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Abstract
The Fragile Families Child Wellbeing Study (FFCWS) is a longitudinal cohort of ethnically diverse
and primarily low socioeconomic status children and their families in the U.S. Here, we analyze DNA
methylation data collected from 748 FFCWS participants in two waves of this study, corresponding
to participant ages 9 and 15. Our primary goal is to leverage the DNA methylation data from these
two time points to study methylation associated with two key traits in adolescent health that are
over-represented in these data: Early puberty and teen depression. We first identify differentially
methylated regions (DMRs) for depression and early puberty. We then identify DMRs for the
interaction effects between these two conditions and age by including interaction terms in our
regression models to understand how age-related changes in methylation are influenced by depression
or early puberty. Next, we identify methylation quantitative trait loci (meQTLs) using genotype data
from the participants. We also identify meQTLs with epistatic effects with depression and early
puberty. We find enrichment of our interaction meQTLs with functional categories of the genome that
contribute to the heritability of co-morbid complex diseases. We replicate our meQTLs in data from
the GoDMC study. This work leverages the important focus of the FFCWS data on disadvantaged
children to shed light on the methylation states associated with teen depression and early puberty, and
on how genetic regulation of methylation is affected in adolescents with these two conditions.
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1 Introduction

Epigenetic marks are valuable regulatory mechanisms in health-related studies because they are responsive to the
environment and stable across cell division but generally not passed to offspring via meiosis. DNA methylation is a
well-established epigenetic marker in which methyl groups are added to the DNA sequence, predominantly at CpG
dinucleotides. The CpG dinucleotides often cluster in stretches of DNA termed “CpG islands” [28]. These CpG islands
are enriched in the promoter regions of genes, and their methylation can silence or otherwise alter gene transcription [56],
and affect many cellular processes, including embryonic development, chromatin structure, X chromosome inactivation,
and genomic imprinting [1, 104, 88, 98]. As a consequence, DNA methylation has been found to play an important role
in the regulation of many diseases, including cancer [70, 37], neuropsychiatric and neurodegenerative diseases [31],
diabetes [75], and cardiovascular disease [74].
Historically, genome-wide association studies (GWAS) have focused on the identification of genomic variation associated
with disease [19]. Despite the availability of a complete human genome sequence since 2001 [26, 113, 53], mapping the
human methylome has progressed more slowly, mainly due to limitations in technology affecting sensitivity, specificity,
throughput, quantitation, and cost. Illumina generated the initial HumanMethylation27 [12] and the more recent
HumanMethylation450 (450K) BeadChip [11, 91], which quantifies genome-wide methylation using a cost-effective,
high throughput method. These and other advances in methylation quantification now make it possible to study the
methylome in greater detail and at a lower cost than ever before.
Because changes in methylation are strongly linked to age [118, 39, 54, 115], these recent technological improvements
facilitate studying conditions that occur in specific phases of life. Two conditions of particular interest in adolescent
health are teen depression (for all sexes) and early puberty (mainly in girls). These two adolescent conditions both carry
higher health risks later in life: Teen depression is associated with an increased risk of obesity [82], anxiety, and suicide
[14], and early puberty is associated with an increased risk of breast cancer [4, 106] and asthma [112, 72], and higher
BMI [47, 29]. These two adolescent conditions are public health issues, and understanding the regulatory mechanisms
governing them would promote the development of preventative treatments and interventions.
Previous work suggests links between methylation and teen depression or early puberty. In particular, several existing
studies directly associate differential methylation with depression, but they either do not focus primarily on adolescents
[117, 44], are limited to a small sample size [33, 23, 16], examine just a small region rather than the entire genome
[51], or only provide data at a single time point [87]. There are also studies identifying differential methylation for
early puberty, but again these either have a small sample size [73, 10], only focus on a few candidate genes instead
of searching genome-wide [102, 119], or examine individual CpG sites instead of larger methylation regions [22].
Nevertheless, these studies reveal a substantial epigenetic role in both teen depression and early puberty, suggesting that
looking for direct associations with methylation could provide valuable insights into the regulatory mechanisms behind
both of these conditions.
Here, we aim to further elucidate the role of methylation in teen depression and early puberty. Specifically, we
identify differentially methylated regions (DMRs) associated with each of these two conditions, and also DMRs
associated with interactions between each of these conditions and age. We then incorporate genotype information to
identify genetic variants associated with methylation changes across samples, i.e., methylation quantitative trait loci
(meQTLs). Most existing meQTL studies are based on small-sized samples or low-resolution methylation microarrays
[41, 124, 8, 94, 6], but nevertheless show promise in identifying novel candidates for explaining mechanisms of disease
associations [15, 126]. Finally, we identify interactions of meQTLs with teen depression and early puberty. We thus
leverage a relatively large sample of children at two time points to search for meQTLs that can shed further insight into
the epigenetic regulation of complex traits, and highlight the effects of teen depression and early puberty on the genetic
regulation of methylation.
In this work, our data come from the Fragile Families and Child Wellbeing Study (FFCWS), which is based on a stratified,
multistage sample of children born in large U.S. cities (over 200,000 population) between 1998 and 2000 [85]. Births
to unmarried parents were oversampled by a ratio of 3 to 1, resulting in a large number of minority and low-income
families. Baseline interviews were conducted with mothers in the hospital soon after the child’s birth, and fathers, when
available, were interviewed in the hospital or by phone. Follow-up interviews were conducted when the child was
one, three, five, nine, and fifteen years old. DNA samples were collected at ages nine and fifteen, and both genome
and epigenome-wide methylation assays (Illumina PsychChip arrays version 1.0 and 1.1 for genotypes, and Illumina
Infinium HumanMethylation450 BeadChips for methylation) were conducted on subsets of the samples. With these rich
data, we identify three types of regulation: i) methylation associated with adolescent depression and early puberty at
fixed ages, as well as over time, ii) meQTLs genome-wide, and iii) CpG sites that are genetically regulated differently in
adolescents depending on their depression or early puberty status.
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Our study adds a unique perspective on the role of methylation in teen depression and early puberty. First, our study
examines differences in DNA methylation over time in the same set of participants. Second, our study leverages the
longitudinal nature of the data to find methylated regions that are not only associated with teen depression and early
puberty, but have interaction effects with age. Third, we are able to use these data to identify large numbers of new
meQTLs and also meQTLs with interaction effects for teen depression and early puberty. Thus, our work reveals
the complex regulatory relationships between genotype and DNA methylation, and how these relationships change in
adolescents with depression and early puberty.

Materials and Methods

Data Collection and Processing

Study Design and Phenotyping

The Fragile Families and Child Wellbeing Study (FFCWS) identified a birth cohort of unmarried mothers along with a
comparison group of married parents in 20 U.S. cities, mainly in the Midwest and on the East Coast. The baseline data
were collected between 1998 and 2000, with 4898 mothers interviewed in the hospital within 24 hours of their child’s
birth. After this baseline interview, further data were collected from the children at ages 1, 3, 5, 9, and 15, and their
mothers. The survey questions at each age span a broad range of important issues in childhood health and well-being; in
this work, we focus on teen depression and early puberty as important adolescent traits that also affect future disease
risks.
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Figure 1: Distribution of teen depression scores in the FFWCS data. The teen depression scores range from 0 (no signs of depression)
to 15 (greatest signs of depression). These scores were measured at year 15 across 1700 participants.

For teen depression, the measured phenotype is a continuous composite score based on multiple questions from the
survey data at year 15, with our re-scored scale ranging from 0, indicating no signs of depression, to 15, indicating
signs of major depression (Figure 1). This score was adapted from five variables (Table 1) used in the Center for
Epidemiologic Studies Depression Scale (CES-D) [64]. These CES-D variables are based on the person’s feelings,
with responses on a four-point scale ranging from 1 (strongly agree) to 4 (strongly disagree). In the Fragile Families
adaption of the CES-D, the questions pertain to the last four weeks (Table 1). CES-D items were re-scored as follows, to
ensure larger scores indicate greater levels of depression and that zero scores are possible: strongly disagree (4→ 0),
somewhat disagree (3→ 1), somewhat agree (2→ 2), and strongly agree (1→ 3). “I feel happy” is the only positively
worded question; thus, it was re-scored inversely from the other questions, i.e., (4→ 3), (3→ 2), (2→ 1), and (1→ 0).
After re-scoring, we generated an overall depression score by summing these items together with all questions weighted
equally, following CES-D scoring.
For early puberty, the measured phenotype is a binary value indicating whether or not breast development is observed
at age 9, as recorded in the survey data in the primary caregiver’s response to a question about her daughter, “Would
you say that her breasts have started to grow?” We coded responses of “No” as 0, and responses of “Yes, barely” and
“Yes, definitely” as 1. This choice was made because any breast development at that age is considered evidence of early
puberty [69].
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Table 1: CES-D variables modified for the Fragile Families study in Year 15.
CES-D Survey Item Fragile Families Survey Item
4-point scale (1-4)

You felt that you could not shake off the I feel I cannot shake off the blues,
blues, even with help from your family even with help from my family

and your friends and my friends
You felt sad I feel sad

You were happy I feel happy
You felt life was not worth living I feel life is not worth living

You felt depressed I feel depressed.

Genotype Data and Imputation

The FFCWS collected DNA from saliva samples using DNA Genotek Oragene kits with DNA purification following the
manufacturer’s protocol. Genomic DNA was genotyped using Illumina PsychChip arrays versions 1.0 and 1.1.
We performed the following quality control procedure on both PsychChip arrays separately. First, we clustered sample
genotypes and removed variant calls that failed quality control (QC) in GenomeStudio. Next, we prepared the genotype
data for imputation with IMPUTE2 and 1000 Genomes Project Phase 3 reference haplotype data (October 2014
release) [24, 68]. We aligned genotype alleles to the Human Genome build 37 to match the strands between our
genotype data and the 1000 Genomes Project data when possible [84]. The plink algorithms for identical by descent
(IBD) detection and sex imputation are sensitive to correlated genetic markers, so we created a version of the data with
markers pruned by linkage disequilibrium (LD) using plink �indep-pairwise 20000 2000 0.5 [81]. We calculated
IBD from the LD-pruned data using plink �genome and merged a single sample that was duplicated. We checked for
erroneous male-female labels by comparing each sample’s reported sex with their imputed sex from X chromosome
inbreeding coefficients. We separated the pseudo-autosomal PAR1 and PAR2 regions from the X chromosome and then
computed the distribution of F-statistics for males and females based on their observed and theoretical homozygosity.
The distribution of F-statistics for the males clustered tightly around 1.0, whereas female F-statistics remained below
0.8. With appropriate sex misclassification thresholds (in plink, �check-sex 0.8 0.9), we did not observe sex
misclassification in any samples.
In the non-LD pruned data, we removed variants with > 0.05 missingness and individuals with > 0.02 missingness. We
discarded erroneous heterozygous calls (heterozygous haploid and non-male Y chromosomes), and we filtered variants
(after removing the individuals with substantial missingness above) with a more conservative threshold of > 0.02
missingness. For the PsychChip array version 1.0, the average genotyping rate for the 1212 samples (592 males, 620
females) was 99.9026%; For PsychChip array version 1.1, the average genotyping rate for the 1923 samples (1002 males,
921 females) was 99.8687%. We merged the genotype data from array versions 1.0 and 1.1 using plink (�merge-mode
1), resulting in 3119 samples (1586 males, 1533 females), merging genotypes of individuals that were genotyped on
both versions of the array. Finally, we ran IMPUTE2 on the 576,200 autosomal variants in 5 Mb windows, yielding
81,694,759 imputed loci (1000 Genomes Project Phase 3 reference, prephasing approach, effective population size
20,000) [68].

Methylation Data Collection and Processing

Saliva DNA samples were collected from the focal children at ages 9 and 15 using the Oragene DNA sample collection
kit (DNA Genotek). DNA was extracted according to the manufacturer’s protocol and stored at −80 degrees C until use.
DNA aliquots (0.5 `g) were bisulfite converted the EZ-96 DNA kit (Zymo Research, Orange, CA) according to the
manufacturer’s protocol. DNA was whole-genome amplified, enzymatically fragmented, purified, and applied to the
Illumina Infinium HumanMethylation450 BeadChips (Illumina, San Diego, CA) according to the Illumina methylation
protocol.
To process the raw methylation data, we used the R package minfi [5]. We performed stratified quantile normalization
with removal of bad samples as implemented in the minfi function preprocessQuantile. Next, we removed probes
on sex chromosomes and probes with a SNP within one nucleotide of the CpG site, since the presence of SNPs inside
the probe body can affect the probe’s binding affinity. We also dropped probes with > 20% failed samples and CpG
sites with > 50% failed samples.
Surprisingly, removing probes with known SNPs in them did not fully eliminate SNPs that were perfectly correlated
with methylation, indicating a probe with a variant in it rather than a molecular association. Therefore, we tested each
site for trimodality, which can indicate the presence of a SNP on the probe body that might have been missed from the
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SNP filtering step. To do so, for each site, we computed the likelihood ratio test (LRT) statistic comparing a mixture
of two Gaussian distributions to a mixture of three Gaussian distributions. These mixture distributions were fit using
the R package mclust [92]. The LRT statistic was computed as double the difference in log likelihood between the
three-component fit and the two-component fit, and was compared to a chi-squared distribution with three degrees of
freedom. To set a conservative threshold, we considered a site to be trimodal if its uncorrected p-value was less than
0.05.
To quantify methylation levels, we used M-values, i.e., the logarithm of the ratio between the methylated signal (")
and the unmethylated signal (*). An alternative quantification of methylation levels is the beta value, which is the
ratio between " and " +*. Both M-values and beta values are widely used, but we chose to use the M-value for its
improved performance in downstream statistical analyses [34]. After running this pipeline, we were left with a total of
? = 350,231 CpG sites and = = 1444 samples with non-missing sex information to be used in the subsequent analyses.

Identification of Differentially Methylated Regions (DMRs)

We examined subsets of the methylation data to identify differentially methylated regions (DMRs) for four variables of
interest: teen depression (269 samples at age 15 with non-missing measurements), early puberty (232 female samples at
age 9 with non-missing measurements), age-depression interactions (734 samples across both ages with non-missing
measurements), and age-puberty interactions (363 female samples across both ages with non-missing measurements).
Note that there are a larger number of samples in the interaction analyses because many individuals only had complete
non-missing measurements for our variables of interest at age 9 or age 15, but not both. For example, if an individual’s
early puberty status is known, but their methylation data or BMI value is only known at age 15, they would be included
in the age-puberty interaction analysis, where the interaction term would be formed by multiplying 15 by their early
puberty status, but not in the puberty analysis because their covariate values at age 9 are missing. For teen depression
and early puberty, the goal is to identify regions of the genome that are differentially methylated across individuals
stratified by teen depression levels or early puberty status. For the two age interaction phenotypes, the goal is to identify
regions where methylation that changes with age interacts with our variables of interest. In other words, interaction
DMRs are genomic regions where the changes in methylation between year 9 and year 15 are themselves different
between individuals stratified by their depression score at age 15 or their early puberty status at age 9.
To identify DMRs and interaction DMRs, we first identified associations between methylation at single CpG sites and
the variable of interest (teen depression, early puberty, age-depression interactions, or age-puberty interactions). These
site-level results were then combined locally across the genome to identify differentially methylated regions.

Associations with Single CpG Sites

To identify the methylation of single CpG site-level associations with our phenotypes of interest, we followed a two-step
procedure. First, we performed principal component analysis (PCA), once on the standardized methylation data and
once on the imputed standardized genotype data. We selected the first two principal components (PCs) from both
matrices to use in association testing to control for batch effects and population structure [63, 80]. The methylation
PCs are computed separately for each analysis (depression, early puberty, age-depression interaction, and age-puberty
interaction) by subsetting to include only the subjects with non-missing covariate information for that association test.
Second, we fit linear regression models to the M-values of each CpG site. We define the M-values of a CpG site as .8, 9 ,
where 8 = 1, . . . , = is the sample index and 9 = 1, . . . , ? is the CpG site index. Let /8 be the relevant covariates for a
model, and -8 be one of the four variables of interest (i.e., the measure of teen depression, early puberty, age-depression
interaction, or age-puberty interaction). Then, we fit the model

.8, 9 =

2∑
2=1

V1,2%�<4Cℎ,2 + V2,2%�64=>,2 + VC2>E/8 + V-8 + n8, 9 .

For each of the four variables of interest, different covariates were included in the model. For -3
8
∈ {0,1, . . . , 15}

representing teen depression status, we used the continuous score described above (higher values indicate more extreme
depression), with the covariate sex, which is encoded as a binary value. Early puberty -4

8
∈ {0,1} is a binary value

where a 1 indicates breast development has started at age 9, and the covariate is the real-valued BMI measured at age 9.
For age-depression interactions, we examined the interaction term between age—a binary variable indicating whether
the sample is from year 9 or year 15—and the depression score at age 15. The covariates were sex, age, and depression
score. Finally, for age-puberty interactions, we examined the interaction term between age and early puberty status, and
the covariates were age, early puberty status, and BMI. The interaction terms were defined as the product of the two
numeric values for each sample (binary values are made numeric with {0,1} dummy variable encoding). All models
were fit for each CpG site using the R package limma [99]. The built-in empirical Bayes function was used to shrink the
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standard errors towards a common value, and p-values were reported for each variable of interest and each CpG site
from these model fits.

Identifying Regions of Interest from Summary Statistics across Single CpG Sites

We are primarily interested in differentially methylated regions (DMRs), rather than considering each CpG site marginally,
due to the greater statistical reliability of differential methylation across regions. Thus, we combined the individual
p-values for each CpG site across genomic regions to identify differentially methylated regions. To do so, we applied a
“moving averages” method of p-value correction [79] that accounts for spatial correlation and multiple hypothesis test
correction to identify DMRs from the p-values of each CpG site. We first computed the correlation between CpG sites
at a varying genomic distance (i.e., autocorrelation). Second, we performed the Stouffer-Liptak-Kechris correction
[57], where each p-value is modified with a weight derived from the autocorrelation of the associated CpG site with
other CpG sites within the genomic window. Third, we used the Benjamini-Hochberg correction [9] to control the
false discovery rate (FDR). The resulting q-values for each CpG site were used to identify DMRs based on the seed
and distance parameters. We set the seed to @ ≤ 0.2 (maximum q-value required to start a region), and the distance to
1000 bases (distance in which another sufficiently low q-value must be found for the genomic window to be extended).
Finally, we computed the Stouffer-Liptak p-value for each region by using the autocorrelation calculated out to the
length of the longest region, and we applied the Sidak correction [96] for multiple testing on the Stouffer-Liptak p-values
for each region. These Sidak-corrected p-values are reported for each potential differentially methylated region. All
these steps were performed using the Python package comb-p [79].

Methylation Quantitative Trait Loci (meQTLs)

We identified three types of methylation quantitative trait loci (meQTLs), described below. The baseline meQTLs were
ascertained from the full sample (= = 748) by testing for association between CpG sites and genotypes. The two types
of interaction meQTLs were ascertained by testing for an interaction that includes the single nucleotide polymorphism
(SNP) and teen depression or early puberty—the effect of the association between SNP and CpG site changes as a
function of teen depression or early puberty status—while also including both the SNP and the covariate of interest as
fixed effects in the model.

Methylation QTLs

To identify meQTLs, we tested each CpG site and SNP pair for associations between methylation levels and genotype
usingMatrixEQTL [93]; although the package was designed for expression QTLs, we considered M-values of each CpG
site across samples instead of transcript expression levels. This package is often used for identifying meQTLs [30, 67, 77].
We corrected for multiple comparisons by computing the false discovery rate (FDR) using Benjamini-Hochberg [9] and
using an FDR < 0.05 threshold for discovery. In our analysis, we examined only cis-meQTLs (distance of the SNP from
the CpG site ≤ 20 kb) using all 748 samples with non-missing covariate information [6], and we fit the following linear
regression model for each SNP, CpG site pair:

.8, 9 =

2∑
2=1

V1,2%�<4Cℎ,2 + V2,2%�64=>,2 + VC2>E/8 + V�8 + n8, 9 . (1)

Here, �8,ℓ ∈ {0,1,2} is the genotype for individual 8 at position ℓ ∈ {1, . . . ,!}, encoded as the number of copies of the
minor allele. In this analysis, we included as covariates /8 sex and age, and two PCs each for methylation and genotype
as in the DMR analyses [6].

Interaction meQTLs

We used this same association testing approach to find interaction meQTLs, or meQTLs that have interaction effects
with teen depression and early puberty, by including the appropriate interaction term in the model above (Eqn 1). In
other words, we found meQTLs where the association between the CpG site and SNP is differential with respect to
either the depression score or early puberty status. All samples with a depression measurement at year 15 were used to
find the teen depression interaction meQTLs, controlling for sex, age, and depression score at year 15. The female year
9 samples were used for the early puberty interaction meQTLs, controlling for BMI and early puberty status. The four
PCs (two from methylation measurements and two from genotypes) were also included as covariates in all models.

meQTL Validation Analysis

The Genetics of DNA Methylation Consortium (GoDMC) [71] focuses on epidemiological studies with more more than
30,000 participants with genetic, phenotypic and DNA methylation information. In particular, the GoDMC project
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Table 2: Summary of the four (corrected p-value ? ≤ 0.05) DMRs (a) associated with teen depression, and a summary
of the five (corrected p-values ? ≤ 0.05) DMRs (b) associated with age-depression interaction. Genes overlapping any
of these regions are reported in the Gene column. The ? column represents corrected ?-values.

(a)

Chr Start Stop Gene ?

1. 8 37824496 37824766 - 0.0006302
2. 6 28446794 28447116 - 0.006125
3. 19 58554401 58554528 ZSCAN1 0.0225
4. 19 7852051 7852239 - 2.391 × 10−5

(b)

Chr Start Stop Gene ?

1. 4 165898707 165898968 TRIM61 1.75 × 10−5

2. 13 19918951 19919209 - 0.0031
3. 19 7852051 7852239 EVI5L 5.83 × 10−6

4. 11 1474456 1474778 BRSK2 0.0086
5. 8 11203882 11204133 - 0.00197

identified meQTLs from whole blood DNA samples using HumanMethylation450 or EPIC array profiles from 32,851
participants in the GoDMC UK cohort [71]. We validated our meQTL results by comparing them to the GoDMC
study’s meQTLs. In particular, we examined the GoDMC meQTL discoveries in the phase 2 analyses, which consists
of all significant and non-significant SNP-CpG results in the GoDMC data, in light of the meQTL associations we
identified in the FFCWS data.
We performed the validation as follows. First, using the meQTLs from GoDMC, we identified the same CpG-SNP pairs
in our study (85,984,217 GoDMC meQTLs; 9,154,359 meQTLs in our study; 48,566 unique SNP and CpG pairs in
common). The corresponding p-values of the two studies, FFCWS and GoDMC, were plotted in a scatterplot to check
their trend. Finally, we also compared the density plot of the p-values found in the FFCWS study data sets and the
p-values found in the GoDMC data.

meQTLs Enriched in Cis-Regulatory Elements

We identified enriched genomic functional elements using stratified linkage disequilibrium (LD) score regression [38].
This method identifies meQTLs that are enriched in specific genomic elements by comparing the genetic contribution
to the variance of the methylation values of groups of SNPs in LD that are colocalized inside and outside of the
functional element. We used the Python ldsc package [18] to perform enrichment tests for 53 overlapping functional
element categories from 24 top-level annotations, using the default base-pair windows and the 1000 Genomes Project
European-ancestry GWAS data LD Score regression intercepts. The 24 top-level annotations considered are: UTR;
coding; regions conserved in mammals [66, 116]; open chromatin reflected by DNase I hypersensitivity site (DHS)
regions [111, 45]; superenhancers [49]; FANTOM5 enhancers [3]; histone marks H3K4me1, H3K4me3, H3K9ac
[36, 60, 111]; introns, promoter regions [45, 58]; and the combined chromHMM and Segway annotations [50].

Results and Discussion

Our results include two primary analyses: DMRs and meQTLs. The goal is to discover both methylation levels associated
with teen depression and early puberty, and how genotypes regulate methylation levels differently in participants with
the two conditions.

DMRs for Teen Depression

First, we identified genomic regions that are differentially methylated across Fragile Families participants with and
without teen depression. With 269 participants, we detected 4 DMRs (corrected p-value ≤ 0.05; Table 2a). To
understand the implications of these results and the extent to which our findings agree with previous results in the
literature, we examined the genes overlapping each of the DMRs. We found one gene overlapping these four regions,
ZSCAN1. Although this gene has not been found directly linked to depression, ZSCAN1 is involved in high-risk HPV,
inducing carcinogenesis [114], and in cervical neoplasia [35]. Our findings suggest new insights for genes with previous
associations with other diseases.

DMRs for Early Puberty

Next, we identified genomic regions that are differentially methylated across those with and without early puberty status.
We considered 232 participants, 128 of whom were positive for early puberty, and we found ten DMRs (corrected
p-value ? ≤ 0.05; Table 3a). Of the six genes overlapping these DMRs, we highlight two genes of interest for the early
puberty phenotype: ABAT and GRK4.
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Table 3: Summary of the ten differentially methylated regions (DMRs; corrected p-value ? ≤ 0.05) associated with
early puberty (a), and the top ten DMRs (out of 80) associated with age-puberty interactions (b). Genes overlapping
these regions are reported in the Gene column. The ? column represents corrected ?-values.

(a)

Chr Start Stop Gene ?

1. 16 8806690 8807044 ABAT 0.0051
2. 10 135051233 135051582 VENTX 0.0053
3. 4 2964211 2964240 GRK4 0.0062
4. 6 1598854 1598985 - 0.035
5. 7 1216824 1216934 - 0.0062
6. 9 81871809 81871927 - 0.0297
7. 19 38345819 38346024 LOC100631378 0.022
8. 5 3605783 3606082 - 0.011
9. 16 81518041 81518254 CMIP 0.034
10. 3 49170496 49170795 LAMB2 0.013

(b)

Chr Start Stop Gene ?

1. 17 46682308 46682414 HOXB6 1.572 × 10−11

2. 6 149805995 149806503 ZC3H12D 4.773 × 10−7

3. 4 57547347 57548094 HOPX 2.323 × 10−5

4. 1 1564422 1565028 MIB2 4.276 × 10−5

5. 6 28911199 28912085 - 4.634 × 10−5

6. 16 56995201 56995841 CETP 0.02947
7. 16 89114613 89115734 AK055272 6.575 × 10−5

8. 15 23891048 23891190 - 1.087 × 10−4

9. 6 30647561 30647650 PPP1R18 1.149 × 10−4

10. 12 25150530 25151354 - 1.278 × 10−4

ABAT encodes a mitrochondrial enzyme that is a key regulator in the metabolism of a major inhibitory neurotransmitter
known as gamma-aminobutyric acid (GABA). GABA plays a major role in a wide range of brain functions, and its
dysfunction due to mutations in ABAT has been linked to many different disorders, including epilepsy, psychomotor
difficulties, and Alzheimer’s disease [127]. A study on puberty in goats found ABAT to be one of the implicated genes
in methylation changes before and after puberty [121], and this gene was also found to be important in puberty and
reproductive functions in rats [95].
Next, GRK4 encodes the G protein-coupled receptor kinase 4. While no direct association has been previously observed
with early puberty, this gene has been found to be associated with BMI in adolescent girls [90]. Childhood BMI is known
to be associated with pubertal timing [40], which could suggest a link between GRK4 and early puberty. Moreover, G
protein-coupled receptor kinase 4 is related to hypertension and lipid levels [100]. Correlations between lipid levels and
hypertension with BMI in prepubertal children have been established [17]. Thus, GRK4 appears to be involved in early
puberty through childhood BMI, lipid levels, and hypertension.
We did not find relevant annotations for the remaining four genes. Taken together, our DMRs have biological support
since the overlapping genes are enriched for plausible connections with early puberty, while also suggesting possible
mechanisms for early puberty and highlighting other potentially mechanistic genes.

DMRs for Age-Depression Interaction

We next tested for DMRs associated with an age-depression interaction, meaning that the effect size of a DMR for
depression is associated with age. We found five age-depression interaction DMRs (corrected p-value ? ≤ 0.05;
Table 2b; Figure 2A).
We found three genes of interest overlapping our age-depression DMRs: TRIM61, EVI5L, and BRSK2 (Figure 2B). Of
these, BRSK2 has a previously studied association with disorders of the brain. In particular, mutations in this gene
have been found to be related to neurodevelopmental disorder [48]. A separate study identified the BRSK2 kinase
to suppress a transcription factor known as NRF2, which is relevant because NRF2 activity is known to decrease in
neurodegenerative disorders as well as with age [105]. Hence, our finding suggests that this gene could have an effect on
depression that is modified by age.

DMRs for Age-Puberty Interactions

Next, we tested for associations among methylation levels at each CpG site and the age-puberty interaction term, which
tests whether the effect sizes of early puberty DMRs are a function of age. We identified 80 age-puberty interaction
DMRs (corrected p-value ≤ 0.05; Table 3b). Interestingly, many more age-puberty DMRs were found relative to
the number of early puberty DMRs detected. This suggests that early puberty may primarily manifest in methylation
markers dynamically across ages rather than as differences detectable at a fixed age. Across the 10 most significant
DMRs (reported in Table 3b), the identified age-puberty effects appear to have no differential effects in the controls
(children without early puberty), and have the same direction of differential effect in the age 9 and age 15 cases (children
with early puberty). For the majority of our interactions, the magnitude of the differential effect is larger for the age 15
cases than for the age 9 cases (Figure 3a).
To study the functional impact of these interaction DMRs, we examined the seven genes overlapping the top ten
associated regions; here, we highlight one of them (CETP), and also the regions overlapping CETP to show the
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Figure 2: Interactions between age and depression for differential methylation. Residualized M-values are computed by removing
the effects of the associated covariates that are not the phenotypes of interest. For visual purposes, we stratify the depression scores
by those less than or equal to six versus those greater than six. (a) Heatmap of the methylation levels in DMRs for age-depression
interactions (Table 2b). Methylation levels are quantified as residualized M-values. (b) Boxplots of the four highlighted DMRs
(numbers 1, 5, 10, and 14 in Table 2b) as examples of differential methylation at these regions between ages 9 and 15 among one of
the categories (depression or no depression) with no evidence of differential methylation among the other category. These regions
show an interaction effect between age and depression on methylation.

differences in effects (Figure 3b). CETP is known to have associations with HDL cholesterol levels, and mutations at this
locus can result in greater risk of myocardial infarction [86]. This gene is also specifically shown to have associations
with lipid levels in both children [97]. This suggests particular relevancy here, since BMI is known to be related to
pubertal timing, and lipid levels are associated with BMI.
Overall, the DMRs we found associated with the four variables of interest are important for three reasons. First, we are
able to validate and strengthen previous results concerning particular genes and their associations with depression and
early puberty. Second, we provide a possible mechanism of action for these variables of interest, by associating these
genes with the variables of interest through increased or decreased methylation. Our interaction DMRs in particular
highlight genetic loci whose methylation is differential by age conditional on teen depression or early puberty status,
suggesting a dynamic, rather than static, association and thus greater context for these mechanisms across relevant ages.
Third, our findings generate novel insights by implicating genes that have not been directly connected to these specific
variables of interest. Moreover, the remaining regions that do not directly overlap genes could still represent important
findings about non-coding regions that may play a functional role in the regulation of teen depression and early puberty.

Methylation QTLs

We shift our focus to the second methylation phenomenon of interest: Methylation quantitative trait loci (meQTLs), or
genetic variants that are associated with CpG site methylation levels. First, we describe a genome-wide analysis of the

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.444959doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444959
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a)

fiber
vite

lycopene
total_carotene

lutein
niacin
folate
vitc
vitb6

riboflavin
thiam

in
zinc
iron

phosphorus
potassium

sodium
calcium

carbohydrates
poly

m
ono

satfat
cholesterol

protein

20
21

Nutrients

−1.0

−0.5

0.0

0.5

1.0

0 2-1-2 1

M
et

hy
la

te
d

Re
gi

on
s

No Early Puberty Early Puberty
Age 9Age 15Age 9 Age 15

(b)

Figure 3: Interactions between age and early puberty associated with differentially methylated regions. Residualized M-values are
found by removing the V coefficient with the associated covariates that are not the phenotype of interest. (a) Heatmap of methylation
levels in the DMRs for age-puberty interaction terms (Table 3b). Methylation levels here are measured as residualized M-values. (b)
Boxplots of four DMRs (1, 5, 10, and 14 in Table 3b) as examples of differential methylation at these regions between ages 9 and 15
among one of the categories (early puberty or no early puberty), but no differential methylation between the two ages among the
other category.

full sample (= = 748) to identify associations between all CpG sites and single nucleotide polymorphisms (SNPs) in our
FFCWS data. We then perform enrichment analysis to further characterize possible mechanisms of these meQTLs.
Second, we show meQTLs that have interaction effects with depression or early puberty and again perform enrichment
analysis on these interacting meQTLs. Last, we validate the puberty-interacting meQTLs in the GoDMC data set to
demonstrate the generalizability of our findings [76].

Genome-Wide Methylation QTLs

We first identified meQTLs across 748 samples. Our analysis discovered 6,103,375 SNP-CpG pairs representing
meQTLs (FDR ≤ 0.05; Tables 4), including a total of 2,835,920 unique SNPs and 209,624 unique CpG sites. Many
SNPs and CpG sites were implicated in multiple associations, highlighting the correlations among CpG sites nearby on
the chromosome with shared meQTLs, as with SNPs in LD that were associated with the same CpG site (Figure 4). This
result is obtained by removing trimodal CpG sites from the analysis with the likelihood ratio test procedure; the trimodal
distribution identified CpG sites that were often perfectly correlated with a nearby SNP, indicating that the probe may
have been affected by the SNP instead of effects happening at a cellular level. We did not test for associations between
non-local SNPs and CpG sites, so distal sharing cannot be observed in our results; however, the local shared effects are
also reflective of the local correlation structure known for CpG sites [125] and for SNPs via linkage disequilibrium.
We further identified several genes of interest overlapping CpG sites in the top 15 meQTLs in unique genomic loci. In
particular, the TREML2 gene is associated with Alzheimer’s disease and other neurological disorders [120].. Next, the
NRG3 gene has been found to be related to cognitive deficit in schizophrenia [65], as well as bipolar disorder and major
depressive disorder [78]. Finally, mutations in the ACOX1 gene are associated with neurodegeneration [42]. All three
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Table 4: Fifteen meQTLs at unique genetic loci with lowest p-values, with the corresponding effect size (V value).
If a CpG site is located within a gene, the gene name is indicated in the Gene column. The ? column represents
corrected ?-values.
Chr SNP Position CpG Position Gene Beta ?

1 161360435 161349006 SDHC 1.81 2.22 × 10−308

6 41196605 41195891 TREML2 -1.26 2.22 × 10−308

2 30670010 30669759 - -1.74 2.22 × 10−308

11 64115983 64116279 MACROD1 1.72 2.22 × 10−308

15 41689232 41695430 - 1.71 2.22 × 10−308

17 75961513 75956447 ACOX1 1.49 2.22 × 10−308

4 122720999 122721982 - 1.63 2.22 × 10−308

10 134150920 134165390 - 2.12 2.22 × 10−308

1 51811558 51811558 - 3.40 2.22 × 10−308

8 144699424 144715010 - -1.73 2.22 × 10−308

12 120537408 120535099 - 1.81 2.22 × 10−308

16 22166976 22175965 - 4.56 2.22 × 10−308

7 45025696 45025080 CCMD2 1.73 2.22 × 10−308

6 28881660 28885017 - 1.21 5.10 × 10−303

19 39953823 39967363 - 1.92 1.94 × 10−304

Figure 4: Manhattan plot for each SNP showing the -log10 ?-value with each associated CpG site, for all cis-meQTLs with
? < 1 × 10−3.

genes play important roles in biological processes, and impact psychiatric and general health in a variety of ways. Our
meQTL findings contribute by showing that colocalized CpG sites are regulated by genotype, suggesting a specific
genetic regulatory mechanism at play.
Next, we performed enrichment analysis using stratified LD score regression on the meQTLs to quantify enrichment of
genetic effects in functional annotations [38]. Each hypothesis test evaluates whether the meQTLs are enriched in one of
the 24 annotation categories or not (Bonferroni-corrected ? ≤ 0.05; Figure 5). We observed enrichment for 18 of these
annotation categories. A few of these categories are of particular interest in mechanistically understanding meQTLs.
First, FANTOM5 enhancer regions [3] showed the greatest enrichment among all annotations with 0.4% of the SNPs
explaining 14.8% of meQTL heritability. Enhancers are thought to functionally regulate gene expression more distally
than promoters [3]. Enhancers have been found to have a direct relationship with early puberty [108, 109], where the
repression or activation of enhancer regions is essential for regulating the timing of mammalian puberty. Super-enhancers
did not show a large enrichment compared to enhancers; the enrichment estimate is 2.2 for super-enhancers compared to
14.8 for the FANTOM5 enhancers. Weak enhancers, on the other hand, showed substantial enrichment, with 2.1%
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Figure 5: Enrichment analysis using stratified LD score regression for the 24 regulatory element categories. Error bars show the
jackknife standard errors around the estimates of enrichment, with the asterisk representing significance (? ≤ 0.05) after Bonferroni
correction for the 24 hypotheses tested. The percentage in parentheses indicates the percentage of SNPs colocalizing with the
regulatory element.

of the SNPs explaining 47.03% of the meQTL heritability. Although still an enrichment, the smaller estimate for
super-enhancers suggests that they may not play as big a role in meQTLs compared to other enhancer regions.
Second, the 5’ untranslated region (5′ UTR) also shows substantial enrichment, with 0.5% of the SNPs explaining
11.4% of the meQTL heritability. The 5′ UTR has been found to be related to depression [89], schizophrenia [61], and
attention-deficit hyperactivity disorder [7].

Validation in the GoDMC Study

The GoDMC study identified meQTLs calculated in whole blood DNA samples with HumanMethylation450 or EPIC
array profiles from 32,851 participants in the GoDMC cohort [71]. We compared our meQTLs with the meQTLs
identified in the GoDMC study to validate our results out-of-sample. Among the 7,786,541 CpG-SNP pairs in common
between the two studies (with 348 unique SNP and CpG pairs in common), we see a strong enrichment of p-values found
in the FF meQTLs as compared to the p-values obtained in the GoDMC data (Figure 6; Section §B.1). This validation
shows that the meQTLs identified in the FFCWS replicate in an outside sample, and suggests that the meQTLs represent
reproducible biological signal.

Interaction meQTLs

Next, we looked at interaction meQTLs to find SNP-CpG site associations that are differential based on early puberty or
teen depression status. To do this, we included the appropriate interaction term in the linear models for each pair of
SNPs and CpG sites (see § Methods). We found a total of 13,658 interaction meQTLs for puberty, involving 13,269
unique SNPs and 4,532 unique CpG sites. We found 21,543 interaction meQTLs for teen depression, involving 20,943
unique SNPs and 8,525 unique CpG sites (FDR ≤ 0.05; Table 5).
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Table 5: Puberty and depression interaction meQTLs. (a) Fifteen puberty interaction meQTLs with the lowest
p-values with the corresponding estimated effect sizes (V values). If a CpG site is contained within a gene, the
gene is indicated in the Gene column; (b) Fifteen depression interaction meQTLs with the lowest p-values, with the
corresponding estimated effect size (V values). If a CpG site is contained within a gene, the gene is indicated in the
Gene column. The ? column represents corrected ?-values.

(a)

Chr SNP Position CpG Position Gene Beta ?

12 57773981 57780179 EEF1AKMT3 -1651.90 1.20 × 10−113

10 8101659 8089653 - 3247.07 2.20 × 10−94

7 30933256 30951064 - 3181.37 7.29 × 10−93

15 68862918 68866542 SPESP1 2701.03 5.91 × 10−90

17 60735560 60744005 BCAS3 -3050.36 7.78 × 10−73

11 113145175 113145174 - -2844.69 2.01 × 10−71

1 42503769 42503768 - 2870.26 2.51 × 10−69

11 2708463 2722195 - -2961.98 1.77 × 10−67

8 144447281 144462235 - 13.65 9.54 × 10−66

11 3630615 3614086 - -13.29 3.01 × 10−61

11 64892198 64889510 - 13.70 1.47 × 10−59

1 19239755 19245969 - 11.99 1.85 × 10−56

8 108351210 108359437 - 2930.32 6.30 × 10−53

8 610096 610095 - -1626.44 5.97 × 10−53

5 4218030 4207689 - 1350.85 1.00 × 10−51

(b)

Chr SNP Position CpG Position Gene Beta ?

22 22000289 22007095 PRAMENP 2019.23 1.77 × 10−112

14 91734110 91720173 CATSPERB 3.83 7.88 × 10−92

1 2222210 2205770 - 2.28 1.18 × 10−87

2 176984427 176981422 - -883.75 1.11 × 10−79

7 2000451 1992028 MAD1L1 4.98 2.60 × 10−74

17 3559685 3561358 - -2.37 1.56 × 10−73

6 33408918 33422185 KIFC1 -4.71 8.44 × 10−65

2 134941920 134956853 CCNT2 449.47 1.82 × 10−64

16 810947 801936 - 0.91 9.90 × 10−62

20 2370819 2384367 - 3392.09 2.12 × 10−58

2 241510516 241493941 - -4.63 1.88 × 10−56

15 92453892 92455658 ST8SIA2 5.72 4.12 × 10−56

2 203113916 203130268 NBEAL1 3.58 2.43 × 10−54

11 113161878 113143211 - -227.88 2.46 × 10−54

7 94275103 94286232 - 7.58 2.38 × 10−52
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Figure 6: FFCWS meQTL replication in the GoDMC Study. (a) Scatterplot of the log10 p-values found in the FFCWS data versus
the log10 p-values found in the GoDMC data from CpG-SNP pairs in common between the two studies. (b) Density plot of the
p-values found in the FFCWS data on log10 scale (pink) and the p-values found in the GoDMC data (in blue) from CpG-SNP pairs in
common between the two studies.

To illustrate the interaction effects, we examine a few meQTLs with depression or early puberty interactions more
closely (Figure 7). For the teen depression interaction meQTLs, the association between SNP 7-1834022_A_T and
CpG site cg12098896 among those without teen depression is in the opposite direction of the same association among
those with depression. This interaction meQTL is of particular interest because both this SNP and CpG site are
located within the gene MAD1L1, which has been previously found to contain SNPs associated with schizophrenia
[103] and bipolar disorder [110], as well as a CpG site associated with major depressive disorder [20]. Moreover,
the MAD1L1 gene shows the highest transcript levels across tissues in EBV-transformed lymphocytes in the GTEx
portal [43, 25]. EBV-transformed lymphocytes can show markers of depression [32] and stress [59] as a result of the
process of transformation.
Another interesting depression-interaction meQTL contains a CpG site within the gene CCNT2 (Table 5b), related to
the cyclin family. It has been found to be associated with intellectual disability, particularly limitations in intellectual
functions and social behavior [52]. In the GTEx portal, relative to other brain regions, this gene has high transcript
levels in the cerebellar hemisphere and cerebellum regions of the brain, which play key roles in depression [55]. Our
findings add to the known associations with these genes by suggesting the presence of a meQTL where the regulatory
association differs by depression score.
For the puberty interaction meQTLs, an interesting puberty interaction meQTL targets the CpG site that is located
within the SPESP1 gene (Table 5a). This gene is related to breast cancer [27], as well as pre-eclampsia [107, 123].
Finally, it has also been found to be differentially expressed between male and female lung tissue [46]. Moreover, from
the GTEx portal, this gene shows high levels of transcription in the testis and thyroid, tissues involved in puberty [101]
and obesity [13], which is linked with early puberty. Our puberty interaction meQTLs suggest that regulation of these
genes may be differential with respect to early puberty status.
We also performed enrichment analysis on the interaction meQTLs (Figure 8). For early puberty (Figure 8.a), we found
four annotation categories (i.e., Coding, DNaseI digital genomic footprinting (DGF), Promoter Flanking, and Promoter)
that were enriched for meQTLs (Bonferroni-corrected ? < 0.05). In particular, among these four annotation categories,
the DGF shows the greatest enrichment with 54.1% of the SNPs explaining 7.8% of early puberty-interaction meQTLs’
heritability. Coding regions have been found to be associated with Alzheimer’s disease [128]. In addition, promoter
regions show enrichment, with 3.1% of SNPs co-localized in these regions explaining 13.1% of meQTL heritability.
Promoter regions are known to drive cis-regulation of gene expression [43], and have been found to be associated with
autism spectrum disorder [2] and breast and ovarian cancer [122]; a direct connection with early puberty is unclear.
For the depression-interaction meQTLs, there are two annotation categories (i.e., DGF, and Weak Enhancer) that
are enriched (Bonferroni-corrected ? < 0.05; Figure 8.b). Among these two, the weak enhancer regions shows the
largest enrichment estimate, with 8.9% of SNPs that are co-localized with weak enhancer regions explaining 58.2% of
interaction meQTL heritability. The weak enhancer has been linked to mechanisms behind depression and suicide [21].
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Figure 7: Example interaction meQTL boxplots. (a) An example of a depression-interaction meQTL with the SNP 7-1834022_A_T
and CpG site cg12098896. For visual purposes, we stratify the depression scores for less than or equal to six versus depression
scores greater than six. (b) An example of an early puberty-interaction meQTL with SNP 9-211472_A_T and CpG site cg02091103.

Although not significant, the the DNAse I hypersensitive site (DHS) markers show an enrichment with 16.8% of the
SNPs explaining 89.9% of depression-interaction meQTLs’ heritability. The DHS has been found to be associated with
obesity [83].

Conclusions

In this work, we used genomic and phenotypic information in the Fragile Families Child Wellbeing Study cohort to
study the interplay between DNA methylation and two traits that are important in adolescent health: teen depression and
early puberty. We identified differentially methylated regions (DMRs), methylation quantitative trait loci (meQTLs), and
interaction meQTLs across these data with respect to teen depression and early puberty status. This first genome-wide
analysis of methylation data from the FFCWS cohort successfully characterized the impact of methylation on teen
depression and early puberty. Because of the large sample size in this study and substantial representation of participants
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Figure 8: Enrichment analysis using stratified LD score regression for 24 annotation categories. Error bars show the jackknife
standard errors around the estimates of enrichment, and the asterisk in the x-axis label represents significance (Bonferroni-corrected
? < 0.05). (a) Enrichment analysis on the interaction meQTLs for early puberty. (b) Enrichment analysis on the interaction meQTLs
for depression.

with early puberty or teen depression traits, we were able to show dynamic effects acting between ages 9 and 15, as well
as the genetic regulation of methylation of CpG sites related to depression and early puberty status.
Our DMR analyses identified regions that were differentially methylated with respect to early puberty and teen depression
status. We also found regions with differential methylation status across age with respect to both early puberty and
teen depression. We identified 9,154,359 methylation QTLs and 51,191 interaction meQTLs with respect to early
puberty status, and 70,569 interaction meQTLs with respect to depression score. We validated our meQTLs in the
GoDMC Study data and also performed enrichment analyses with regulatory elements in the genome. Our findings have
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a broadly mechanistic interpretation into the biological underpinnings of early puberty and teen depression; many of the
findings are potentially novel mechanistic genes that we will experimentally validate in the future [62]. Our analysis
both recapitulates known biology and generates novel insights for understanding the mechanisms by which early puberty
and teen depression manifest in a racially-diverse cohort, building the foundation for future interventions to improve
adolescent health.
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