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Abstract: Phospholipases D1 and D2 (PLD1/2) have been implicated in tumorigenesis. We 

previously detected higher expression of PLD in the nuclei of patient-derived prostate cancer 

(PCa) cells and prostate cancer cell lines. Here we have examined whether PLD1 or PLD2 

are associated with the nuclear matrix and influence cell cycling. PLD1/PLD2 were detected 

by qualitative immunofluorescence in cultured PCa cells and extracted with a standardised 

protocol to reveal nuclear matrix-associated proteins. The effects of isoform-specific inhibition 

of PLD1or PLD2 on PCa cell cycle progression were analysed by flow cytometry. PLD2 mainly 

co-localised with the nucleolar marker fibrillarin in PCa cells. However, even after complete 

extraction, some PLD2 remained associated with the nuclear matrix. Inhibiting PLD2 

effectively reduced PCa cell cycling into and through S phase.  In contrast, PLD1 inhibition 

effects were weaker, and a subpopulation of cycling patient-derived PCa cells was unaffected 

by PLD1 inhibition.  When associated with the nuclear matrix PLD2 could generate 

phosphatidic acid to regulate nuclear mTOR and control downstream transcriptional events. 

The association of PLD2 with the nucleolus also implies a role in stress regulation.  The cell 

cycling results highlight the importance of PLD2 inhibition as a novel potential prostate cancer 

therapeutic mechanism by differential regulation of cell proliferation. 

Keywords: phospholipases D1 and D2; patient-derived prostate cancer cells; PC3 prostate 

cancer cell line; differential extraction, nuclear matrix; nucleolus; cell cycle inhibition 
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1. Introduction 

The two main isoforms of mammalian phospholipase D (PLD), PLD1 and PLD2, hydrolyse 

chiefly phosphatidylcholine (PtdCho) to a base and the signalling lipid phosphatidic acid 

(PtdOH). Both PLD1 and PLD2 are implicated in tumorigenesis since total PLD activity and 

PLD1/PLD2 protein expression are elevated in many cancers and often correlate with 

prognosis1-8 . In prostate cancer (PCa) we have reported that PLD2 protein expression 

correlates with increasing Gleason score (GS) from GS6 to GS8 but is decreased in GS9 

tissue where gland structure is not evident9.  Stable fibroblast cell lines over-expressing PLD1 

or PLD2 show increased proliferation, enhanced colony formation in soft agar and induce 

undifferentiated sarcomas in nude mice10. Survival and migration signals in human breast 

cancer cells and androgen-insensitive PCa cell lines are both associated with higher PLD 

activity11,12. In bone metastases-derived PC3 and C4-2B prostate cell lines, increased PLD 

activity and PLD1/PLD2 expression contributes to tumorigenesis13. PLD2 also regulates 

exosome secretion by C4-2B and PC3 cells resulting in increased osteoblast activity14.   

The involvement of PtdOH in the recruitment and activation of mTOR (mechanistic 

[mammalian] target of rapamycin)15, has defined a mechanistic role for PLD1 and PLD2 in 

tumorigenesis16,17. Active mTOR in the cytosol exists as complexes; mTORC1 contains Raptor 

and mLST8, and mTORC2 contains Rictor, mLST8 and sin1.18,19 PLD1 is detected at a 

perinuclear site in cells and migrates to the plasma membrane on activation20,21. In contrast, 

PLD2 is located at the plasma membrane and is associated in lipid rafts promoting receptor 

endocytosis22,23. In recent work we also detected PLD1 and PLD2 protein expression in the 

nuclei9,24 of patient-derived PCa cells and PCa cell lines in agreement with occasional reports 

in other cell types4,25-27.  

A role for both PLD1 and PLD2 in cell cycle control has been defined. For example, 

fibroblasts overexpressing PLD1 or PLD2 show an increased proportion of cells in S phase 

while the level of cyclin D3 protein, an activator of the G1 to S phase transition, is also 

elevated10. Increased expression of either PLD1 or PLD2 prevents cell cycle arrest by high 

intensity Raf signals28 while PLD1 and PLD2 repress p21 gene transcription stimulating cell 

growth, and resulting in tumorigenesis29. In colorectal cancer cells inhibition of PLD induces 

cell cycle arrest30. These effects of PLD on the cell cycle occur through mTOR, which operates 

checkpoints in cell cycle progression and requires PtdOH for activity15,17,31.  mTOR is also 

present in the nucleus (nmTOR), bound to the promoters of RNA polymerase I and III genes 

where it regulates transcription32. In skeletal muscle, nmTOR binds to the promoters of some 

mitochondrial genes33. In PCa, nmTOR functions as a transcriptional integrator of androgen 

signalling pathways and increased nmTOR correlates with a poor prognosis34.  
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To confirm and extend our findings on the role of PLD1 and PLD2 in PCa cell nuclei we 

have now examined the association of PLD1 and PLD2 with the nucleus by treating patient-

derived PCa cells and PC3 cells in a well-documented fractionation procedure which exposes 

core nuclear matrix (NM) proteins35-37 Nuclei treated by this fractionation scheme leave a 

protein-rich matrix which includes actin and fibrillarin38 and nuclear lamina (NL) proteins 39. 

We have begun to examine what role PLD1 and PLD2 might play in the nucleus by examining 

the effect their inhibition has on prostate PCa cell cycling.  

2. Materials and Methods 

2.1. Cell isolation and culture 

The PC3 prostate epithelial cell line was cultured as described in Noble et al9,24. Primary 

PCa epithelial cells were purified from human prostate tissue samples which were obtained 

with patient consent and full ethical approval (South Yorkshire Research Ethics Committee, 

Yorkshire and the Humber, REC:07/H1304/121) as previously stated24. The cells were grown 

on collagen 1-coated 10cm dishes in keratinocyte serum-free medium with supplements of L–

glutamine, bovine pituitary extract, epidermal growth factor, stem cell factor, cholera toxin, 

leukaemia inhibitory factor and granulocyte-macrophage colony-stimulating factor at 37 °C 

with 5% CO2. Cells were initially co-cultured with irradiated (60Gy) mouse embryonic 

fibroblasts (STO). Subsequent passages were free of STOs and all cultures were used at the 

lowest practical passage number (p2-p5).  

2.2. Association of PLD1 and PLD2 with the nuclear matrix 

Patient-derived primary PCa cells and PC3 cells were cultured on collagen-coated 

chamber slides as above, and were then subjected to a standardised detergent, high salt, 

DNase and RNase extraction procedure35-37 to expose the nuclear matrix (Fig. 1). After each 

stage, cells were examined for PLD1 and PLD2 by qualitative immunofluorescence. DAPI was 

used to define nuclear DNA, lamin the NL and fibrillarin the nucleolus. All images were 

captured under identical conditions to allow comparisons to be made through the extraction 

series. 
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FIG 1 here 

 

Figure 1. Nuclear Matrix Extraction procedure35-37. Cells cultured in chamber slides were 

treated with detergent revealing detergent-resistant PLD1/2, followed by 0.4M NaCl revealing 

high salt- resistant PLD1/2 then either DNAse 1, RNase or DNAse 1 + RNase  revealing 

nuclease-resistant proteins.  

 

2.3. Immunofluorescence 

Intact PCa cells were fixed in 4% paraformaldehyde, rinsed with PBS, permeabilised with 

0.5% Triton X-100 and rinsed again. Untreated or extracted cells from 2.2 above were rinsed, 

blocked in 10% goat serum in PBS for 60 minutes and then treated with primary antibody in 

10% goat serum overnight at 4oC. Next day the cells or cell residues were rinsed and the 

appropriate Alexafluor secondary antibody added for 1 hour at room temperature, followed by 

rinses. The chambers were removed and the slides were mounted using Vectashield with 

DAPI (Vector laboratories, Peterborough, UK) and examined using a Nikon Eclipse TE300 

fluorescence microscope (Nikon, Surrey, UK). Primary antibodies were a commercial anti-

PLD1 antibody (Santa Cruz, sc25512, validated by Bruntz et al23 and Scott et al40 ), a 

polyclonal anti-PLD2 antibody (PLD2-26, validated by Denmat-Ouisse et al41), a mouse anti-

fibrillarin antibody (Abcam ab4566), an anti-lamin B2 antibody (Invitrogen 33-2100), a rabbit 

polyclonal anti-Raptor antibody (Proteintech, 20984-1-AP), a rabbit polyclonal anti-Rictor 

antibody (Proteintech, 27248-1-AP) and a mouse monoclonal anti-mTOR antibody 

(Proteintech, 66888-1-Ig) all used at 1: 100. Secondary antibodies were a goat anti-rabbit 

Alexa Fluor 568 (A11036, Thermofisher) and a goat anti-mouse Alexa Fluor 488 (A11029, 

Thermofisher). 

2.4. PLD inhibition and the cell cycle 

The effects of PLD inhibition on cell cycle progression were measured by flow cytometry 

using the Click-iT Plus EdU Pacific Blue Flow Cytometry Kit (ThermoFisher

Scientific C10636) according to the manufacturer’s instructions. PC3 cells (6x104) were plated 

in 12 well plates with the appropriate medium. The following day the cells were treated with 

vehicle (DMSO), 10M PLD1 inhibitor (EVJ), 10M PLD2 inhibitor (JWJ) or both. At 24 and 

48 hour time points 5-ethynyl-2’-deoxyuridine (EdU) was added to separate samples. 4 hours 

later cells were harvested according to the manufacturer’s protocol. Primary cells purified from 

three different PCa biopsy samples were plated at 6x104 cells/well in 6 well collagen-coated 

plates with stem cell media; 4x104 cells/well were plated for the control wells. The following 

day the cells were treated with vehicle (DMSO), PLD 1 inhibitor EVJ, PLD2 inhibitor JWJ at 

their IC50 values, ie EVJ 11.4M, JWJ 6.4M, and in combination at half their IC50 values (EVJ 
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5.7M, JWJ 3.2M), these concentrations being based on results from our previous inhibition 

studies.9,24 After 48 hours 5-ethynyl-2’-deoxyuridine (EdU) was added and after a further 24 

hours the cells were harvested according to the manufacturer’s protocol. Results were 

acquired on a CyAn ADP flow cytometer using Summit software. EdU-Pacific blue was excited 

by 405nm laser-emitted photons detected at 450/50nm bandwidth: DNA-propidium iodide (PI) 

was excited by 488nm laser and emitted photons detected at 613/20 bandwidth. The cell 

population of interest was gated using scatter plots FS Lin / SS Log and FS Lin / Pulse Width.  

PI Lin Area / EdU Log was used to determine the percentage of EdU+-cells (ie cells cycling 

into or passing through S phase), cells in G1+G2/M phases of the cell cycle, and, where 

identified, a subG1 population of dying cells with fragmented DNA. The PLD1 inhibitor EVJ 

(VU0359595) and the PLD2 inhibitor JWJ (VU0364739) were gifts from the late Professor Alex 

Brown, Vanderbilt University, USA42-44. 

3. Results 

3.1. PLD1 and PLD2 are associated with the nucleus in PC3 cells  

In untreated PC3 cells (Fig. 2A, a), PLD1 protein is present in the cytosol (white arrow) 

and both diffusely throughout the nucleus and as a concentrated spot (blue arrows). With DAPI 

to define chromatin, a DAPI/PLD1 overlay (Fig. 2A, c) shows this cytosolic/nuclear distribution 

of PLD1 more clearly. Detergent, high salt and DNase treatment (Fig. 2A, d) exposes PLD1 

in both the cytosol and nuclei so that fluorescence is enhanced; this is especially true for the 

concentrated spot of PLD1 in nuclei (Fig. 2A, d, blue arrows). PLD1 protein detection in the 

cytosol is also enhanced (Fig. 2A, d, white arrows). Staining for the intermediate filament 

protein lamin defines the NL (Fig. 2A, e). A lamin/PLD1 overlay (Fig. 2A, f) confirms that the 

concentrated spot of PLD1 observed in Fig. 2A, d, is within the nucleus. Nuclear PLD1 was 

not apparent in PC3 cells after subsequent RNase treatment though some cytoplasmic PLD1 

was still faintly detected (Fig. 2A, g, i, white arrows). Results for each stage of the extraction 

sequence for PLD1 in PC3 cells are shown in Supplementary Fig. 1. A different expression 

pattern is noted for PLD2 protein, which is detectable in both the nuclei (blue arrows) and 

cytosol (white arrows) of untreated PC3 cells (Fig. 2B, a).  Chromatin is defined by DAPI (blue, 

Fig. 2B, b) and nucleoli by fibrillarin (green, Fig. 2B, c); several nuclei have more than one 

nucleolus (green arrows). In an overlay with DAPI (d) cytosolic PLD2 (white arrows) and 

nucleoli (green arrows) are still apparent. After detergent and high salt treatment, cytosolic 

PLD2 protein is concentrated in a mainly perinuclear region (e, white arrow), whereas in nuclei, 

the protein is diffusely distributed and as single or several concentrated spots (e, blue arrows) 

which match the positions of nucleoli as defined by staining for fibrillarin (g, green arrows). In 

an overlay (h) with DAPI (blue) to define chromatin (f) a rim of cytosolic PLD2 (white arrows) 
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remains while the concentrated spots of nuclear PLD2 appear yellowish indicating co-

localisation with the nucleolus marker fibrillarin (blue arrows). 

 

FIG 2 here 

Figure 2. PLD1 and PLD2 in PC3 cells. (A), PLD1 protein is detected in the nuclei of PC3 

prostate cancer cells after detergent, high salt and DNase treatment but is lost after RNase 

digestion, red = PLD1, blue = DAPI to detect chromatin, green = lamin to define the perimeter 

of the nucleus. (B), Nuclear PLD2 in PC3 cells is revealed after` detergent treatment and high 

salt extraction, and colocalises with fibrillarin, a nucleolus marker, red = PLD2, blue = DAPI, 

green = fibrillarin. (C), some nuclear PLD2 resists subsequent DNase + RNase treatment, red 

= PLD2, green = Lamin.  Scale bar 25m. See Methodology for details. 

 

Subsequent digestion of detergent + high salt-treated cells with DNase (Fig. 2C) did not 

change the detection of PLD2 protein in perinuclear (a, white arrows) and nuclear (a, blue 

arrows) compartments, indicating that it is not retained by association with chromatin. Inside 

the nuclei, PLD2 was again detected as a concentrated spot (blue arrows). The overlay with 

lamin to define the NL (c) confirms PLD2 both in a diffuse perinuclear (white arrows) location 

and concentrated within nuclei (blue arrows). Further treatment with RNase resulted in the 

loss of all perinuclear PLD2 protein. However, this RNase treatment did not release the 

concentrated spots of nuclear PLD2 which appear collapsed in response to digestion of 

nucleolar RNA but, in the overlay with lamin, remain concentrated within the nucleus (f, blue 

arrows). 

3.2. PLD1 and PLD2 in patient-derived PCa cells 

In untreated patient-derived PCa cells, PLD1 (Fig. 3A, a) was weakly detected in the 

cytosol (white arrows) and occasional nuclei (blue arrows) as is apparent in a merged 

PLD1/DAPI image (3A,c). Initial detergent treatment exposed PLD1 in the nucleus as a 

concentrated spot (3A,d, blue arrows), clearly shown in the PLD1/DAPI overlay (3A,f). Nuclear 

PLD1 survives the high salt extraction as shown when the images are merged (3A,i). After 

DNase treatment PLD1 appeared diffusely distributed within nuclei, at the nuclear membrane 

(Fig. 3B, a, white arrows) and as concentrated spots (3B, a, blue arrows) within the NL as 

defined by lamin staining in the merged images (3B,c, blue arrows). Some PLD1 protein was 

still weakly detected at the nuclear membrane (3B,c, white arrows). Final treatment with 

RNase removed all PLD1 protein from what remained of the extracted cells (3B, d). 
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FIG 3 here 

Figure 3. PLD1 and PLD2 in patient-derived prostate cancer cells (H801). (A) + (B), PLD1 

survives extraction as speckles inside the nucleus but is lost after RNase treatment. Red 

=PLD1, green = Lamin, blue = DAPI. (C), PLD2 (red) co-localises with fibrillarin (green). (D), 

PLD2 (red) survives extraction until RNase treatment when diffuse staining in the cytosol is 

lost but some PLD2 persists in the nucleus. Lamin = green. Scale bar 25m. See Methodology 

for practical detail. 

Weak PLD2 expression was detected in untreated patient-derived cells in both cytosol 

and nuclei (result not shown), similar to PLD2 in untreated PC3 cells (Fig. 2B, a). As before, 

detergent treatment (Fig. 3C,a) exposed PLD2 as punctate speckles both in a perinuclear 

location in the cytosol (white arrows) and concentrated in the nucleus (blue arrows). When 

PLD2:DAPI and fibrillarin images are merged (Fig 3C,d), PLD2 is shown to be colocalised with 

the (green) fibrillarin nucleolar marker as yellow/white spots (blue arrows). Some PLD2 

remained in the cytosol (3C, d, white arrows). This distribution was unchanged on subsequent 

high salt treatment where again PLD2 co-localised with fibrillarin as revealed by the bright 

spots in the merged images (Fig 3C, h, blue arrows). DNase treatment (Fig. 3D, a) exposed 

PLD2 both in the cytosol (white arrows) with a punctate perinuclear distribution and 

concentrated (blue arrows) within nuclei, as defined by lamin staining (3D, b). This distribution 

is observed in the merged PLD2/lamin image (3D,c where some PLD2 appears localised at 

the nuclear membrane (blue arrows).  All cytoplasmic and some diffuse nuclear PLD2 staining 

was lost after RNase treatment or on DNase + RNase treatment together (3D,d, g) but a 

discrete spot of PLD2 was still detected in what remained of nuclei (3D, d,f,g,i) as identified 

by lamin staining. Discrete spots of PLD2 staining are clearly observed within the remnants of 

the nuclei. This result for PLD2 is different from PLD1 staining where RNase treatment 

removed all PLD1 protein. 

3.3 Raptor and Rictor expression in the nuclei of patient-derived prostate cancer cells 

IF results (Fig. 4.) reveal that mTOR is more strongly expressed in the cytosol of patient-

derived PCa cells compared with the nucleus while the opposite is true for expression of 

Raptor and especially for Rictor. In Fig. 4i blue arrows highlight Rictor concentrated at the 

plasma membrane of some PCa cells.  

FIG 4 here 
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Figure 4. mTOR, Raptor and Rictor protein expression in patient-derived prostate 

cancer cells. White, yellow and blue arrows define localisation in the cytosol, nuclei and at 

the plasma membrane respectively (where appropriate). Patient-derived PCa cells were 

isolated from biopsy tissue (H816) and cultured as described in the Methods section. Scale 

bar 25m. 

 

3.4. Effects of inhibiting PLD1 and PLD2 on cell cycle progression 

EdU+ cells cycling into or through S phase, cells in G1/G2 and subG1 dying cells with 

fragmented DNA were identified by the gating strategy from the EdU Lin Area / PI log 

scatterplot as shown in Fig. 5A for a typical experiment with PC3 cells after 48 hours and Figs. 

5B and 5C for two different samples of patient-derived cells (H741, H742) analysed after 72 

hours. The important EdU+ cells entering or cycling through S phase were clearly defined. A 

population of G2/M phase cells was readily identified from non-cycling G1 phase cells with the 

PC3 cell line (Fig. 5A) but was not detected with the heterogeneous patient-derived cells (Fig. 

5B, C). For standardization G2/M cells were combined with G1 phase cells in a non-cycling 

G1+G2/M group even though we appreciate that these cells are not in the same phase of the 

cell cycle. Quantification of the cell distribution is shown as percentage values within each 

gate. 

Treatment with the PLD1 inhibitor EVJ at 10M had virtually no effect on the percentage of 

PC3 cells cycling in the last 4 hours of the treatment period relative to untreated control cells 

(Fig. 5 A). However, the PLD2 inhibitor JWJ at 10M markedly decreased the percentage of 

PC3 cells entering or passing through S phase from a control value of 23.5% to 8.7% (Fig. 

5A). When applied in combination for 48 hours, EVJ + JWJ reduced the percentage of cycling 

EdU+ PC3 cells even further from a control value of 23.5% to 1.6%; a small (1.3%) subG1 

population of dying PC3 cells was also observed. 

 

FIG 5 here 

Figure 5. Inhibition of PLD1 or PLD2 decreases PCa cell cycling. (A), PC3 cells. (B), Patient-

derived PCa cells (H741) and (C), Patient-derived PCa cells (H742). A third sample of patient-

derived cells gave similar results (not shown). The percentage figures in each gate gives the 

proportion of cells cycling into or passing through S phase, cells in G1+G2/M phases of the 

cell cycle and, where identified, dying cells with fragmented DNA in a subG1 population. See 

Methodology for details. 

The effects of EVJ and JWJ on the cell cycle of two separate samples of patient-derived 

PCa cells (H741, H742) were examined after 72 hours (Figs. 5B, C) since primary cells cycle 
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more slowly than cell lines. Unlike its effects on PC3 prostate cells, treatment of patient-

derived cells with the PLD1 inhibitor EVJ caused a marked decrease in the percent of EdU+ 

cycling cells from control values of 45.6% in H741 and 55.5% in H742 down to 8.1% and 7.5% 

respectively. Conversely, the percentage of cells between 48 and 72 hours that remained in 

the combined G1/G2 group and did not enter or pass through S phase was greater in EVJ-

treated cells (69.2% in H741, 80.9% in H742) compared with untreated cells (53.8% in H741, 

43.8% in H742). Most notably, a subpopulation (8.1%/7.5%, H741/H742) of EdU+ patient-

derived PCa cells were resistant to PLD1 inhibition and still entered or passed through S 

phase. The PLD2 inhibitor JWJ produced a dramatic effect on PCa cell cycling with as few as 

0.9% or 1.8% EdU+ cells being detected during the same period. Treatment of either primary 

cell samples with EVJ and more especially with JWJ increased the percentage of cells in the 

subG1 population of dying cells with fragmenting DNA. With EVJ and JWJ in combination at 

half their IC50 concentrations a subpopulation of EdU+ patient-derived PCa cells still entering 

into or passing through S phase (7.6% in H741, 4.6% in H742) was detected, rather similar to 

the population of EdU+ cells detected with EVJ alone. 

4. Discussion 

The unique and scarce patient-derived primary PCa cells used here, as in our earlier 

work9,24, have a basal cell phenotype (CK5+ / CK8- / AR- / CD49b+ / CD44+ / CD24+)45,46. These 

are the main cells cultured from PCa biopsy tissue because tumorigenic luminal cells which 

account for the bulk of PCa tissue do not adapt to culture as they are terminally differentiated. 

Our basal PCa cells can be differentiated to a luminal phenotype in culture47 and a significant 

proportion have the TMPRSS2:ERG fusion gene (if present in the original cancer), a feature 

of up to 50% of prostate cancers48. They are more invasive than BPH cell cultures49, have 

increased expression of the cancer cell-associated protein POLR3G50 and are more resistant 

to chemotherapy and radio-therapy treatment than other prostate cells51. The small yield of 

cells obtained per biopsy means that experiments cannot usually be replicated. We used PC3 

cells for comparison since they do not express AR, like the patient-derived PCa basal cells. 

22RV1 cells would have been an alternative choice but they express AR52.  

The extraction protocol exposed epitopes on nuclear PLD1 and nuclear PLD2 that are 

normally masked as noted for other proteins35-37. This is shown by the enhanced fluorescence 

detected after treating cells with CSK buffer-detergent alone (Fig. 3A for PLD1), after detergent 

and high salt (Fig. 2B for PLD2 in PC3 cells) or after detergent, high salt and DNase to remove 

chromatin (Figs. 2A, 3B, for PLD1). These extraction results confirm and extend our earlier IF 

and subcellular fractionation/western blot experiments showing that PLD1 and PLD29,24 are 

partially expressed in prostate cell nuclei, in agreement with  other reports4,25-27,53. In support, 

a nuclear phospholipase, PI-PLC has effects on G2/M progression54,55 while the nuclear 
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localisation of a phospholipase A2- depends on the state of cell proliferation56. Like mTOR 

in the cytosol, chromatin-associated nmTOR32 will require PtdOH for activity, providing a 

rationale for nPLD1 and nPLD2 expression. Much of the PtdCho required by nPLD1 and 

nPLD2 as a substrate occurs in microdomains with sphingomyelin and cholesterol in the inner 

nuclear membrane (INM) where cell proliferation is regulated57-59. mTOR requires unsaturated 

species of PtdOH for activation60 so at the INM, nPLD1 and/or nPLD2 need to select the 

appropriate species of PtdCho for hydrolysis. Interestingly, PLD1 and PLD2 seem to differ in 

the PtdOH species they produce from PtdCho61. Endonuclear PtdCho associated with both 

chromatin and the NM, as well as in complexes as proteolipids57-59, is another potential 

substrate for both nPLD1 and nPLD2. How nPLD1 and nPLD2 are regulated is unknown but 

in vascular smooth muscle cells nPLD1 is activated by cell surface G-protein-coupled 

receptors62. Nuclear PI-PLCis also activated by cell surface events55. The IF results (Fig.4) 

clearly reveal that both Raptor and more prominently Rictor, are expressed in PCa cell nuclei 

so are available to complex with nmTOR as found in the control of mitochondrial gene 

expression33.  

Our results indicate that PLD1 and PLD2 are associated with different binding-partners in 

PCa cell nuclei since PLD1 is released by RNase treatment while nPLD2 is resistant. This is 

clearly shown by the bright punctate PLD2 fluorescence remaining within the nucleus after 

DNase and RNase treatments (eg. Figs. 2C, 3D). At such different binding sites/locations 

nPLD1 and nPLD2 may have access to different species of PtdCho so that the nature of the 

PtdOH species generated subsequently determines their differential functions in the 

nucleus61,63.  The identification of these nuclear PLD binding sites may be complicated by the 

fact that the protein composition of the NM can change during disease progression64,65.  

It is notable in Figs. 2B and 3B that the distinct spots of PLD2 fluorescence match 

fluorescence from the nucleolar marker fibrillarin66. Intriguingly, Foster and colleagues have 

reported a link between PLD1 or PLD2 and the nucleolar stress pathway67 whereby increased 

expression of PLD1 or PLD2 raises levels of the nucleolar oncoprotein MDM2 resulting in an 

increased turnover of the tumour suppressor protein p53. This effect involves mTOR and Raf, 

which need PtdOH for activity16,17,68 and membrane binding69 respectively. Such a study 

provides a link between PLD2 and the nucleolus70, since in non-tumorigenic cells when MDM2 

is associated with ARF in the nucleolus, p53 activity is maintained at a low level71. Later work 

has revealed that PLD stabilization of HDM2 occurs through mTORC272 which contains Rictor 

as expressed in PCa cell nuclei (Fig 4.). 

Our results with EdU labelling to define replicating cells reveal that both PLD1 and PLD2 

contribute to the control of cycling by patient-derived PCa cells. This is in agreement with 

findings on colorectal cells and fibroblasts10,30 and also that overexpression of both PLD1 and 
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PLD2 overcomes cell cycle arrest induced by high intensity Raf signalling28. The data confirm 

that PLD2, and to a lesser extent PLD1, contribute significantly to the function of mTOR in its 

control of the cell cycle17 in patient-derived primary PCa cells, and explain why inhibiting PLD1 

and especially PLD2 blocks PCa cell proliferation so effectively9,24. PLD2 can also influence 

the entry or passage through the cell cycle by PCa cells, mediated by cyclin D3, an activator 

of the G1 to S phase transition10, and (with PLD1) by inhibiting expression of the CDK inhibitor 

p21 gene29. The finding that a greater proportion of patient-derived cells are in a subG1 

population after treatment with EVJ or JWJ compared with PC3 cells is not surprising since 

the patient-derived cells were in contact with the inhibitors for longer. EVJ and JWJ were used 

in the 6-11M range after Lavieri et al43,44 and Mathews et al73 because >95% of these 

lipophilic inhibitors bind to serum- or supplement-derived proteins in the growth medium and 

because they then have to cross the plasma membrane of the cultured cells. The selective 

effects of these inhibitors on PLD isoforms in intact cells are maintained at these 

concentrations as reported by others44,73-75 and as shown by the fact that EVJ and JWJ 

produce markedly different effects on cell cycling at the concentrations used. 

Our finding that inhibiting PLD1 induced a substantial decrease in the percentage of 

cycling EdU+ patient-derived PCa cells yet had no effect on PC3 cells was unexpected and 

may reflect an interesting difference on the role of PLD1 in primary patient-derived cells and 

prostate cell lines. Unlike the relatively homogeneous cellular content of established prostate 

cell lines, each preparation of patient-derived cells is a heterogeneous population unique to 

each patient76. Additionally, differences in PLD1 expression24 and/or unknown factors in foetal 

calf serum and in the supplement added to the primary PCa cell medium might be responsible. 

Our finding (Fig. 5B, C) that a small subpopulation of patient-derived cells continue cycling 

when EVJ and JWJ are used in combination is probably due to the incomplete inhibition of 

PLD2 as when in combination EVJ and JWJ were used at half their IC50 values to minimize 

cell death with the longer incubation period used. The results still reveal that PLD2 is the 

important isoform to target in any therapeutic use of these two PLD inhibitors. The 

antipsychotic agent halopemide on which the PLD inhibitors are based, has been tested in 

clinical trials and is well tolerated strengthening the case for making the PLD2 inhibitor a 

potential therapeutic agent77,78. 

Supplementary Figure: Figure S1: Identification of PLD1 in PC3 cells at each stage of the 

nuclear matrix extraction procedure.  
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