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1 Abstract9

The physical interaction between the T cell receptor (TCR) and its cognate antigen10

causes T cells to activate and participate in the immune response. Understanding this11

physical interaction is important in predicting TCR binding to a target epitope, as well12

as potential cross-reactivity. Here, we propose a way of collecting informative features13

of the binding interface from homology models of T cell receptor-peptide-major histo-14

compatibility complex (TCR-pMHC) complexes. The information collected from these15

structures is sufficient to discriminate binding from non-binding TCR-pMHC pairs in16

multiple independent datasets. The classifier is limited by the number of crystal struc-17

tures available for the homology modelling and by the size of the training set. However,18

the classifier shows comparable performance to sequence-based classifiers requiring much19

larger training sets.20

2 Introduction21

T cells are key players of adaptive immunity. They are activated by the recognition of22

a cognate peptide, a short stretch of amino acids which is displayed on a major histo-23

compatibility complex molecule (MHC, pMHC when bound to peptide). The recognition24

occurs via the T cell receptor (TCR), which is composed of two chains (normally an25

α and a β), both of which are generated by a process of random recombination and26

selection. The recombination gives rise to 3 hypervariable regions, the complementarity-27

determining regions - CDR1, CDR2 and CDR3. Among the three regions, CDR3 is the28

most variable as it is found at the junction of V(D)J recombination, and it can therefore29

incorporate a number of non-template insertion and deletion events, whilst CDR1 and30
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CDR2 depend on the V gene selected in the recombination process and have therefore a31

lower number of possible sequences.32

A number of TCR-pMHC complexes have been crystallised and the structures solved33

and they are collected in the Structural T-Cell Receptor Database (STCRDab, Leem et34

al. 2018). They have given us deeper understanding of TCR-pMHC interactions and how35

these are impacted by mutations, but also how structure and function are related. Ex-36

amples include how cross-reactivity between bacterial and self antigens can drive disease37

(Petersen et al. 2020), how binding mode can give different specificity profiles to TCRs38

binding the same peptide (Coles et al. 2020), and how binding orientation is determined39

by how the peptide is presented by the MHC (Singh et al. 2020).40

The existing structures can also be mined for information on how the TCR interacts41

with the pMHC complex. By looking at the TCR residues that fall within 5Å of the42

peptide in a number of published TCR-pMHC structures, both Glanville et al. 2017 and43

Ostmeyer et al. 2019 showed that the CDR3 is the region that makes the most extensive44

contacts with the peptide. These regions of contact are normally short stretches of 345

or 4 consecutive amino acids within the CDR3. Moreover, they noted that whilst the46

TCRβ always made contacts, there are multiple instances were the TCRα is not within47

contact distance of the peptide. It has also been shown that TCRs which recognise the48

same peptide share motifs and sequence characteristics in the CDR3 (Thomas et al. 2014;49

Cinelli et al. 2017; Glanville et al. 2017; Dash et al. 2017).50

The ensemble of TCRs that are present within an individual at any point in time is51

called the TCR repertoire. Different sequences are found at widely different frequencies,52

ranging from a few hundred copies to 109 copies for the larger T cell clones, which make53

up up to 1% of the total repertoire. Differences in clone size can arise both in the54
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naive repertoire, by convergent recombination (whereby an amino acid sequence is likely55

to be produced by the process of recombination - normally with short CDR3 and few56

nucleotide insertions, Venturi et al. 2006; Britanova et al. 2014) or because of the power-57

law distribution of naive T cell clones produced by the thymus (Greef et al. 2020); or in58

the memory repertoire by convergent selection, whereby similar sequences are expanded59

because they are responding to the same antigen, Pogorelyy et al. 2018). Greef et al.60

2020 estimates the maximum effect of generation probability to be around 107, which61

is two order of magnitudes smaller than the largest observed clone sizes, suggesting a62

role for expansion during the immune response. By focusing solely on the CDR3, it can63

be shown that during an immune response, expanded TCR clones are frequently part64

of clusters of sequences that are more similar to each other than might be expected by65

random sampling of the repertoire (Joshi et al. 2019; Pogorelyy et al. 2019; Marcou et al.66

2018).67

This observation of antigen-driven TCR sequence clustering has been used to build68

algorithms such as GLIPH (Glanville et al. 2017) and TCRdist (Dash et al. 2017), which69

can build sequence motifs starting from a cluster of TCRs known to recognise the same70

peptide and which are then able to find other TCRs responding to the same peptide.71

More recently, Tong et al. 2020 have shown that sequence information encoded in the72

form of overlapping amino acid quadruplets can be used to create a multi-class prediction73

algorithm able to correctly assign TCR-pMHC pairs.74

In the same way that conserved sequence motifs characterise TCRs recognising the75

same antigen, we hypothesise that there will be structural features of the TCR/antigen76

interface which are conserved in the interactions. Such conserved structural features could77

be leveraged to gain a better understanding of the TCR-pMHC interaction and to reca-78
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pitulate and improve what has been learnt from looking purely at sequence information.79

Our understanding of the physical interactions between TCRs and pMHC is, however,80

limited to the set of solved and published crystal structures. The STCRDab currently re-81

ports about 400 entries for αβ TCR-pMHC complexes, and 120 different peptides, which82

is clearly a tiny subset of all the possible TCR-pMHC interactions that can exist. To83

solve this problem, a number of tools have been developed and subsequently optimised84

to predict the structure of a TCR-pMHC complex based on its sequence. One of these85

is TCRpMHCmodels (Jensen et al. 2019), which exists as a free online user interface.86

TCRpMHCmodels leverages LYRA (Klausen et al. 2015) to model the TCR structure87

and MODELLER (Fiser and Šali 2003) to predict the pMHC structure, to then combine88

them together by using a third set of templates for the TCR-pMHC complex overall.89

Tools like TCRpMHCmodels, although still limited by the amount of information that90

has been published, allow us to delve deeper into the structural relationships between the91

TCR and the pMHC.92

We show here that a combination of structural and sequence features can be in-93

corporated into a machine learning algorithm to discriminate binding and non-binding94

TCR-pMHC pairs. The classifier presented is limited by the performance of the homology95

modelling, but, unlike any of the previous work reviewed above, it does not rely on the96

identification of a set of TCRs binding to a specific peptide to be able to predict whether97

other TCRs will bind to that same peptide, but rather learns some general rules which98

can predict TCR interaction with completely novel peptides.99
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3 Methods100

3.1 Datasets101

The available crystal structures for TCR-pMHC complexes were retrieved from STCRDab102

(http://opig.stats.ox.ac.uk/webapps/stcrdab/, Leem et al. 2018). The dataset103

(referred to as STCRDab or PDB set) was refined to include only one complex per104

crystal, remove γδ TCRs and remove non-peptide antigens. The set was then checked105

for repeat sequences. For the classifier step, TCRs binding MHC class II complexes were106

removed as these cannot be modelled by TCRpMHCmodels. To create non-binding TCR-107

pMHC pairs, random TCR-pMHC pairs were created from the available pool, under the108

condition that the pMHC from the random pairing was not the same as the original one.109

The 10XGenomics dataset was downloaded from the 10XGenomics website (CD8+ T110

cells of Healthy Donor 1, A New Way of Exploring Immunity - Linking Highly Multiplexed111

Antigen Recognition to Immune Repertoire and Phenotype.). For each TCR, binding (or112

absence of binding) to an epitope was defined as in the Application Note provided by113

10X Genomics. Briefly, a specific binding event was defined as having UMI count higher114

than 10 and greater than 5 times the highest negative control for that TCR clone. When115

a TCR clone was assigned multiple barcodes, the UMI counts for each tetramer were116

summed to determine overall binding. If these conditions were true for more than one117

peptide, the TCR was called a binder for each of the epitopes.118

The Dash dataset (generated by Dash et al. 2017) was obtained from the VDJDb119

dataset. Duplicate TCR-pMHC pairs were removed. Each unique TCR clone was paired120

with each pMHC in the dataset, making 1 binding and 9 non-binding complexes per121

TCR.122
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The set of experimental constructs (expt) consists of a set of experimentally-validated123

peptide-specific TCR constructs with cognate peptide, which have been characterised124

functionally: 2 CMV-reactive TCRs (NLVPMVATV peptide), 3 influenza-reactive TCRs125

(2 HA1-reactive - peptide VLHDDLLEA - and 1 HA2-reactive - YIGEVLVSV peptide),126

1 EBV-reactive TCR (peptide CLGGLLTMV) from Thomas et al. 2019 and Chatterjee127

et al. 2019; A7 TCR and 3 affinity-matured TCRs from A7 which recognise pTax as128

well as pHud peptides (LLFGYPVYV and LGYGFVNYI, respectively) (Thomas et al.129

2011); two TCRs identified as neoantigen-reactive in Joshi et al. 2019 and two mutated130

versions of these, which have been shown not to bind the neoantigen (unpublished data,131

A. Woolston, personal communication, 2020). To create the non-binders, each TCRs was132

matched with each pMHC in the pool, as well as with peptide WT235 (control peptide133

in Thomas et al. 2019, CMTWNQMNL) and peptide WTlung (FAFQEDDSF, wild-type134

peptide for the neo-antigen McGranahan et al. 2016).135

A dataset of TCR-pMHC complexes with experimentally-determined affinity was re-136

trieved from the ATLAS (http://atlas.wenglab.org/web/index.php, Borrman et al.137

2017) to evaluate the impact of affinity on the classifier performance. Any TCR-pMHC138

pair with undetectable binding (Kd labelled as n.d.) was called a non-binder whilst all139

other complexes were labelled binders regardless of the detected Kd.140

Finally, a dataset of TCR-pMHC complexes with epitopes that are neither present141

in our training set nor in the training set of the tools we benchmarked against was142

downloaded from the latest version of the VDJDb (Bagaev et al. 2020). As for the PDB143

set, negatives were created by shuffling of TCR-pMHC pairs in the set.144
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3.2 Homology modelling and feature extraction145

Each structure (both binders and non-binders) in these datasets was homology-modelled146

with TCRpMHCmodels (which was kindly provided in command-line form by the authors,147

Jensen et al. 2019) in its default settings and submitted to the feature-extraction pipeline.148

To make the structures comparable, they were renumbered to the standardised IMGT149

numbering (Lefranc 1997) using ANARCI (Dunbar and Deane 2016). Moreover, the150

peptide residues were renumbered to 1-20, so that the central residues would be residues151

10-11 in each complex.152

For each TCR-pMHC, 5 sets of features were extracted, namely:153

• minimum pairwise distances between each CDR residue and each peptide residue154

were calculated using BioPDB (Hamelryck and Manderick 2003). These capture155

the binding mode of the TCR-pMHC complex;156

• energetic profile of pairwise CDR-peptide residues interactions was calculated us-157

ing PyRosetta v2020.28+ (Chaudhury et al. 2010). The Rosetta energy function158

for context-independent residue-residue interactions was used to extract the fol-159

lowing terms (scorefunction: talaris2014) from a PDB file from which the MHC160

complex was removed: attractive and repulsive van der Waals (atr, rep), electro-161

static interactions (elec) and solvation energy (sol) (Alford et al. 2017). These are162

a representation of binding energy of the complex.163

• Atchley factors (Atchley et al. 2005) were used to encode the sequences of the164

peptide and CDRs for each TCR-pMHC pair.165

To evaluate the effect of homology modelling performance on the classifier presented,166

the structures were categorised as having or not having good homology modelling tem-167
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plates. This was defined based on the sequence homology to the most similar peptide168

template (> 45% sequence similarity to the best pMHC model template) and complex169

template (> 60% sequence similarity to the best complex template). These thresholds170

were chosen based on the results presented by Jensen et al. 2019.171

To be noted that not all structures could be successfully modelled by TCRpMHC-172

models, and so we could not submit them to the feature extraction pipeline.173

3.3 Multiple kernel learning174

Each feature set was pre-processed separately. Missing values were imputed with the175

median value of the feature across the train set. Each feature was then scaled to have a176

value between 0 and 1 (sci-kit learn Minmax scaler, Pedregosa et al. 2011) and normalised.177

To properly represent and integrate the different features extracted from the struc-178

tures, kernels were created separately for each subset of features. Moreover, instead of179

optimising a single kernel for each feature set, 7 Gaussian (rbf) kernels were created and180

combined, letting the MKL algorithm decide the weights for each kernel, as in Lauriola181

et al. 2017. The γ parameters for the 7 Gaussian kernels for each feature set were found182

as follows:183

1. calculate the distance between all positive (binding, n) and negative (non-binding,

m) examples in the train set

d =

√√√√ n,m∑
i,j=1

(posi − negj)2

2. find σ values corresponding to 1st, 2nd, 5th, 50th, 55th, 98th and 99th percentile of184

distances185
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3. for each σ, calculate the γ as:

γ =
1

2 ∗ σ2

The kernels generated were combined by the EasyMKL algorithm as implemented in186

MKLPy to find an optimal combination (Aiolli and Donini 2015; Lauriola et al. 2017;187

Lauriola and Aiolli 2020), setting sci-kit’s learn SVC algorithm as a learner (Pedregosa188

et al. 2011). The λ parameter for EasyMKL was fixed to 0 and the optimal C parameter189

for SVC was searched in the range between 10−5 and 102 by 10-fold (internal) cross-190

validation (CV) on the train set. This process was used both when a single feature set191

was evaluated (by combining the 7 kernels for the set) and when combining multiple192

feature sets (7 kernels for each set).193

To estimate performance by cross-validation, the train set was split 70-30. 70% was194

used to optimise the model parameters by maximising the ROC AUC score and the195

remaining 30% was used for prediction. The procedure was repeated 10 times with196

different subsets of samples.197

Out-of-sample performance was evaluated in the datasets outlined in section 3.1, by198

training the classifier on the whole of the training set.199

3.4 Benchmarking against other classifiers200

To evaluate the performance of the presented classifier compared to published classifiers201

in the field, we compared performance with ERGO (Springer et al. 2020) and ImRex202

(Moris et al. 2020) on the same validation sets. ERGO is available as a web tool (http:203

//tcr.cs.biu.ac.il/), and the models trained on the VDJdb (Bagaev et al. 2020)204

were used for the benchmarking. ImRex is available as a GitHub repository (https:205
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//github.com/pmoris/ImRex), and the available model trained on the VDJdb was used206

for the predictions.207

3.5 Data availability208

The complete set of sequences used, as well as prediction results are provided as supple-209

mentary files.210

4 Results211

4.1 Extracting physical features from available TCR-pMHC com-212

plex structures allows interrogation of binding mode213

We first established a systematic pipeline to extract structural information about the214

TCR-peptide interface from a dataset of solved structures downloaded from the Structural215

T Cell Receptor Database (Leem et al. 2018). The minimum pairwise distances between216

TCR and peptide residues, and their corresponding attractive and repulsive van der217

Waals forces (atr, rep), electrostatic interactions (elec) and solvation energies (sol) were218

estimated for each peptide-TCR complex as described in the methods.219

Each feature extraction process yielded a matrix with information about pairwise220

contacts between residues in the TCR and residues in the peptide (Figure 1a). The221

distance fingerprints are easy to compare between different structures and can give insight222

into the binding mode for the complex: for instance, complexes 1AO7 (Garboczi et al.223

1996) and 1MI5 (Kjer-Nielsen et al. 2003) (both MHC Class I) bind closer to the N224

terminus of the peptide, whilst 1D9K (Reinherz et al. 1999) has the TCR bound more225
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centrally, and this is particularly evident in the α chain (Figure 1a and b).226

We wondered whether any trends could be detected more generally and used the227

minimum pairwise distances to identify the distribution of interactions between TCR228

CDR residues and the peptide in class I and class II complexes (Figure 1c). While it229

is clear that interactions between TCR chains and antigen peptide are not confined to230

a single hotspot, some general patterns emerge. The TCRα chain, for example, tends231

to bind the N-terminus of the peptide, whilst the β binds towards the C-terminus, as232

has been reported previously (Garcia et al. 2009). Interestingly, while contacts were233

dominated by the CDR3 region of the TCR, we also detected contacts between CDR1234

and CDR2 and peptide residues in a significant proportion of complexes. Moreover, more235

of the class I structures make contacts with the C-terminus of the peptide than class II. A236

similar pattern is also detected when looking at the energetic interactions (Supplementary237

Figure S1).238

In order to look in more detail for potential conserved patterns with which to char-239

acterise the TCR-peptide binding surface, we calculated a PCA for each of the feature240

sets (distances and energy vectors) for all complexes (Figure 2a and Supplementary Fig-241

ure S2a). The first dimension of the PCA of the minimum pairwise distances clearly242

identified the few examples where the TCR is in an inverse orientation relative to the243

peptide (stars, PDB: 4Y19 and 4Y1A Beringer et al. 2015, 5SWS and 5SWZ Gras et al.244

2016). The second dimension of the distance PCA, on the other hand, seemed to par-245

tially discriminate between class I and class II complexes. To gain some insight in to246

which structural features were driving this separation, we looked at the distance vectors247

that were used for each structure (Figure 2b, left). Both for the α and the β chains,248

a shift towards the peptide C terminus was observed with decreasing PC2 values. Four249
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Figure 1: (Previous page.) Feature extraction from PDB structures. a. Heatmaps

showing the physical features extracted for structure 1AO7. In each heatmap, the top half

refers to the α chain and the bottom half to the β chain. Each column is a CDR residue, each

row is a peptide antigen residue and the colour of each square represents the value extracted

for the CDR-peptide residue pair (i.e. top left-hand square of the distance panel is the distance

between residue 1 on the peptide and residue 27 of the TCRα chain). Similar plots are shown

for each energy term extracted - van der Waals attractive, van der Waals repulsive, solvent and

electrostatic. b. Two other examples of distance fingerprints, a class I and a class II complex

- 1MI5 (class I complex, EBV peptide) and 1D9K (class II complex, conalbumin peptide) - for

comparison with 1AO7. Same scale as in a. c. Histograms showing the number of structures

making a contact (less than 6Å) for each peptide residue-CDR residue pair, for alpha and beta

chains separately, showed for class I and class II complexes. Peptide residues renumbered 1-20

for consistency as described in methods

representative fingerprints from the edges of the PCA plot are also shown in which the250

inverted orientation of 4Y19 and 5SWS as well as the shift towards the N terminus for251

5TEZ (Yang et al. 2017) are apparent, compared to 3RGV (Yin et al. 2011). In agreement252

with Figure 1c, class II complexes tend to have higher PC2, which is associated with a253

shift towards binding at the N terminus of the peptide. 3RGV, which segregates with254

the class II complexes, is actually a class I complex. Interestingly, however, the YAe62255

TCR in the 3RGV complex is reported by the authors to bind both class I and class II256

complexes with similar orientations, which might explain its positioning with other class257

II complexes. Strikingly, the other class I complex found with high PC2 is 4JRY, which258

is also reported to bind with unusual position on top of the N-terminus of the peptide,259

rather than centrally, where the peptide bulges out (Liu et al. 2013).260

A similar analysis was done on the solvent energy vectors (Figure 2). The PCA261

suggested a segregation between class I and class II complexes along PC1, although262

significant overlap was also observed. We therefore looked at what features could be263

driving the separation along the PC1 (Supplementary Figure S2b). The only evident264
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Figure 2: (Previous page.) Structural features identify different binding modes. a.

PCA performed on distances and on solvent energies can separate class I and class II complexes

(green and red, respectively). The stars indicate the structures that have been reported to have

inversed polarity (i.e. the TCRs bind the pMHC complex at 180 degree angle). Annotated

on the distance plot, the structures at the extremes that we analyse in b. b. Left: linearised

vectors used for the distance PCA, ordered according to their PC2 score. On the x-axis, the

minimum distance between each CDR residue and each peptide residue (27-1, 28-1,...,116-1,

117-1, 27-2,...,117-20). Right: fingerprints for 4 representative structures labelled in panel a

(3RGV high PC2, 5TEZ low PC2, 5SWS and 4Y19 high PC1). c. Left: PCA of all feature sets

combined, which also shows separation along PC1. Right: loading coefficient of each feature on

PC1 and below a barcode to show which set the feature belongs to.

trend was that all the complexes with high PC1 show a strong unfavourable interaction265

between the β chain and the peptide C terminus (blue in the heatmap). As solvent energy266

is positive (i.e. unfavourable) when a residue is not solvent-exposed, this suggests that267

the complexes with higher PC1 make an interaction between the beta chain and the C268

terminus of the peptide.269

Finally, all distance and energy feature sets were combined in a single PCA plotted in270

Figure 2c (left). Here, the structures with inverted polarity have high PC1, followed by271

MHC class II complexes and on the left-hand side of the plot are the class I complexes.272

The loadings of each feature in the set were calculated and the features ranked by loading273

value (Figure 2c, right). Most of the features which had absolute values greater than 0274

(i.e. positive or negative), belong to the distance, the solvent energy or to the Atchley275

factors datasets, suggesting that these have the strongest discriminatory power.276

Overall, these results gave us confidence that meaningful information about the bind-277

ing interface could be extracted with our pipeline.278
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4.2 Structural information from homology modelled structures279

cannot distinguish binding pairs in unsupervised settings280

We next investigated whether given independently a TCR and a pMHC, we could deter-281

mine whether we could discriminate between TCR-pMHC interactions in which the TCR282

binds its cognate antigen and those which do not allow effective binding. The parameters283

characterising non-binding interactions could obviously not be obtained directly from284

known structures, since by definition these TCRs would not form stable complexes with285

the pMHC. We therefore predicted structures for TCR-pMHC combinations by homology286

modeling using TCRpMHCmodels (Jensen et al. 2019). The pipeline takes a fasta file287

with a TCR, a peptide and a class I MHC, predicts its three dimensional structure and288

extracts pairwise distances and binding energies for the interface. The actual sequences289

are also captured in the form of vectors of Atchley factors as described in the methods.290

Because we needed to rely on a structure prediction method, we first evaluated the291

difference between the features extracted from the original crystallographic structures292

and from their respective modelled structures (Figure 3 and Supplementary Figure S3a).293

Taking complex 1AO7 as an example, the fingerprints obtained from the original PDB and294

from the predicted structures were plotted (Figure 3a). The two complexes have RMSD295

of about 2Å and it can be seen that the contacts seem to be slightly shifted towards the296

N terminus of the peptide in the predicted structure compared to the crystal. However,297

the two fingerprints did not look drastically different.298

When combining all feature sets and looking at all structures available by PCA, no299

systematic difference was found between modelled and original structures (Figure 3b300

and c and Supplementary Figure S3a). There was reasonably good matching between301
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Figure 3: (Previous page.) Comparisons between crystal structures and homology

predicted structures. a. Comparison of fingerprint between the original 1AO7 structure and

the one predicted by TCRpMHCmodels. On the right, figure showing how the two structures

superimpose in cartoon form (green = original, gold = predicted). MHC not shown for clarity.

b. Left: PCA on all feature sets showing the difference between crystal structures (green

circles) and predicted structures (blue triangles). Right: correlation for PC1 and PC2 values

between original and predicted structures. Each blue dot is a complex and has (x,y) coordinates

that depend on PC1 values for predicted and original structure. Similarly for PC2 (green

dots). PCA for other feature sets in Supplementary Figure S3a. c. Frequency distributions

of 4 characteristics of the TCR-pMHC complexes comparing the distribution between original

and predicted structures. Minimum distance: minimum distance between TCR and peptide;

Contacts: number of TCR-peptide residue pairs that are less than 5A apart; Favourable atr/elec

interactions: number of favourable (energy < 0) interactions between TCR and peptide.

the crystal strucutres and their homology models, although TCRpMHCmodels failed to302

predict non-canonical binding models. We also compared the distributions of some of the303

structural features (minimum distance between peptide and TCR, number of contacts304

and number of favourable interactions), and in general found reasonably good agreement305

between models and structures. As homology modelling gave us reliable predictions and306

was necessary to create our negative examples, we decided to use modelled structures for307

both binding and non-binding complexes, in order to avoid introducing systematic bias.308

To create a set of non-binders, a set of shuffled TCR-pMHC complexes from the309

STCRDab was used (Figure 4a). We then asked whether the structures predicted for310

non-binders could be discriminated from the binders.311

Strikingly, there was no dsicernible separation of binders and non-binders on un-312

supervised PCAs with any of the distance or energy sets of features (Figure 4b and313

Supplementary Figure S3b). Basic metrics such as the minimum distance between TCR314

and peptide and the number of contacts showed similar distributions for binders and315

non-binders (Figure 4b).316
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Figure 4: (Previous page.) Homology modelled binding and non-binding TCR-pMHC

complexes can not be discriminated by PCA. a. Summary of the number of STCRDab

derived binding and non-binding structures which were modelled. For each peptide in the

set, the barplot shows the number of models of binding and non-binding TCRs (blue and

magenta, respectively) . b. PCA of all sets combined showing no separation between binding

and non-binding TCR/pMHC homology models. The PCAs for each feature set separately are in

Supplementary Figure S3b. c. Frequency distributions of 4 characteristics of the TCR-pMHC

complexes comparing the distribution between binding and non-binding models. Minimum

distance: minimum distance between TCR and peptide; Contacts: number of TCR-peptide

residue pairs that are less than 5A apart; Favourable atr/elec interactions: number of favourable

(energy < 0) interactions between TCR and peptide.

4.3 Structural information can discriminate between binders317

and non-binders using supervised learning318

We turned to supervised machine learning methods to try and better discriminate be-319

tween binding and non-binding pairs. We explored multiple kernel learning (MKL) to320

combine information from the different feature sets extracted from the modelled interac-321

tion surfaces using the pipeline explained above. To assess the potential of our method,322

a model was trained and tested by cross-validation, using predicted structures derived323

from the STCRDab, creating a dataset of positives and negatives as described in the324

methods. Figure 5a and c show the results of 10-fold cross-validation when each different325

feature set is used separately. Whilst Atchley factors provide the single strongest predic-326

tive power (average ROC AUC of 0.763), similar discrimination can be obtained by using327

distances only (ROC AUC of 0.755), followed closely by attractive van der Waals forces328

(atr, ROC AUC of 0.74) and solvent energies (ROC AUC of 0.701). The other energetic329

terms generally showed poorer performance and were excluded from further analysis.330

We next combined the feature sets to create a single classifier (Figure 5b and c). Using331

Atchley factors, distances and attractive van der Waals forces together achieved a similar332
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performance to using each set of features independently, whilst combination of Atchley333

factors and distances only gave a slight increase in performance compared to each of the334

two sets separately. Interestingly, although performance did not change much in this335

more complex model, the weights assigned to the kernels constructed for each feature set336

were similar, suggesting that no single feature set was more important than the others in337

the overall model.338

We then went on to validate the trained model on the other 5 datasets described in339

the methods. Because we wanted to test how generalisable the rules that the classifier340

had learnt were, we did not train the classifier again on the new sets, but used the model341

trained on the STCRDab set to predict the new complexes. Results from validation342

are presented in Figure 5d and Supplementary Figure S4 and summarised in Table 1.343

Overall, the models with the highest ROC AUC consistently included sequence informa-344

tion. Moreover, addition of structural features often did not improve predictive power.345

However, structural features often allowed some level of discrimination, independently of346

the sequence information, suggesting that the model might be learning something about347

the binding modes of these complexes. Interestingly, the models which used structural348

features had consistently higher recall.349

The ATLAS proved to be a very hard set to predict overall. This might be due to350

each complex being only a few mutations away from the crystal structure deposited in the351

PDB, which might have on one hand made the modelling easier, but on the other hand352

made it harder for the classifier to tell the difference between a binding and a non-binding353

pair which differ at only one amino acid. Moreover, some of the included mutations occur354

at the MHC, which is not considered when extracting features. Finally, the ATLAS set355

does not have a strict definition of binding, as for the other sets which derive from356
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Figure 5: (Previous page.) A discriminative classification model can be trained using

extracted structural features. a. ROC AUC curves of 10-fold CV on the STCRDab training

set with each feature set separately. The faint line are the results for each individual fold, whilst

the dark line represents the interpolated average results, with the shaded area as the standard

deviation. b. Interpolated ROC AUC curves for 10-fold CV obtained when combining different

feature sets for prediction. c. Tabular results for curves showed in a. and b.. d. Left: ROC

curves obtained when the model trained on the STCRDab set is used for prediction on the

10XGenomics validation set. Right: for the model trained on STCRDab using the distance

dataset only, the diagram shows which proportion of examples from each epitope are classified

correctly (true positives and true negatives) or incorrectly (false positives and false negatives).

tetramer-sorting experiments, but rather the complexes show a range of affinities, and it357

is hard to define a strict threshold to define binding.358
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set % pos combo roc
avg 

precision
accuracy precision recall

distances 0.574 0.289 0.739 0.315 0.198

dist-atr 0.562 0.260 0.726 0.294 0.210

atchley 0.668 0.441 0.805 0.751 0.117

atchley-dist 0.629 0.375 0.786 0.487 0.166

atchley-dist-atr 0.590 0.317 0.766 0.382 0.173

distances 0.591 0.114 0.757 0.116 0.350

dist-atr 0.645 0.123 0.802 0.139 0.326

atchley 0.700 0.188 0.905 0.209 0.107

atchley-dist 0.599 0.175 0.798 0.133 0.318

atchley-dist-atr 0.645 0.146 0.824 0.153 0.309

distances 0.727 0.326 0.714 0.262 0.688

dist-atr 0.709 0.423 0.667 0.205 0.563

atchley 0.816 0.704 0.825 0.393 0.688

atchley-dist 0.823 0.659 0.754 0.297 0.688

atchley-dist-atr 0.770 0.515 0.698 0.238 0.625

distances 0.487 0.897 0.827 0.892 0.917

dist-atr 0.518 0.907 0.794 0.901 0.863

atchley 0.632 0.938 0.891 0.891 1.000

atchley-dist 0.551 0.918 0.891 0.891 1.000

atchley-dist-atr 0.547 0.916 0.865 0.896 0.960

distances 0.521 0.010 0.865 0.010 0.186

dist-atr 0.521 0.008 0.896 0.013 0.186

atchley 0.570 0.010 0.987 0.000 0.000

atchley-dist 0.541 0.010 0.954 0.009 0.047

atchley-dist-atr 0.546 0.008 0.947 0.000 0.000

atlas 89.06

newVdj 0.72

B10x

Dash

expt

21.17

7.34

12.70

Table 1: Results of out-of-sample validation. Results of predicting the validation sets

with the model trained on the STCRDab set, using different subsets of features. In each section,

the best-performing model is highlighted in bold and underlined.
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4.4 Classifier performance varies between epitopes359

A known hard task for a classifier trained on a small subset of the epitopes that our360

immune system is exposed to, is to generalise to epitopes not present in the training361

set. It is apparent from the diagrams showing mis-classification in Figure 5d (right) and362

Supplementary Figure S4b that some peptides were indeed easier to classify than others.363

Figure 6a shows the classifier performance on 4 representative epitopes. For a perfect364

classifier, the decision score for positive and negative samples (equivalent to the distance of365

a point from the decision hyperplane in the case of an SVM) should have non-overlapping366

distributions. However, for peptide antigen AVFDRKSDAK the distributions for binding367

and non-binding TCRs almost completely overlap, suggesting that the classifier has not368

learnt useful information from the data. For peptide LLFGYPVYV, on the other hand,369

the separation between the two groups of TCRs is almost perfect. The classification of370

TCRs specific for the ELAGIGILTV and ASNENMETM peptides showed an intermediate371

pattern. Overall, the classification of TCRs for different epitopes show very significant372

differences in performance, (Figure 6b), as has been observed previously for other models373

(Moris et al. 2020). This also suggests that the overall performance as showed in Table374

1 is somewhat misleading, as it will be skewed by the more abundant epitopes.375
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Figure 6: (Previous page.) The performance of the model is pMHC dependent. a.

Examples of 4 different epitopes. The frequency distributions of model decision function scores

(for an SVM, this correponds to the distance from the separating hyperplane, drawn as a dotted

line) for binding and non-binding TCRs recognising each epitope. The bar at the top shows

the order in which binding and non-binding examples appear when ranked by decision function.

For good classification, the bar should be mostly blue on the left and mostly red on the right.

b. The bar plot shows ROC AUC for all peptides which have at least 2 positive and 2 negative

examples. This data comes from concatenating the predictions for all the validation sets when

Atchley factors, distances and attractive van der Waals forces are used.

4.5 Homology modelling performance impacts classifier perfor-376

mance377

We wondered whether the difference in performance could be due to the performance378

of the homology modelling tool used. For each structure, we retrieved the information379

about the sequence similarity between the structure of interest and the template used to380

model it. We then plotted the classifier performance as a function of sequence similarity381

(Figure 7a).382

Overall, there was a trend for better templates (increased sequence similarity) to383

correlate with better classifier performance (observed as an increase in performance to384

the right of the individual panels). Interestingly, however, the same trends were observed385

also when classification was based only on sequence information suggesting that this might386

not be related only to the accuracy of the homology modelling. The templates for the387

homology modelling and the training set for our classifier are overlapping sets (as both388

are using the complexes for which a crystal structure is available) and our results might be389

reflecting the increased density in the feature space of known complexes. To investigate390

this, we also computed the BLOSUM scores from the train set for all the complexes391

we predicted (Figure 7c). Indeed, a decrease in classifier performance is observed when392
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Figure 7: (Previous page.) Classifier performance is dependent on sequeunce homol-

ogy of the target TCR-pMHC. a. The performance from all validation sets were combined,

and stratified by the similarity between the sequence of the target complex to be classified and

the relevant homology modelling template (as outputted by TCRpMHCmodes and outlined in

Jensen et al. 2019). Mean performance (ROC AUC) in each range of homology is calculated and

plotted at the range midpoint. The grey bars show the number of structures that contribute to

the performance for each point. b. Performance of each of the validation set when the model

is trained on the entire STCRDab set (all train) or only the STCRDab structures with good

templates (as defined in methods - good train), and when predictions are made on all complexes

(all test) or only complexes with good templates (good test). c. Equivalent analysis to a. but

calculating the BLOSUM score between each example and the closest example in the train set,

for each chain separately. The higher the BLOSUM score, the more similar the sequence is to

one found in the training set. In each plot, the grey bars show the number of structures in each

bin.

the BLOSUM score decreases, i.e. when the TCR-pMHC pair that we are trying to393

predict is less similar to the training set pairs. Interestingly, in all cases the performance394

of the classifier is more dependent on TCR homology, than on peptide homology. It395

is important to note that the observed relationship between classifier performance and396

sequence homology allow us to predict a priori which TCR/peptide binding predictions397

will carry greater confidence. In fact, by considering the epitope and complex homology398

templates, we are able to select a priori a subset of structures on which our model will399

perform better (Figure 7b).400

4.6 Effect of affinity on the predictor401

Because the classifier relies on structural information and it is trained on the set of TCR-402

pMHC pairs that have a known crystal structure, we wondered whether the model could403

predict binding affinity as well as a binary binding/non-binding classification or whether404

higher decision function scores were assigned to higher-affinity complexes (i.e. whether405
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complexes which bind with high affinity are called binders with higher confidence). To406

address this, the TCR-pMHC pairs from the ATLAS (Borrman et al. 2017) were retrieved407

and their score predicted. The score for each complex was then correlated (Spearman) to408

their measured affinity, removing all complexes with undetectable binding and adjusting409

the ∆G andKD as in the original publication (Table 2). Unexpectedly, the only significant410

correlation was between sequence features (Atchley factors) and koff . The model therefore411

does not successfully capture the structural information which determines the affinity of412

the complex and its performance is not biased towards detection of high-affinity pairs.413
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Spearman 
R

p-value
Spearman 

R
p-value

Spearman 
R

p-value
Spearman 

R
p-value

Spearman 
R

p-value

KD (μM) -0.076 0.188 -0.057 0.322 -0.006 0.914 -0.048 0.402 0.154 0.099

kon (Ms−1) 0.126 0.177 0.153 0.101 0.084 0.371 0.173 0.063 0.050 0.592

koff (s
−1) 0.056 0.551 -0.077 0.412 0.277 0.003 0.106 0.260 -0.070 0.221

∆G (kcal/mol) -0.080 0.167 -0.065 0.258 -0.022 0.702 -0.060 0.338 -0.070 0.221

distances dist-atr atchley atchley-dist atchley-dist-atr

Table 2: Correlations of affinity metrics and decision function scores. Spearman

correlation is calculated for each affinity metric for predictions made for each of the models

trained.
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4.7 Benchmarking against existing tools414

Finally, we compared the performance of our classifier against the recently published415

ERGO (Springer et al. 2020) and ImRex (Moris et al. 2020, Table S1). Both ERGO and416

ImRex were trained on the VDJdb set (Bagaev et al. 2020), as described in the original417

publication, rather than the much smaller set of binder used by our algorithm. The418

trained models are available as an online tool for ERGO (http://tcr.cs.biu.ac.il/)419

and on GitHub for ImRex (https://github.com/pmoris/ImRex).420

The classifiers were all tested on the same set of binder and non-binder TCR-pMHC421

sets. Figure 8 and Supplementary Table S1 show the results divided by peptide. The422

results are organised in 3 scenarios depending on whether the peptide is present in neither,423

either or both of the train sets.424

When compared on epitopes that are not present in either train set (Case 1), all the425

models perform in a similar manner. Interestingly, none of the sequence-based classifiers426

outperforms the structure-based classifier. When the epitopes are present in the VDJDb427

but not in the STCRDab (PDB) set (Case 2), both ERGO models significantly outperform428

all other models in prediction, including ImRex. Finally, when peptides are present in429

both train sets (Case 3), ERGO outperforms all models except the ones which include430

Atchley factors information.431

Taken together, these results suggest that the structure-based models developed in432

this study perform as well as the state-of-the-art sequence-based models in predicting433

binding to novel pMHC, despite learning from a much smaller training set.434
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Figure 8: (Previous page.) Comparison of performance with other published tools.

In each violin plot, a dot is an epitope for which performance is calculated. In Case 1, only

epitopes that are not present in the PDB or in the VDJDb train sets are included. In Case

2, only epitopes that are present in the VDJDb but not in the PDB are included. In Case 3,

only epitopes which are in both training sets are included. Significance values are shown by

asterisks.

5 Discussion435

Previous study of the binding geometry of TCRs to the pMHC complex has been largely436

focused on measuring the diagonal angle and the orientation of the TCR with respect to437

the MHC. In the present study, a number of different features were extracted to try and438

recapitulate both the conformation and the energetic profile of the binding interface. A439

survey of the crystal structures available showed that, in agreement with Glanville et al.440

2017; Ostmeyer et al. 2019, stretches of amino acids at the centre of the CDR3 in the441

TCRα and β chains are within contact distance of the peptide. This information was442

also recapitulated by the energy profiles, suggesting that not only can they interact, but443

that they make favourable interactions. Although no conserved binding hotspots were444

detected within the CDR, we were able to identify different binding modes simply from445

the features extracted.446

Conserved binding geometry has been reported in TCRs that bind the same MHC447

complex (Blevins et al. 2016) and recently Singh et al. 2020 showed that a difference448

can be detected between pMHC class I and class II binding. Such a difference is also449

reported in this analysis, and detected both at the conformational level (in terms of450

pairwise distances) and at the energetic level. As reported by Singh et al. 2020, our451

analysis also showed that TCRs binding MHC class I tend to be closer to the C-terminus452

of the peptide, whilst TCRs binding class II complexes sit more centrally or towards the453
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N-terminus. Moreover, the energetic features suggest that a difference between class I and454

class II complexes can also be found in the energetic profiles that drive these interactions.455

As well as the difference between class I and class II, the spatial features extracted from456

the structures were readily able to distinguish TCRs which bind with reversed polarity457

to the pMHC complex, as described by Gras et al. 2016 and Beringer et al. 2015, and458

identify class I complexes with different non-canonical binding modes to the peptide (Yin459

et al. 2011; Liu et al. 2013). This suggests that the features extracted are informative of460

the biology of this system.461

The information collected from these structures was also sufficient to build a clas-462

sifier able to discriminate between TCR-pMHC binding from non-binding pairs. The463

generalisability of the classifier was tested on multiple independent datasets, collected464

and analysed independently. Physical interaction features on their own proved sufficient465

to distinguish binding and non-binding complexes to a similar degree to published tools466

which are based on sequence information alone (Figure 8). Interestingly, merging of467

sequence and physical features in the same model did not improve the performance in468

terms of ROC AUC, although often improved the recall of the sequence-based model.469

This is an important characteristic, as in real-life applications a classifier like the one470

presented could be used to screen candidate TCRs against an epitope of interest, for471

example with the aim of identifying tumour-infiltrating lymphocytes that can recognise472

tumour neoantigens. In this context, in-silico screening would be followed by experimen-473

tal validation. Because the events of interest are a very small number compared to the474

total number of events (i.e. binders << non-binders), it would be more important to475

correctly classify more of the binders than of the non-binders, i.e. a higher number of476

false positives, which can be screened out during experimental validation, would be less477
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problematic than a higher number of false negative, which would not be experimentally478

validated.479

Compared to other published classifiers (Glanville et al. 2017; Dash et al. 2017; Tong480

et al. 2020), the classifier presented here is different in that it does not need to be trained481

on a known subset of TCRs recognising a specific peptide to be able to predict more482

binders, but rather it can learn from any set of TCR-pMHC pairs already available483

and generalise what it has learnt to the problem at hand. This suggests that there484

are conserved features to the TCR-pMHC interface which can be learnt and used for485

prediction. ERGO and ImRex (Springer et al. 2020; Moris et al. 2020) have pioneered486

this approach, although they only focussed on information that can be extracted from487

the sequence. ImRex is a bit more similar to the classifier presented, as it encodes the488

binding interface using amino acid characteristics rather than pure sequence encoding.489

Of note, all of the results that we have presented here use the model originally trained490

on the STCRDab set, which was never re-trained on the new sets of structures. This is491

not the case for other published tools, which achieve better discrimination but only after492

training on a section of the validation set.493

We extended the approach adopted by ImRex and decided to rely on the structure494

of teh whole TCR-pMHC complex. Modelling of mutations within the existing crystal495

structures has recently proved a successful approach to ranking candidate peptide epitopes496

from a phage screen against target TCRs (Borrman et al. 2020). Here, we see from497

the weights assigned to each combined kernel that the physical interactions encoded498

by the distances and the attractive van der Waals forces were equally as important as499

the sequence information, suggesting that physical interactions can be used to predict500

binding. Moreover, the classifier here presented is trained on about 400 binding and501
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non-binding pairs, which recognise 93 different epitopes. This is a much smaller set502

than the VDJdb used by ERGO and ImRex (40,000 TCRs and 200 peptides in ERGO503

and 14,000 CDR3β and 118 peptides in ImRex), but achieves similar performances. This504

might indicate that the information learnt from the structural information is more readily505

generalised to an unseen case.506

As more structures for more diverse epitopes become available, the performance of507

the classifier may well improve. However, the complex biology of the system will always508

be a factor limiting performance. For example, if a small proportion of TCRs bound509

to the pMHC complex with conformations that are significantly different from canonical510

binding, we might never be able to predict their binding with a tool that has learnt on a511

subset of canonical TCRs. This may well be the case with other structures with reversed512

polarity or complexes with unusual binding highlighted in Figure 2a.513

Most of the results presented has been based on a binary classification of TCR-pMHC514

complexes as binding or non-binding. In reality, the interaction between TCR and pMHC515

is characterised by a graded affinity scale. This is of interest as there are multiple metrics516

that contribute to overall affinity and are important for T cell activation dynamics - KD,517

kon, koff , half-life - (Gálvez et al. 2019; Lever et al. 2017; Stone et al. 2009) and it is518

not yet clear what features in the structure can drive them. No correlation between the519

classifier score and affinity or kinetic parameters was detected for the ATLAS structures520

(Borrman et al. 2017). However, the original ATLAS publication showed a correlation521

between the attractive van der Waal force as calculated by Rosetta (here atr) and the522

experimentally-measured affinity, similar to the one reported by Erijman et al. 2014 on523

an unrelated system. Because the affinity is driven by structure, we believe the PDB524

classifier could also be optimised for rough affinity prediction, although better methods525
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of modelling the mutations into the structures might have to be explored.526

Finally, the major difference between this classifier and most of the work published so527

far is that it relies on an available TCRαβ pairs and cannot be used on unpaired chains.528

This is a limitation to the direct application of the classifier as alpha/beta pairing is529

typically not available from bulk TCRseq data. However, unpaired α and β chains only530

contain a portion of the binding site information, and the assumption that binding of the531

β chain only is sufficient is clearly not true in every case. Carter et al. 2019 show that532

the information encoded in the αβ pair is synergistic, i.e. that the pairing carries more533

than the sum of the individual chain information. Moreover, their survey of the VDJdb534

shows instances where the same α chain paired with different β chains recognise different535

epitopes, or where CDR3α and β annotated to bind epitopes from different species come536

together to bind yet another peptide. Overall, we believe this to be strong motivation to537

work on αβ pairs. Future work will focus on understanding whether candidate αβ pairs538

that bind a specific antigen can be inferred from TCR clones that are expanded during539

an immune response.540
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7 Supplementary Material739

The following are supplied as supplementary materials:740

1. Sequences for all the datasets used, specifically:741

• sequences from STCRDab PDB files - these are the sequences from the742

PDB files used for the initial feature extraction743

• STCRDab set metadata - metadata associated with the sequences from the744

STCRDab745

• 10XGenomics set sequences - sequences for the structures included in the746

10X set747

• experimental constructs sequences - sequences for the structures included748

in the expt set749

• Dash set - sequences for the structures included in the Dash set750

• ATLAS sequences - sequences for the structures included in the TCR AT-751

LAS set, including the affinity information from the ATLAS752

• VDJDb validation sequences - sequences for the structures included in the753

new VDJDb set754

2. All result files with decision function scores for each TCR-peptide pair. A README755

file is included with filename explanations.756
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Figure S1: (Previous page.) Energy interactions for class I and class II complexes

Analogous to Figure 1c, but for all energy feature sets. The histograms show the number

of structures that make a favourable contact (energy < 0). Repulsive vdW excluded as this

component is always > 0.
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Figure S2: (Previous page.) PCA on all extracted features. a. PCA for feature sets not

included in Figure 2a. Class I and class II complexes are shown in green and red, respectively.

The stars indicate the structures that have been reported to have inversed polarity (i.e. the

TCRs bind the pMHC complex at 180 degree angle). b. Linearised vectors used for the solvent

energy PCA, ordered according to their PC1 score. On the x-axis, the calculated solvent energy

between each CDR residue and each peptide residue (27-1, 28-1,...,116-1, 117-1, 27-2,...,117-20).

Analogous to Figure 2b.

53

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.19.444843doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444843
http://creativecommons.org/licenses/by/4.0/


atr rep elec

a

PC
2

PC1

*

b

dist sol atchley

dist sol atchley

atr rep elec

Figure S3: Caption next page

54

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.19.444843doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444843
http://creativecommons.org/licenses/by/4.0/


Figure S3: (Previous page.) PCA of original vs predicted and of binding vs non-

binding. a. PCA for each set showing overlay between original and predicted structures.

Asterisks (*) in the distance plot indicates the inversed polarity structures. b. PCA for each

set showing overlay of binding and non-binding complexes (predicted structures, blue triangles

and magenta circles, respectively).
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Figure S4: (Previous page.) Results of all validation sets used. a. ROC curves obtained

when the model trained on the STCRDab set are used for prediction on each of the valida-

tion sets. b. For the model trained on STCRDab using distances only, the diagram shows

which proportion of examples from each epitope are classified correctly (true positives and true

negatives) or incorrectly (false positives and false negatives) for each of the validation sets used.
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N pos N neg in_pdb in_vdjdb distances dist-atr atchley
atchley-

dist
atchley-
dist-atr

ImRex
ERGO
LSTM

ERGO
AE

VVMSWAPPV 7 120 no no 0.361 0.526 0.605 0.370 0.557 0.482 0.461 0.433

ALYGFVPVL 5 122 no no 0.620 0.603 0.508 0.556 0.597 0.474 0.290 0.657

HMTEVVRHC 4 123 no no 0.390 0.551 0.654 0.549 0.573 0.679 0.551 0.498

APARLERRHSA 3 124 no no 0.559 0.570 0.449 0.538 0.495 0.901 0.591 0.562

RLARLALVL 5 122 no no 0.218 0.285 0.443 0.215 0.259 0.433 0.575 0.582

NLNCCSVPV 4 123 no no 0.715 0.638 0.447 0.720 0.667 0.547 0.677 0.567

RLRAEAQVK 57 336 no yes 0.465 0.416 0.525 0.461 0.429 0.538 0.753 0.727

SSPPMFRV 20 1795 no yes 0.393 0.412 0.396 0.373 0.424 0.665 0.891 0.814

MLDLQPETT 6 6 no yes 0.750 0.333 0.306 0.417 0.250 0.778 0.694 0.583

FLASKIGRLV 3 24 no yes 0.500 0.639 0.389 0.375 0.653 0.542 1.000 0.597

TVYGFCLL 46 1839 no yes 0.407 0.419 0.323 0.288 0.386 0.453 0.915 0.757

KTWGQYWQV 3 10 no yes 0.800 0.633 0.700 0.867 0.633 0.433 1.000 0.933

KLGGALQAK 324 2161 no yes 0.493 0.479 0.527 0.498 0.493 0.511 0.739 0.630

AYAQKIFKI 4 62 no yes 0.750 0.379 0.464 0.685 0.339 0.266 0.690 0.867

LLDFVRFMGV 10 18 no yes 0.794 0.639 0.328 0.633 0.494 0.294 0.767 0.800

HGIRNASFI 140 1674 no yes 0.498 0.652 0.500 0.482 0.608 0.610 0.926 0.918

LSLRNPILV 64 1796 no yes 0.437 0.443 0.644 0.456 0.465 0.520 0.902 0.745

IVTDFSVIK 207 421 no yes 0.540 0.613 0.662 0.632 0.649 0.668 0.821 0.795

RMFPNAPYL 4 12 no yes 0.542 0.542 0.604 0.625 0.667 0.542 0.958 0.750

SSYRRPVGI 455 1389 no yes 0.432 0.471 0.561 0.499 0.466 0.282 0.938 0.927

AVFDRKSDAK 175 869 no yes 0.465 0.441 0.494 0.460 0.432 0.534 0.716 0.669

SLFNTVATLY 5 34 no yes 0.241 0.435 0.300 0.353 0.506 0.435 0.771 0.712

RAKFKQLL 77 169 no yes 0.635 0.511 0.594 0.637 0.511 0.554 0.725 0.726

FLYALALLL 7 9 no yes 0.508 0.635 0.190 0.444 0.349 0.349 1.000 0.968

LGYGFVNYI 4 10 yes yes 0.925 0.850 1.000 1.000 0.950 0.925 1.000 0.925

GLCTLVAML 98 1848 yes yes 0.722 0.717 0.747 0.740 0.737 0.756 0.991 0.980

LLFGYPVYV 91 36 yes yes 0.865 0.867 0.888 0.888 0.876 0.908 0.935 0.922

SLLMWITQC 33 11 yes yes 0.355 0.088 0.598 0.438 0.176 0.665 0.638 0.806

SSLENFRAYV 147 1614 yes yes 0.542 0.586 0.563 0.523 0.543 0.630 0.836 0.730

GILGFVFTL 534 2028 yes yes 0.722 0.741 0.841 0.779 0.785 0.822 0.982 0.969

ELAGIGILTV 178 348 yes yes 0.736 0.726 0.825 0.778 0.747 0.574 0.862 0.754

ASNENMETM 161 1717 yes yes 0.518 0.609 0.468 0.461 0.608 0.486 0.948 0.900

NLVPMVATV 63 1876 yes yes 0.623 0.648 0.558 0.628 0.626 0.495 0.987 0.956

Table S1: Caption next page

58

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.19.444843doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444843
http://creativecommons.org/licenses/by/4.0/


Table S1: (Previous page.) Results of benchmarking on single epitopes. For each

epitope, the performance of each tool is calculated (ROC AUC). In each row, the best-performing

tool is highlighted in bold and the best-performing model of the ones presented in this paper is

boxed.
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