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Highlights 

• Current risk prediction models use a variety of factors to identify women at risk of 

developing breast cancer. 

• Proteins circulating in blood represent an attractive but currently still underrepresented 

source of candidates serving as molecular risk factors. 

• Plasma proteomes from women participating in a prospective breast cancer cohort study 

were studied for proteomic risk factors related to a future breast cancer diagnosis. 

• Using data-driven approaches, women with future breast cancers and previous use of 

menopausal hormone therapy were identified based on their circulating proteins.  

• Menopausal hormone therapy was found to altered the levels of the circulating proteins 

even years after the treatment ended. 
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Abstract 

Background Risk prediction is crucial for early detection and prognosis of breast cancer. 

Circulating plasma proteins could provide a valuable source to increase the validity of risk 

prediction models, however, no such markers have yet been identified for clinical use. 

Methods EDTA plasma samples from 183 breast cancer cases and 366 age-matched controls 

were collected prior to diagnosis from the Swedish breast cancer cohort KARMA. The 

samples were profiled on 700 circulating proteins using an exploratory affinity proteomics 

approach. Linear association analyses were performed on case-control status and a data-

driven analysis strategy was applied to cluster the women on their plasma proteome profiles 

in an unsupervised manner. The resulting clusters were subsequently annotated for the 

differences in phenotypic characteristics, clinical parameters, and genetic risk.  

Results Using the data-driven approach we identified five clusters with distinct proteomic 

plasma profiles. Women in a particular sub-group (cluster 1) were significantly more likely to 

have used menopausal hormonal therapy (MHT), more likely to get a breast cancer diagnosis, 

and were older compared to the remaining clusters. The levels of circulating proteins in 

cluster 1 were decreased for proteins related to DNA repair and cell replication and increased 

for proteins related to mammographic density and female tissues. In contrast, classical 

dichotomous case-control analyses did not reveal any proteins significantly associated with 

future breast cancer. 

Conclusion Using a data-driven approach, we identified a subset of women with circulating 

proteins associated with previous use of MHT and risk of breast cancer. Our findings point to 

the potential long-lasting effects of MHT on the circulating proteome even after ending the 

treatment, and hence provide valuable insights concerning risk predication of breast cancer. 
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Introduction 

Breast cancer is the most common cancer among females worldwide and the leading cause of 

cancer-related mortality in middle aged women [1]. Improving risk prediction and early 

detection is crucial for better prognosis and survival. Circulating biomarkers have a great 

potential for simple and minimally-invasive health assessment. Although studies show 

promising results for blood tests detecting common cancers of the ovary, liver, stomach, 

pancreas, esophagus, colorectum and lung by circulating proteins [2], identifying putative 

biomarkers for risk prediction and early detection of breast cancer has thus far been less 

successful [2-4]. One reason could be that many breast cancers are already being detected at 

an early stage in mammographic screening programs. Blood levels of early-stage cancer 

biomarkers are expected to be low and may be too low to detect before the tumor can be 

uncovered by mammography. Further complicating the search for biomarkers, breast cancer, 

like most cancers, does not represent a single homogeneous phenotype but consists of 

multiple subtypes, each arising from particular molecular mechanisms and progressing on 

distinct clinical paths. So far, proteomic studies have suggested that plasma protein 

biomarkers for breast cancer may be both subtype and stage specific [3, 5-8]. In addition, 

there is a growing awareness about inter-individual diversity of molecular profiles even 

across clinically healthy individuals [9].  Moreover, germline genetic variation may be 

adding yet another layer of complexity to efforts for finding circulating proteins as common 

disease biomarkers [10].  

Phenotypic and molecular heterogeneity is often limiting the utility of classical dichotomous 

case-control analyses, as these can prove difficult to delineate or are too simplistic for 

understanding the underlying molecular subtypes. In these instances, alternative strategies, 

such as unsupervised and data-driven methods, can allow for novel hypotheses and finding 
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translational biomarkers. Our ambition is to yield unexpected patterns in the data to deliver 

subgroups that can then readily be linked to molecular phenotypes, clinical risk factors and 

potentially stratified intervention. Machine learning based clustering is one approach to 

achieve such explorative, data-driven subtyping and it has been applied successfully in other 

disease areas such as diabetes [11] and heart failure [12]. Clustering approaches have also 

previously been applied in breast cancer for prognosis stratification [13, 14] and tumor 

subtyping [13, 15, 16] using a variety of clinical and molecular parameters. We here used 

data-driven clustering to stratify women by decomposing their molecular profiles as defined 

by circulating proteins, and to study the resulting groups for breast cancer risk and risk 

factors.  

With access to the Swedish prospective population-based KARMA cohort [17, 18] we 

applied exploratory profiling of circulating proteins using a multiplexed affinity proteomics 

approach based on antibody suspension bead array (SBA) assays. The method allows for 

many proteins to be screened in small plasma volumes of a large number of samples [19]. To 

identify proteins associated with phenotypic traits and breast cancer risk factors, we used a 

data-driven clustering approach and samples from age-matched breast cancer cases and 

controls collected prior to diagnosis. Our aim was to disentangle the heterogeneity in breast 

cancer development and risk by improving our limited knowledge about how risk factors 

influence the plasma proteome and determine if circulating proteins can aid in identifying 

those individuals at risk of developing breast cancer.  
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Material and methods 

Study design, sample inclusion criteria and data collection 

The source population was the Karma Cohort consisting of 70,877 women visiting any of 

four Swedish mammography units during 2011-2013 [17, 18]. All participants signed 

informed consent forms before joining the KARMA study, and the ethical review board of 

Karolinska Institutet approved the study. Cases were defined as women diagnosed with breast 

cancer (N=183) after entering the cohort. Controls were 1:2 matched to each case based on 

age at last normal screening mammogram and study site (Figure 1). 

Median time from blood draw to breast cancer diagnosis was 24 days (range 0-588 days). 12 

of the incident cases had been diagnosed with breast cancer in the past (5-30 years prior to 

blood draw; median 11 years). For all, the previous breast tumor was located in the other 

breast than the tumor that was detected after sampling. 2 controls had previous breast cancer 

diagnoses, 6 and 16 years prior to study entry. In addition, 19 cases and 10 controls had been 

diagnosed with other types of cancer prior to sampling (cases: 0.6-35 years; controls: 1-46 

years). An additional set of 60 samples from 30 cancer-free individuals from the KARMA 

cohort were included for quality control (named ‘doubles’). These 30 individuals were 

sampled on two separate occasions with a median time interval of 19.1 months (range 10.7-

19.9) between sampling times. 

Raw (unprocessed) digital mammograms for each study participant were collected at 

KARMA study enrolment as previously described [17, 20]. Additional phenotypic 

information was obtained from the KARMA study questionnaire and information from 

national health care registers [17]. BMI was calculated at time of study entry and was based 

on self-reported height and weight. Information on tumor characteristics was obtained by 
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linkage to the Swedish nation-wide cancer registry. Information on menopausal hormonal 

therapy (MHT) and statin use was extracted from the Swedish drug prescription registry. 

Anatomical Therapeutic Chemical (ATC) codes were extracted for MHT containing only 

estrogens, only progestogens or a combination of estrogens and progestogens, as well as for 

lipophilic and hydrophilic statins (Supplementary table S1).  

Plasma sample collection 

Non-fasting EDTA plasma samples of peripheral blood were collected from the KARMA study 

participants at enrolment [17]. All blood samples were handled in accordance with a strict 30-

hours cold-chain protocol and were processed in the Karolinska Institutet high-throughput 

biobank. Samples were collected between January 2011 and September 2012. 

Antibody bead arrays 

We used antibody suspension bead arrays (SBA) to determine protein profiles in plasma 

samples. The SBAs were generated using carboxylated magnetic beads (MagPlex-C, 

Luminex Corp.) as previously described [19]. All plasma samples within each study set were 

retrieved from the biobank and analyzed at the same point in time. Plasma samples stored at -

80°C were thawed at 4°C and randomized across seven 96-well microtiter plates in a 

stratified manner: Each double pair and trio (case and two matched controls) were placed 

within the same plate, resulting in an even distribution of cases, controls and doubles across 

all seven plates. Samples were assayed in 384 well plates, where the fourth quadrant in each 

384-well contained the same 96 samples that originated from one of the crude 96-well sample 

plates. In addition, all plates included four aliquot replicates from a crude plasma pool from 

all individuals included in the study. Samples were biotinylated, diluted, heat-treated at 56°C 

and combined with the bead array on two separate 384-well assay plates in accordance with 
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previously described protocols [21]. The protein levels were reported as units of the median 

fluorescence intensity (MFI) from measuring at least 32 beads per antibody assay. 

Protein target selection 

We used antibodies derived from the Human Protein Atlas [22] to construct three SBAs were 

built on sets of 422, 347 and 350 antibodies (SBA1-SBA3, Supplementary Figure S1) as 

previously described [9]. These targeted a total 729 unique protein-encoding genes, and a 

complete list of all antibodies included in the study is provided in Additional file 1. The 422 

antibodies included in the first bead array (SBA1) targeted 295 protein-encoding genes 

annotated to extracellular matrix [Uniprot.org] [23], including integrins (N=27), laminins 

(N=21), matrix metalloproteases (N=21), metallopeptidases (N=18), and proteoglycans 

(N=16). A majority of the antibodies (82%) in SBA1 targeted secreted proteins. The 347 

antibodies in SBA2 included 243 antibodies (127 proteins) targeting breast cancer-related 

proteins from literature, 62 antibodies towards 55 proteins with strong expression in breast 

tissue according to RNAseq data [proteinatlas.org], 39 antibodies towards 11 proteins with 

indicative associations to breast cancer from previous screenings and 3 controls. The 350 

antibodies against 241 protein-encoding genes included in the third suspension bead array 

(SBA3) were selected based on possible relationship to mammographic breast density, cancer 

development and/or progression, or tissue composition and/or remodeling. Due to overlap 

between the different arrays the total number was 1,073 unique antibodies targeting 701 

unique proteins. This included sets of paired antibodies with common protein targets.  

Data processing 

The generated raw protein profile data was normalized and annotated as follows. Antibody-

specific probabilistic quotient normalization (Abs-PQN) [9] was applied per 96-well plate to 
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reduce within-plate sample-to-sample variation. Between-plate normalization was performed 

using a multidimensional (MA) normalization method [24] (Supplementary Figure S2).  

A set of 96 duplicated samples were used to assess technical variation and to confirm 

reproducibility of antibody profiles within all three SBAs. Prior to statistical analyses, the 

data were annotated based on assay performance using three criteria. Internal controls and 

antibodies were excluded from proceeding analyses if they showed low reproducibility in 

replicated analyses (as rho<0.7), correlation to human IgG levels (rho>0.5), or elevated 

background levels in assays with sample-free buffers (MFIEmpty > mean(MFISample) + 

3×sd(MFISample)). Replicates samples were also excluded prior to the analyses. 

Case-control analysis 

For contrasting cases versus controls, conditional logistic regression models considering the 

age- and sampling location matching of cases and controls were applied to normalized, Ab-

filtered and log transformed data. Three models were compared. In model 1, BMI and study 

entry date were included as exposure variables. Model 2 included exposure variables for 

absolute area-based breast density, postmenopausal status (yes/no) and MHT use (yes/no) in 

addition to BMI and entry date. In model 3, smoking (packs/year), alcohol (grams/week) and 

childbirth (yes/no) were included as exposure variables in addition to the variables in model 

2. Due to missing values for BMI (4 missing), area-based density (20 missing), MHT usage 

(5 missing), smoking (3 missing), alcohol (2 missing), and childbirth (1 missing), 540 

samples (181 cases, 359 controls) were analyzed in model 1, 490 samples (167 cases, 323 

controls) were analyzed in model 2 and 484 (165 cases, 319 controls) were analyzed in model 

3. Statistical modeling was performed using the ”clogit” function of the "survival" R package 

(version 3.1.8) [25, 26]. 
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Unsupervised clustering  

We performed an unsupervised archetype clustering of the proteomics data to identify 

clusters of individuals with similar protein profiles. These profiles were subsequently 

associated to clinical risk factors and other traits. 

The quality-controlled proteomics data was linearly adjusted for BMI, entry date, and age at 

sampling. Clustering was performed using archetypal analysis where each individual can be 

described as a combination of archetypes that represent extremes in the data. Archetypal 

analysis was performed using the “archetypal“ function of the “archetypal” R package 

(version 1.1.0) [27]. After archetypal analysis clusters were created by assigning each 

individual to the archetype that they had the highest probability of belonging to. To validate 

the clusters we tested the stability of the clusters when the data was changed slightly [28]. 

This was done by bootstrap analysis where a subset of patients was randomly selected, and 

the clustering performed on the subset and the results compared to the clustering on the 

original data. For technical assessment of the clustering, the results of the archetypal analysis 

were used to predict the archetype coefficients of doubles and replicates that had been 

excluded from the original clustering. This was done using the "predict" function of the 

“stats” R package (version 3.6.0) on an "archetypes" object of the "archetypes" R package 

(version 2.2.0.1) [29]. Further details on the clustering analysis can be found in the 

supplementary material. 

Statistical tests of cluster characteristics 

We compared the clusters to investigate how the differences in protein levels driving the 

clustering materialized at the clinical level. Similarly, we compared the genetic predisposition 

to breast cancer to assess if the differences in protein levels might be genetically driven. 
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Details on the genetic data and calculation of polygenic risk scores (PRSs) are given in the 

supplementary material. The Wilcoxon rank-sum test was used for continuous variables and 

Fisher’s exact test for categorical variables. Testing of the influence of potential genetic 

components between the clusters was done by the absolute values of PRS in the clusters as a 

continuous variable. All P-values were two sided and considered statistically significant if 

<0.05. 

To rank the proteins driving a cluster, we first performed differential abundance analysis 

comparing a cluster to the remaining samples using the t-test. Resulting p-values were 

corrected for multiple comparisons using Benjamini-Hochberg adjustment resulting in false 

discovery rates (FDRs) for each protein. Next, we performed pathway analysis to summarize 

the potential functions of differentially abundant circulating proteins. We began by applying 

Over-Representation Analysis (ORA) using two separate criteria for protein selection; 

proteins with a FDR < 0.05 and the top 50 proteins with the lowest p-value, using the “gost” 

function of the “gprofiler2” R package (version 0.1.8) [30]. Next, we applied Gene Set 

Enrichment analysis (GSEA) where all proteins were included but ranked by their p-value 

and direction of differential abundance, using the “fgsea” R package (version 1.12.0) from 

Bioconductor [31]. 

To shortlist representative proteins for a cluster, we selected the union of those with the 

lowest p-values and the highest (positive or negative) difference in relative abundance. The 

levels of the selected proteins in all participants were associated with dense area (adjusted for 

BMI and age) and MHT status (never taken, taken before study entry, taking at entry) using 

linear and logistic regression, respectively. All data handling and statistical analyses were 

performed in R version 3.6.0. 
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Results 

Characterizing the cohort 

The selected study population consisted of 183 cases and 366 matched controls (Table 1), as 

well as 30 doubles that were sampled twice over time (Supplementary Table S2). Cases and 

controls had similar BMI, but cases had a higher absolute area-based breast density (p = 

0.0045). 74.9% of cases were postmenopausal, with similar proportions for controls. 48.1% 

of cases and 46.7% of controls had never taken MHT, with similar numbers for statin use. 

The majority of the tumors were positive for ER (74.9%) and PR (59.6%), only a few 

confirmed HER2 positive (7.7%). More than half of the tumors were invasive (54.1%) with 

histological grade ≥2 (76.5%) but without lymph node invasion (78.1%). Women were 

recruited at four centers, but no differences between sampling centers were observed at the 

protein level (Supplementary Figure S3). 

Identifying protein biomarkers of case-control status 

A set of 54 proteins were associated with case-controls status with a nominal p < 0.05 in at 

least one of the three conditional logistic regression models tested (data not shown). 

However, after adjustment for multiple testing none remained significant (FDR > 0.05). 

Unsupervised clustering of participants based on their protein profiles 

Prior to clustering we adjusted the proteomics data for a selected set of covariates. The 

impact of BMI, age of the women at sampling and study entry date (as a proxy for sample 

age) on the protein data were studied by projecting the data to two dimensions using Uniform 

Manifold Approximation and Projection (UMAP) (Supplementary Figure S4) and by 

associating protein levels with BMI, age and entry date in a combined linear model. The 
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linear association resulted in significant (p < 0.05) associations for 305, 415 and 57 proteins 

for BMI, age and entry date respectively. Thus, when considering both the overall impact on 

the measured proteins and the effect on individual proteins, age of the women had the 

strongest influence on the measured proteins as a whole, followed by BMI and with a limited 

effect of entry date. The experimental proteomics data were therefore adjusted for BMI, age 

of the women, and study entry date prior to further analyses. Five individuals lacked 

information on BMI and were therefore excluded, leaving 573 samples (181 cases, 363 

controls, 29 doubles) for analysis. 552 unique antibodies with 552 unique targets were left 

after removing antibodies with the same target. 

To identify patterns in the proteomics data grouping individuals into clusters, we performed 

archetypal analysis. We applied the Unit Invariant Knee method to identify the optimal 

number of clusters (as described in the supplementary material) (Supplementary Figure S5) 

that would balance simplicity with adequate stratification of the data. This resulted in 5 

clusters with 19, 113, 115, 144, and 182 participants respectively (Figure 2A-2D), 

representing 3.32%, 19.7%, 20.0%, 25.1% and 31.8% of all tested subjects.  

The mean Jaccard index, used to assess the cluster stability, was 0.48, 0.35, 0.34, 0.37, and 

0.36 for cluster 1-5, respectively (Supplementary Table S3). To further assess the quality of 

the clustering, we determined the cluster membership of pairs of replicated samples and pairs 

of samples collected on different occasions from the same individual (double samples). We 

observed that replicate sample pairs significantly more often belonged to the same cluster 

than double sample pairs (Supplementary Figures S6-S8, supplementary results). This is 

in line with the difference in measured protein levels between replicate sample pairs being of 

purely technical origin, while differences in measured protein levels of the double pairs can 

be of both technical and biological origin due to the time elapsed between samplings. In 
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addition, doubles pairs belonged more often to the same cluster than random pairs of 

samples. Thus, also showing that the protein profiles of the individual women did not 

substantially change between samplings. Taken together, this indicated that the clustering 

captures groups of individuals with similar protein profiles. 

Clinically characterizing the clusters of participants 

Clusters of participants were defined at the protein level, and we proceeded to investigate 

how the stratification observed at the protein level might be reflected at the clinical level. We 

therefore contrasted a range of clinical variables across the clusters (Table 2 and 

Supplementary Table S4). Women belonging to cluster 1 had distinct clinical 

characteristics. Given that cluster 1 was the most stable cluster as determined by the Jaccard 

index and was the cluster with the most unique protein profile, we focused the remaining part 

of the analyses on this cluster. Cluster 1 consisted of women of higher age compared to 

clusters 2 and 4 (p < 0.05, Figure 3A), despite the proteomics data being adjusted for age 

prior to archetype clustering. BMI and BMI-adjusted area-based breast density was not 

significantly different across clusters (Figure 3B-3C). Cluster 1 had a mean and median 

dense area of 25.8 cm2 and 21.2 cm2, respectively (Table 2). Though the density for women 

in cluster 1was not significantly different than the other clusters, it was substantially higher 

than a comparative sub-group of women of the same age. The group used for comparison 

were women within the same age range (63-65) and proportion of breast cancer cases from 

the KARMA cohort [32, 33]. 

There was a significantly greater proportion of breast cancer cases in cluster 1 compared to 

the clusters 2, 3, and 4 (all p < 0.05, Figure 4A). Cluster 1 also had a significantly greater 

proportion of women who had taken MHT compared to the other clusters (all p < 0.05, 

Figure 4B). Additionally, the proportion of women who had previously taken MHT prior to 
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study entry but were not taking MHT at the time of blood sampling, was also significantly 

higher in cluster 1 (all p < 0.05, Figure 4C). We observed no significant difference between 

clusters regarding the time from last MHT to study entry (Figure 4D). Cluster 1 contained a 

higher proportion of cases who had taken MHT ever (100% of cases) compared to other 

clusters (approximately 50% of cases) (Figure 4E).  

Given that 101 of the women were currently using or had previously been treated with statins 

and that statin use has previously been shown to affect the plasma proteome [34, 35], we 

wanted to exclude this as a possible confounding factor. We observed no significant 

difference between clusters regarding statin usage, neither when delineating by statin type nor 

when grouping all statins together (Supplementary Figure S9). Lastly, we compared PRSs 

across clusters and found no significant difference. Also, no significant differences were 

observed when comparing only cases in cluster 1 with cases in the remaining clusters. 

Additionally, when comparing the PRS of all case to all controls, the PRS was slightly higher 

for cases, however, this difference was not statistically significant. This could be due to small 

sample sizes. (Supplementary Figure S10). 

Given that several cases and controls had previous cancer diagnoses we reran the clinical 

comparison of the clusters where these individuals were excluded to ascertain that such 

previous cancer and related treatment was not driving the differences observed. We did not 

observe any major changes resulting from excluding these individuals (data not shown). 
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Investigating the proteomic differences between clusters of participants 

Differences in protein levels between the clusters were observed with a heatmap (Figure 

5A). Distinct patterns reflecting the differences in protein levels can be observed for all 

clusters but are most apparent for cluster 1. The differential abundance analysis comparing 

the protein profiles of women in cluster 1 with all other individuals yielded 393 (72% of all) 

proteins with higher levels, of which 245 had an FDR < 0.05. In contrast, there were 159 

(28% of all) proteins with lower levels, 73 of which had an FDR < 0.05. There were no 

significantly enriched pathways neither from the ORA over-representation analysis nor the 

GSEA gene set enrichment analysis. However, this investigation was likely biased by the 

already highly selective design to target only a particular set of proteins in the circulation. 

To provide insights into the proteomic signatures of cluster 1, we shortlisted those proteins 

unifying the lowest p-values and largest relative abundance differences. Compared to the rest 

of the participants and choosing the union of the 25 most significant and 25 most 

differentially abundant proteins of cluster 1 (Figure 5B), there were 16 more abundant 

(Table 3) and 15 less abundant proteins (Table 4). The levels of PTCH1 and ZP4 were 

significantly associated with adjusted breast density (nominal p < 0.05) and MHT status 

(nominal p < 0.05) when performing linear regression and logistic regression, respectively. 

CCR7, MMRN1, HNRNPA2B1, RBBP8, ACOX3, TJP3, and MMP15 were associated with 

adjusted breast density (nominal p < 0.05), but not MTH status (Supplementary Figure 

S11). MFI levels of PTCH1 and ZP4 were lower in cases than in controls and significantly 

lower if MHT had been used (Supplementary Figure S12).  
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Discussion 

Applying an unsupervised analysis approach on plasma proteomic data from women of the 

KARMA breast cancer risk cohort, we identified a subset of individuals with more previous 

use of MHT and a greater proportion of breast cancers. The women in this cluster were also 

older and had a larger MD area relative to their age. Characterization of circulating proteins 

driving the cluster found an lower levels of proteins involved in cell adhesion and 

immunoregulation, and a higher levels of proteins associated with DNA integrity, cell fate, 

metabolism and the female reproductive system.  

Data-driven archetypal analysis was used as an unsupervised approach to identify proteomic-

based clusters in the data, which were linked to phenotypic or genotypic traits in a 

population. This enabled the identification of associations between clusters of women with 

similar plasma profiles and risk factors for breast cancer. By clustering the participants based 

on the proteomics data, we found strong associations with previous use of MHT, where 79% 

of participants in cluster 1 were previous users.  

In the same cluster we also found an overrepresentation of breast cancers, with 58% being 

cases compared to 28-35% in the other clusters. This confirms previous knowledge that the 

use of MHT is associated with an increased 5-year risk of breast cancer among 

postmenopausal women [36]. Of note, all cases in cluster 1 had previously been treated with 

MHT, while this was only true for half of the cases in other clusters. The proteomic signature 

of cluster 1 associated with MHT usage, however, this was not driven by current use of 

MHT. This suggested that previous use of MHT left a mark in the circulating proteome of 

these women that could be detected even years after discontinuing the treatment. Individuals 

in cluster 1 also had a greater mammographic density relative to their age which is a known 

risk factor for breast cancer. Interestingly, MHT usage is known to be associated with higher 
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mammographic density in postmenopausal women [37-41]. However, to our current 

knowledge, no longitudinal studies have been performed to investigate potential long-term 

effects of MHT on density. Our results suggest that such studies may be warranted. It is 

therefore not clear if the increased relative density observed in cluster 1 is due to the previous 

MHT use or other factors. Interestingly, statin use was not seen as a major driver of the 

protein profiles despite their known effects on the plasma proteome supporting that the 

observed effect of MHT is specific for this class of drugs. Additionally, no effect of genetic 

risk was observed, however, this could be due to too low sample size. 

The shortlisted set of proteins targets with differential abundance in cluster 1 compared to the 

other clusters were related to DNA repair/integrity, cell fate/replication, mammographic 

density, and the female reproductive system, thus supporting their putative roles in 

development of breast cancer or mediation of risk factors. 

We found that individuals in cluster 1 had lower levels of circulating proteins regulating 

DNA repair/integrity (RBBP8, RAD21) and cell fate/replication (NOTCH3, TJP3, 

HNRNPA2) thus indicating a role in cancer development. In concordance with this, we found 

RBBP8, TJP3 and HNRNPA2 to be significantly, negatively associated with mammographic 

density. Individuals in cluster 1 had higher circulating levels of proteins that may be linked to 

mammographic breast density and the accompanying mechanical stiffness. These proteins 

included the cell junction and adhesion molecules CLDN15, ITGB7, F11R and its receptor 

ITGAL, which are potentially involved in sensing of stiffness in the breast tissue and 

activation of cellular downstream signaling pathways to maintain tissue homeostasis [42-46]. 

In line with this, we also found these proteins to be positively associated with mammographic 

density, though the associations were not significant. Reassuringly, we have previously 

found, in two separate data sets, positive associations between mammographic density and 
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F11R [20]. In fact, F11R has been widely described in cancer development and progression 

and the expression of F11R correlates with poor breast cancer prognosis [47, 48]. Our current 

findings validate our previous results and supports our hypothesis that F11R plays a role in 

regulating mammographic density and breast tissue composition.  

The levels of the proteins ZP4 and PTCH1 were found to be lower in cluster 1. Additionally, 

across clusters, the two proteins were decreased for cases compared to controls and in MHT 

treated compared to untreated women. Both proteins are expressed in female tissues and we 

found both proteins to be negatively associated with mammographic density. Interestingly, 

these were the only two cluster-1-specific proteins that were also significantly associated 

with MHT use. We therefore hypothesize that MHT might negatively affect the expression in 

female tissues and thereby affect the plasma abundance of these proteins. ZP4 was selected 

for inclusion in this study due to its role in extracellular matrix (SBA1). It is primarily 

expressed by the ovary and placenta, but also other tissues [22, 49]. ZP4 is part of the 

extracellular matrix surrounding oocytes and has been linked to the fertilization processes 

[50, 51]. The protein PTCH1 was included in this study as it has previously been linked to 

cancer (SBA3). As a protein found on the cell surface and the Golgi apparatus, it functions as 

a tumor suppressor, and mutations of the PTCH1 gene have been associated with poor 

prognosis and increased recurrence of breast cancer [52]. PTCH1 is expressed more widely 

than ZP4, but is among many tissues, expressed in female tissues, especially the cervix and 

endometrium [22, 49]. The two proteins, ZP4 and PTCH1, could therefore potentially 

represent an unknown link between MHT usage, female tissues and mammographic breast 

density all leading to increased risk of breast cancer. 

Apart from cluster 1, the assigned members of the remaining clusters showed high 

interchangeability among another when the data was perturbed. They should therefore only 
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be interpreted with caution [28]. Clearer definition criteria for these clusters could possibly 

be achieved by applying stricter inclusion cut-offs where any unassigned participants are 

further pooled into “in-between” groups corresponding to individuals who do not reliably 

belong to single clusters. This possibility is also one of the strengths of archetype analysis 

over more traditional and static clustering methods. The non-binary cluster membership 

offers a greater flexibility to reflect the extent of the diverse processes of human biology. 

However, such investigations go beyond the scope of this work. Consequently, we chose to 

focus on the clearest difference observed between women in the most stable cluster 1 and the 

remaining cohort.  

Using a traditional approach to compare cases and controls by their proteomic profiles, we 

found no targets to be statistically significant. This is in line with previous literature reporting 

few or no protein biomarkers for overall early detection of breast cancer [2-8]. Likely, this 

reflects the already early detection possible by mammographic screening, the complex 

etiology and heterogeneity of the disease, and that effects from a multi organ system 

contribute to the granularity in the circulating plasma proteome. Most previous attempts have 

identified putative subtype specific markers with, at best, limited performance in replication 

and validation efforts. Herein, we did also not detect any significant subtype-specific profiles 

of circulating proteins deemed useful for early detection.  

Weaknesses in our study can be seen in the low number of breast cancer cases available from 

prospective studies. Other weaknesses can relate to an initial sampling of participants based 

on a classical case-control design with two matched controls for each breast cancer case. As 

the case-control analyses provided limited insights, we proceeded with a data-driven, thus 

hypothesis-generating strategy. Therefore, the cohort of women included in this study were 

enriched for breast cancer cases compared to the general population. However, this 
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enrichment of cases increased the chances of observing effects related to risk factors and 

case-control status where much larger numbers of participants would otherwise have been 

needed. Furthermore, we used plasma to identify proteomic signatures associated with breast 

cancer risk factors and early detection. As previously discussed [20], it remains to be 

ascertained how well circulating protein concentrations reflect the changes in the protein 

expression of the breast tissue. However, as we have shown here, it seems that several 

systemic processes contribute to the physiological changes occurring in breast cancer 

patients, and plasma provides a window into processes occurring in multiple tissues in one 

go. Nevertheless, the identified epithelial and stromal cell-specific proteins support protein 

leakage or shedding into blood, and that an elevated turnaround of proteins in breast tissue 

can lead to the detection of these targets in the circulation. Although we are using the very-

well characterized hence comprehensive KARMA cohort, information on tumor 

characteristics and risk factors was missing for some participants. In particular, data specific 

to MHT subtypes, dosage, and duration of the treatment, as well as some information on 

tumor characteristics, was missing. Exposure data in KARMA is self-reported, which may 

result in measurement bias. However, exposure data, mammograms and blood samples were 

collected at the same time at KARMA study entry, and it is not likely that the participants 

knew about their mammographic density at the time of answering the questionnaire. Besides, 

a non-differential misclassification of exposures would dilute, not strengthen, the reported 

associations. Additionally, questionnaire data on drug usage was supplemented with data 

from the Swedish drug prescription registry. Given the expected heterogeneity of the 

molecular phenotypes, a lack in power may have further weakened the statistical significance 

of our findings. Our observations further prompt validation in an independent cohort and 

dataset of a comparable design and depth. 
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Strengths of our study reside in the utilized exploratory affinity-based proteomic assay. It 

provides novel opportunities for high-throughput screening for circulating proteins associated 

to risk factors, indicative for disease development in selected phenotypes. The experimental 

design allows combining different protein assays into one multiplexed approach and it is 

attractive due to it consumption of only minimal sample volumes. The method reports 

relative protein quantities in plasma that allow a comparative analysis across different 

samples. Strengths also include the centralized and standardized collection of high-quality 

blood samples, which is also evident from the fact that we observed no systematic differences 

at the protein level between sampling centers. Additionally, the centrally managed 

questionnaire data and mammograms obtained from all KARMA cohort participants prior to 

diagnosis, as well as the quantitative assessment of mammographic density by STRATUS 

[53] are strengths of this study. 

Conclusion  

Our findings suggest that use of MHT may leave long-lasting fingerprints in the circulating 

proteome. Effects of the treatment could be detected in the proteome even years after 

discontinuation and were especially apparent for proteins associated with mammographic 

density and breast tissue composition, tumor development and progression, and the female 

reproductive system. Like previous studies, we did not identify any independent markers of 

early detection of breast cancer from plasma proteins. Instead, we identified circulating 

proteins associated with previous MHT use, connecting to a higher frequency of women with 

breast tumors, greater age and relatively greater mammographic density. These findings 

provide novel biological insights to putative pathological processes associated with MHT 

usage and breast cancer risk. Collectively, this suggests that rather than looking for 

biomarkers secreted by a developing tumor for early breast cancer detection, proteomic 
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characterization of plasma might be more successfully aimed at identification of biomarkers 

that modify or explain the effects of known risk factors, and that unsupervised analysis 

approaches may aid in this endeavor by providing novel hypotheses. Our findings need to be 

further validated, in both plasma and in breast tissue, but they support the notion that further 

integration of health and treatment trajectories need to be considered when judging some of 

the molecular phenotypes of a disease. 
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Tables 

Table 1: Overview of clinical characteristics for cases and controls, and tumor characteristics for cases. P-values are from comparing cases and 
controls using Wilcoxon rank-sum tests for continuous variables and Fisher’s exact tests for categorical variables. 
 
 Total 

(N=549) 
Cases 

(N=183) 
Controls 
(N=366) 

P-value 

Age     

Mean (SD) 59.6 (9.28) 59.6 (9.30) 59.6 (9.28) 1 

Median  
[Min, Max] 62.0 [39.0, 81.0] 62.0 [39.0, 81.0] 62.0 [39.0, 81.0]  

BMI     

Mean (SD) 25.6 (4.19) 25.8 (3.78) 25.5 (4.38) 0.13 

Median  
[Min, Max] 24.9 [17.6, 49.0] 25.4 [18.5, 39.2] 24.7 [17.6, 49.0]  

Missing 4 (0.7%) 1 (0.5%) 3 (0.8%)  

Sampling center     

Helsingborg Hospital 283 (51.5%) 95 (51.9%) 188 (51.4%) 0.99 

Landskrona Hospital 23 (4.2%) 7 (3.8%) 16 (4.4%)  

Skåne University Hospital, Lund 20 (3.6%) 7 (3.8%) 13 (3.6%)  

Stockholm South General Hospital 223 (40.6%) 74 (40.4%) 149 (40.7%)  

Menopausal status     

Premenopausal 130 (23.7%) 45 (24.6%) 85 (23.2%) 0.75 

Postmenopausal 418 (76.1%) 137 (74.9%) 281 (76.8%)  

Missing 1 (0.2%) 1 (0.5%) 0 (0%)  

Dense area (cm2)     

Mean (SD) 27.3 (24.2) 30.9 (24.1) 25.6 (24.1) 0.005 
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 Total 
(N=549) 

Cases 
(N=183) 

Controls 
(N=366) 

P-value 

Median [Min, Max] 20.4 [0.0, 161.4] 23.6 [0.1, 113.6] 18.7 [0.0, 161.4]  

Missing 20 (3.6%) 14 (7.7%) 6 (1.6%)  

MHT status     

Never taken 259 (47.2%) 88 (48.1%) 171 (46.7%) 0.51 

Taken before 213 (38.8%) 74 (40.4%) 139 (38.0%)  

Taking at sampling 70 (12.8%) 19 (10.4%) 51 (13.9%)  

Missing 7 (1.3%) 2 (1.1%) 5 (1.4%)  

Statin status     

Never taken 272 (49.5%) 86 (47.0%) 186 (50.8%) 0.76 

Taken before 47 (8.6%) 15 (8.2%) 32 (8.7%)  

Taking at sampling 52 (9.5%) 19 (10.4%) 33 (9.0%)  

Missing 178 (32.4%) 63 (34.4%) 115 (31.4%)  

Smoking  
(packs per year) 

    

Mean (SD) 6.08 (9.57) 6.46 (9.73) 5.89 (9.50) 0.30 

Median [Min, Max] 0.950 [0, 64.2] 1.65 [0, 49.3] 0.800 [0, 64.2]  

Missing 3 (0.5%) 3 (1.6%) 0 (0%)  

Alcohol intake  
(g per week) 

    

Mean (SD) 58.2 (69.9) 60.0 (70.9) 57.3 (69.5) 0.88 

Median [Min, Max] 37.0 [0, 575] 37.0 [0, 292] 37.0 [0, 575]  

Missing 2 (0.4%) 2 (1.1%) 0 (0%)  

Ever given birth     

Never given birth 78 (14.2%) 27 (14.8%) 51 (13.9%) 0.80 
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 Total 
(N=549) 

Cases 
(N=183) 

Controls 
(N=366) 

P-value 

Has given birth 470 (85.6%) 155 (84.7%) 315 (86.1%)  

Missing 1 (0.2%) 1 (0.5%) 0 (0%)  

ER status     

Negative - 18 (9.8%) -  

Positive - 137 (74.9%) -  

Missing - 28 (15.3%) -  

PR status     

Negative - 44 (24.0%) -  

Positive - 109 (59.6%) -  

Missing - 30 (16.4%) -  

HER2 status     

Negative - 136 (74.3%) -  

Positive - 14 (7.7%) -  

Missing - 33 (18.0%) -  

Invasiveness     

Invasive - 99 (54.1%) -  

Carcinoma in situ - 19 (10.4%) -  

Missing - 65 (35.5%) -  

Tumor size     

< 20 mm - 43 (23.5%) -  

>= 20 mm - 17 (9.3%) -  

Missing - 123 (67.2%) -  

Lymph node metastasis     
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 Total 
(N=549) 

Cases 
(N=183) 

Controls 
(N=366) 

P-value 

No - 143 (78.1%) -  

Yes - 15 (8.2%) -  

Missing - 25 (13.7%) -  

Nottingham Histologic Grade     

1 - 31 (16.9%) -  

2 - 68 (37.2%) -  

3 - 72 (39.3%) -  

Missing - 12 (6.6%) -  

Abbreviations: Body mass index (BMI), Menopausal hormone therapy (MHT), Estrogen receptor (ER), Progesterone receptor (PR), Human epidermal growth factor receptor 
2 (HER2).  
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Table 2: Overview of the clinical characteristics of the archetype clusters. 
 1 

(N=19) 
2 

(N=113) 
3 

(N=115) 
4 

(N=144) 
5 

(N=182) 

Case control status      

Case 11 (57.9%) 32 (28.3%) 37 (32.2%) 38 (26.4%) 63 (34.6%) 

Control 8 (42.1%) 81 (71.7%) 78 (67.8%) 106 (73.6%) 119 (65.4%) 

Age      

Mean (SD) 63.7 (6.95) 58.7 (9.29) 59.7 (9.63) 58.5 (9.97) 59.1 (9.33) 

Median  
[Min, Max] 

65.0  
[46.0, 76.0] 

61.0  
[40.0, 78.0] 

63.0  
[39.0, 81.0] 

61.5  
[40.0, 78.0] 

62.0  
[39.0, 81.0] 

BMI      

Mean (SD) 24.2 (4.10) 25.5 (3.96) 25.6 (3.70) 25.6 (4.65) 25.3 (4.24) 

Median  
[Min, Max] 

23.7  
[17.9, 33.9] 

24.8  
[18.8, 37.0] 

25.2  
[18.5, 36.3] 

24.8  
[18.4, 44.2] 

25.0  
[17.6, 49.0] 

MHT status      

Never taken 4 (21.1%) 54 (47.8%) 56 (48.7%) 68 (47.2%) 89 (48.9%) 

Taken before 14 (73.7%) 45 (39.8%) 42 (36.5%) 59 (41.0%) 64 (35.2%) 

Taking at entry 1 (5.3%) 14 (12.4%) 15 (13.0%) 15 (10.4%) 27 (14.8%) 

Missing 0 (0%) 0 (0%) 2 (1.7%) 2 (1.4%) 2 (1.1%) 

Statin status      

Never taken 12 (63.2%) 62 (54.9%) 55 (47.8%) 68 (47.2%) 93 (51.1%) 

Taken before 1 (5.3%) 9 (8.0%) 8 (7.0%) 13 (9.0%) 17 (9.3%) 

Taking at entry 2 (10.5%) 14 (12.4%) 9 (7.8%) 8 (5.6%) 19 (10.4%) 

Missing 4 (21.1%) 28 (24.8%) 43 (37.4%) 55 (38.2%) 53 (29.1%) 

Menopausal status      

Premenopausal 1 (5.3%) 33 (29.2%) 27 (23.5%) 41 (28.5%) 46 (25.3%) 

Postmenopausal 18 (94.7%) 80 (70.8%) 88 (76.5%) 103 (71.5%) 136 (74.7%) 
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 1 
(N=19) 

2 
(N=113) 

3 
(N=115) 

4 
(N=144) 

5 
(N=182) 

Dense area (cm2)      

Mean (SD) 25.8 (20.7) 29.0 (27.2) 28.6 (28.7) 30.0 (26.0) 25.6 (20.0) 

Median  
[Min, Max] 

21.2  
[1.3, 73.7] 

23.6  
[0.0, 124.0] 

19.8  
[0.0, 161.0] 

21.0  
[0.0, 119.0] 

20.4  
[0.0, 86.9] 

Missing 0 (0%) 10 (8.8%) 0 (0%) 3 (2.1%) 7 (3.8%) 

BMI- and age-adjusted dense area (cm2)      

Mean (SD) 20.7 (18.3) 21.6 (24.7) 22.7 (26.6) 23.0 (22.0) 18.7 (18.4) 

Median  
[Min, Max] 

15.5  
[-4.4, 70.3] 

12.7  
[-12.7, 109.0] 

16.4  
[-12.6, 161.0] 

16.5  
[-9.4, 90.2] 

14.8  
[-13.3, 76.1] 

Missing 0 (0%) 10 (8.8%) 0 (0%) 3 (2.1%) 7 (3.8%) 

Smoking (packs per year)      

Mean (SD) 7.34 (9.69) 7.08 (10.0) 6.24 (10.7) 5.68 (8.01) 5.21 (9.33) 

Median  
[Min, Max] 

1.50  
[0, 29.1] 

1.50  
[0, 46.6] 

0  
[0, 49.3] 

1.50  
[0, 42.9] 

0.450  
[0, 64.2] 

Missing 0 (0%) 1 (0.9%) 1 (0.9%) 0 (0%) 0 (0%) 

Alcohol intake  
(g per week) 

     

Mean (SD) 70.4 (69.6) 49.2 (64.4) 52.4 (60.1) 76.9 (76.4) 51.3 (70.2) 

Median  
[Min, Max] 

37.0  
[0, 261] 

37.0  
[0, 362] 

37.0  
[0, 273] 

37.0  
[0, 292] 

37.0  
[0, 575] 

Missing 0 (0%) 0 (0%) 1 (0.9%) 0 (0%) 0 (0%) 

Ever given birth      

Never given birth 5 (26.3%) 16 (14.2%) 17 (14.8%) 13 (9.0%) 30 (16.5%) 

Has given birth 14 (73.7%) 97 (85.8%) 98 (85.2%) 131 (91.0%) 152 (83.5%) 
Abbreviations: Body mass index (BMI), Menopausal hormone therapy (MHT). 
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Table 3. Proteins with lower plasma levels in cluster 1 compared to the other clusters. 
Gene name Gene description ENSG ID FDR FC 

F11R F11 receptor ENSG00000158769 1,93E-11 3,88 
CLDN15 claudin 15 ENSG00000106404 4,08E-12 3,57 
EXOC2 exocyst complex component 2 ENSG00000112685 1,14E-11 3,41 
CYBB cytochrome b-245 beta chain ENSG00000165168 1,56E-09 3,28 
NTN4 netrin 4 ENSG00000074527 5,14E-09 3,26 
RNASE2 ribonuclease A family member 2 ENSG00000169385 9,52E-12 3,25 
CCR10 C-C motif chemokine receptor 10 ENSG00000184451 2,14E-09 3,25 
MET MET proto-oncogene, receptor tyrosine kinase ENSG00000105976 1,14E-11 3,09 
MLH3 mutL homolog 3 ENSG00000119684 6,56E-10 3,04 
ITGB7 integrin subunit beta 7 ENSG00000139626 5,4E-09 2,96 
TIE1 tyrosine kinase with immunoglobulin like and EGF like domains 1 ENSG00000066056 2,19E-08 2,93 
ACLY ATP citrate lyase ENSG00000131473 1,56E-09 2,92 
PARD6A par-6 family cell polarity regulator alpha ENSG00000102981 1,52E-10 2,89 
IL36B interleukin 36 beta ENSG00000136696 6,17E-11 2,86 
ITGAL integrin subunit alpha L ENSG00000005844 1,48E-09 2,75 
HTRA1 HtrA serine peptidase 1 ENSG00000166033 1,78E-08 2,69 

Abbreviations: False discovery rate corrected p-value (FDR); Median fold change (FC). 
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Table 4. Proteins with higher levels in cluster 1 compared to the other clusters. 
 

Gene name Gene description ENSG ID FDR FC 

DLD dihydrolipoamide dehydrogenase ENSG00000091140 2,54E-06 -1,86 
SUCLG1 succinate-CoA ligase alpha subunit ENSG00000163541 1,49E-07 -1,86 
ZP4 zona pellucida glycoprotein 4 ENSG00000116996 3,18E-05 -1,48 
CCR7 C-C motif chemokine receptor 7 ENSG00000126353 0,000139 -1,45 
SERPINA3 serpin family A member 3 ENSG00000196136 3,55E-05 -1,42 
MMP15 matrix metallopeptidase 15 ENSG00000102996 5,64E-05 -1,37 
MMRN1 multimerin 1 ENSG00000138722 6,12E-05 -1,37 
ACOX3 acyl-CoA oxidase 3, pristanoyl ENSG00000087008 1,2E-06 -1,36 
TJP3 tight junction protein 3 ENSG00000105289 6,99E-08 -1,27 
NOTCH3 notch 3 ENSG00000074181 0,000123 -1,26 
IL7 interleukin 7 ENSG00000104432 5,62E-05 -1,25 
HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2/B1 ENSG00000122566 2,39E-05 -1,24 
RBBP8 RB binding protein 8, endonuclease ENSG00000101773 2,54E-06 -1,24 
RAD21 RAD21 cohesin complex component ENSG00000164754 6,45E-05 -1,21 
PTCH1 patched 1 ENSG00000185920 1,88E-05 -1,12 

Abbreviations: False discovery rate corrected p-value (FDR); Median fold change (FC). 
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Figure legends 

Figure 1: Overview of study design and data analysis. SBA; suspension bead array.  

 
Figure 2: Principal component analysis (PCA) of each participant’s protein profile plotted 

with (A) PC1/PC2, (B) PC1/PC3, and (C) PC2/PC3. Each dot represents one participant. 

Participants are colored by which cluster they were assigned to. (D) number of participants in 

each cluster. 

 
Figure 3: Distributions of (A) age, (B) BMI, and (C) mammographic density (cm2) (age- and 

BMI-adjusted) in the clusters. An asterisk symbolizes a Wilcoxon rank-sum test p < 0.05 by 

pairwise comparison. 

 
Figure 4: Comparison between the five clusters in proportions of (A) cases and controls, 

where doubles were treated as controls as they were all cancer-free at study entry. (B) 

Participants who had ever taken MHT, and (C) participants who were taking MHT prior to 

sample collection, at time of sampling, or never. (D) Time in years between last use of MHT 

and study entry for the five clusters. Asterisks symbolize Fisher’s exact test p-values (*: 

p<0.05, **: p<0.01) for pairwise comparisons between clusters. (E) Numbers of participants 

in each cluster who have taken or not taken MHT, divided by case-control status.  

 
Figure 5: Proteomic characterization of clusters. (A) Heatmap of normalized, centered and 

scaled MFI for each protein (rows) and participant (columns). Participants are ordered into 

the archetype clusters they belong to, while proteins are clustered using hierarchical 

clustering based on Euclidean distance. (B) Volcano plot of differentially abundant proteins 

in cluster 1 compared to samples in the remaining clusters. Blue: A subset of 14 proteins with 

lower plasma levels were selected form the union of the 25 proteins with the lowest p-values 

and the 25 proteins with the largest decrease in abundance levels. Red: A subset of 16 

proteins with higher plasma levels selected from the union of the 25 of proteins with the 

lowest p-values and the 25 proteins with the largest increase in abundance levels.  
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Figures 

Figure 1 
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Figure 2
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Figure 5 
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