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Abstract 12 

Motivation: The ability to assess and engineer biotransformation of chemical contaminants 13 

present in the environment requires knowledge on which enzymes can catalyze specific 14 

contaminant biotransformation reactions. For the majority of over 100’000 chemicals in 15 

commerce such knowledge is not available. Enumeration of enzyme classes potentially 16 

catalyzing observed or de novo predicted contaminant biotransformation reactions can 17 

support research that aims at experimentally uncovering enzymes involved in contaminant 18 

biotransformation in complex natural microbial communities. 19 

Database: enviLink is a new data module integrated into the enviPath database and contains 20 

316 theoretically derived linkages between generalized biotransformation rules used for 21 

contaminant biotransformation prediction in enviPath and 3rd level EC classes. Rule-EC 22 

linkages have been derived using two reaction databases, i.e., Eawag-BBD in enviPath, 23 

focused on contaminant biotransformation reactions, and KEGG. 32.6% of identified rule-EC 24 

linkages overlap between the two databases, whereas 40.2% and 27.2%, respectively, are 25 

originating from Eawag-BBD and KEGG only.  26 

Implementation and availability: enviLink is encoded in RDF triples as part of the enviPath 27 

RDF database. enviPath is hosted on a public webserver (envipath.org) and all data is freely 28 

available for non-commercial use. enviLink can be searched online for individual 29 

transformation rules of interest (https://tinyurl.com/y63ath3k) and is also fully downloadable 30 

from the supporting materials (i.e., Jupyter notebook “enviLink” and tsv files provided 31 

through GitHub at https://github.com/emanuel-schmid/enviLink). 32 

  33 
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 2 

Introduction 34 

Refined understanding of contaminant degradation in environmental microbial 35 

communities depends on knowledge about catalyzing enzymes. For co-metabolic 36 

transformation at low substance concentrations that knowledge is hardly available. Available 37 

experimental approaches (gene knock outs or overexpression) are very costly and labor-38 

intensive and therefore rely on strong hypotheses about potential enzyme candidates. To 39 

identify such potential enzyme candidates, functional association mining between 40 

metatranscriptomic or -genomic profiles and contaminant biotransformation information (i.e., 41 

rate constants and reaction pathway) has been suggested as a promising way forward 1-3. 42 

However, association mining suffers from low significance due to massive multiple 43 

hypothesis testing unless the range of enzymes plausibly catalyzing a given, observed 44 

transformation reaction can be restricted. 45 

Currently available tools that, given a transformation reaction, allow predicting potentially 46 

catalyzing enzymes (or enzyme-encoding genes) are E-zyme/E-zyme2 4, 5 and BridgIT 6. One 47 

obvious drawback for their application to contaminant biotransformation reactions is that both 48 

tools are trained on KEGG data only. KEGG very extensively covers reactions associated 49 

with primary metabolism and secondary metabolism of natural products, but only contains 50 

limited information on contaminants. 51 

Eawag-BBD instead exclusively contains information on experimentally observed 52 

contaminant biotransformation reactions 7. These have served as a basis for deriving a set of 53 

manually curated generalized biotransformation rules (btrules) which are used for de novo 54 

contaminant pathway prediction 8. Most contaminant biotransformation reactions in Eawag-55 

BBD are annotated with an EC number, which has been manually extracted by a data curator 56 

from the original publication reporting the experimental evidence. Most reactions are 57 

annotated with a 4th or 3rd level EC number (44.2% and 43.3%, respectively). The remaining 58 

2nd and 1st level annotations are based on educated guesses of the data curators rather than 59 

actual experimentally proven linkages (personal communication, Prof. Lynda Ellis). Both, 60 

Eawag-BBD and Eawag-PPS have recently been implemented in a more flexible and state-of-61 

the-art successor system called enviPath 9. 62 

In developing enviLink, the database presented here, we therefore used reactions and their 63 

experimentally associated enzymes from both Eawag-BBD and, for completion, KEGG.  We 64 

derived linkages between generalized biotransformation rules and 3rd-level EC classes rather 65 

than between actual reactions and 4th level EC classes (as in BridgIT or E-zyme) for two 66 

reasons. First, given the enormous structural diversity of synthetic chemicals, the number of 67 

experimentally validated enzyme-reaction associations for contaminants is simply too low to 68 

derive a finer linkage scheme and validate it. Second, for the purpose of functional 69 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.442588doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.442588
http://creativecommons.org/licenses/by-nd/4.0/


 3 

association mining, there is no need to target one enzyme only, but rather the goal is to 70 

produce a reasonably restricted, yet comprehensive list of suspect enzymes. 71 

 72 

Methods 73 

The workflow for creating enviLink included three major steps (see Figure 1): (i) “in silico” 74 

reaction of Eawag-BBD and KEGG substrates against all Eawag-BBD biotransformation 75 

rules (btrules); (ii) Comparison of “in silico” generated reaction pairs (i.e., substrate(s) and 76 

product(s)) with Eawag-BBD or KEGG database reactions to find matching reactions; and 77 

(iii) generation of rule-enzyme links by extracting enzyme class of matching reactions and 78 

associating them with the btrule that predicted this reaction. Finally, to derive linkages 79 

between generalized biotransformation rules and 3rd-level EC classes, 4th-level EC numbers 80 

were summarized into the corresponding 3rd-level EC classes. All analyses were carried out 81 

separately for Eawag-BBD (1479 contaminant biotransformation reactions with 1301 82 

associated EC classes) and KEGG (9952 reactions with 7007 associated EC classes, as of 83 

June 5th 2020), and resulting links were compared as discussed below (note that for BBD 3rd 84 

and 4th level ECs were extracted, whereas for KEGG only the 4th level ECs were considered). 85 

Details on each step of the workflow are given as Supporting Information in the form of 86 

interlinked Jupyter notebooks, which are available through GitHub 87 

(https://github.com/emanuel-schmid/enviLink). All data required to run the notebooks are 88 

available at this repository in the form of tsv files, but can alternatively also be downloaded 89 

following the code provided in the Jupyter notebooks.   90 

 91 

Figure 1: Overview of workflow to produce rule-enzyme linkages demonstrated for the example of 92 

Eawag-BBD and including three major steps: (i) Enumeration of “in silico” reactions by running all 93 

btrules against all BBD compound structures to produce predicted degradation graph for each BBD 94 
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compound  (blue upper panel, blue arrows), (ii) comparison of “in silico” prediction reactions from 95 

degradation graph with database reactions to check for matching reactions (green middle panel, green 96 

arrows), and (iii) generation of rule-enzyme links for matching reactions (red lower panel, orange 97 

arrow). Data entities are named in accordance with Eawag-BBD, and the example shown is taken from 98 

Eawag-BBD. In the degradation graph, blue lines stand for predicted reactions and red lines for 99 

standardizations. s2 and s4 represent standardizations and, in the specific case, stand for 100 

protonation/deprotonation reactions at differently substituted phosphate groups. Black connectors 101 

between data entities represent database relations, and red dashed connectors visualize the information 102 

flow from “Reaction”, “Enzyme” and “Rule” to yield entries for the new data entity “Rule-Enzyme 103 

Link” in enviLink.  104 

 105 

Results  106 

Resulting linkages from Eawag-BBD and KEGG are accessible through the Jupyter notebook 107 

“enviLink results” at the GitHub repository. Alternatively, enviLink can be searched online at 108 

envipath.org for individual transformation rules of interest (see information given under “EC 109 

numbers” on the rule pages of the EAWAG-BBD package (https://tinyurl.com/y63ath3k)). 110 

Altogether 316 linkages between 169 btrules and 107 3rd level EC classes were found and 111 

compiled in enviLink. For 39 btrules, no corresponding 3rd level EC class could be identified. 112 

32.6% of the identified rule-EC linkages overlap between the two databases, whereas 40.2% 113 

and 27.2%, respectively, are originating from either Eawag-BBD or KEGG only. The fact 114 

that more than one third of the linkages originate from Eawag-BBD exclusively demonstrates 115 

its unique information content with respect to contaminant biotransformation. One example of 116 

such an Eawag-BBD-exclusive linkage is the link between bt0241 and bt0242, two rules for 117 

hydroxylation of secondary and tertiary aliphatic groups, and 1.14.15, which contains 118 

monooxygenases using a reduced iron-sulfur protein as additional electron donor. Eawag-119 

BBD contains literature entries reporting hydroxylating activity of camphor 5-120 

monooxygenase (EC 1.14.15.1) on specific contaminants (e.g., adamantanone, tetralin) that 121 

are obviously not in the scope of KEGG and hence not reported therein. 122 

In the “enviLink results” notebook, a histogram is provided showing how the linkages cover 123 

the space of btrules and 3rd level EC classes. It can be observed that several 3rd level EC are 124 

linked to multiple btrules (e.g., EC 1.14.12 is linked to bt0042, bt0072, bt0216 etc., which all 125 

encode for vic-dihydroxylation reactions at differently substituted aromatic rings). This 126 

illustrates that btrules in enviPath are divergent from the EC classification system in that they 127 

were optimized for specificity in contaminant biotransformation prediction8, 10. 128 

Finally, to illustrate application of enviLink, consider the neonicotinoide acetamiprid, for 129 

which we observed enzymatic hydrolysis to the corresponding amide in activated sludge11. 130 

This reaction is predicted by bt0028 in enviPath, which in turn is linked to EC 4.2.1.- (hydro-131 

lases) in enviLink. When screening for associations between abundance of gene transcripts 132 
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annotated to 4th level EC classes belonging to 4.2.1.- and rate constants of acetamiprid 133 

biotransformation in activated sludge, nitrile hydratase transcript abundances (EC 4.2.1.84) 134 

showed significant correlations1. Indeed, own and literature evidence later confirmed that 135 

different nitrile hydratase homologs can turn over acetamiprid1, 12. 136 
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