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ABSTRACT 

Cancer is an evolutionarily conserved disease that occurs in a wide variety of species. We 

applied a comparative genomics approach to systematically characterize the genes whose 

conservation levels significantly correlates positively (PC) or negatively (NC) with a broad 

spectrum of cancer-resistance estimates, computed across almost 200 vertebrate species. PC 

genes are enriched in pathways relevant to tumor suppression including cell cycle, DNA repair, 

and immune response, while NC genes are enriched with a host of metabolic pathways. The 

conservation levels of the PC and NC genes in a species serve to build the first genomics-based 

predictor of its cancer resistance score. We find that PC genes are less tolerant to loss of 

function (LoF) mutations, are enriched in cancer driver genes and are associated with germline 

mutations that increase human cancer risk.  Furthermore, their expression levels are associated 

with lifetime cancer risk across human tissues. Finally, their knockout in mice results in 

increased cancer incidence. In sum, we find that many genes associated with cancer resistance 

across species are implicated in human cancers, pointing to several additional candidate genes 

that may have a functional role in human cancer. 

 

INTRODUCTION 

Animal species are known to have dramatic differences in their cancer rates and lifespans, and 

several animals are considered cancer resistant while others are considered to be cancer prone 

(Gorbunova et al. 2014; Albuquerque et al. 2018). Studying the genomic underpinnings of these 

differences across various branches of life may provide insights into cancer development and 

cancer prevention/treatment options in humans (Seluanov et al. 2018). 

The multistage carcinogenesis model states that “individual cells become cancerous 

after accumulating a specific number of mutational hits” (Seluanov et al. 2018; Nordling, 1953). 

Based on this model, larger (and longer-living) animals are expected to have higher cancer 

incidence as they have more stem cell divisions overall, resulting in a higher likelihood of 

producing and propagating carcinogenic mutations. For humans, it has been shown that the 
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risks of cancer development across different tissue types are correlated with their 

corresponding estimated number of lifetime stem cell divisions (Tomasetti et al. 2015 and 

2017); consistent with that, human cancer risk is indeed correlated with body height (Khankari 

et al. 2016). However, cancer risk does not correlate with body size across species, a 

contradiction known as Peto’s paradox (Peto, 1947; Tollis et al., 2017; Seluanov et al. 2018). For 

example, humans do not have higher cancer risk than mice despite having thousands of times 

more cells (Lipman et al. 2004; Szymanska et al. 2014; Ikeno et al. 2009). More drastically, the 

cancer-resistant bowhead whale (Keane et al., 2016) can weigh 100 tons, live for over 200 years 

(George et al., 1999) and have millions times more cells than mice. It follows that different 

species must have evolved different cancer resistance mechanisms to fit their lifestyles, 

modifying the “baseline” probability of malignant transformation determined by body size, 

lifespan, and tissue stem cell division (see Supp. Note for a short review of such mechanisms). 

Numerous studies have adopted comparative genomics approaches to understand the 

evolution of cancer resistance mechanisms across mammals. Some have focused on known 

human cancer genes and their homologs. For example, Vicens and Posada (2018) found that 

genes related to DNA repair and T cell proliferation have evolved under positive selection in 

mammals. Tollis et al. (2020) found that the number of paralogs of human cancer genes across 

mammals is positively correlated with the species’ lifespan, but not body size. Vazquez and 

Lynch (2021) reported wide-spread tumor suppressor gene (TSG) duplications across both large 

and small Afrotherian species. Other studies focused on body size and longevity, yielding some 

insights into Peto’s paradox. Kowalczyk et al. (2020) analyzed genes whose evolutionary rates 

across mammals correlate with body size and lifespan and discovered cancer resistance-related 

genes that are under increased evolutionary constraints in larger and longer-living mammals. 

Ferris et al. (2018) identified regions with accelerated evolution in specific mammals, including 

several cancer resistant species, which provided some insights on the cancer resistance 

mechanisms they have developed.  

Unlike previous studies that focused exclusively on mammals, here we perform a 

comprehensive genome-wide comparative study aimed at identifying genes related to cancer 
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resistance across a wide range of vertebrate species. To this end, we estimated the protein 

conservation scores across species including mammals, birds and fish, identifying genes whose 

conservation levels are associated with cancer resistance estimates. We then use these cancer-

resistance associated genes to build the first genomics-based predictor of cancer resistance for 

any species. We show that the biological processes associated with cancer resistance vary 

across taxonomic groups (classes and orders of species), pointing to the diversity in the 

evolutionary paths and mechanisms for resisting cancer. Finally, the genes identified from this 

phylogenetic analysis are enriched for cancer driver genes and in genes associated with cancer 

risk in humans. These results show that a comparative genomic approach can help identify 

genes involved in human cancers.  

RESULTS 

Computing gene conservation and species cancer-resistance estimates  

We computed a matrix (Tabach et al. Nature 2013; Tabach et al. MSB 2013) of gene 

conservation scores (phylogenetic profiles) across 240 species for which we had phenotypic 

information in the AnAge database (Tacutu et al. 2018) and sequence information from UniProt 

(UnitProt Consortium, 2021), Refseq (O’Leary et al. 2016), Keane et al.  (2015), and NCBI (Sayers 

et al. 2021) databases. To do this, the protein sequence similarity between each gene in the 

genome of a reference species and its orthologs in each of the rest of the species (termed 

phylogenetic profiling; Pellegrini et al. 1999) was measured using the bit score computed with 

BLASTP (Altschul et al. 1990). The BLASTP bit scores were normalized by their gene length 

(Tabach et al. Nature 2013; Sherill-Rofe et al. 2019) and then rank-normalized across all genes 

within each species to control for the evolutionary distance between the reference and each 

species (Methods). These rank-normalized values range from 0 to 1, with higher values 

corresponding to higher conservation levels. This method is termed rank-based phylogenetic 

profiling. We primarily focused on the human as the reference species (Braun et al., 2020) as 

we are interested in making our findings relevant to human cancers. However, we 

demonstrated that our conclusions are robust to the choice of reference (Methods, Supp. 
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Note), largely because the normalization effectively removes dependency on phylogenetic 

distance.  

  Since the cancer incidence rates of most species are largely unknown, we used two 

proxy cancer-resistance estimates that have been proposed in the literature – MTLAW and 

MLCAW. MLTAW assumes that the level of cancer resistance in a given species needs to roughly 

counteract its risk of cancer development due to cell division, which is proportional to ML
6
 × 

AW, where ML denotes the species maximum longevity and AW denotes its adult weight (Peto 

et al. 1977, 2015; Vazquez et al. 2021; Methods). MLCAW considers the well-established 

correlation between lifespan and body weight (AW) across many species (Speakman, 2005) and 

thus regresses out the species AW from its ML (Methods). We computed MLTAW and MLCAW 

for 193 out of the 240 species for which both ML and AW data was publicly available (Table S1, 

Methods). These 193 species are from multiple Vertebrata classes, including Mammalia 

(mammals, n=108), Aves (birds, n=55), Teleostei (teleost fishes, n=18), and Reptilia (reptiles, 

n=7).  

Genes associated with cancer resistance are enriched in cell cycle, DNA repair, immune 

response, and different metabolic pathways 

For each gene, we computed the Pearson correlation coefficient between its conservation 

scores and the cancer-resistance estimates (MLTAW and MLCAW) across all species (Tables 

S2A,B; Methods).  We then computed the pathway enrichment of the positive and of the 

negatively correlated genes (termed PC or NC genes, respectively) (Tables S3A,B; Methods). PC 

genes correlated with either the MLCAW (Fig. 1) and MLTAW measures (Fig. S1) are enriched 

for cell cycle, immune response, DNA repair, and transcription regulation pathways (FDR<0.1), 

indicating that many genes in these pathways are more conserved in the relatively long-lived 

cancer-resistant species. NC genes are enriched for a diverse range of metabolic pathways 

(FDR<0.1, Figs. 1,S1).  
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Figure 1: Summary of the top significantly enriched pathways (adjusted P<0.1) by the genes 

whose conservation scores are correlated with cancer-resistance estimates, using gene set 

enrichment analysis (GSEA) with gene set annotations from the Reactome database. The 

cancer-resistance estimate used is “Maximum longevity controlled for adult weight” (MLCAW). 

Normalized enrichment score is plotted on the Y-axis, where positive values correspond to 

enrichment by the positively correlated (PC) genes and negative values correspond to 

enrichment by the negatively correlated (NC) genes. The dot color represents the significance of 

the enrichment (negative log10 GSEA P value), and the dot size represents the number of genes 

in the “leading edge”, i.e. the set of genes that are enriched in a pathway. For the sake of 

clarity, only a subset of the enriched pathways (FDR<0.1) are shown and long pathway names 
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have been shortened (using “...”). The complete pathway enrichment results are given in Table 

S3B. 

PC and NC gene conservation scores are predictive of species cancer resistance 

We next asked whether it is possible to accurately predict the cancer-resistance estimates of 

individual species from their gene conservation scores. For a species, given the median 

conservation score (MCS) of all its genes, we defined a cancer resistance (CR) score that 

quantifies how many of the PC genes have conservation scores > MCS and how many NC genes 

have conservation scores < MCS (normalized by the total number of genes, Methods). Using a 

standard leave-one-out cross-validation (LOOCV) procedure,  both across all species and then 

focusing on mammals or birds (as these groups contain sufficient number of species), we find 

that the CR score is strongly predictive of the cancer-resistance estimates of a left-out species 

using the PC/NC genes identified from the other species (all species: MLTAW Spearman’s 

ρ=0.44, P=1.32e-10, Fig. S2, MLCAW ρ=0.51, P=2.31e-14, Fig. 2A; mammals: MLCAW ρ=0.67, 

P=1.58e-15, Fig. 2B, MLTAW ρ=0.76, P=8.99e-22, Fig. 2C; the results for birds are provided in 

Supp. Note and Fig. S3).  Supp. Note and Figs. S4-S8 present both technical controls (choosing 

random sets of PC and NC genes to predict cancer-resistance estimates), and robustness 

analysis showing that these results hold when (i) using two-fold cross-validation instead of 

LOOCV, (ii) under changes in the choice of reference species and threshold parameters, (iii) 

using alternate predictors showing the contributions of PC or NC genes separately and finally 

(iv) using Spearman’s instead of Pearson correlation to identify PC/NC genes; Tables S1, S2; 

Methods). The predicted CR scores learnt from all mammals (LOOCV) also show significant 

correlation within different subgroups (as an example, MLCAW Spearman’s ρ=0.85, P=0.0061 

for the order Chiroptera, i.e. bats, Figs. 2D; for others see Supp. Note, Fig. S9). Similarly, the 

predicted CR scores learnt from all birds’ species (LOOCV) show significant correlation within 

the order Passeriformes for which we have the largest number of samples (Spearman’s ρ=0.79, 

P=0.0012, Fig. S3B, Supp. Note).  
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Our results show that high CR scores are predicted for many long living species that are 

considered to be cancer resistant, including the bowhead whale, the African elephant, the 

chimpanzee, the Brandt’s bat, the naked mole rat, etc (Figs. 2A-D, S9, and S6; Supp. Notes; 

Gorbunova et al. 2014; Varki & Varki, 2015; Seluonov et al. 2018; Wilkinson & Adams, 2019). 

Predictions of cancer resistance in additional species without documented body weight or life 

span are provided in Table S1. The PC/NC genes derived from one clade do not however yield 

accurate predictions in another taxonomic group (across classes: Fig. S10; across mammalian 

orders: Fig. S11; Tables S2, S4). This indicates that different taxonomic groups may have 

evolved to have some differences in their cancer resistance mechanisms, which we study next.  
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Figure 2: Scatter plots showing the correlation between the predicted cancer resistance (CR) 

scores computed based on gene conservation (Y-axes) and either of the two cancer-resistance 

estimates (X-axes): MLCAW i.e. maximum longevity controlled for adult weight) or MLTAW, i.e. 
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(Maximum longevity)
6 

x (adult weight), with leave-one-out cross-validation. Results for (A) 

MLCAW across all species; (B) and (C) MLCAW and MLTAW within mammalian species, 

respectively; (D) using the MLCAW mammalian-specific predictions only within a subgroup: 

order Chiroptera.  Species with the top and bottom 5% MLCAW values in (A), the top and 

bottom 10% MLTAW or MLCAW values in (B,C), all data-points in (D), are labeled by their 

common names. In each panel, the Spearman’s ρ and p-values (P) are shown.  

Cancer resistance-associated genes in mammals, birds, and teleost fishes 

We next repeated the correlation analysis between gene conservation score and 

MLTAW/MLCAW scores separately for mammals, birds, and the teleost fish, and computed the 

PC/NC gene-enriched pathways for each of the three groups (Methods). There are overall 

significant overlaps among the NC gene enrichments of the three classes, especially based on 

MLCAW (odds ratio, i.e. OR as large as 18.9, Fisher’s exact test adjusted P as small as 1.8e-11; 

Figs. S12A,B; Table S3I), while the overlap among the PC gene sets are mostly insignificant 

(other than between mammals and birds using MLCAW: OR=5.06, adjusted P=0.037; Figs. 

S12A,B; Table S3I). Both common pathways (e.g. GPCR signaling) and pathways unique to 

specific classes (e.g. fatty acid and amino acid metabolism, PI3K-AKT signaling pathway in birds) 

were observed (details in Figs. 3A, S12C, Table S3).  

The class Mammalia contains the largest number of species (n=108) with available data, 

allowing us to further investigate the specificities in several orders, including Rodentia (rodents, 

n=20), Primates (n=18), Carnivora (carnivores, n=18), Artiodactyla (even-toed hoofed mammals, 

n=11), Cetacea (aquatic mammals like whales, n=10), and Chiroptera (bats, n=9). Figs. 3B and 

S12D visualize the similarities (using a Jaccard index-like measure) between the significant 

PC/NC gene-enriched pathways from pairs of orders (Methods). The different orders exhibit an 

overall similarity pattern that does not fully coincide with their phylogenetic relations 

(dendrograms in Figs. 3B, S12D). Primates share the highest pathway-level similarity with 

Cetacea (Fisher’s exact test adjusted P<2.2e-16; Table S5). Rodentia appears the most similar to 

Carnivora (Fisher’s exact test adjusted P<2.2e-16; Table S5) and Artiodactyla. However, specific 
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enriched pathways are shared across orders (Table S5; Figs. 3C, S12E). This includes various 

cytokine signaling pathways and extrinsic apoptotic pathways that are mostly enriched by PC 

genes (Figs. 3C, S12E), recapitulating the role of the innate immune system in the evolution of 

more cancer-resistant mammalian species. WNT and VEGF signaling, and lipid metabolism are 

among the pathways showing consistent NC gene-enrichment across orders (esp. based on 

MLTAW, Figs. 3C, S12E). Interestingly, DNA repair-related pathways, showing PC-enrichment in 

Rodentia and other orders, exhibit very strong NC-enrichment in Cetacea (based on MLCAW, 

Fig. 3C). Complement cascade/activation also exhibit an order-specificity (Figs. 3C, S12E). These 

observations point to the diversity in pathways associated with cancer resistance in different 

mammalian orders.  
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Figure 3: Gene set enrichment analysis (GSEA) of gene conservation correlations with the 

cancer-resistance estimate “maximum longevity controlled for adult weight” (MLCAW) 
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specifically in different taxonomic groups. (A) A summary visualization of the top enriched 

pathways (with GSEA) based on gene conservation correlations with MLCAW in Mammalia 

(mammals), Aves (birds) and Teleostei (teleost fishes). A selected subset of top gene sets are 

shown to save space, all with adjusted P<0.1 in at least one of the classes (Methods). GSEA 

significance (negative log10 adjusted P values) is encoded by dot color, with two sets of colors 

(red-orange and blue-purple) representing positive or negative enrichment, respectively; grey 

color means adjusted P>=0.1. Dot size represents the absolute value of normalized enrichment 

scores (NES) measuring the effect size of enrichment. The complete GSEA results are given in 

Table S3. (B) A heatmap showing the similarity (Jaccard index) between the significantly 

enriched gene sets (FDR<0.1) from each pair of mammalian orders, based on the MLCAW 

correlation. The dendrogram on the left is the phylogenetic tree of the mammalian orders, and 

the rows of the heatmap are arranged accordingly. The dendrogram on the top represents the 

hierarchical clustering of the orders based on their similarities in the GSEA results. (C) A 

summary visualization of the top enriched pathways (with GSEA) based on gene conservation 

correlations with MLCAW in different mammalian orders. This figure panel should be read as in 

(A).  

Cancer resistance-associated genes are enriched for human cancer driver genes 

We turned to ask whether PC and NC genes are enriched for well-established human cancer 

driver genes (from the COSMIC database, Forbes et al. 2015). PC genes (but not NC genes) 

inferred either across all species or mammals are highly enriched for human tumor suppressor 

genes (TSGs; adjusted P=0.0011 and 0.013, respectively; Fig. 4A; Table S6B), and oncogenes in 

the all-species analysis (adjusted P=0.0011, Fig. 4A). These strong enrichments still hold with PC 

genes identified while excluding all primates (Table S6B). We note that excluding the human 

TSGs and oncogenes from the PC/NC genes when computing the CR score does not reduce the 

accuracy in predicting cancer resistance across species (Figs. 4B and S9). Finally, we find that 

the PC genes inferred across all species are enriched for the genes reported in various human 

cancer GWAS studies curated from the EBI GWAS Catalog (GSEA adjusted P=0.02; enrichments 
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still hold with PC genes identified after excluding all primates; Table S6C; results were obtained 

using the MLCAW measure, Methods). 

To study the nature of selection operating on the PC and NC genes in human evolution, 

we compared the LOEUF (loss-of-function observed/expected upper bound fractions) scores of 

the PC, NC, and the rest of the genes (background) in the human genome; the higher the LOEUF 

score, the greater the tolerance to loss-of-function mutations (Karczewski et al. 2020). We find 

that the NC genes have significantly higher LOEUF scores compared to PC genes and the rest of 

the genes in the genome (Fig. 4C; Table S6D), indicating that they are subject to weaker 

purifying selection pressure than the PC and other genes, as expected.  

The expression of PC genes in normal human tissues is associated with their lifetime cancer risk  

As PC genes are enriched for human TSGs and oncogenes, they may also have roles in 

modulating human cancer risk. We hence examined whether their expression levels across 

different non-cancerous human tissues are associated with lifetime cancer risks across these 

tissues, which are highly variable (Tomasetti & Vogelstein, 2015). Analyzing lifetime risk data 

(the SEER program, 2018 and Tomasetti & Vogelstein, 2015) and the GTEx RNA-seq data 

(Lonsdale et al. 2013) we find that the MLTAW PC genes (but not MLCAW ones) are enriched 

for genes whose expression levels negatively correlate with cancer risk across tissues (adjusted 

P=0.0088 in the all-species analysis and 0.003 in the mammal-specific analysis, Fig. 4D; results 

still hold after excluding primates when identifying the PC genes; Table S6E). We do not see a 

similar pattern using NC genes (Fig. 4D).  

PC genes are associated with cancer incidence in mice and canine transmissible venereal 

tumors 

We investigated the relevance of PC and NC genes to cancer risk in other mammalian species. 

We first focused on the mouse, which has been extensively studied genetically. Mining the MGI 

database (Bult et al. 2019), we assembled lists of genes whose knockout in the mouse results in 

cancer-related phenotypes including the increase/decrease of cancer incidence and cancer 

onset time (Methods). We find strong enrichment of the MLCAW PC genes (in all mammals, and 
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specifically rodents) in cancer incidence-increasing genes (P=0.003, Fig. 4E; Table S6F). In the 

all-mammal analysis, however, a weaker PC-enrichment was observed for incidence-decreasing 

genes and “earlier onset” genes (adjusted P<0.05, Fig. 4E).  

To investigate the role of PC genes in tumorigenesis, we analyzed the expressed 

mutated genes in a single-cell phylogeny of a mouse melanoma model (Pérez-Guijarro et al., 

2020), in which five subclones (B1 to B5) were identified (Mehrabadi et al., 2021). The mutated 

genes are significantly enriched with the PC genes from the all-species MLTAW and MLCAW 

analysis (Table S7), consistent with the putative function of PC genes as safeguards of cellular 

transformation. Interestingly, the mutated PC genes in each subclone are enriched in distinct 

pathways (Table S7), implying that, following the initial common mutations, each subclone 

evolved independently by overcoming different cancer resistant mechanisms. These results 

illustrated how PC genes are involved in the carcinogenic process.    

Additionally, we investigated canine transmissible venereal tumors (CTVTs), a naturally 

occurring transmissible cancer in dogs that first arose about 11,000 years ago (Murchison et al. 

2014). In CTVTs, more than 10,000 genes carry nonsynonymous mutations, and 646 genes have 

LoF via different mechanisms (Murchison et al. 2014). Notably, there is a significant enrichment 

of the PC genes from the mammals MLTAW analysis for CTVT LoF genes (adjusted P=0.017, Fig. 

S14; Table S6G).  

 Specific PC genes with strong evidence of cancer-relevance across many different analyses 

We manually curated the lists of PC genes, identifying a subset showing relevance to cancers 

based on multiple criteria according to the various analyses performed above (e.g., being 

human cancer drivers, genes whose knockout results in cancer-related phenotypes in mice, etc. 

Methods; Table S8), and investigated their functions closely. Several of these curated genes 

have known or investigated associations to germline cancer risk syndromes. For instance, 

mutations in BRCA1 and BRCA2 are extremely well-established in defining hereditary breast and 

ovarian cancer syndrome (Chen & Parmigiani, 2008; Kuchenbaecker et al., 2017). Risk 

syndromes have been defined more recently for moderate penetrance genes such as CHEK2 
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(breast and colon cancer) and BRIP1 (ovarian cancer) (Cybulski et al. 2011, Ramus et al. 2015). 

NBN is currently under investigation for contribution to germline breast and ovarian risk (Zhang 

et al., 2011, Kurian et al., 2017). Some of the manually prioritized genes we identified are 

currently under investigation for association to cancer risk, and our results may support greater 

consideration of their contribution to human cancer development. For example, BUB1B, 

prioritized strongly in our list, is under investigation for association with early-onset colorectal 

cancer (Hahn et al. 2016) but does not have clinically relevant screening or management 

recommendations at this time. 

Other curated genes have known clinical associations to cancer. NPM1 and TET2 are 

currently used for prognostication with acute myeloid leukemias (Verhaak et al. 2005; Chou et 

al. 2011). BCG, a therapy used in early-stage bladder cancer, is a ligand for TLR2 (Fuge et al. 

2015; Urban-Wojciuk et al., 2019). Interferon gamma (IFNG) is currently being evaluated 

therapeutically with other immunotherapies across multiple trials (Ni et al. 2018), and 

mutations in DEK are currently being used as biomarkers in multiple hematologic trials (Sanden 

& Gullburg, 2015). Numerous genes in our curated list (Table S8), while linked to cancer as per 

our enrichment analysis, have not yet had their functional relevance clarified, such as RBM27, 

STAM2, SCAF4, SP140, RSBN1, SECISBP2L, THUMPD2, PIFO and POLK. These genes may warrant 

higher prioritization to study their role across human cancers and potential therapeutic 

relevance based on our findings. 
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Figure 4. (A) A summary of enrichment via gene set enrichment analysis (GSEA) results for 

human tumor suppressor genes (TSGs) or oncogenes whose conservation scores correlate with 

MLCAW measure in all species or in mammals. Dot size corresponds to gene set size. Dot color 
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denotes negative log10 adjusted P value from GSEA; grey corresponds to adjusted P>=0.1. 

Positive normalized enrichment score (Y-axis) corresponds to enrichment by PC genes, and vice 

versa for NC genes. (B) Spearman’s correlation (ρ) in predicting cancer resistance (MLCAW) in 

mammals using only TSGs, only oncogenes, both TSGs and oncogenes, using PC and NC genes in 

cross validation, using PC and NC genes after removing TSGs and oncogenes in cross validation 

is shown (Methods). (C) Box plots comparing the LOEUF scores of the genes whose conservation 

score positively (PC) or negatively correlates (NC) with a cancer-resistance estimate, and the 

other genes in the genome, based on the two cancer-resistance estimates (maximum longevity)
6 

x (adult weight) (MLTAW), and the residue of maximum longevity after regressing out adult 

weight (MLCAW), either in all species or in mammalian species. (D) A summary of the GSEA 

results on the enrichment of the top PC/NC genes from the MLTAW correlation in all species or 

mammals for genes whose expression levels correlate with the tissue-specific cancer incidence 

across human tissues (SEER, 2018). Dot size and color are interpreted as in (A). Positive 

normalized enrichment score (X-axis) corresponds to enrichment by genes whose higher 

expression is associated with higher cancer incidence across human tissues, vice versa. (E) A 

summary of enrichment (via GSEA) for mice genes whose knockout cause cancer-related 

phenotypes in the genes whose conservation scores correlate with MLCAW in all mammals or 

specifically rodents. “incidence.increase” denotes the mice genes whose knockout results in an 

increase in observed cancer incidence obtained from the MGI database, similarly for other gene 

sets listed on the X-axis. Dot size, color, and the normalized enrichment score (Y-axis) are 

interpreted as in (A). 

DISCUSSION 

We systematically analyzed the genomes of almost 200 species to identify genes whose 

conservation levels are correlated with cancer resistance estimates across different taxonomic 

groups and characterized their functional enrichment. We built the first genomics-based 

predictor of cancer resistance across species. We further studied the relevance of these 

phylogenetically derived cancer resistance-associated PC/NC genes to cancer development in 

humans. 
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Overall we found that PC genes are highly relevant to carcinogenesis and enriched with 

cell cycle, DNA repair, immune response and transcription regulation genes in the all-species 

analysis (Fig. 1 and S1). These results echo those of a recent study showing that cell cycle, DNA 

repair, NF-κB-related, and immunity pathways have higher evolutionary constraints in larger 

and longer-living mammals (Kowalczyk et al. 2020). MLTAW and MLCAW were used as two 

species cancer-resistance estimates, and, per definition they are correlated with each other 

(Spearman’s ρ=0.45, P=4.12e-11). However, despite the overall similarity at a high level, the 

MLTAW and MLCAW analyses uncover different aspects of the cancer resistance mechanisms. 

The top PC-enriched pathways using the MLTAW measure, where both body size and lifespan 

are multiplication factors, are dominated by cell cycle regulation and transcription/RNA 

regulation (Fig. S1), suggesting a stronger role of tissue stem cell division. The MLCAW measure, 

however, controls for body size, and its PC-enriched pathways include innate immunity or cell 

death for eradicating defect cells (Woo et al. 2015), highlighting the involvement of these 

factors after reaching adult size. NC genes computed with both MLTAW and MLCAW are 

notably enriched for processes related to cell metabolism, indicating either evolutionary 

metabolic constraints in the smaller/shorter-lived species or accelerated evolution of 

metabolism in the larger/longer-lived species (Speakman 2005).  

Another notable pattern is the variability in the PC/NC gene functions across different 

taxonomic groups -- it’s frequently observed that genes of one pathway can be PC in one group 

but NC in another. Such variation may reflect trade-off between individual lifespan and 

survival/reproduction function dependent on the different lifestyles in different groups of 

species. Some of the observed order-specific enrichments are consistent with known 

mechanisms of cancer resistance for the corresponding species. For example, the naked mole 

rat is known to have more efficient excision repair systems than the mouse (Evdokimov et al. 

2018) and an active complement system has been observed in bats (Moore et al. 2011; Mellors 

et al. 2020). 

We outline several limitations of our study. First, the gene conservation computation is 

based on comparison to a reference species and rank normalization, which does not consider 
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paralogous genes or the phylogenetic tree structure. While alternative methods may be used to 

adjust for the inter-phylogeny distances, we showed that our results are robust to the choice of 

the reference species (e.g., with house mouse and thirteen-lined ground squirrel as references; 

mouse is a known cancer-prone species, unlike human; Supp. Note) and various other 

conservation scoring parameters. Additionally, most of our downstream analyses were on the 

pathway-level, which mitigates the potential variation due to paralogs. Second, while we have 

explained the rationale for MLTAW and MLCAW as proxy species cancer-resistance estimates, 

these estimates cannot capture variations in cancer resistance that are not reflected through 

body size and lifespan, e.g., those related to adaptation to different oxygen and oxidative stress 

levels (Supp. Note; Hammarlund et al. 2018). Lastly, although the knockout mouse data 

validates the cancer-resistance function of many PC genes (Fig. 4E), further studies are 

obviously required for testing the roles of PC and NC genes (and our curated gene list in Table 

S8) in human carcinogenesis. 

In summary, this study presents a systematic species comparison identifying key genes 

and pathways associated with cancer resistance across species. Many of the genes identified 

are implicated in human cancers, and their further study may increase our understanding of 

human cancer development, prevention and treatment. 

 

METHODS 

Computation of gene conservation scores 

We created a matrix of conservation scores for 20076 genes across 240 species with human 

genome as a reference. The amino acid sequence of the proteins in all of these species are 

available in UniProt (UnitProt Consortium, 2021), Refseq (O’Leary et al. 2016),  Keane et al. 

(2015), and NCBI (Sayers et al. 2021) databases. The conservation scores (or ranked 

phylogenetic profiling) were calculated using the protein sequence similarity between each 

gene in the human genome and its homologs in each of the species was measured by the bit 

score computed with BLASTP (Altschul et al. 1990). For each human gene and each species, we 
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only considered the matched gene with the highest bit score. While other good approaches are 

available like reciprocal blast, our method has been widely used and worked well using human 

and other reference genomes (Bloch et al., 2020; Omar et al., 2018; Tsaban et al., 2021). To 

reduce the influence of random matches, the bit scores were set to 0 for matches with E-value 

> 1e-5. Bit score is known to be affected by the length of the reference protein. To eliminate 

the protein length effect, we normalize to protein length by dividing each bit score by the score 

of the reference protein against itself, resulting in values between 0 and 1 (Tabach et al. Nature 

2013; Tabach et al. MSB 2013). Finally, the conservation scores were obtained by rank-

normalizing the protein length-normalized bit scores across genes within each species, to 

control for the evolutionary distance between human and each species. These rank-normalized 

values range from 0 to 1, with higher values corresponding to higher levels of conservation. To 

examine whether the use of human (considered a relatively cancer-resistant species) as the 

reference affects the results, in a similar manner, we also repeated the above computation 

using a cancer prone species like house mouse as reference.  

Cancer resistance estimates 

Since the cancer incidence in non-human species is unknown, we used two indirect methods to 

estimate the level of cancer resistance in a species. Let AW stand for adult weight and ML for 

maximum longevity of a species, we define the two cancer-resistance estimates/measures as 

follows: 

MLTAW measure: log(ML
6 × AW) 

MLCAW or “maximum longevity controlled for adult weight” measure: Residue obtained 

by regressing out log(AW) from log(ML), using linear regression. 

MLTAW and MLCAW were computed for 193 out of the 240 species for which both ML 

and AW data is available in the AnAge database (Tacutu et al. 2018). These 193 species are 

from various classes or taxonomy groups: 108 Mammalia (mammals), 55 Aves (birds), 18 

Teleostei (ray-finned fishes), 7 Reptilia (reptiles), 1 Amphibia (amphibians), 1 
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Cephalaspidomorphi (jawless fishes), 1 Chondrichthyes (cartilaginous fishes), 1 Coelacanthi 

(lobe-finned fishes), 1 Holostei (bony fishes).  

Identification of cancer resistance-associated genes 

To identify cancer resistance-associated genes (PC or NC genes), we computed the Pearson 

correlation coefficient between the conservation scores of each gene and each of the two 

cancer-resistance estimates (MLTAW and MLCAW) after proper transformation (described 

above). Pearson correlation was chosen (instead of Spearman’s correlation) so as to reduce the 

number of ties in further GSEA analysis for pathway enrichment. The robust identification of 

PC/NC genes is independent of the correlation measure used (see Supp. Note for details). 

Among the genes with Benjamini-Hochberg-adjusted P values (FDR) less than 0.1 or 0.01, those 

with correlation estimates > 0 are defined as PC genes while those with correlation estimates < 

0 are NC genes. This analysis was done for all species or within certain groups of species. PC and 

NC genes were identified separately based on each of the two cancer-resistance estimates 

(MLTAW/MLCAW). 

Cancer resistance predictor 

Since higher conservation scores of the PC genes corresponds to higher level of cancer 

resistance, and vice versa for the NC genes, we define a cancer resistance (CR) score for each 

species as follows:  

CR score = {(Number of PC genes with conservation scores > MCS) + (Number of NC 

genes with conservation scores<MCS)} / (Total number of genes), 

where MCS is the median conservation score of all genes in a species. PC and NC genes are 

chosen for FDR<0.1. We also repeat this analysis for different thresholds (some other quantile 

other than median) or FDR thresholds for robustness studies. Total number of genes = 20,076 in 

our analysis when we used human as reference.  

Cross-validation analysis was mainly done in a leave-one-out manner. For each test 

sample, we identify PC and NC genes on the training set and predict CR scores on the test set. 
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For robustness tests, we also did a two-fold cross validation, i.e. identify PC and NC genes on 

the training group and test the accuracy of the CR predictions on the left-out group. We also do 

cross-validation by leaving out an entire group of species and identify PC and NC genes from the 

remaining species, and testing on the left-out group. For the all-species analysis we left one 

class out (for different classes) and for the mammalian analysis we left one order out (for 

different orders).  

Modifications of cancer resistance predictions 

We explored the prediction of cancer resistance using only PC genes or NC genes as follows: CR 

score = (Number of PC genes with conservation scores > MCS) / (Total number of genes), or CR 

score = (Number of NC genes with conservation scores < MCS) / (Total number of genes). We 

also predicted cancer resistance using either human tumor suppressor genes (TSGs) and 

oncogenes obtained from the Cancer Gene Census dataset from the COSMIC database (Forbes 

et al. 2015). Specifically, we used either TSGs alone, or oncogenes alone, or TSGs combined 

with oncogenes to compute the CR score: (Number of TSGs, or oncogenes, or combined > MCS) 

/ (Total number of genes), where MCS is the median conservation score of all genes in a 

species. 

Pathway, cancer driver gene and other cancer-related gene set enrichment analysis 

The biological pathway annotation data was downloaded from the Reactome database (Jassal 

et al. 2020). The sets of curated human oncogenes and TSGs were obtained from the Cancer 

Gene Census dataset from the COSMIC database (Forbes et al. 2015). Significant 

markers reported in various GWAS studies linked to human cancers were collected from the EBI 

GWAS Catalog database (Buniello et al. 2019) using the keyword “cancer” as the 

phenotypes/traits. Variants in stronger linkage disequilibrium (LD) (with D' ≥ 0.8 and r2 ≥ 0.3) 

with the GWAS associated markers (within 500K base pairs in each side) in loci, replicated in 

more than one studies, were selected using the R package, LDlinkR (Myers et al. 2020), and 

genes containing such variants were selected. The sets of genes whose knockout can result in 

various cancer-related phenotypes in mice were obtained from the MGI database (Bult et al. 
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2019). Specifically, we selected the genes for which the allele attributes are "Null/knockout", 

and the corresponding phenotype terms are among “increased cancer incidence”, “decreased 

cancer incidence”, “increased cancer latency”, and “decreased cancer latency”. The set of loss-

of-function genes identified in canine transmissible venereal tumors were obtained from 

(Murchison et al. 2014). The enrichment for each of the biological pathways and cancer-related 

gene sets based on the MLTAW or MLCAW correlation results was tested with gene set 

enrichment analysis (GSEA, Subramanian et al. 2005). 

LOEUF score analysis for PC and NC genes 

The LOEUF scores of all human genes were obtained from (Karczewski et al. 2020). Lower 

LOEUF scores correspond to less tolerance to loss-of-function genomic variations in humans. 

The LOEUF scores of the PC (or NC) genes we identified were compared with each other or to 

the rest of the genes in the human genome with Wilcoxon rank-sum tests. Given that a 

homogenous adjusted P value cutoff produced drastically different numbers of significant 

genes from different analysis (e.g. with adjusted P<0.05, there are more than 2800 significant 

genes from the primate MLTAW correlation analysis, but only 78 from the rodent MLTAW 

correlation), here, the PC and NC genes were selected instead based on the criterion of 

“expected number of false discoveries (Gordon et al. 2007) smaller than 1”. But if this criterion 

results in fewer than 100 genes, then a less stringent criterion of “expected number of false 

discoveries smaller than 5” was used. These sets of PC and NC genes are given in Table S6A. 

Analysis of the genes associated with lifetime cancer risk across human tissues 

The data on the lifetime cancer risk in each of the human tissue/organ sites were obtained from 

the SEER database (SEER program, 2018), and RNA-seq data of normal human tissue samples 

across multiple tissue types were downloaded from the GTEx database (Lonsdale et al. 2013). 

For each gene, we computed its median expression level in each tissue type, then computed 

the Spearman’s correlation coefficient between the median expression value and the lifetime 

cancer risk across tissue types. All the genes were ranked by the Spearman’s correlation 

coefficient, and the enrichment of the PC or NC genes for genes associated with lifetime cancer 
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risk across human tissues was tested with GSEA. The criterion for identifying PC and NC genes is 

the same as that described in the section above (“LOEUF score analysis for PC and NC genes”). 

Selection of subsets of PC/NC genes with high relevance to human cancers based on multiple 

criteria 

For each of the PC/NC genes from the various analyses (at FDR<0.1), we look for supporting 

evidence from many of the different analyses described in the manuscript. Evidence considered 

are if a gene is: (a) a PC or NC gene (at FDR<0.1) for the all-species, mammals-only, birds-only 

analysis using both the estimates; (b) human oncogene or tumor suppressor; (c) whose 

knockout causes early cancer incidence or early cancer onset in mice; (d) is a loss-of-function 

gene in CTVT; (e) GWAS gene associated with human cancers; (f) expressed mutated genes in 

single-cell phylogeny of a mouse melanoma model. We then rank each gene by the number of 

times of support in Table S8.  

CODE/DATA AVAILABILITY 

The code used for cancer resistance prediction and pathway analysis is made available in 

(https://hpc.nih.gov/~nairnu/species_cancer_resistance.zip) for the sake of reproducibility.  
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