional methods employing few con-58

served markers (de La Harpe et al., 2017; McKain, Johnson, Uribe-Convers, Eaton, & Yang,59

2018; Weitemier et al., 2014; Zimmer & Wen, 2013). Whole-genome sequencing however60

remains costly, posing barriers for research targeting large numbers of samples, organisms61

with large genomes and non-model organisms, for which the availability of high-quality ge-62

nomic resources is often limited (Hollingsworth, Li, van der Bank, & Twyford, 2016; Supple63

& Shapiro, 2018). While RAD-seq is an affordable alternative and widely used in popula-64

tion genetics, the resulting data sets may fall short when screened for homologous sequences65

across distantly related lineages (but see e.g., Heckenhauer, Samuel, Ashton, Abu Salim, &66

Paun, 2018). Additionally, the use of short and inconsistently-represented loci across phylo-67

genetic sampling may result in low information content and difficulties in assessing paralogy68

(E. M. Lemmon & Lemmon, 2013; McKain et al., 2018; Jones & Good, 2016).69

Rapid evolutionary radiations are key stages in the evolutionary history across the70

Tree of Life and highly recurrent, hence an essential part of biodiversity research (Gavrilets71

& Losos, 2009; Givnish et al., 2014; Hughes, Nyffeler, & Linder, 2015; Soltis, Folk, & Soltis,72

2019; Soltis & Soltis, 2004). Fast evolving groups provide potent opportunities to investi-73

gate important questions in evolutionary biology, such as the interplay between ecological74

and evolutionary processes in shaping biodiversity. Research on rapidly evolving lineages75

has provided insight on the fascinating circumstances that drive radiations mostly in model76

groups. A few notable study systems are the cichlid fish (McGee et al., 2020; Salzburger,77
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2018), Heliconius butterflies (Dasmahapatra et al., 2012; Moest et al., 2020), Anolis lizards78

(McGlothlin et al., 2018; Stroud & Losos, 2020), Darwin’s finches (Lamichhaney et al., 2015;79

Zink & Vázquez-Miranda, 2019), white-eyes birds (Moyle, Filardi, Smith, & Diamond, 2009)80

and New World lupins (Nevado, Atchison, Hughes, & Filatov, 2016). Nevertheless, much81

remains unknown about the genomic basis underlying rapid species diversification outside82

these intensively studied systems.83

Research of rapidly diversifying lineages presents several challenges. First, a brief di-84

versification period typically leads to imperfect reproductive barriers and incomplete lineage85

sorting, reflected in significant gene tree discordance and ambiguous relationships (Degnan86

& Rosenberg, 2009; Lamichhaney et al., 2015; Pease, Haak, Hahn, & Moyle, 2016; Straub87

et al., 2014). In addition, understanding ‘speciation through time’ poses a methodological88

challenge, and requires connecting two conceptual worlds: macroevolutionary investigations,89

concerned with spatial and ecological patterns over deeper timescales, and microevolution-90

ary approaches, providing insight into the processes acting during population divergence91

and speciation (Bragg, Potter, Bi, & Moritz, 2016; de La Harpe et al., 2017). Resolving92

phylogenomic relationships and disentangling the contribution of different genomic processes93

through time typically requires large-scale genomic datasets and thorough taxon sampling94

efforts (E. M. Lemmon & Lemmon, 2013; Linder, 2008; Straub et al., 2012).95

Here, we present Bromeliad1776, a new bait set for targeted sequencing, designed to96

address a wide range of evolutionary hypotheses in Bromeliaceae: from producing robust97

phylogenies to studying the interplay of genomic processes during speciation and the ge-98

netic basis of trait shifts, such as photosynthetic and pollination syndrome. This highly99

diverse Neotropical radiation provides an excellent research system for studying the drivers100

and constraints of rapid adaptive radiation (Benzing, 2000; Givnish et al., 2011; Loiseau et101

al., 2021; Mota et al., 2020; Palma-Silva & Fay, 2020; Wöhrmann, Michalak, Zizka, & Weis-102

ing, 2020). Bromeliaceae is a species-rich and charismatic monocot family, consisting of over103
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3,000 species, including crops in the genus Ananas and other economically important species104

(Luther, 2008). Members of the family are characterized by a distinctive leaf rosette that105

often impounds rainwater in central tanks (phytotelmata). A diversity of arthropods and106

other animal species and microbes reside in bromeliad tanks, in some cases even leading to107

protocarnivory and other forms of nutrient acquisition (Givnish, Burkhardt, Happel, & Wein-108

traub, 1984; C. Leroy, Carrias, Céréghino, & Corbara, 2016). Bromeliads present a diversity109

of repeatedly evolving adaptive traits, which allowed them to occupy versatile habitats and110

ecological niches (Benzing, 2000). CAM photosynthesis, water-absorbing trichomes, forma-111

tion of tank habit, extensive rates of epiphytism and a diversity of pollination syndromes112

are some of the adaptations correlated with high rates of diversification within the family113

(Benzing, 2000; Crayn, Winter, & Smith, 2004; Givnish et al., 2014; Kessler, Abrahamczyk,114

& Krömer, 2020; Quezada & Gianoli, 2011).115

To assess the utility of the Bromeliad1776 kit, we performed a comparison between116

our taxon-specific kit and the universal Angiosperms353 kit using several methods across117

different evolutionary time-scales. We present Bromeliad1776 in the light of methodological118

considerations on bait design, data handling, analyses and other practical considerations.119

2 Materials and Methods120

2.1 In-house bait design121

Whole-genome sequences and gene models from Ananas comosus v.3 (Ming et al., 2015)122

were used to design a bait set aiming to target i) random protein coding genomic regions,123

ii) genes previously described as associated with key innovation traits in Bromeliaceae (see124

below), iii) markers previously used for phylogenomic inference in Bromeliaceae and iv) genes125

orthologous to those in the Angiosperms353 bait set. The 1776 selected genes are detailed126

in Supporting information Table S1.127

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444989
http://creativecommons.org/licenses/by-nc/4.0/


Bait capture taxon-specific vs. universal

The random protein coding genes (subset i above) were selected based on genetic128

diversity parameters calculated using whole-genome sequence and RNAseq data previously129

published de La Harpe et al. (2020) with the PopGenome R package v.2.1.6 (Pfeifer, (Pfeifer,130

Wittelsbürger, Ramos-Onsins, & Lercher, 2014). Genomic regions were retained in this cat-131

egory if they shared at least 70% identity between A. comosus and T. sphaerocephala, and132

if they had nucleotide diversity (π) values not exceeding the 90% quantile of the (π) distri-133

bution across genes for four Tillandsia species (Tillandsia australis, Tillandsia fasciculata,134

Tillandsia floribunda and T. sphaerocephala). We further excluded genes with a total exonic135

size smaller than 1,100 bp, or individual exons smaller than 120 bp. Next, copy-number136

variation was calculated based on clustering of A. comosus and Tillandsia transcriptome137

assemblies to generate three copy number categories - ”single copy”, ”low copy” (i.e., less138

than five copies) and ”high copy” (i.e., five or more copies). For the random genes (i.e., bait139

subset i) we included in the design only “single copy” genes. Finally, we excluded genes that140

were located in genomic regions outside those assigned to linkage groups in the A. comosus141

reference (Ming et al., 2015). A total of 1,243 genes were identified for this part.142

The bait subset of genes associated with key innovative traits in Bromeliaceae (subset143

ii above) included (1) genes putatively under positive selection along branches relevant to144

C3/CAM shifts (de La Harpe et al., 2020), (2) genes that exhibit differential gene expression145

between CAM and C3 Tillandsia species (de La Harpe et al., 2020) and (3) genes putatively146

associated with photosynthetic and developmental functions, or with flavonoid and antho-147

cyanin biosynthesis, according to the literature (e.g. Ming et al., 2015; Palma-Silva, Ferro,148

Bacci, & Turchetto-Zolet, 2016; Wai et al., 2017; Goolsby, Moore, Hancock, Vos, & Edwards,149

2018). Ananas comosus genes with the highest match scores (calculated as lowest E-score150

in BLASTP, Madden (2013) against the sequences of genes from the literature were added151

to the bait set (see Supporting information Table S2 for details). A total of 1,612 genes152

underpinning innovative traits were included in the bait design, regardless of criteria used153
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for subset i for size, similarity and duplication rate.154

Markers previously used for phylogenomic inference in Bromeliaceae (subset iii) were155

obtained from the literature, spanning 13 genes (e.g. Barfuss et al., 2016; Machado et al.,156

2020; Schulte, Barfuss, & Zizka, 2009, see TS2 for full list). Genes orthologous to those in157

the Angiosperms353 bait set (Johnson et al., 2019) were identified using the orthologous gene158

models from A. comosus based on gene annotations (Ming et al., 2015) or using BLASTP159

(Madden, 2013), totalling 281 genes.160

Finally, we used a draft genome of T. fasciculata (Jaqueline Hess, personal communi-161

cation) to exclude from all candidates genes that exhibited multiple BLASTN hits, if they162

have not been previously described as duplicated within the genus (de La Harpe et al., 2020).163

Specifically, we excluded genes that matched another genomic sequence of at least 100bp with164

high similarity score (> 80%) and low E-value (< 10−5). In an additional round of filtering165

was performed by the manufacturer of the final bait set, Arbor Biosciences (Ann Arbor, MI,166

USA), multi-copy genes with sequences that are more than 95% identical were collapsed into167

a single sequence, and baits with more than 70% GC content or containing at least 25% re-168

peated sequences were excluded. In addition, targets including exons smaller than 80 bp were169

completed with regions flanking the exons according to the A. comosus reference genome.170

The final kit included 1776 genes: 801 random protein coding genes, 681 genes associated171

with key innovative traits, 13 genes representing phylogenetic markers and 281 genes ortholo-172

gous to the Angiosperms353 set. Probes were designed with 57,445 80-mer baits tiling across173

targets in 2x coverage, targeting approximately 2.3Mbp. The kit is subsequently referred to174

as the Bromeliad1776 bait set. Further specifications can be found in Supporting information175

Tables S1 and S2 and in the github repository: https://github.com/giyany/Bromeliad1776.176
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2.2 Plant material collection177

We sampled a total of 70/72 Bromeliaceae samples (for Angiosperms353 and for178

Bromeliad1776, accordingly; Supporting information Table S3), including 56 accessions from179

the Tillandsioideae subfamily and 16 representing the other subfamilies, except Navioideae180

(according to Givnish et al. (2014). Within Tillandsioideae, we sampled 38/40 individuals181

from five species of the Tillandsia subgenus Tillandsia (‘clade K’ in Barfuss et al. (2016);182

Sampling in Mexican populations illustrated in Supporting information Figure S1).183

2.3 Library preparation & enrichment184

DNA extractions were performed using a modified CTAB protocol (Doyle & Doyle,185

1987), purified using Nucleospin® gDNA cleanup kit from Macherey-Nagel (Hudlow et al.,186

2011) following the supplier’s instructions with a two-fold elution step and finally quantified187

with Qubit® 3.0 Fluorometer (Life Technologies, Ledeberg, Belgium).188

For each sample, 200ng DNA was sheared using Bioruptor® Pico sonication device189

(Diagenode, Seraing, Belgium) aiming for an average insert size of 350bp, dried in a speed190

vacuum Eppendorf concentrator 5301 (Eppendorf, Germany) and eluted in 30µL ddH2O.191

Genomic libraries were prepared using the NEBNext® Ultra TM II DNA Library Prep192

Kit for Illumina® (New England Biolabs, Ipswich, MA, United States) using reagents at193

half volumes following Hale et al. (2020) and using 11 PCR cycles, increased up to 13 cy-194

cled for libraries with low genomic output. Samples were double-indexed with NEBNext®
195

Multiplex Oligos for Illumina® (New England Biolabs, Ipswich, MA, USA). Fragment sizes196

were inspected with Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and197

concentrations were measured with Qubit® 3.0 Fluorometer. Subpools of 11-14 equimolar198

genomic libraries were prepared using phylogenetic proximity and DNA concentrations of199

the genomic libraries, which ranged from 2.62 to 118.0 ng/µL, following Soto-Gomez et al.200

(2019).201
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We used the Angiosperms353 and the Bromeliad1776 bait sets from Arbor Biosciences202

(Ann Arbor, MI, USA) to enrich each subpool of genomic libraries independently with a single203

hybridization reaction of myBaits® target capture kits from Arbor Biosciences (Ann Arbor,204

MI, USA), following Hale et al. (2020). Average fragment size and DNA yield were estimated205

for each subpool using Agilent Bioanalyzer and Qubit® 3.0 Fluorometer. Subpools were then206

pooled in equimolar conditions and sequenced at Vienna BioCenter Core Facilities (Vienna,207

Austria) on Illumina® NextSeqTM 550 (2x150bp, Illumina, San Diego, CA). Sequencing was208

conducted independently for either bait kit. The sequencing data are publicly available in209

the NCBI Short Reads Archive (BioProject ID PRJNAxxx, SRA Study SRPxxx).210

2.4 Data processing211

The raw sequence data in BAM format was demultiplexed using deML v.1.1.3 (Renaud,212

Stenzel, Maricic, Wiebe, & Kelso, 2015) and samtools view v.1.7 (Li et al., 2009), converted213

to fastq using bamtools v.2.4.0 (Barnett, Garrison, Quinlan, Strömberg, & Marth, 2011)214

and quality checked using FastQC v.0.11.7 (Andrews, 2010). Reads were then trimmed for215

adapter content and quality using TrimGalore v.0.6.5 (Krueger, 2019), a wrapper tool around216

FastQC and Cutadapt, using settings –fastqc –retain unpaired. Sequence quality and adapter217

removal was confirmed with FastQC reports.218

Quality and adapter-trimmed reads were aligned to A. comosus reference genome v.3219

(Ming et al., 2015) using bowtie2 (Langmead & Salzberg, 2012) with the –very-sensitive-local220

option to increase sensitivity and accuracy. Samtools (Li et al., 2009) was then used to re-221

move low quality mapping and sort alignments by position, and PCR duplicates were marked222

using MarkDuplicates from PicardTools v.2.25 (Picard Toolkit , 2019). Summary statistics of223

the mapping step were generated using samtools stats. Variants were called using freebayes224

v1.3.2-dirty (Garrison & Marth, 2012) and sites marked as MNP225

complex were decomposed and normalized using the script ‘vcfallelicprimitives’ from vcflib226
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(Garrison, 2012). Next, AN/AC field was calculated using bcftools v.1.7 (Li, 2011) and227

variant calls were filtered using vcflib (Garrison & Marth, 2012) and bcftools. Given that228

freebayes does not perform automatic variant filtering steps, we identified sets of parameters229

that generate reliable final SNP sets, based on two independent criteria: the highest tran-230

sition/transversion ratios as reported by SnpSift (SnpEff suite, Cingolani et al., 2012) and231

the lowest πN/πS (see section 2.7 below). After a detailed evaluation, we used the following232

criteria to generate two high quality SNP sets: we considered genotype calls with per-sample233

coverage below 10× as missing (NA) and excluded variants (i) marked as indels or neighboring234

indels within a distance of 3 bp, (ii) with depth of coverage at the SNP level lower than 500×,235

(iii) with less than ten reads supporting the alternate allele at the SNP level, or (iv) with more236

than 40% missing data. Summary statistics of the final SNP sets were generated using the237

script vcf2genocountsmatrix.py (available from https://github.com/giyany/Bromeliad1776),238

namely the total number of SNPs, the proportion of on-target SNPs and the proportion of239

SNPs in some specific genomic contexts, with A. comosus genome v.3 as a reference. We240

present an example of data processing with the HybPiper pipeline (Johnson et al., 2016) in241

the github repository (https://github.com/giyany/Bromeliad1776).242

2.5 Bait specificity and efficiency243

To explore bait specificity, we calculated the percentage of high quality trimmed reads244

on-target using samtools stats and bedtools intersect v2.25.0 (Quinlan & Hall, 2010) us-245

ing the script calculat bait target specifity.sh (available from https://github.com/giyany/246

Bromeliad1776). Targets for Bromeliad1776 were defined as the bait sequences plus their247

500 bp flanking regions. Targets for Angiosperms353 were defined using orthogroups to248

A. comosus : gene annotations from the bait set were used to assign genes to orthogroups249

using OrthoFinder (Emms & Kelly, 2019), resulting in 559 A. comosus genes assigned to250

orthogroups. Within the orthgroups, targets were again defined as exonic regions plus their251
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500 bp flanking regions.252

To provide insights into determinants of bait capture success, we calculated bait effi-253

ciency for all baits of Bromeliad1776. For each bait, efficiency was calculated as the number254

of high-quality reads uniquely mapping to each bait target region, averaged over samples.255

We then tested for the correlation of capture efficiency to several bait characteristics (copy256

number, GC content, number and size of exons in targeted gene, size of baits and phyloge-257

netic distance to A. comosus) with a generalized linear model or Kruskal-Wallis test in R258

v.4.0.3 (R Core Team, 2020) using a negative binomial family.259

2.6 Phylogenomic analyses260

We inferred phylogenomic relationships for all samples using two methods: a con-261

catenation method, and a coalescent-based species tree estimation. The latter method was262

included as concatenation methods do not account for gene tree incongruence, which may263

result in high support for an incorrect topology (Kubatko & Degnan, 2007), especially in264

the presence of notable incomplete lineage sorting. In addition, gene tree incongruence anal-265

ysis provides insight into molecular genome evolution, including the extent of incomplete266

lineage sorting and other genomic processes such as hybridization and introgression (Galtier267

& Daubin, 2008; Wendel & Doyle, 1998).268

We used the SNP genotypes to create a phylip matrix with vcf2phylip v.2.0 (Ortiz,269

2019) and constructed a maximum-likelihood species tree for each bait set with RAxML-NG270

v.0.9.0 (Kozlov, Darriba, Flouri, Morel, & Stamatakis, 2019), using 250 bootstrap replicates271

and a GTR model with an automatic MRE-based bootstrap convergence test. Next, we272

constructed a species tree using ASTRAL-III v.5.7.7 (hereafter: ASTRAL, Zhang, Rabiee,273

Sayyari, & Mirarab, 2018). For both the Angiosperms353 and the Bromeliad1776 sets, we274

considered genes within each bait set as independent genomic windows. For Angiosperms353,275

we extracted the 559 genes (assigned to orthogroups as explained above) as genomic windows276

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444989
http://creativecommons.org/licenses/by-nc/4.0/


Bait capture taxon-specific vs. universal

using bedtools intersect. For Bromeliad1776, genomic windows were extracted using the A.277

comosus gene sequences included in bait design. All loci and all accessions were included in278

species tree inference regardless of the percentage of missing data, since taxon completeness279

of individual gene trees is important for statistical consistency of this approach, and we280

expected only low levels of fragmentary sequences (Mirarab, 2019; Nute, Chou, Molloy, &281

Warnow, 2018). After excluding genes with zero coverage, 269 genes and 1,600 genes were282

included in species tree inference for Angiosperms353 and Bromeliad1776, respectively.283

For each gene, a maximum-likelihood gene tree was inferred using ParGenes (Morel,284

Kozlov, & Stamatakis, 2019) with RAxML-NG (Kozlov et al., 2019), using a GTR model285

with an automatic MRE-based bootstrap convergence test. Loci with insufficient signal may286

reduce the accuracy of species tree estimation (Mirarab, 2019), hence, in all gene trees, nodes287

with a bootstrap support smaller than ten were collapsed using Newick utilities (Junier288

& Zdobnov, 2010). A species tree was then generated in ASTRAL with quartet support289

and posterior probability for each tree topology. The number of conflicting gene trees was290

calculated using phyparts and visualized using the script phypartspiecharts.py (available from291

https://github.com/mossmatters/MJPythonNotebooks).292

2.7 Population structure and nucleotide diversity estimates293

To explore the genetic structure within the Tillandsia species complex, we focused on294

five species from 15 localities (Supporting information Table S3 and Supporting information295

Figure S1). We first used plink v.1.9 (Chang et al., 2015) to filter out SNPs in linkage dise-296

quilibrium. Population structure was further explored through individual ancestry analysis,297

with identity-by-descent matrix calculated by plink and inference of population structure298

using ADMIXTURE v.1.3. with K values ranging from one to ten, and 30 replicates for299

each K, using a block optimization method (Alexander & Lange, 2011). A summary of the300

ADMIXTURE results was obtained and presented using pong (Behr, Liu, Liu-Fang, Nakka,301

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444989
http://creativecommons.org/licenses/by-nc/4.0/


Bait capture taxon-specific vs. universal

& Ramachandran, 2016). The set of LD-pruned biallelic SNPs was further filtered to allow a302

maximum of 10% missing data and used to perform a principal components analysis (PCA)303

with SNPRelate v.1.20.1 (Zheng et al., 2012). Finally, for each Tillandsia species, we used304

the strategy of T. Leroy et al. (2021) to compute synonymous (πS) and non-synonymous (πN)305

nucleotide diversities and Tajima’s D, from fasta sequences using seq stat coding (T. Leroy306

et al., 2021).307

3 Results308

3.1 Higher mapping rates and capture efficiency for taxon-specific set309

On average, 4,401,958 (803,464-12,693,516) paired-end reads per accession were gen-310

erated per Angiosperms353 library and 2,962,023 (1,282,762-6,298,880) per Bromeliad1776311

library. Overall, the mapping rates to the A. comosus reference genome were higher for li-312

braries enriched with Bromeliad1776, with an average mapping rate of 82.3% (61.8%-95.9%)313

and 42.8% (22.1%-77.9%), for Bromeliad1776 and Angiosperms353, respectively (Support-314

ing information Figure S2, Supporting information Table S4). Higher mapping rates were315

recorded for subfamilies Bromelioideae and Puyoideae, as compared to Tillandsioideae, for316

both the Angiosperms353 and Bromeliad1776 sets (see Supporting information Figures S3317

and S4, respectively). This may reflect the effect of reference bias, and in the case of318

Bromeliad1776, it may be further amplified by our kit design based on A. comosus (subfam-319

ily Bromelioideae). Bait specificity was high for Bromeliad1776 with on average 90.4% reads320

on-target (76.5%-94.2%), while for Angiosperms353 bait specificity was 14.0% (4.6%-30.1%;321

see Supporting information Figure S2). Mapping rates and bait specificity were positively322

correlated for both bait sets (GLM, P<0.01).323
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3.2 Bait efficiency depends on the genomic context324

We investigated factors that may influence bait efficiency, starting with the contribu-325

tion of gene copy number variation. We assumed three categories regarding the number of326

paralogs per orthogroup: single copy, low-copy (i.e., less than five copies) and high-copy (i.e.,327

five or more copies). The number of gene copies had a significant effect on bait efficiency328

and post-hoc Dunn’s test supported significant differences in efficiency for comparisons be-329

tween low-copy and high-copy, and between single-copy and low-copy (P=2.8−44). Low-copy330

genes exhibit the lowest enrichment success, suggesting that the bait efficiency is not simply331

correlated to the number of gene copies (Figure 1). We also recovered a significant effect of332

the intragenic GC content and GC content of the baits on bait efficiency (GLM, P=1.5−68).333

Finally, we investigated the possible link between efficiency and gene structure. Average334

exon sizes (P< 2.0−16) and total number of exons per gene (P=1.1−89) were also positively335

correlated with enrichment success. The size of the smallest exon for all targeted genes was336

however not correlated with bait efficiency. Sequence similarity, measured as percent of iden-337

tity between Tillandsia sequences and those of A. comosus, was positively correlated with338

capture success (P=4.8−13; Figure 1).339
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340

Figure 1 Effects of (A) putative gene copy number, (B) gene GC content, (C) average341

exon size, and (D) percent of identity on bait efficiency in Bromeliad1776 bait set, measured342

as the number of high-quality reads uniquely mapping to bait target region across samples.343

Continuous variable was binned and y-values higher than 1,000 excluded for visualization in344

B-D.345

3.3 Both kits provided a large number of SNPs346

After variant calling and filtering, we identified 47,390 and 209,186 high-quality SNPs347

for the Angiosperms353 and the Bromeliad1776 bait sets, respectively. On average, miss-348

ing data represented 23.7% of genotype calls per individual in Angiosperms353, but only349

6.3% for the Bromeliad1776 kit. The differences in missingness are likely associated with350

the higher mean depth per site across the Bromeliad1776 kit (6,602), as compared to An-351
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giosperms353 (3,437). Focusing on the subgenus Tillandsia, we identified 15,622 SNPs for352

Angiosperms353 (including a total of 18.9% missing data) compared to 65,473 polymorphic353

sites (2.9% missing data) for Bromeliad1776. In both full data sets and the subset in-354

cluding only Tillandsia samples, Bromeliad1776 recovered more variants in intronic regions355

compared with Angiosperms353. Angiosperms353 recovered a large proportion of off-target356

SNPs, whereas in Bromeliad1776 approximately 15% of the SNPs were recovered from flank-357

ing regions (Table 1). We discuss ascertainment bias that may rise due to the non-random358

selection of markers in Supplementary Information.359

3.4 Similar phylogenomic resolution in concatenation method, Bromeliad1776360

outperforms Angiosperms353 for species tree reconstruction361

The Angiosperms353 and Bromeliad1776-based maximum-likelihood phylogenetic trees362

recovered the same backbone phylogeny of Bromeliaceae, clustering subfamily Tillandsiaoedeae363

and the subgenus Tillandsia with high bootstrap values (Supporting information Figure S5).364

Neither set obtained high support for inter-population structure for Tillandsia gymnobotrya,365

but highly-supported nodes separated T. fasciculata accessions from Mexico and from other366

locations, and the populations of T. punctulata for the Bromeliad1776 data set were similarly367

separated. The tree topologies were identical, with the notable exception of the placements368

ofTillandsia biflora and Racinaea ropalocarpa and the genus Deuterocohnia (Supporting in-369

formation Figure S5, purple arrow). Overall, internal nodes are strongly supported for both370

sets, except for Hechtia carlsoniae as sister to Tillandsioideae, which is poorly supported for371

both sets. While several internal nodes are slightly less supported for the Angiosperms353372

set, overall these results demonstrate the efficacy of both kits in phylogenomic reconstruc-373

tion using concatenation approaches, indicating that as few as 47k SNPs within variable374

regions provide reliable information to resolve phylogenetic relationships within the recent375

evolutionary radiation of Tillandsia.376
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Species trees as inferred with ASTRAL for both data sets likewise provided an overall377

strong local posterior support (Figure 2, see also Supporting information). Several nodes378

however exhibit lower local posterior support values for the Angiosperms353 tree than for379

the Bromeliad1776 tree. The topology for the Bromeliad1776 ASTRAL tree was similar to380

the ML tree, but differed again by placing Deuterocohnia as sister taxa to Puyoideae only.381

In the Angiosperms353 tree, the topology differed from both ML trees and the ASTRAL382

Bromeliad1776 tree in several nodes. H. carlsoniae was placed as a sister taxa to all other383

subfamilies in the Angiosperm353 phylogeny. Notably, the placement of Catopsis and Glom-384

eropitcrania differed, as well as the placement of Cipurosis subandinai, T. biflora and R.385

ropalocarpa. Several internal nodes were poorly supported, such as the node separating the386

tribe Catopsideae and core Tillandsioideae, and the nodes separating Tillandsioideae from all387

other subfamilies. The differences in topology between the Angiosperms353 ASTRAL tree to388

all other trees (ML trees and Bromeliad1776 ASTRAL tree) together with the low posterior389

support suggest lower resolution power and a poor fit of this data set for resolving a species390

tree.391

The length and average size of the input gene trees different among sets, with average392

window length of 304.6 bp and 819.9 bp and average gene tree support of 16.9 and 38.9 for393

Angiosperms353 and Bromeliad1776 bait-sets, respectively (Figure 2). An examination of394

gene tree concordance constructed with Bromeliad1776 data set allowed to identify variable395

levels of gene tree conflict among nodes (Figure 2). Gene tree discordance was especially high396

for the split between Tillandsioideae and other subfamilies, as well as for the split between397

Puyoideae and taxa assigned to Bromelioideae. Furthermore, gene tree discordance and the398

proportion of un-informative gene trees was especially high for splits among clades within the399

K.1 and K.2 clades of subgenus Tillandsia. A similar analysis with Angiosperms353 yielded400

evidence for gene tree discordance, but a considerable number of gene trees were reported401

to be non-informative (grey part of the pie charts), especially within subgenus Tillandsia402
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(Figure 2).403

404

Figure 2 Coalescent-based species trees generated ASTRAL-III for samples enriched with405

Bromeliad1776 (left) and Angiosperms353 (right, flipped for mirroring), on 269 and 1600406

genes for each set, respectively. Node values represent local posterior probabilities (pp) for the407

main topology and are equal to 1 unless noted otherwise. Pie charts at the nodes show levels408
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of gene tree discordance: the percentages of concordant gene trees (blue), the top alternative409

bipartition (green), other conflicting topologies (red) and uninformative gene trees (gray). At410

bottom, length and average bootstrap support for gene trees from either data set, according to411

the design of the bait set used for enrichment: Angiosperms353 (right) and Bromeliad1776412

(left). Each gene was considered a single genomic window.413

3.5 Strong interspecific structure, but little evidence for within-species popula-414

tion structure415

After LD-pruning and retaining maximum 10% missing data, 1,025 and 32,941 biallelic416

SNPs were included for the Tillandsia PCA analysis of the Angiosperms353 and Bromeliad1776417

data sets, respectively. Overall, both data sets provided evidence for interspecific structure,418

but not for population structure, with Bromeliad1776 resulting in border-line higher res-419

olution (slightly better separating T. foliosa from T. fasciculata). The percentage of ex-420

plained variance was higher in the Bromeliad1776 set (19.3% and 16.5% for PC1 and PC2)421

as compared to the Angiosperms353 data set (14.5% and 11.8%, see Figure 3, Supporting422

information Figure S6). Based on these two PCAs, we found no evidence for spatial genetic423

structure within each species, since accessions did not cluster by geographic origin on the two424

PCs presented, or any other PCs we investigated (See Supporting information Figure S6).425
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Figure 3 Principal Component Analysis (PCA) plot for samples of Tillandsia subgenus427

Tillandsia enriched with two bait sets: A. Angiosperms353 (1,025 variants); B. Bromeliad1776428

(32,941 variants). Colors indicate different species according to legend.429

430

In addition to PCA, we performed ADMIXTURE analyses based on 9,804 and 42,613431

variants for the Angiosperms353 and Bromeliad1776 sets, respectively (Figure 4). We used432

a cross-validation strategy to identify the best K and found clear support for K=5 for the433
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Bromeliad1776 set (Supporting information Figure S7). In contrast, the CV pattern for the434

Angiosperms353 set varied widely, providing limited information about the best K. Low-435

est CV values were however observed for K=9 with locally low values for K=5 and K=3436

(Supporting information Figure S7). We further investigated the ADMIXTURE bar plots at437

different values of K. For K=5, very similar patterns can be observed for both sets, with the438

recovered clusters reflecting the expected species boundaries. The main difference between439

the two data sets was the ability of the Bromeliad1776 set to reach a more consistent solution440

(“consensus”) among 30 runs, especially at large K, as compared to the runs based on the441

Angiosperms353 bait set. The Bromeliad1776 was also able to distinguish between different442

sampling localities of T. punctulata and of T. fasciculata at K=7-8 (Figure 4).443

444

445

Figure 4 Population structure of 5 Tillandsia subgenus Tillandsia species from 14 sampling446

locations inferred with the ADMIXTURE software. Samples were enriched with either of two447

bait sets: Angiosperms353 (9,804 variants after LD-pruning) and Bromeliad1776 (42,613448

variants after LD-pruning), showing values of K=2 to K=9. Colors represent genetically449
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differentiated groups while each accession is represented by a vertical bar.450

3.6 Distinct diversities hint at different demographic processes451

Averaged levels of nucleotide diversity at synonymous sitesπS greatly varied among452

species, from 4.1x10−3 to 8.1x10−3 for T. foliosa and T. fasciculata, respectively (Support-453

ing information Table S5; Figure 5). Given the recent divergence of these different species454

and their roughly similar life history traits, they are expected to share relatively similar mu-455

tation rates, hence the observed differences in πS are expected to translate into differences of456

long-term Ne. Looking at the distribution of πS across genes, we foundbroader or narrower457

distributions depending on the species, which explains the observed differences in averaged458

πS, as typically represented by the median of the distribution (vertical bars, Figure 5). Most459

species exhibit distributions of Tajima’s D (Fig 5) that are centered around zero, with the460

notable exception of T. punctulata. The distribution of this species is shifted toward positive461

Tajima’s D values, therefore indicating a recent population contraction, suggesting that this462

species experienced a unique demographic trajectory as compared to the other species.463
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Figure 5 Distribution of Tajima’s D and synonymous (πS) nucleotide diversity within each465

species for the Bromeliad1776 kit.466

4 Discussion467

4.1 A taxon-specific bait set performs marginally better for phylogenomics468

In this study, we compared the information content and performance of a taxon-specific469

bait set and a universal bait set for addressing questions on evolutionary processes at different470

scales in a highly diverse Neotropical plant group, including recently radiated clades. We471

found that the taxon-specific kit provided a greater number of segregating sites, yet contrary472

to our expectations, the abundance of information content did directly translate to a greater473

resolution power.474

The universal and taxon-specific sets performed comparably when investigating macroevo-475

lutionary patterns: the inferred species trees are remarkably consistent between the two bait476

sets (Supporting information Figure S5, Figure 2). Notably, both sets were sufficiently in-477

formative to reconstruct the relationships among the fastest radiating clades. These results478

resonate with previous comparative works (e.g. in Burmeistera, Bagley et al., 2020; in Bud-479

dleja, Chau, Rahfeldt, & Olmstead, 2018; and in Cyperus, Larridon et al., 2020), where480

taxon-specific markers provided higher gene assembly success, but a comparable number of481

segregating sites for phylogenetic inference, indicating that universal bait sets are nearly as482

effective as taxon-specific bait sets, even in fast evolving taxa. The main advantage of the483

bromeliad taxon-specific set is its ability to provide additional resolution for deeper exami-484

nation of gene tree incongruence (Figure 2), currently a fundamental tool in phylogenomic485

research (Edwards, 2009; Morales-Briones et al., 2020; Pease et al., 2016).486

The taxon-specific bait set performed marginally better to address hypotheses at more487

recent evolutionary scales and provided arguably clearer evidence for inference of species488
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genomic structure using clustering methods. In fact, genetic markers obtained from both489

data sets provided sufficient information to infer species but no geographic structure, sug-490

gesting that Tillandsia could be characterized by high gene dispersal among populations.491

Considering that the Angiosperms353 kit has shown potential to provide within-species sig-492

nal, as recently demonstrated by Beck et al. (2021) on Solidago ulmifolia, and to estimate493

demographic parameters from herbarium specimen (Slimp et al., 2020), we would expect the494

taxon-specific set to accurately reveal a geographical genetic structure. However, the present495

study is generally based on small sample sizes per species (n=4-8), mostly sampled within496

a limited geographic range, limiting our ability to draw robust conclusions on the levels of497

intra-specific population structure.498

The Bromeliad1776 kit provided a substantially larger number of segregating sites499

(more than 200k vs. 47k in Angiosperms353; Table 1, Supporting information Figure S2)500

due to higher enrichment success, following the expectation for higher sequence variation in501

custom-made loci (Figure 1, see also Bragg et al., 2016; de La Harpe et al., 2019; Kadlec et502

al., 2017). We accordingly found that rates of molecular divergence are distinctly correlated503

with enrichment success in our sampling (Figure 1), following the expectation that a universal504

kit will provide fewer segregating sites.505

However, the difference in resolution power between the kits cannot be ascribed solely506

to the different numbers of SNPs, but rather to the length and variability of the obtained507

regions. The topology obtained with the Angiosperm353 data set under the multi-species508

coalescent model was substantially different from all other inferred trees and the input gene509

trees provided a low power to detect patterns of gene tree discordance (Figure 2). We addi-510

tionally observed that the highly conserved regions targeted by Angiosperms353 are shorter511

in comparison to Bromeliad1776 targets and thus result in shorter input windows for species512

tree inference (Figure 2). Hence, the patterns of gene tree discordance in the Angiosperms353513

data set likely indicate incorrect gene tree estimation or other model misspecifications, rather514
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than a biological signal. Specifically, coalescence-based methods are sensitive to gene tree515

estimation error (Zhang et al., 2018) and perform better with gene trees estimated from516

unlinked loci long enough and variable enough to render sufficient signal per gene tree - this517

is especially true for data sets with many taxa. The high rates of uninformative genes trees,518

found in almost half of the intergenic nodes in the Angiosperms353 data set, is expected with519

increased levels of gene tree error which in turn reduce the accuracy of ASTRAL (Mirarab,520

2019; Sayyari & Mirarab, 2016). In contrast, the Bromeliad1776 ASTRAL tree (Figure 2,521

left) resolved phylogenetic relationships among taxa with high posterior probability and a522

topology similar to the ML tree. Gene tree discordance analysis revealed high incongruence523

around certain nodes, possibly reflecting rapid speciation events.524

Since inference of phylogenetic relationships under the multi-species coalescent and525

exploration of gene tree discordance are both pivotal to phylogenomic research (Degnan &526

Rosenberg, 2009; Edwards et al., 2016; Pease et al., 2016), a taxon-specific kit provides a527

clear advantage especially in recent rapid radiations, where gene tree conflict and incomplete528

lineage sorting are expected to be prevalent (Dornburg, Su, & Townsend, 2019; Kubatko &529

Degnan, 2007; Roch & Warnow, 2015). In that regard, inference of the species tree with the530

Bromeliad1776 is a tool to drive further hypotheses concerning evolutionary and demographic531

processes in the evolution of Tillandsia. Moreover, the features of the loci targeted provide532

an important opportunity to study selection (see section 4.3).533

4.2 Insights on Bromeliaceae phylogeny and demographic processes in Tilland-534

sia535

Both bait sets resolved the phylogeny of Bromeliaceae, including the fastest evolving536

lineages of the subfamily Tillandsioideae. The results generally agreed to previous findings537

of the relationships among taxa (Givnish et al., 2011, 2014). Several findings which contrast538

with the expected known phylogeny may point at a complexity of genomic processes in the539
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evolutionary history of Bromeliaceae subfamilies. Both the ML tree and species tree did not540

support a monophyly of the subfamily Pitcairnioideae, which was represented by four samples541

and two genera in our phylogeny: Deuterochonia and Pitcarnia. Rather, the genus Deute-542

rochonia was sister to subfamily Puyoideae or sister to both Puyoideae and Bromelioideae543

subfamilies. Theses findings contrasts results of Barfuss et al. (2016) and Granados Mendoza544

et al. (2017). Interestingly, in a visualization of gene tree discordance we found high levels545

of incongruence and a high percentage of trees supporting an alternative topology in the546

node splitting the genera, indicating that several genomic processes such as hybridization547

and incomplete lineage sorting may have accompanied divergence in this group, contribut-548

ing to the phylogenetic conflict and extending the challenges in resolving these evolutionary549

relationships. Within the core Tillandsioideae, the tribes Tillandsieae and Vrieseeae were550

found to be monophyletic, in accordance with previous work on the subfamily (Barfuss et551

al., 2016). Finally, within our focal group Tillandsia subgenus Tillandsia, clade K as sug-552

gested by Barfuss et al. (2016) and clades K.1 and K.2 as proposed by Granados Mendoza et553

al. (2017) were all well supported, further in agreement with their interpretation of Mexico554

and Central America as a center of diversity for subgenus Tillandsia. Within Tillandsia,555

incongruence was prominent at the recent splits within clade K.1. and clade K.2 as expected556

in a recent rapid radiation, a result of high levels of incomplete lineage sorting, hybridization557

and introgression (Berner & Salzburger, 2015).558

When applied to methods in population genetics, we obtained some evidence for a559

difference in demographic processes and in the level of genetic variation among species. This560

was especially true for the taxon-specific bait set: for example, the bait set differentiated561

between populations of T. punctulata and T. fasciculata, but not T. gymnobotrya in a max-562

imum likelihood tree and ancestry analysis (Supporting information Figure S5, Figure 4),563

indicating differences in inter-population genetic structure among species. The evidence for564

different demographic processes in these species extended to estimates of Tajima’s D, where565
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lower values may indicate a recent bottleneck. In addition, we found a unique distribution of566

nucleotide diversity for T. foliosa, possibly reflecting a low effective population size for this567

endemic species in contrast with the closely related, but widespread T. fasciculata. In all568

cases, our limited sampling given the large size of the family constrains our ability to draw569

conclusions of a ’true’ phylogeny and to account for population structure. Our finding how-570

ever suggests that nuclear markers obtained with a target capture technique can highlight571

genomic processes and be further applied to address questions in population genomics with572

a wider sampling scheme.573

4.3 Future prospects and implications for research in Bromeliaceae and other574

rapid radiations575

Beyond the scope of this study, the availability of a bait set kit for Bromeliaceae576

provides a prime genetic resource for investigating several topical research questions on the577

origin and maintenance of Bromeliaceae diversity. Manyfold studies of bromeliad phyloge-578

nomics set force the challenges of resolving species-level phylogenies with a small number of579

markers, particularly in young and speciose groups (Goetze, Zanella, Palma-Silva, Büttow,580

& Bered, 2017; Granados Mendoza et al., 2017; Loiseau et al., 2021; Versieux et al., 2012 ).581

This particularly curated bait set allows highly efficient sequencing across taxa: within our582

study, we found high mapping success with 82.3% average read mapping. As expected, we583

documented a difference in enrichment success among taxa, explained by divergence time to584

the reference used for bait design (see Supporting information Figure S4), suggesting possible585

deviations from the assumptions of non-randomly distributed missing data that may mislead586

phylogenetic inference (A. R. Lemmon, Brown, Stanger-Hall, & Lemmon, 2009; Streicher,587

Schulte, & Wiens, 2016; Xi, Liu, & Davis, 2016). However, given the large enrichment suc-588

cess, downstream analysis with deliberate methodology can account for possible biases and589

provide robust inference with strict data filtering (Molloy & Warnow, 2018; Streicher et al.,590

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444989
http://creativecommons.org/licenses/by-nc/4.0/


Bait capture taxon-specific vs. universal

2016). Hence, target enrichment with Bromeliad1776 can produce large data sets with con-591

sistent representation between taxa, allowing repeatability between studies and retaining the592

possibility for global synthesis by including sequence baits orthologous to the universal An-593

giosperms353 bait set. Moreover, with specific knowledge of the loci targeted in this set, the594

ability to obtain the same sequences across taxa and experiments and to differentiate genic595

regions with the use of A. comosus models, this bait set offers a broad utility for research in596

population genomics.597

Another important feature in the Bromeliad1776 set is the inclusion of genes puta-598

tively associated with key innovative traits in Bromeliaceae with a focus on C3/CAM shifts.599

Little is known about the molecular basis of the CAM pathway, an adaptation to arid en-600

vironments which evolved independently and repeatedly in over 36 plant families (Heyduk,601

Moreno-Villena, Gilman, Christin, & Edwards, 2019; Chen, Xin, Wai, Liu, & Ming, 2020;602

Silvera et al., 2010). CAM phenotypes are considered key adaptations in Bromeliaceae, as-603

sociated with expansion into novel ecological niches. In Tillandsia, C3/CAM shifts were604

found to be particularly associated with increased rates of diversification (Crayn et al., 2004;605

de La Harpe et al., 2020; Givnish et al., 2014). The Bromeliad1776 bait set offers oppor-606

tunities to address specific questions on the relationship between rapid diversification and607

photosynthetic syndromes in this clade, including testing for gene sequence evolution. Ad-608

ditionally, the inclusion of multi-copy genes, combined with newly developed pipelines for609

studying gene duplication and ploidy (Morales-Briones et al., 2020; Viruel et al., 2019), are610

beneficial for studying the role of gene duplication and loss in driving diversification. With611

the increasing ubiquity of target baits as a genomic tool we expect to see additional pipelines612

and applications emerging, further expanding the utility of target capture for both macro-and613

microevolutionary research.614
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5 Conclusions615

Even as whole genome sequencing becomes increasingly economically feasible, tar-616

get capture is expected to remain popular due to its extensive applications in research. We617

found that evaluating the differences in resolution power between universal and taxon-specific618

bait sets is far from a trivial task, and we attempted to lay out a methodological roadmap619

for researchers wishing to reconstruct the complex evolutionary history of rapidly diversify-620

ing lineages. While a taxon-specific set offers exciting opportunities beyond phylogenomic621

and into research of molecular evolution, its development is highly time-consuming, requires622

community-based knowledge and may cost months of work when compared with out-of-the-623

box universal kits. Our results suggest that universal kits can continue to be employed when624

aiming to reconstruct phylogenies, in particular as this may offer the possibility to use pre-625

viously published data to generate larger data sets. However, for those wishing to deeply626

investigate evolutionary questions in certain lineages, a taxon-specific kit offers certain ben-627

efits during data processing stages, where knowledge of the design scheme and gene models628

is extremely useful, and the possible return of costs is especially high for taxa emerging as629

model groups. We furthermore encourage groups designing taxon-specific kits to include also630

universal probes, furthering the mission to complete the tree of life.631
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Wöhrmann, T., Michalak, I., Zizka, G., & Weising, K. (2020). Strong genetic differentiation1042

among populations of Fosterella rusbyi (Bromeliaceae) in Bolivia. Botanical Journal of1043

the Linnean Society , 192 (4), 744–759. doi: 10.1093/botlinnean/boz0961044

Xi, Z., Liu, L., & Davis, C. C. (2016). The Impact of Missing Data on Species Tree Estimation.1045

Molecular Biology and Evolution, 33 (3), 838–860. doi: 10.1093/molbev/msv2661046

Zhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. (2018). ASTRAL-III: Polynomial time1047

species tree reconstruction from partially resolved gene trees. BMC Bioinformatics , 19 (6),1048

153. doi: 10.1186/s12859-018-2129-y1049

Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A1050

high-performance computing toolset for relatedness and principal component analysis of1051

SNP data. Bioinformatics , 28 (24), 3326–3328. doi: 10.1093/bioinformatics/bts6061052

Zimmer, E. A., & Wen, J. (2013). Reprint of: Using nuclear gene data for plant phylogenetics:1053

Progress and prospects. Molecular Phylogenetics and Evolution, 66 (2), 539–550. doi:1054

10.1016/j.ympev.2013.01.0051055

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444989
http://creativecommons.org/licenses/by-nc/4.0/


Bait capture taxon-specific vs. universal

Zink, R. M., & Vázquez-Miranda, H. (2019). Species Limits and Phylogenomic Relationships1056

of Darwin’s Finches Remain Unresolved: Potential Consequences of a Volatile Ecological1057

Setting. Systematic Biology , 68 (2), 347–357. doi: 10.1093/sysbio/syy0731058

8 Data Accessibility1059

NCBI1060

Table 1 Number and characteristics of the variants obtained for Angiosperms353 and1061

Bromeliad1776.1062

1063

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444989
http://creativecommons.org/licenses/by-nc/4.0/


Bait capture taxon-specific vs. universal

in
d
v

N
r.

S
N

P
N

r.
m

ea
n

d
ep

th
si

te
re

gi
on

s
in

ex
on

ic
S
N

P
s

re
gi

on
s

in
in

tr
on

ic
S
N

P
s

re
gi

on
s

in
in

te
rg

en
ic

S
N

P
s

S
N

P
s

on
-t

ar
ge

t
S
N

P
s

fl
an

k
in

g
S
N

P
s

off
-t

ar
ge

t

in
tr

a
g
e
n
ic

v
cf

A
n
gi

os
p

er
m

35
3

70
47

,3
90

34
47

(8
5.

7%
)

40
,6

28
(9

.2
%

)
4,

37
6

(5
.1

%
)

2,
38

6
(1

7.
8%

)
8,

42
4

(7
.4

%
)

3,
48

8
(7

4.
8%

)
35

,4
78

B
ro

m
el

ia
d
17

76
72

20
9,

18
6

66
01

.7
(8

1.
7%

)
17

0,
89

3
(1

7.
1%

)
35

,7
90

(1
.2

%
)

2,
50

3
(7

7.
9)

%
16

2,
92

4
(1

8.
0%

)
37

,6
61

(4
.1

1%
)

8,
60

1

p
o
p
-l

e
v
e
l

v
cf

A
n
gi

os
p

er
m

35
3

38
15

,6
22

1,
83

7.
8

(8
5.

5%
)

13
,3

45
(9

.2
%

)
1,

44
2

(5
.3

%
)

83
5

(1
9.

4%
)

3,
03

2
(7

.2
2%

)
1,

12
9

(7
3.

4%
)

11
,4

61

B
ro

m
el

ia
d
17

76
40

65
,4

73
39

14
.9

(8
3.

5%
)

54
,6

36
(1

5.
2%

)
9,

96
7

(1
.3

%
)

87
0

(7
8.

5%
)

51
,4

05
(1

6.
2%

)
10

,5
88

(5
.3

%
)

3,
48

0

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.444989doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444989
http://creativecommons.org/licenses/by-nc/4.0/


Bait capture taxon-specific vs. universal

9 Supporting information1064

9.1 Tables1065

Table S1 Genes included in the Bromeliad1776 bait design, with identifiers as annotated1066

in Ananas comosus genome v.3 (Ming et al., 2015). The table includes details about exon1067

composition, copy number and putatively associated pathways.1068

Table S2 Categories of pathways and traits used to choose genes of interest for the Bromeliad17761069

bait set, including literature source and number of genes in each category.1070

Table S3 List of accessions used in this study. For samples of Tillandsia subgenus Tilland-1071

sia locality codes are also indicated.1072

Table S4 Number of reads, numbers and percentage of read mapping to target in all1073

samples for both bait sets.1074

Table S5 Averaged levels of nucleotide diversity at synonymous (πS) and non-synonymous1075

(πN) for 5 Tillandsia subgenus Tillandsia species.1076
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