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 2

Abstract 23 

Pelomyxa schiedti is a free-living amoeba belonging to the group Archamoebae, which 24 

encompasses anaerobes bearing mitochondrion-related organelles (MROs) – hydrogenosomes 25 

in free-living Mastigamoeba balamuthi and mitosomes in the human pathogen Entamoeba 26 

histolytica. Anaerobic peroxisomes, another adaptation to anaerobic lifestyle, were identified 27 

only recently in M. balamuthi. We found evidence for both these organelles in the single-cell-28 

derived genome and transcriptome of P. schiedti, and corresponding vesicles were tentatively 29 

revealed in electron micrographs. In silico reconstructed MRO metabolism seems similar to that 30 

of M. balamuthi harboring respiratory complex II, electron-transferring flavoprotein, partial TCA 31 

cycle running presumably in reductive direction, pyruvate:ferredoxin oxidoreductase, [FeFe]-32 

hydrogenases, glycine cleavage system, and sulfate activation pathway. The cell disposes with 33 

an expanded set of NIF enzymes for iron sulfur cluster assembly, but their localization remains 34 

unclear. Quite contrary, out of 67 predicted peroxisomal enzymes, only four were reported also 35 

in M. balamuthi, namely peroxisomal processing peptidase, nudix hydrolase, inositol 2-36 

dehydrogenase, and D-lactate dehydrogenase. Other putative functions of peroxisomes could 37 

be pyridoxal 5N-phosphate biosynthesis, amino acid and carbohydrate metabolism, and 38 

hydrolase activities. Future experimental evidence is necessary to define functions of this 39 

surprisingly enzyme-rich anaerobic peroxisome. 40 

 41 

 42 

Author summary 43 
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A major part of the microbial diversity cannot be cultured in isolation, and so it escapes from 44 

traditional ways of investigation. In this paper, we demonstrate the successful approach for 45 

generating good-quality genome and transcriptome drafts from a peculiar amoeba Pelomyxa 46 

schiedti using single-cell methods. P. schiedti is a member of Archamoebae clade harboring 47 

microaerobic protists including a free-living Mastigamoeba balamuthi and a human parasite 48 

Entamoeba histolytica. Mitochondria and peroxisomes represent two organelles that are most 49 

affected during adaptation to microoxic or anoxic environments. Mitochondria are known to 50 

transform to anaerobic mitochondria, hydrogenosomes, mitosomes, and various transition 51 

stages in between, all of which encompass different enzymatic capacity. Anaerobic 52 

peroxisomes have been first noticed in M. balamuthi, but their function remained unclear for 53 

now. Data obtained in this study were used for revealing the presence and for the detailed 54 

functional annotations of anaerobic derivates of mitochondria and peroxisomes in P. schiedti, 55 

which were corroborated by transmission electron microscopy. 56 

 57 

 58 

Introduction 59 

Transition to life in low oxygen environments requires significant modifications of cell 60 

biochemistry and organellar make up. Several lineages of protists have undergone such 61 

transitions and exemplify partly convergent solutions [1–3]. Mitochondria and peroxisomes 62 

have been most significantly remodeled in this process, as they are the key places of oxygen-63 

dependent metabolism and oxygen detoxification.  64 
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Mitochondria are double-membrane-bound organelles, which have arisen from 65 

engulfment of a prokaryotic lineage related to alphaproteobacteria [2,4–6]. Since then, they 66 

have diverged into a range of categories [1] and plethora of transitional forms [7,8], collectively 67 

designated as mitochondrion related organelles (MROs), while only a single case of complete 68 

loss has been reported [9]. Substantial collection of typical mitochondrial functionalities, such 69 

as oxidative phosphorylation, carbon, amino acid and fatty-acid metabolism, iron-sulfur (FeS) 70 

cluster assembly, homeostasis, and apoptosis, has been reduced to various extent in MROs 71 

[10–12]. 72 

 Peroxisomes are bound by a single membrane and characterized by a highly conserved 73 

set of proteins (peroxins) essential for their biogenesis [13,14]. The matrix content and 74 

consequently the repertoire of metabolic pathways is very variable reflecting high versatility of 75 

peroxisomal functions [15]. Most frequently, they possess oxidases reducing molecular oxygen 76 

to hydrogen peroxide (H2O2), and catalase for its detoxification. Not surprisingly, they are 77 

absent from most anaerobes, such as Giardia and Trichomonas [16]; however, anaerobic 78 

peroxisomes were recently reported from Mastigamoeba balamuthi [17]. 79 

Archamoebae represents a clade of microaerophilic protists nested within a broader 80 

group of predominantly aerobic amoebozoans [18,19] represented e.g. by Dictyostelium 81 

discoideum, known to bear a classical aerobic mitochondrion [20], or by their more distant 82 

amoebozoan relative Acanthamoeba castellanii (Centramoebida) with mitochondria potentially 83 

adapted to periods of anaerobiosis and exhibiting a highly complex proteome [12,21]. Small to 84 

almost inconspicuous MROs have been characterized in two Archamoebae, the parasitic 85 

Entamoeba histolytica and the free-living M. balamuthi. The only known function of E. 86 
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histolytica mitosome is production and export of activated sulfate – phosphoadenosine-5’-87 

phosphosulfate (PAPS) [22]. Metabolic capacity of M. balamuthi hydrogenosome is 88 

substantially broader involving pyruvate and amino acid metabolism, ATP production, and FeS 89 

cluster assembly [23–25]. Another adaptation of M. balamuthi to the low oxygen environment 90 

is represented by anaerobic peroxisomes that lack catalase and enzymes of β-oxidation of fatty 91 

acids but harbor several enzymes of pyrimidine and CoA biosynthesis and acyl-CoA and 92 

carbohydrate metabolism [17]. 93 

Pelomyxa is a free-living archamoeba distantly related to M. balamuthi [18], and so it 94 

represents valuable point for tracing the evolution of anaerobic adaptations. There is a single 95 

report on MROs in the giant species P. palustris [26] but their metabolism in unknown. Using 96 

methods of single-cell -omics and electron microscopy, we bring clear evidence for the 97 

presence of both MROs and peroxisomes in its smaller cousin P. schiedti [27].  98 

 99 

 100 

Results and discussion 101 

General features of assemblies 102 

P. schiedti single-cell genome assembly of 52.4 Mb contained 5,338 scaffolds with an 103 

N50=51,552 bp (S1 Table) and 19,965 predicted proteins. We identified a single small subunit 104 

ribosomal RNA gene (18S rDNA). In the 18S phylogeny, P. schiedti was sister to other Pelomyxa 105 

species inside the Pelomyxidae clade (88% standard bootstrap) within a robust clade (94% 106 

standard bootstrap) of Archamoebae (Fig 1, S1 Fig). The decontaminated transcriptome 107 

assembly of 76.6 Mb comprised 43,993 contigs. BUSCO was used to estimate completeness of 108 
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assemblies and to compare them to the M. balamuthi genome (S2 Fig, S1 Table). Transcriptome 109 

contained 83.2% of complete and 2.0% of fragmented BUSCO genes, while in the genome-110 

derived proteome the proportions were 81.9% and 3.6%, respectively. With 82.8% complete 111 

and 3.0% fragmented genes [28], the completeness of M. balamuthi data was comparable. 112 

36.0% of BUSCOs were duplicated in the transcriptome assembly, while only 8.6% in genomic, 113 

reflecting a higher number of contigs or presence of isoforms in the former. It should be noted 114 

that for non-model eukaryotes, which Pelomyxa certainly is, the BUSCO completeness is not 115 

expected to reach 100%, because some of the orthologues might be absent and/or diverged 116 

beyond recognition. Altogether, our analyses showed considerably high completeness of both 117 

assemblies. 118 

 119 

Fig 1. Phylogenetic analysis of amoebozoan 18S rDNA.  120 

The Maximum Likelihood tree places Pelomyxa schiedti in monophyletic Pelomyxidae group 121 

inside monophyletic Archamoebae. Standard bootstrap support values are shown when ≥ 50%. 122 

Outgroup was collapsed for simplicity (for full tree see S1 Fig). 123 

 124 

P. schiedti genes encompass 149,016 introns (S1 Table), which accounts for an intron 125 

density of 7.46, almost twice higher than in M. balamuthi (3.74). While protists’ genomes have 126 

usually lower intron densities, several organisms in IntronDB [29] exhibit similar intron density 127 

as Pelomyxa, e.g., the choanoflagellates Monosiga brevicolis (6.53) and Salpingoeca rosetta 128 

(7.44), the chromerid Vitrella brassicaformis (7.45), or the chlorarachniophyte Bigelowiella 129 

natans (7.85). The vast majority of introns (98.41%) contained canonical GT-AG boundaries, 130 
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1.59% possessed GC-AG boundaries, and one an unusual GT-GG intron boundary (S1 Table). 131 

Similar frequencies of intron boundaries were observed in M. balamuthi (S1 Table and [28]). 132 

 133 

Putative MRO proteome  134 

The major focus of this study was to reveal the presence and to characterize the putative 135 

proteomes of MRO and peroxisome of P. schiedti. We used a combined approach to search for 136 

proteins possibly involved in the MRO metabolism and biogenesis by: (i) retrieving homologues 137 

of MRO- or mitochondrion-targeted proteins of E. histolytica, M. balamuthi, and A. castelanii, 138 

and (ii) predicting N-terminal mitochondrial targeting sequence (NTS) by four tools. The 139 

resulting in silico predicted MRO proteome consists of 51 proteins (Fig 2, S2 Table) and provides 140 

functionalities described below.  141 

 142 

Fig 2. Overview of the Pelomyxa schiedti MRO metabolism.  143 

Proteins were identified by BLAST or HMMER searches and their intracellular localization was 144 

predicted by TargetP, PSORT II, MultiLoc2, and NommPred tools. Confidence of MRO 145 

localization is enhanced by shades of blue as explained in graphical legend above the scheme. 146 

Multiple copies of a protein are shown as overlapping ovals. Potential end-products are boxed 147 

in dark-fuchsia color. ATP production and consumption are highlighted by dark- and light-pink 148 

boxes around ATP, respectively. Abbreviations: AAT, aspartate alanine transferase; ACL, ATP-149 

citrate lyase; ACO, aconitase; ACS, acetyl-CoA synthetase; AK, adenylate kinase; APS, 150 

adenosine-5'-phosphosulfate; APSK, adenosine-5'-phosphosulfate kinase; AS, ATP sulfurylase; 151 

cpn10, chaperonin 10; cpn60, chaperonin 60; CIC, citrate carrier; CoA, coenzyme A; ETFa, 152 
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electron transferring flavoprotein subunit alpha; ETFb, electron transferring flavoprotein 153 

subunit beta; ETFDH, electron transferring flavoprotein dehydrogenase; Fe-ADH, iron-154 

containing alcohol dehydrogenase; Fd, ferredoxin; FH, fumarase; GDH, glutamate 155 

dehydrogenase; H, GCSH protein; HSP70, heat shock protein 70; HydA, [FeFe]-hydrogenase; 156 

HydE, hydrogenase maturase; HydF, hydrogenase maturase; HydG, hydrogenase maturase; IDH, 157 

isocitrate dehydrogenase; IPP, inorganic pyrophosphatase; L, GCSL protein; D-LDH, D-lactate 158 

dehydrogenase; LPLA, lipoamide protein ligase; MCF, mitochondrial carrier family; MDH, malate 159 

dehydrogenase;  MPP a+b, mitochondrial processing peptidase subunit alpha and beta; NaS, 160 

sodium/sulfate symporter; NifS, cysteine desulfurase; NifU+FdhD, scaffold protein + formate 161 

dehydrogenase accessory sulfurtransferase; OGC, 2-oxoglutarate carrier; P, GCSP protein; 162 

P5CDH, pyrroline-5-carboxylate dehydrogenase; P5CR, pyrroline-5-carboxylate reductase; PAPS, 163 

3’-phosphoadenosine 5’-phosphosulfate; PC, pyruvate carboxylase; PFO, pyruvate:ferredoxin 164 

oxidoreductase; PNT, pyridine nucleotide transhydrogenase; ProDH, proline dehydrogenase; 165 

RQ, rodoquinone; RQH2, rhodoquinol; RquA, RQ methyltransferase; SAM, sorting and assembly 166 

machinery; SDH5, succinate dehydrogenase assembly factor; SDHA, succinate dehydrogenase 167 

subunit A; SDHB, succinate dehydrogenase subunit B; SDHC, succinate dehydrogenase subunit 168 

C; SDHD, succinate dehydrogenase subunit D; SHMT, serine hydroxymethyltransferase; T, GCST 169 

protein; THF, tetrahydrofolate; THF-CH2, N5,N10-methylenetetrahydrofolate; TOM/TIM, 170 

translocase of the outer/inner membrane; UQ, ubiquinone; Zn-ADH, zinc-containing alcohol 171 

dehydrogenase. 172 

 173 

Protein import machinery 174 
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Despite sensitive HMMER searching we identified only three subunits of the outer membrane 175 

translocase (TOM) and the sorting and assembly machinery (SAM) complexes — Tom40, 176 

Sam50, and Sam37 (Fig 2). All three proteins had corresponding domains predicted by 177 

InterProScan. Many homologues of the canonical opisthokont subunits are missing (S2 Table), 178 

as are all parts of the translocase of the inner membrane (TIM), and so the mechanism of 179 

protein import across this membrane remains unclear. The situation resembles other 180 

Archamoebae [23,28,30], suggesting that their translocons are either highly streamlined and/or 181 

contain highly divergent or lineage-specific subunits as reported from trichomonads or 182 

trypanosomes [31,32]. 183 

Enzymes involved in processing (matrix processing peptidase) and folding (chaperonins 184 

cpn10 and cpn60) are present. HSP70 was detected in 14 copies, none of them confidently 185 

predicted to mitochondrion (S2 Table). Phylogenetic analysis revealed a single MRO candidate 186 

(Pelo10550) branching sister to M. balamuthi mtHSP70 within the mitochondrial clade (S3 Fig). 187 

The other HSP70 paralogues fell into the ER or cytosolic clades, the latter being diversified in 188 

ten copies all forming robust clades with M. balamuthi sequences. 189 

Although we have probably revealed only a fragment of the inventory needed for the 190 

protein import into the P. schiedtii MRO, the presence of the hallmarks—Tom40, Sam50, 191 

mtHSP70, and cpn60—conclusively shows that the MRO is truly present.   192 

 193 

Tricarboxylic acid cycle and electron transport chain 194 

P. schiedti encodes four enzymes of the tricarboxylic acid (TCA) cycle possessing NTS (S2 Table) 195 

and catalyzing consecutive reactions. ATP citrate lyase (ACL) is typical for the reductive 196 
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direction of TCA, while others, fumarate hydratase (fumarase/FH), malate dehydrogenase 197 

(MDH), and four subunits of the succinate dehydrogenase complex (SDH/complex II/CII), are 198 

common for both, oxidative and reductive TCA. The absence of CII subunit SDH5/SDHAF 199 

involved in the flavination of SDHA subunit [33] is likely common for Archamoebae as it is 200 

absent also from M. balamuthi [24]. 201 

Homologues of A. castellanii respiratory complexes were not identified, except for the 202 

aforementioned CII and a quinone-dependent electron-transferring flavoprotein (ETF; S2 203 

Table). Both soluble subunits, alpha (ETFa) and beta (ETFb), and the membrane-bound ETF 204 

dehydrogenase (ETFDH), are present but only ETFDH and ETFa contain a recognizable NTS. It 205 

has been proposed in M. balamuthi that electrons may be transferred in an unknown direction 206 

between ETF and rhodoquinone (RQ), a quinone molecule with a lower electron potential than 207 

ubiquinone [3,34]. RQ is in M. balamuthi synthetized by a hydrogenosomal methyltransferase 208 

dubbed RquA [34], which was detected also in P. schiedti (S2 Table). RQ presence allows 209 

delivery of electrons to CII that could function as fumarate reductase [35] producing succinate, 210 

the putative end product of the partial reverted TCA in both Archamoebae [24], which may be 211 

secreted as in Trypanosoma [36].  212 

 213 

Pyruvate and ATP metabolism  214 

Pyruvate is in aerobic mitochondria oxidatively decarboxylated to acetyl-coenzyme A (CoA) by 215 

the pyruvate dehydrogenase (PDH) complex. In most MROs, PDH is substituted by 216 

pyruvate:ferredoxin oxidoreductase (PFO), pyruvate:NADP+ oxidoreductase (PNO), or pyruvate 217 

formate lyase (PFL) [2]. We identified six copies of PFO and one copy of PNO in the P. schiedti 218 
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genome, all without NTS (S2 Table). However, one of the P. schiedti PFOs was sister to one of 219 

the M. balamuthi putatively hydrogenosomal PFOs [24] (S4 Fig). We assume that this PFO 220 

homologue operates in P. schiedti MRO. Another pyruvate-metabolizing enzyme predicted to 221 

MRO is pyruvate carboxylase (PC; S2 Table) producing oxaloacetate [37], a substrate of MDH. In 222 

M. balamuthi, pyruvate may be produced by the activity of NAD+-dependent D-lactate 223 

dehydrogenase (D-LDH), of which one is present in hydrogenosome and the other in 224 

peroxisome [17,24]. P. schiedti bears only one homologue of D-LDH that is predicted to 225 

peroxisomes (S3 Table), thus pyruvate is likely imported to MRO from cytosol. 226 

Two ATP-synthesizing enzymes are putatively present. Acetyl-CoA synthetase (ACS), 227 

enzyme converting acetyl-CoA to acetate, CoA, and ATP, was found in eight copies, four of 228 

which possessed a putative NTS. ATP may be formed also by the adenylate kinase (AK) 229 

catalyzing interconversion of adenine nucleotides. Three of the six AKs are putatively localized 230 

in the MRO (S2 Table). In this respect, the situation resembles M. balamuthi hydrogenosome 231 

[24]. Third putative source of ATP is the antiport against PAPS.  232 

 233 

Amino acid metabolism 234 

Glycine cleavage system (GCS) is at least partially retained in many MROs [38]. It consists of 235 

four enzymes (H-, L-, T-, and P-protein) and methylates tetrahydrofolate (THF) while 236 

decomposing glycine into CO2 and ammonia. THF methylation is also provided by the serine 237 

hydroxymethyltransferase (SHMT) [39]. We identified all GCS enzymes and SHMT in P. schiedti, 238 

all with predicted NTS (Fig 2, S2 Table). L-protein was present in two copies with only one 239 

bearing NTS, similarly to M. balamuthi. The function of the second copy is unknown [24]. 240 
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Lipoamide protein ligase (LPLA) necessary for lipoamide attachment to GCSH was present with 241 

NTS. The resulting N5,N10-methylenetetrahydrofolate (CH2-THF) is an intermediate in one-242 

carbon metabolism and cofactor for the synthesis of pyrimidines and methionine in both 243 

mitochondria and cytosol. Two cytosolic enzymes requiring this cofactor, B12-dependent 244 

methionine synthase and THF dehydrogenase/cyclohydrolase, were detected (S2 Table). 245 

Glycine can be produced in mitochondria from threonine by threonine dehydrogenase (TDH) 246 

and alpha-amino-beta-ketobutyrate CoA ligase (AKL) [40] but both proteins lack a recognizable 247 

NTS in P. schiedti (S2 Table). Consistently, TDH activity was measured only in the cytosolic 248 

fraction of M. balamuthi [24]. It is highly probable that this pathway operates in the cytosol of 249 

P. schiedti and glycine is imported to MRO. 250 

To our surprise, we identified remnants of the proline degradation pathway presumably 251 

residing in P. schiedti MRO (Fig 2). In mitochondria, proline is usually degraded to glutamate by 252 

the function of proline dehydrogenase (ProDH) and pyrroline-5-carboxylate dehydrogenase 253 

(P5CDH) [41]. While ProDH is missing in P. schiedti, an alternative enzyme pyrroline-5-254 

carboxylate reductase (P5CR) was predicted to be mitochondrion-targeted by one predictor (S2 255 

Table). P5CDH is present in P. schiedti but lacks predictable NTS. Glutamate can be further 256 

metabolized to 2-oxoglutarate by glutamate dehydrogenase (GDH) [41], which is present and 257 

predicted to be mitochondrion-targeted also by one tool (S2 Table). 258 

 259 

Cofactor regeneration 260 

NADH produced by GCS or during putative proline degradation would be in most mitochondria 261 

reoxidized by NADH dehydrogenases in the electron transport chain [41]. Since this is absent in 262 
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P. schiedti, we explored other ways for regeneration of this cofactor. One possibility is 263 

fermentation of aldehydes to alcohols by alcohol dehydrogenases [42] putatively targeted to 264 

the MRO (S2 Table). Another option is the reductive partial TCA cycle running from citrate to 265 

succinate consuming not only NADH but also electrons from ETFDH via CII producing succinate 266 

[43]. Citrate or oxaloacetate are necessary to fuel this pathway. We identified a mitochondrial 267 

citrate carrier (CIC; S2 Table) which belongs to SLC25A family and is known to exchange malate 268 

for cytosolic citrate in cancer cells under low concentration of oxygen [44]. ACL produces acetyl-269 

CoA and oxaloacetate from citrate on the expense of ATP [45]. Acetyl-CoA may become a 270 

substrate for anabolic reactions or be used by ACS to regenerate both ATP and CoA (Fig 2), 271 

while oxaloacetate may enter the reverse TCA cycle becoming substrate of MDH, regenerating 272 

NAD+. The malate pool is maintained also by 2-oxoglutarate carrier (OGC; S2 Table). In the 273 

cytosol, 2-oxoglutarate can be reductively carboxylated to replenish citrate [46]. Oxaloacetate 274 

may alternatively be produced from pyruvate by PC with ATP consumption or by the action of 275 

aspartate amino transferase (S2 Table). The latter enzyme may balance the ratio of 2-276 

oxoglutarate + aspartate: oxalacetate + glutamate; however, the origin and fate of aspartate is 277 

unclear due to the absence of the glutamate-aspartate antiporter (S2 Table). 278 

Pyridine nucleotide transhydrogenase (PNT) is predicted to MRO by a single predictor 279 

(S2 Table). PNT usually localizes in the inner mitochondrial membrane and pumps protons while 280 

transferring electrons between NADH and NADPH [47]. PNT is present in M. balamuthi and E. 281 

histolytica [23,48], however in E. histolytica, it was shown to localize outside mitosomes [49], 282 

which calls into question its MRO location in other Archamoebae. 283 
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MRO contains two additional electron sinks with unclear purpose. ETF and ETFDH 284 

proteins are known to use electrons from oxidation of fatty acids, which is absent in P. schiedti 285 

MRO. Finally, [FeFe]-hydrogenases uptake electrons from reduced ferredoxins and produce 286 

molecular hydrogen. Three of the six detected hydrogenases bear putative NTS. Hydrogenases 287 

contain catalytic H cluster and its maturation is dependent on maturases (HydE, HydF, and 288 

HydG) [50], which are all present and contain NTS (S2 Table). Reduced ferredoxin may originate 289 

from pyruvate oxidation. 290 

 291 

Iron-sulfur cluster assembly 292 

Mitochondria usually house the iron-sulfur cluster assembly (ISC) pathway inherited from 293 

alphaproteobacteria serving for maturation of both, mitochondrial and cytosolic FeS proteins 294 

[51]. Some organisms, including Archamoebae, have replaced it by another machinery via 295 

horizontal gene transfer [25,52]. M. balamuthi bears two copies of the nitrogen fixation (NIF) 296 

system, both comprising NifS and NifU proteins. While one pair of NIFs operates in cytosol, the 297 

other localizes in the hydrogenosome [25]. In E. histolytica, only cytosolic copy has been 298 

retained [24]. 299 

In P. schiedti MRO, hydrogenases and their maturases HydE and HydF, SDH, ferredoxin, 300 

and PFO are putative clients for NIF system. We identified seven NifS and three NifU proteins, 301 

of which only NifU (Pelo10620) contained predicted NTS (S2 Table). Interestingly, this protein 302 

consists of a NifU N-terminal domain fused to a formate dehydrogenase accessory 303 

sulfurtransferase (FdhD) C-terminal domain (S5A Fig). The Escherichia coli FdhD transfers sulfur 304 

from IscS to formate dehydrogenase (FdhF) and is essential for its activity [53]. P. schiedti 305 
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indeed encodes a FdhF homologue without NTS (S2 Table). In the NifU phylogeny (Fig 3A), the 306 

NifU domain of the fusion protein formed a long branch within a moderately supported (80% 307 

ultrafast bootstrap) clade of all Archamoebae NifUs. The other P. schiedti NifU sequences 308 

branched sister to hydrogenosomal and cytosolic M. balamuthi homologues. All three P. 309 

schiedti NifU sequences contained conserved cysteine residues (S5B Fig) necessary for their 310 

function [54]. 311 

 312 

Fig 3. Analyses of NIF system components.  313 

(A-B) The Maximum Likelihood phylogenetic trees show that Pelomyxa schiedti possesses 314 

orthologues of hydrogenosomal and cytosolic NifU (A) and NifS (B) proteins from 315 

Mastigamoeba balamuthi. Hydrogenosomal proteins of M. balamuthi are marked with stars. 316 

The Maximum Likelihood tree was estimated with standard (BS) and ultrafast bootstrapping 317 

(UFB). The tree topology shown is from the ultrafast bootstrap analysis. Support values for 318 

<50% BS and <75% UFB are denoted by a dash (-), whereas an asterisk (*) marks a topology that 319 

does not exist in a particular analysis. Fully supported nodes are shown as black circles, while 320 

nodes that were not supported are without any value. (C) Heterologous expression of two NifS 321 

sequences of Pelomyxa schiedti showed their cytosolic localization. Proteins were expressed in 322 

Saccharomyces cerevisiae with a GFP-tag at their C-terminus. Mitochondria were stained with 323 

MitoTracker. DIC, differential interference contrast. Scale bar: 5 μm. 324 

 325 

None of the seven NifS proteins was predicted to MRO (S2 Table). Two sequences were 326 

identical but incomplete at their C-termini and could not be completed by read mapping or PCR 327 
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amplification. In the phylogenetic analysis (Fig 3B), Pelo13211 and Pelo6206 branched sister to 328 

the hydrogenosomal and cytosolic M. balamuthi sequences, respectively. Pelo14142 was sister 329 

to candidate Riflebacteria species and the last four formed a long branch nested within the 330 

Archamoebae clade. All amino acid residues required for function [55] were present in both P. 331 

schiedti sequences that were sister to M. balamuthi (S5C Fig).  332 

The phylogenetic pattern offers an elegant hypothesis in which NifS Pelo6206 and NifU 333 

Pelo14273 act in the cytosol, while NifS Pelo13211 and NifU Pelo19958 in MRO. The remaining 334 

NifS copies might be functional partners of the NifU-FdhD fusion protein (Pelo10620). 335 

Surprisingly, our experiments with heterologous localization of the MRO and cytosolic NifS 336 

candidates in Saccharomyces cerevisiae revealed cytosolic localization of both (Fig 3C), leaving 337 

the question of the FeS cluster assembly in P. schiedti MRO unresolved. 338 

 339 

Sulfate activation pathway 340 

Sulfate activation pathway produces PAPS necessary for sulfolipid synthesis [22]. It is present in 341 

E. histolytica [22,56] and M. balamuthi [24] MROs, and we identified all of its components also 342 

in P. schiedti (Fig 2, S2 Table). The pathway requires two transporters. A sodium/sulfate 343 

symporter (NaS) is necessary for substrate delivery, however,  its homologues in P. schiedti (S2 344 

Table) are unrelated to E. histolytica mitosomal NaS [22] (S6A Fig) yielding their role unclear. 345 

The PAPS exporter belongs to the mitochondrial carrier family (MCF) and, indeed, one of P. 346 

schiedti MCF proteins branched sister to a clade of PAPS transporters of E. histolytica and M. 347 

balamuthi [28,57] (S6B Fig). As this transporter exchanges PAPS to ATP, it plays role in 348 
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supplementing the ATP pool in MRO, yet cannot provide a net ATP gain, because two ATP 349 

molecules are required for production of one PAPS.  350 

 351 

Anaerobic peroxisomes 352 

 We have also investigated the presence of anaerobic peroxisomes, which were recently 353 

characterized in M. balamuthi [17]. P. schiedti encodes genes for 13 proteins required for 354 

peroxisome biogenesis (peroxins, Pexs) strongly suggesting presence of peroxisomes. Identified 355 

peroxins include Pex5 and Pex7 required for the recognition of peroxisomal targeting signal 1 356 

and 2 (PTS1 and PTS2), respectively, Pex13 and 14 mediating the protein import, Pex1, 2, 6, 10, 357 

and 12, which are receptor-recycling peroxins, Pex3, 16, and 19 involved in protein import to 358 

the peroxisomal membrane, and Pex11 participating in the peroxisome fission (S3 Table). 359 

Prediction of putative peroxisomal matrix proteins based on the PTS1/PTS2 presence revealed 360 

67 candidates (S3 Table). Interestingly, only four candidates were previously found in anaerobic 361 

peroxisomes of M. balamuthi that include peroxisomal processing peptidase (PPP), inositol 2-362 

dehydrogenase, nudix hydrolase, and D-lactate dehydrogenase, all with clear support for 363 

localization in P. schiedti peroxisomes (S3 Table). Unlike in M. balamuthi, P. schiedti 364 

peroxisomes possibly contain pyridoxamine 5'-phosphate oxidase (PNPO) that utilizes 365 

molecular oxygen as an electron acceptor to catalyze the last step of the pyridoxal 5N-366 

phosphate (PLP) biosynthesis with concomitant formation of ammonia and H2O2. The presence 367 

of PNPO raises a question how H2O2 is detoxified as typical antioxidant enzymes, such as 368 

catalase and peroxidase, are not present. However, H2O2 could be decomposed also 369 

nonenzymatically by antioxidants, such as 2-oxoglutarate, in which the ketone group of the α-370 
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carbon atom reacts with H2O2 to form succinate, CO2, and water [58]. P. schiedti contains a 371 

putative glutamate dehydrogenase that may produce 2-oxoglutarate and that possesses –SKL 372 

triplet, a typical PTS1. However, the peroxisomal targeting was not supported by the PTS 373 

predictor, which considers twelve C-terminal amino acid residues. The other proteins with 374 

predicted peroxisomal localization include several enzymes of amino acid synthesis and 375 

degradation, carbohydrate metabolism and hydrolases, however without clear biochemical 376 

context. More experimental studies are required to verify predicted localizations and to 377 

delineate function of peroxisomes in P. schiedti. 378 

 379 

Electron microscopy 380 

Finally, we were interested whether the two organelles described by the genomic data can be 381 

visualized by microscopy. Careful inspection of electron micrographs, indeed, revealed two 382 

populations of small vesicles, one presumably bounded by a double membrane while the other 383 

by a single (Fig 4). We ascribe them to putative MROs and peroxisomes in silico characterized in 384 

this work but leave the confirmation for further studies. 385 

 386 

Fig 4. Transmission electron micrograph of Pelomyxa schiedti, ultra-thin sections. (A) The 387 

nuclear area. N, nucleus; black arrow, putative mitochondrion-related organelle; white arrow, 388 

small dense body (putative peroxisome); asterisk (*), prokaryotic endosymbiont. (B-C) High 389 

magnification of putative mitochondrion-related organelle; black arrow, bounding double 390 

membrane. (D) Detail of the bounding double membrane. (E) High magnification of the small 391 

dense body (putative peroxisome). Scale bars: 400 nm for (A); 50 nm for (B-E). 392 
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 393 

Conclusions 394 

Our bioinformatic survey of the putative proteome of Pelomyxa schiedti MRO revealed several 395 

interesting insights and opened many questions for further investigation of this amoeba. Most 396 

importantly, P. schiedti clearly does harbor an MRO with a very streamlined or lineage specific 397 

set of protein translocases, and peroxisomes with a set of 13 soluble and membrane associated 398 

peroxins. Our in silico predictions showed that the MRO provides the cell with the synthesis of 399 

PAPS, contains glycine cleavage system, [FeFe]-hydrogenase, and likely also a part of a TCA 400 

cycle running in reverse direction from citrate enabling concomitantly the production of acetyl-401 

CoA. The electron transport chain is reduced to complex II and electron-transferring 402 

flavoprotein dehydrogenase, and possibly uses rhodoquinone as the electron transporter. We 403 

predict that the source of reduced ferredoxin for [FeFe]-hydrogenase comes from pyruvate. 404 

The situation with the FeS cluster assembly in this amoeba seems rather complex as it contains 405 

the most diverse set of NIF pathway proteins of all previously investigated Archamoebae. These 406 

proteins very likely provide parallel FeS synthesis in MRO and cytoplasm, but in addition to this, 407 

some may be involved in the activation of formate dehydrogenase as seen in some prokaryotes. 408 

P. schiedti anaerobic peroxisomes, similarly to M. balamuthi, lack enzymes of β-oxidation of 409 

fatty acids and catalase. Although the function of these peroxisomes needs to be clarified, the 410 

set of predicted enzymes suggested significant metabolic diversity between the two amoebae 411 

as well as from their aerobic counterparts. 412 

 413 

 414 
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Materials and methods 415 

Cell culture 416 

Polyxenic (and polyeukaryotic) culture of Pelomyxa schiedti strain SKADARSKE was maintained 417 

in Sonneborn’s Paramecium medium [59] as described previously [27]. 418 

 419 

Genome and transcriptome sequencing and assembly 420 

Genome sequencing was performed from whole genome amplified DNA (WGA). Individual cells 421 

were picked by micromanipulation and washed twice in Trager U media [60]. Genomic DNA was 422 

amplified using Illustra Single Cell GenomiPhi DNA Amplification Kit (GE Healthcare Life 423 

Sciences) according to the manufacturer’s protocol and purified using ethanol precipitation. 424 

Presence of the eukaryotic DNA was confirmed by amplification of a partial actin gene using 425 

specific primers (S4 Table). Sequencing libraries from seven positive samples were prepared 426 

using Illumina TruSeq DNA PCR-Free kit (Illumina). Samples Pelo2 and Pelo5 were sequenced on 427 

Illumina MiSeq (2x300 bp; Genomic Core facility, Faculty of Science) and Nanopore (Oxford 428 

Nanopore Technologies), samples P1 – P5 on Illumina HiSeq X (Macrogen Inc.). The Nanopore 429 

library was prepared using Oxford Nanopore Technologies ligation sequencing kit (SQK-LSK108) 430 

from 4 μg of T7 endonuclease I (New England Biolabs) treated WGA. Sequencing was 431 

performed using a R9.4.1 Spot-On Flow cell (FLO-MIN106) for 48 hours. 432 

For transcriptome sequencing, single-cells of P. schiedti were washed twice in Trager U 433 

and amplification by 19 cycles was performed [61]. Five libraries were prepared using Nextera 434 

XT DNA Library preparation Kit (Illumina) and sequenced on Illumina MiSeq (PE 2x300bp; 435 

Genomic Core facility, Faculty of Science).  436 
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Raw Illumina DNA- and RNA-Seq reads were quality and adapter trimmed using BBDuk 437 

v36.92 (part of BBTools suite: https://jgi.doe.gov/data-and-tools/bbtools/). Firstly, individual 438 

single-cell genome assemblies for Pelo2, Pelo5, and P1 – P5 were generated with SPAdes 439 

v3.11.1 [62] using single-cell (--sc) mode and a k-mer size of 127. As the 18S rDNAs extracted 440 

from individual assemblies were identical, all reads (i.e., Illumina HiSeqs and MiSeq, and 441 

Nanopore) were assembled together by SPAdes v3.11.1 using --sc and k-mers of 21, 33, 55, 77, 442 

99, 121. The resulting assembly was binned and decontaminated using tetraESOM [63] and a 443 

BLASTing strategy described previously [64]. The final assembly was scaffolded using 444 

P_RNA_scaffolder [65]. Prediction was done using Augustus v3.3.1 [66], and further improved 445 

by PASA and EVM [67] using the transcriptomic data. RNA-Seq reads were assembled using 446 

Trinity v2.6.5 [68] with default parameters, and contaminants were removed by BLASTing 447 

against the decontaminated genome assembly. RNA-Seq reads were mapped to the 448 

transcriptome using Bowtie2 v2.3.0 [69] and to the genome using HISAT2 v2.0.5 [70]. Genome 449 

and transcriptome completeness were assessed using BUSCO v3 with the eukaryota_odb9 450 

dataset [71]. 451 

 452 

Sequence searches and localization predictions 453 

Proteins predicted to localize in M. balamuthi hydrogenosome, E. histolytica mitosome, and A. 454 

castellanii mitochondria served as queries in BLAST v2.6.0+ [72] searches through P. schiedti 455 

assemblies. Sensitive searches for components of TOM/TIM machinery were done using 456 

HMMER v3.3 [73]. Protein domains were predicted by InterProScan [74] implemented in 457 

Geneious Prime v2020.2.3 [75]. 458 
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Potentially mitochondrion-targeted proteins were identified using TargetP v2 [76], 459 

PSORT II [77], MultiLoc2 [78], and NommPred [79] tools. Since P. schiedti does not harbor 460 

plastid, the plant setting from MultiLoc2 was omitted and NommPred was used in the MRO and 461 

in the Dictyostelium settings [19]. A protein was considered as mitochondrial if predicted by at 462 

least one setting of MultiLoc2 or NommPred. 463 

Peroxins were identified by BLAST searches using M. balamuthi queries. Peroxisomal 464 

matrix proteins were predicted by searching for peroxisomal targeting signals (PTS). The 465 

tripeptides SRI and [SAP][KR][LM] (excluding AKM, PKM, and PRM) were used to search for the 466 

C-terminal PTS1. Proline at position -3 and methionine at position -1 were included based on 467 

experimental verification in M. balamuthi [17]. Two nanopeptides R[LI](x5)HL were used for N-468 

terminal PTS2 searches [80]. All putative transmembrane proteins determined by TMHMM 469 

Server v2.0 [81] were filtered out. PTS1 candidates were submitted to the PTS1 Predictor using 470 

GENERAL function [82] evaluating twelve C-terminal residues.  471 

 472 

Phylogenetic analyses 473 

An 18S rRNA gene dataset was aligned by MAFFT v7 [83] server with the G-INS-i algorithm at 474 

default settings and manually edited in BioEdit v7.0.4.1 [84] resolving 1,437 positions. 475 

Phylogenetic tree was constructed using Maximum-Likelihood in RAxML v8.0.0 [85] under the 476 

GTRGAMMAI model, 100 starting trees, and 1,000 bootstrap pseudoreplicates. 477 

For selected proteins, datasets were aligned by MAFFT v7.313 [83], trimmed by trimAl 478 

v1.4 [86] and Maximum-Likelihood trees were inferred by IQ-TREE v1.6.8 [87] using the 479 
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posterior mean site frequency method [88], LG+C20+F+G model, with the guide tree inferred 480 

under LG+F+G. Branch supports were obtained by the ultrafast bootstrap approximation [89]. 481 

 482 

Immunofluorescence analysis 483 

NifS genes (Pelo6206 and Pelo13211) were amplified from cDNA using specific primers (S4 484 

Table) and PrimeSTAR® Max DNA Polymerase (Takara Bio Inc.) premix, cloned into pUG35 485 

vector containing C-terminal green fluorescence protein (GFP), and transformed to S. cerevisiae 486 

strain YPH499 using the lithium acetate method [90]. Transformants were grown on selective 487 

medium without uracil (SD-URA) at 30 °C. For localization, transformed cells were incubated 488 

with MitoTracker Red CMXRos (1:10,000; Thermo Fisher Scientific) for 10 minutes, followed by 489 

two washes with PBS, and mounted in 1% low-melting agarose and imaged using a Leica SP8 490 

confocal microscope. Deconvolution was performed using Huygens Professional v17.10 and 491 

ImageJ v1.50b. 492 

 493 

Transmission electron microscopy 494 

A grown culture of P. schiedti was pelleted by centrifugation and fixed one hour on ice with 495 

2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2). After washing in 0.1 M cacodylate 496 

buffer, the cells were postfixed one hour on ice with 1% OsO4. After washing with distilled 497 

water, the fixed cells were dehydrated in a graded series of ethanol, transferred to acetone, 498 

and embedded in EPON resin. Ultrathin sections were prepared on an ultramicrotome 499 

(Reichert-Jung Ultracut E) with a diamond knife. Sections were stained with uranyl acetate and 500 

lead citrate and examined using JEOL 1011 transmission electron microscope. 501 
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 502 

 503 

Data availability 504 

The raw sequencing data are available at NCBI (https://www.ncbi.nlm.nih.gov/) as BioProject 505 

PRJNA672820. Final assemblies are available from Zenodo at 506 

https://zenodo.org/record/4733726#.YI_RPWYza3I. 507 
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Supporting information 773 

S1 Fig. Phylogenetic analysis of amoebozoan 18S rDNA. The Maximum Likelihood tree places 774 

Pelomyxa schiedti in monophyletic Pelomyxidae group inside monophyletic Archamoebae. 775 

Standard bootstrap support values are shown when ≥ 50%. 776 

 777 

S2 Fig. BUSCO analysis of the Pelomyxa schiedti transcriptome and predicted proteins. 778 

Completeness of P. schiedti datasets were assessed using the odb9_eukaryota dataset and 779 

compared with completeness of predicted proteins from Mastigamoeba balamuthi. 780 

 781 

S3 Fig. Phylogenetic analysis of HSP70 proteins. The Maximum Likelihood phylogenetic tree 782 

documents that one of the Pelomyxa schiedti HSP70 sequence is related to mitochondrial 783 

orthologues from other eukaryotes. Ultrafast bootstrap support values are shown when ≥ 75%. 784 

 785 
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S4 Fig. Phylogenetic analysis of PFO enzymes. The Maximum Likelihood phylogenetic tree 786 

identified a PFO version putatively operating in Pelomyxa schiedti MRO. Hydrogenosomal PFO 787 

copies of Mastigamoeba balamuthi are marked with stars. Number in parenthesis shows 788 

number of species in the collapsed clade. Ultrafast bootstrap support values are shown when ≥ 789 

75%. 790 

 791 

S5 Fig. Sequences of Pelomyxa schiedti components of NIF system. (A) The diagram depicts P. 792 

schiedti protein Pelo10620 composed of a NifU N-terminal domain fused to a FdhD (formate 793 

dehydrogenase accessory sulfurtransferase) C-terminal domain as determined by InterProScan. 794 

(B-C) Sequence alignment of NifU (B) and NifS (C) proteins from P. schiedti and Mastigamoeba 795 

balamuthi in comparison with bacterial homologues from Thermotoga maritima. The amino 796 

acid residues necessary for the function of NifU and NifS are labeled according to the legend.  797 

 798 

S6 Fig. Phylogenetic analysis of transporters involved in the sulfate activation pathway. (A) 799 

The phylogenetic analysis did not resolve which one of the sodium/sulfate symporters of 800 

Pelomyxa schiedti is related to the Entamoeba histolytica mitosomal transporter. (B) The 801 

Maximum Likelihood phylogenetic tree confirms one P. schiedti transporter as PAPS (3’-802 

phosphoadenosine 5’-phosphosulfate) transporter, while two others belong to a broader 803 

mitochondrial carrier family of transporters. Experimentally proven mitosomal transporters of 804 

E. histolytica are marked with stars. Ultrafast bootstrap support values are shown when ≥ 75%. 805 

 806 
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S1 Table: Statistics of Pelomyxa schiedti assemblies were compared with those of 807 

Mastigamoeba balamuthi. 808 

 809 

S2 Table: Proteins targeted to MRO of Pelomyxa schiedti. Localization of proteins was 810 

predicted by several tools, as listed in columns E - J. Mitochondrial predictions are highlighted 811 

by white font on blue background. Column K shows final inferred prediction of localization. mit, 812 

mitochondrial; cyt, cytosolic; SP, signal peptide; ER, endoplasmic reticulum; nuc, nuclear; 813 

extracell, extracellular; sec, secretory system; perox, peroxisomal; PM, plasma membrane; 814 

Other, other localization; -, protein not localized in MRO; +, protein localized in MRO; +?, 815 

protein localized in MRO with low confidence. 816 

 817 

S3 Table. Proteins required for peroxisome biogenesis and targeted to peroxisome. Proteins 818 

identified in Mastigamoeba balamuthi are highlighted by white font on blue background. 819 

Proteins were considered peroxisome-targeted, if they contained PTS1 (SRI or [SAP][KR][LM]) or 820 

PTS2 motif (R[LIV](x5)HL), and/or were predicted by PTS1 predictor [82]. 821 

 822 

S4 Table: Primers used in this study. 823 
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