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ABSTRACT 

DNA methylation, repressive histone modifications, and PIWI-interacting RNAs are essential for 

controlling retroelement silencing in mammalian germ lines. Dysregulation of retroelement silencing 

is associated with male sterility. Although retroelement silencing mechanisms have been extensively 

studied in mouse germ cells, little progress has been made in humans. Here, we show that the 

Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are associated with DNA 

methylation of retroelements in human primordial germ cells (hPGCs), and hominoid-specific 

retroelement SINE-VNTR-Alus (SVA) is subjected to transcription-directed de novo DNA 

methylation during human spermatogenesis. Furthermore, we show that the degree of de novo DNA 

methylation in SVAs varies among human individuals, which confers a significant inter-individual 

epigenetic variation in sperm. Collectively, our results provide potential molecular mechanisms for 

the regulation of retroelements in human male germ cells. 
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INTRODUCTION 

Transposable elements comprise more than 40% of most extant mammalian genomes (Lander et al. 

2001). Among these, certain types of transposable elements called retroelements, including 

short/long interspersed elements (SINEs/LINEs), endogenous retroviruses (ERVs), and hominoid-

specific retrotransposons SINE-VNTR-Alus (SVA) are still active and capable of transposition 

(Ostertag et al. 2003; Huang et al. 2012; Maksakova et al. 2013). As retrotransposons cause genome 

instability, insertional mutagenesis, or transcriptional perturbation and are often deleterious to host 

species (O'Donnell and Burns 2010), multiple defense mechanisms have been established against 

transposition. The first line of defense is transcriptional silencing of integrated retroelements by 

chromatin modifications, such as DNA methylation and histone H3 lysine 9 (H3K9) methylation 

(Goodier 2016; Fukuda and Shinkai 2020). Most retroelement families are bound by Krüppel-

associated box domain zinc finger proteins (KRAB-ZFPs), which coevolve to recognize specific 

retroelement families (Jacobs et al. 2014; Wolf et al. 2015; Imbeault et al. 2017). KRAB-ZFPs 

repress retroelements by recruiting KAP1/TRIM28 (Sripathy et al. 2006) and other repressive 

epigenetic modifiers (Schultz et al. 2001; Schultz et al. 2002). 

Restricting retroelements is especially important for germ cells because of their transmission to the 

next generation. During embryonic development, primordial germ cells (PGCs) undergo epigenetic 

reprogramming, characterized by both DNA demethylation and global resetting of histone marks in 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2021. ; https://doi.org/10.1101/2021.05.19.444783doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444783
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

mice and humans (Seki et al. 2007; Seisenberger et al. 2012; Kobayashi et al. 2013; Gkountela et al. 

2015; Guo et al. 2015; Tang et al. 2015). A subset of young retroelements escape from this global 

DNA demethylation event in PGCs, which might be required for retroelement silencing (Seki et al. 

2007; Seisenberger et al. 2012; Kobayashi et al. 2013; Gkountela et al. 2015; Guo et al. 2015; Tang 

et al. 2015). H3K9me3 mediated by SETDB1 is enriched in DNA demethylation-resistant 

retroelements in mouse PGCs (Liu et al. 2014). As SETDB1 regulates DNA methylation of a subset 

of retroelements (Matsui et al. 2010; Rowe et al. 2013), and it is recruited to the retroelements via 

interaction with KRAB-ZFPs; it is speculated that SETDB1/KRAB-ZFPs contribute to DNA 

demethylation resistance in PGCs. In contrast to the extensive DNA hypomethylation in PGCs, 

genomic DNA of sperm is highly methylated in both humans and mice (Molaro et al. 2011; 

Kobayashi et al. 2013; Hammoud et al. 2014; Okae et al. 2014). Retroelements are also subjected to 

de novo DNA methylation during spermatogenesis in mice via the PIWI/piRNA-pathway and others 

(Aravin et al. 2008; Inoue et al. 2017). Epigenetic alterations in retroelements and dysfunction of 

retroelement silencing pathways in male germ cells are associated with male sterility linked to 

azoospermia (Bourc'his and Bestor 2004; Aravin et al. 2007; Carmell et al. 2007; Heyn et al. 2012; 

Urdinguio et al. 2015). In addition, epigenetic alterations of retroelements in male germ cells can 

potentially be transmitted to the next generations and change their phenotypes (Rakyan et al. 2003; 

Daxinger et al. 2016). Therefore, deciphering the regulatory mechanisms of retroelements in germ 
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cells contributes to understanding sterility and transgenerational epigenetic inheritance. Despite 

extensive studies that have been conducted to understand DNA methylation mechanisms in mouse 

spermatogenesis, only limited progress has been achieved in humans.  

In this study, we performed an integrative analysis of three sets of previously reported data: whole-

genome bisulfite sequencing (WGBS) data of human PGCs (hPGCs) and sperm, transcriptome of 

human male germ cells, and comprehensive human KRAB-ZFPs ChIP-exo data. From this analysis, 

we revealed that KRAB-ZFPs are associated with DNA demethylation resistance of retroelements in 

hPGCs. We also found that de novo DNA methylation patterns in spermatogenesis vary among L1, 

LTR, and SVA retroelements. Notably, we found that SVAs are subjected to de novo DNA 

methylation by the transcription-directed DNA methylation machinery. Interestingly, the 

effectiveness of the machinery also varies among human individuals, with SVAs being one of the 

major sources of epigenetic variations in sperm. 

 

RESULT 

Transposable elements showing DNA demethylation resistance in hPGCs 

To reveal the determinants of DNA demethylation resistance in hPGCs, we reanalyzed publicly 

available WGBS data for male hPGCs (Guo et al. 2015). As the global erasure of DNA methylation 

was mostly completed at 19 weeks of gestation (Fig. 1A), we further analyzed the DNA methylation 
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status of full-length transposable elements in male hPGCs at 19 weeks of gestation to search for 

retroelements that display demethylation resistance. Typically, we focused on full-length copies of 

retroelements to analyze DNA methylation for at least 30 copies. Among the different retroelements 

analyzed, primate-specific retroelement families L1PA, SVA, and LTR12 showed high DNA 

methylation status (Fig. 1B). In the SVA family, SVA_A, which was the oldest SVA type and 

emerged 13–14 million years ago (Mya), showed the highest DNA methylation levels than other 

SVA types, including currently active SVA_E/F (Fig. 1C). In the L1 family, L1PA3-5, which were 

moderately young and emerged 12–20 Mya, showed higher methylation levels than the older L1 

types (L1PA5–8) and younger L1 types, including currently active L1 (L1HS) (Fig. 1D). LTR12 

(also known as HERV9 LTR) is not currently active, and all LTR12 types were highly methylated 

(Fig. 1E). Thus, it seemed that young but not active ones among L1PA, SVA, and LTR12 types 

tended to show DNA demethylation resistance in hPGCs. In addition, DNA methylation levels of 

each retroelement type were highly variable among full-length copies (Fig. 1C-E), which prompted 

us to identify the potential determinants of DNA sequences for DNA demethylation resistance by 

comparing DNA sequences of retroelement copies. To this end, we classified each retroelement copy 

according to their DNA methylation levels as follows: low < 20%, 20% ≤ medium < 60%, high ≥ 

60%. From this classification, we observed that both the “High” and “Low” classes of copies exist in 

highly methylated retroelement types in hPGCs such as SVA_A, L1PA3, and LTR12C (Fig. 1F-H). 
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FIGURE LEGENDS 

Fig. 1 Retroelements showing DNA demethylation resistance 

(A) Violin plots showing DNA methylation levels of each CpG site during human male germ-cell 

development. DNA demethylation was almost completed at 19 weeks of gestation. (B) Scatter plots 

showing average DNA methylation level of each retroelement type between somatic cells and male 

hPGCs at 19 weeks of gestation. Only full-length copies were used for this analysis, and only 

retroelement types with >= 30 full-length copies were shown. Each plot was colored according to its 

retroelement family (Red: SVA, Blue: L1, Green: LTR, Gray: Other). (C-E) Violin plots showing 

DNA methylation level of each retroelement type in hPGCs at 19 weeks of gestation. (F-H) Bar 

graphs showing the fraction of “Low”, “Medium” and “High” methylated class of each retroelement 

type in male hPGCs at 19 weeks of gestation. 
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Next, we examined the differences between the groups. 

 

The presence of ZNF28 and ZNF257 binding motifs are correlated with demethylation 

resistance in SVA_A 

KRAB-ZFPs are pivotal factors for retroelement silencing by recruiting KAP1 and SETDB1. To 

investigate whether KRAB-ZFPs are involved in DNA demethylation resistance of SVAs, we 

analyzed the frequency of SVA_A copies with previously reported 236 KRAB-ZFP peaks (Imbeault 

et al. 2017). We found that ZNF257 and ZNF28 binding was correlated with the DNA methylation of 

SVA_A (Fig. 2A). Although ZNF611 and ZNF91 have been reported to interact with SVAs in 

mESCs (Jacobs et al. 2014; Haring et al. 2021) and those bindings were confirmed on the SVA_A 

copies (Fig. 2A), the interaction was not correlated with DNA methylation states of SVAs in male 

hPGCs at 19 weeks of gestation (Fig. 2A). More than 53.8% of “High” or “Medium” SVA_A 

elements were bound by either ZNF257 or ZNF28, while no “Low” SVA_A was bound (Fig. 2B). 

Enrichment of ZNF257 and ZNF28 in SVA_A was positively correlated with DNA methylation (Fig. 

2C), and both ZNF257 and ZNF28 showed the highest enrichment of SVA_A in the SVA family 

(Fig. 2D). The SVA element contains a region of variable number tandem repeats (VNTRs) in the 

middle part. SVA_A contains one type of VNTR (VNTR1), while other SVA classes possess two 

types of VNTRs (VNTR1 and VNTR2) (Fig. 2F). ZNF257 and ZNF28 binding motifs, which were 
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Fig.2 Identification of KRAB-ZFPs associated with DNA demethylation resistance in SVAs 

(A) Heatmap showing the fraction of SVA_A copies which overlaps of KRAB-ZFP peaks. ZNF257 

and ZNF28 peaks were more frequently overlapped with “Medium” and “High” methylated SVA_A 

than “Low” methylated SVA_A. For this analysis, publicly available ChIP-exo data from 236 human 

KRAB-ZFPs in HEK293T cells (Imbeault et al. 2017) were used. (B) Bar graphs showing the 

fraction of SVA_A copies with ZNF257 and ZNF28 peaks. (C) Enrichment of ZNF257 and ZNF28 

on SVA_A classified by DNA methylation levels in male hPGCs at 19 weeks of gestation. (D) 

Enrichment of ZNF257 and ZNF28 on each SVA type. (E) Sequence logo of ZNF257 and ZNF28 

binding motifs. (F) Position of ZNF257 and ZNF28 binding motifs along SVA consensus sequences. 

VNTR1 and VNTR2 is composed of multiple copy number of tandem repeats, and the copy number 

of these VNTR is highly variable among SVA copies. Both ZNF257 and ZNF28 binding motifs were 

found within VNTR1 of SVAs. (G) Violin plots showing copy number of VNTR1 of each SVA type. 

(H) Violin plots showing VNTR1 copy number of SVA_A classified by its DNA methylation status 

in male hPGCs at 19 weeks of gestation. (I) Violin plots showing the number of ZNF257 and ZNF28 

motifs in SVA_A classified by DNA methylation status in male hPGCs at 19 weeks of gestation. P-

value was calculated by Tukey’s test. 
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predicted by HOMER (Heinz et al. 2010) (Fig. 2E), were located in VNTR1 (Fig. 2F). The number 

of ZNF257 and ZNF28 binding motifs along SVAs was the largest in SVA_A (Fig. 2F), which was 

correlated with the largest copy number of VNTR1 in SVA_A among SVA classes (Fig. 2G). The 

VNTR1 copy number was also highly variable among SVA_A copies (Fig. 2G), and DNA 

methylation of SVA_A was positively correlated with the VNTR1 copy number (Fig. 2H). The 

ZNF257/28 motif number was also correlated with the DNA methylation status of SVA_A (Fig. 2I). 

These data indicate that a high number of ZNF257 and ZNF28 binding motifs, which is caused by 

high VNTR1 copy number, enhances the enrichment of these KRAB-ZFPs, and maintains DNA 

methylation of SVA_A during hPGC development. Although ZNF257 and ZNF28 protein expression 

during male hPGCs development are not examined yet, at least their transcript were detected in male 

hPGCs (RPKM of ZNF257 and ZNF28 were 3.49 and 0.66, respectively) (Gkountela et al. 2015). 

 

The presence of the ZNF649 binding motif is correlated with demethylation resistance in L1s 

We also analyzed the association of KRAB-ZFP binding motifs and DNA methylation status of L1s 

and LTR12s in hPGCs. Consistent with previous reports that ZNF649 and ZNF93 bind L1s (Jacobs 

et al. 2014; Cosby et al. 2019), ZNF649 and ZNF93 peaks were frequently found in L1PA2–6 and 

L1PA3–6, respectively (Fig. 3A), and these two KRAB-ZFPs were enriched at the 5ʹ terminus of L1 

sequences (Fig. 3B). The frequency of L1 copies with ZNF649 or ZNF93 peaks correlated with the 
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Fig. 3 Identification of KRAB-ZFPs associated with DNA demethylation resistance in L1 

(A) Bar graphs showing the fraction of full-length L1 copies with ZNF93 and ZNF649 peaks. (B) 

Heatmaps showing enrichment of ZNF649 and ZNF93 along full-length L1 copies. ZNF649 binds 5’ 

regions of L1PA2~PA8, while ZNF93 binds the 5’ regions of L1PA3~PA8. (C) Bar graphs showing 

the fraction of L1 copies with ZNF93 and ZNF649 peaks. L1 copies were classified by their type and 

DNA methylation levels in male hPGCs at 19 weeks of gestation. (D) Sequence logo of ZNF93 and 

ZNF649 binding motifs. (E) Bar graphs showing the fraction of L1 copies with ZNF93 and ZNF649 

binding motifs. The presence of ZNF93 and ZNF649 binding motifs was correlated with higher 

DNA methylation of L1 in male hPGCs at 19 weeks of gestation. P-value was calculated by 

Hypothesis Testing for the Difference in the Population Proportions using a function of prop.test by 

R. (F) Expression of ZNF93 and ZNF649 during male hPGC development. (G) Comparison of 

sequences of ZNF649 binding sites among L1 types. L1HS lost the ZNF649 motif by a base 

substitution. (H) Comparison of sequences at ZNF649 binding sites between low and high 

methylated L1. (I) Heatmap showing the fraction of LTR12C copies, which overlap of KRAB-ZFP 

peaks. No KRAB-ZFP peak was correlated with DNA methylation levels of LTR12C in hPGCs. (J) 

Phylogenetic analysis of LTR12C copies classified by DNA methylation levels in hPGCs. Low and 

High methylated LTR12C copies were colored blue and red, respectively. 
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DNA methylation levels of L1s (Fig. 3C). Therefore, these two KRAB-ZFPs are candidate factors 

for the DNA demethylation resistance of L1s. Similar to the SVA_A case described above, the 

presence of ZNF649 or ZNF93 binding motifs (Fig. 3D) was correlated with DNA methylation 

levels (Fig. 3E). The correlation between the binding motif and DNA methylation was stronger in 

ZNF649 than in ZNF93 (Fig. 3E); ZNF93 was not bound to L1PA2, which could be methylated in 

hPGCs (Fig. 3A, B), and it was reported that ZNF649 was expressed in male hPGCs, but ZNF93 not 

(Fig. 3F) (Gkountela et al. 2015). These data suggest that ZNF649 plays a more central role in the 

DNA demethylation resistance of L1s in hPGCs than ZNF93. The ZNF649 binding motif was 

located at the 5ʹ UTR of L1s (Fig. 3G), consistent with the enrichment of ZNF649 in that region 

(Fig. 3B). Enrichment of ZNF649 in L1s was decreased in L1PA2 and almost lost in L1HS (Fig. 

3B). Consistent with the reduced ZNF649 enrichment, base substitution at the fifth position of the 

ZNF649 binding site occurred in the consensus sequences of L1HS (Fig. 3G). As the fifth position of 

the ZNF649 binding site (T) tended to be conserved in highly methylated L1 copies (Fig. 3H), this 

position of T might be required for ZNF649 binding to L1. Unlike SVAs and L1s, no KRAB-ZFPs 

showed a correlation between their enrichment and DNA methylation of the LTR12 family in hPGCs 

(Fig. 3I). However, phylogenic analysis of LTR12C copies showed that highly-methylated LTR12C 

copies were genetically separated from low-methylated copies (Fig. 3J). Thus, the DNA 

demethylation resistance of LTR12C was also genetically determined.  
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Mode of DNA methylation acquisition during spermatogenesis is different among retroelement 

types 

To investigate how the DNA methylation status of retroelements changes during spermatogenesis, 

we compared DNA methylation levels of each retroelement copy in male hPGCs at 19 weeks of 

gestation to those in adult sperm. For this analysis, publicly available human sperm WGBS data 

from two donors were used (Hammoud et al. 2014). The dynamics of DNA methylation in 

retroelements during spermatogenesis are vastly different among retroelement types and individuals. 

The majority of L1 copies acquired DNA methylation during spermatogenesis in both individuals, 

while LTR12C copies tended to maintain their DNA methylation status in hPGCs during 

spermatogenesis (Fig. 4A). A substantial difference between individuals was found in SVAs. The 

majority of SVA copies acquired DNA methylation during spermatogenesis in sperm donor 1 but not 

in sperm donor 2 (Fig. 4A). To show these trends more efficiently, we classified retroelement copies 

according to DNA methylation levels in sperm (common high: >60% in both donors, high and low: 

>60% in donor1 and <20% in donor2, common low: <20% in both donors). The majority of low-

methylated L1 copies in hPGCs were highly methylated in sperm from both donors (Fig. 4B). In 

contrast, most LTR12C/D copies tended to maintain the PGC DNA methylation status during 

spermatogenesis (Fig. 4C). Among the SVA types, SVA_A tended to show high DNA methylation 
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Fig. 4 DNA methylation dynamics of retroelements during human spermatogenesis 

(A) Scatter plots showing DNA methylation levels of each retroelement copy in male hPGCs at 19 

weeks of gestation and sperm. WGBS data from two sperm donors (Hammoud et al. 2014) were 

used for this analysis. Donor1 and donor2 were colored by orange and cyan, respectively. (B-D) Bar 

graphs showing the fraction of groups determined by DNA methylation patterns in two sperm donors 

in L1 (B), LTR12 (C), and SVA (D). Bar graphs were also separated by DNA methylation levels 

(high or low) in male hPGCs at 19 weeks of gestation. (E) Violin plots showing DNA methylation 

levels of SVA_D copies in male hPGCs at 19 weeks of gestation, sperm donor1, and sperm donor2. 

The violin plots were also separated by DNA methylation levels of SVA_D copies in male hPGCs at 

19 weeks of gestation. Although hypomethylated SVA_D copies in male hPGCs at 19 weeks of 

gestation acquired DNA methylation during spermatogenesis, the degree of DNA methylation 

increase was significantly different between sperm donors. P-value was calculated by Tukey’s test. 
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levels in both sperm donors, while other SVA types showed variable methylation levels between 

sperm donors (Fig. 4D), especially in the SVA copies with low DNA methylation levels in hPGCs 

(Fig. 4E). 

 

The degree of DNA methylation acquisition during spermatogenesis is different among SVA 

copies 

Although the DNA methylation status of SVAs was highly variable between sperm donors, some 

SVA copies acquired DNA methylation or maintained a low-methylated state during 

spermatogenesis in both sperm donors (Fig. 4D). Thus, we can address how SVAs gain DNA 

methylation during spermatogenesis by comparing SVAs acquiring DNA methylation in both sperm 

donors (“Low” in hPGCs and “Common High” in sperm) to SVAs maintaining hypomethylation in 

both sperm donors (“Low” in PGCs and “Common Low” in sperm). Phylogenetic analysis of 

“Common Low” and “Common High” SVA_B copies showed that these two classes of SVA copies 

were not genetically separated (Fig. 5A), which suggests that acquisition of DNA methylation in 

SVAs during spermatogenesis is not genetically determined. The presence of transcription-directed 

retroelement silencing mechanisms, such as the PIWI/piRNA pathway (Watanabe et al. 2018), 

prompted us to investigate the correlation between the genomic distribution of SVA copies and DNA 

methylation. Approximately half of SVA_B–F were inserted in the gene body, most of which were in 
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Fig. 5 Transciprition associated regulation of DNA methylation of SVA during spermatogenesis 

(A) Phylogenetic analysis of SVA_B copies low-methylated in male hPGCs at 19 weeks of 

gestation. SVA_B copies highly methylated by both sperm donors were colored by red, while those 

hypomethylated by both sperm donors were colored by blue. (B) Bar graphs showing the fraction of 

SVA_B~F copies inserted in a gene body. SVA copies were classified by DNA methylation patterns 

in two sperm donors. Only low methylated SVA copies in male hPGCs at 19 weeks of gestation were 

used for this analysis. (C) Violin plots showing the expression of genes in adult spermatogonial stem 

cells 2 (Sohni et al. 2019). Genes were classified according to the DNA methylation status of SVAs 

inserted in them in the antisense direction. P-value was calculated by Tukey’s test. (D) Enrichment 

of RNA-seq reads from undifferentiated spermatogonia (Tan et al. 2020) around non-genic SVAs. 

Only low-methylated SVA copies male hPGCs at 19 weeks of gestation were used for the analysis, 

and SVA copies were classified by DNA methylation patterns in two sperm donors (common low, 

high & low and common high). 
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the antisense direction (Fig. 5B). Interestingly, “Common High” SVA_B–F copies were enriched in 

the gene body with antisense direction, and “Common Low” SVA_B–F copies were depleted from 

the gene body (Fig. 5B). We reanalyzed previously reported single-cell RNA-seq data in human 

testes (Sohni et al. 2019) to investigate the expression status of genes with SVAs in the antisense 

direction. Genes with “Common High” SVA_B–F copies tended to show a higher expression in 

spermatogonial stem cells than genes with “Common Low” (Fig. 5C). Thus, SVAs are methylated 

during spermatogenesis if they are inserted into actively transcribed genes. “High and Low” 

SVA_B–F copies were not enriched in a gene body (Fig. 5B). However, genes with “High and Low” 

SVA_B–F copies in the antisense direction showed higher expression in spermatogonial stem cells 

than randomly extracted genes and genes with “Common Low” SVA_B–F copies but lower 

expression than genes with “Common High” SVA_B–F copies (Fig. 5C). Although approximately 

half of the “High and Low” SVA_B–F copies were located in the non-genic regions, RNA-seq reads 

from previously reported undifferentiated spermatogonia (Tan et al. 2020) were more frequently 

mapped around the non-genic “High and Low” SVA_B–F copies than “Common Low” B–F copies 

(Fig. 5D). Therefore, genomic regions with the non-genic “High and Low” SVA_B–F copies were 

potentially transcribed during spermatogenesis. These data suggest that SVAs are subjected to 

transcription-directed de novo DNA methylation during spermatogenesis, and their effectiveness 

varies among individuals. 
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SVAs constitute a major source of inter-individual epigenetic variations in sperm  

To investigate whether the inter-individual variation of sperm DNA methylation in SVAs was a 

common phenomenon, we reanalyzed another set of previously reported WGBS data from three 

sperm donors (Okae et al. 2014). We again observed a significant difference in methylation levels of 

“High and Low” SVA_B–F copies (Fig. 6A). To further validate this, we performed amplicon-seq of 

bisulfite PCR products from SVAs (Fig. 6B). For amplicon-seq, we designed three sets of PCR 

primers in SVAs, and the three PCR products were combined and sequenced using a next-generation 

sequencer (Fig. 6B). We constructed an amplicon-seq library from five sperm donors and obtained 

~1.7–2.2M read pairs from each sample. More than 90% of full-length SVA_B–F could be analyzed 

by our SVA amplicon-seq (minimum depth of CpG ≥ 5, analyzed CpG number ≥ 10) (Fig. 6C). 

Consistent with publicly available sperm WGBS data, “High and Low” SVA_B–F copies showed 

variation in DNA methylation among individuals (Fig. 6D). Finally, we investigated the impact of 

SVAs on inter-individual epigenetic variations in sperm. To this end, we identified differentially 

methylated regions (DMRs) between human sperm donors from previously reported sperm WGBS 

data (Hammoud et al. 2014). Although DNA methylation profiles between these two donors were 

highly correlated (Fig. 6E), 2,008 regions were identified as DMRs (donor 1 < donor 2: 332, donor 2 

< donor1: 1,676). Out of 1,676 Donor1-specific methylated DMRs, 772 (46.1%) were overlapped 
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Fig. 6 SVAs constitute a major source of inter-individual epigenetic variations in sperm  

(A) Violin plots showing DNA methylation of SVA copies in previously reported three sperm donors 

(Okae et al. 2014). Only low-methylated SVA copies in male hPGCs at 19 weeks of gestation were 

used for the analysis. SVA copies were classified by DNA methylation levels of two sperm donors 

from Hammoud et al. (Hammoud et al. 2014). Donor#1 showed significantly higher DNA 

methylation levels in “High and Low” SVA copies than other sperm donors. P-value was calculated 

by Tukey’s test. (B) Scheme of amplicon-seq for analyzing SVA methylation. (C) Bar plots showing 

the fraction of analyzed full-length SVA copies by amplicon-seq. (D) Violin plots showing DNA 

methylation levels of SVA copies in five sperm donors from amplicon-seq. Only low-methylated 

SVA copies in male hPGCs at 19 weeks of gestation were used for the analysis. SVA copies were 

classified by DNA methylation levels of two sperm donors from Hammoud et al.. Donor#5 showed 

significantly higher DNA methylation levels in “High and Low” SVA copies than other sperm 

donors. P-value was calculated by Tukey’s test. (E) Scatter plot showing the DNA methylation 

between sperm donor1 and sperm donor2 from Hammoud et al... DNA methylation levels between 

these two donors were highly correlated. (F) Heatmap showing DNA methylation levels, genomic 

distribution and overlap with SVAs of DMRs. (G) Representative view of DMRs overlapping with 

SVA. Black and green boxes represent SVA and DMR, respectively.  
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with SVAs (Fig. 6F). We also observed differential methylation among individuals in SVA-

associated DMRs from our amplicon-seq data (Fig. 6G). Thus, variation in SVA methylation is a 

major source of the sperm epigenome among human individuals. 

 

Discussion 

In this study, we described the possible molecular mechanism by which retroelements escape from 

genome-wide DNA demethylation in hPGCs, and how de novo DNA methylation is acquired during 

human spermatogenesis. Our analysis also showed that DNA demethylation resistance in hPGCs 

frequently occurred in moderately young retroelements such as L1PA, SVA_A, and LTR12. In 

addition, KRAB-ZFP binding potentially contributed to DNA demethylation resistance of L1s and 

SVAs. In particular, ZNF257/28 and ZNF649 were associated with DNA demethylation resistance of 

SVAs and L1s, respectively (Fig. 7). Although it has been reported that ZNF91 binds to VNTR in 

SVAs and silences SVA expression in embryonic stem cells (ESCs) (Jacobs et al. 2014; Haring et al. 

2021), DNA demethylation resistance of SVAs did not correlate with ZNF91 binding, suggesting 

that a different KRAB-ZFP set is used to suppress SVAs between PGCs and ESCs in humans. Both 

ZNF257 and ZNF28 bound to VNTR1 (Fig. 2F), and high copy numbers of VNTR1 were correlated 

with high ZNF257 and ZNF28 enrichment and DNA methylation (Fig. 2H, I). The decreased copy 

number of VNTR1 after SVA_B emergence (Fig. 2G) may have been necessary for SVAs to escape 
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Fig. 7 Summary of this study 

Our data demonstrated the association between KRAB-ZFP binding motifs and DNA demethylation 

resistance of L1 and SVA. ZNF649 and ZNF257/28 were associated with DNA demethylation 

resistance of L1 and SVA, respectively. Although we could not find KRAB-ZFPs associated with 

DNA demethylation resistance of LTR12, phylogenic analysis of LTR12C copies showed that highly 

methylated copies were genetically separated from hypomethylated copies. Thus, the DNA 

demethylation resistance of LTR12 is genetically determined, not stochastically or environmentally. 

The dynamics of DNA methylation during spermatogenesis was largely different among 

retroelement types. The majority of L1 copies acquired DNA methylation during spermatogenesis, 

while DNA methylation status of LTR12 in hPGCs tended to be maintained during spermatogenesis. 

The mode of DNA methylation change in SVAs during spermatogenesis was largely different among 

copies and individuals. SVA copies located in high transcriptionally active regions acquired DNA 

methylation during spermatogenesis, while those located in transcriptionally inactive regions 

maintained a hypomethylation state during spermatogenesis. On the other hand, the degree of DNA 

methylation in sperm in SVA copies located in low transcriptionally active regions was highly 

variable among individuals. These results suggest that SVA is methylated by transcription-directed 

DNA methylation mechanisms during spermatogenesis, and the activity of the mechanisms is highly 

variable among individuals. 
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the silencing mechanisms in hPGCs. We also found that ZNF649 binding was correlated with the 

DNA demethylation resistance of L1s in hPGCs. Even though our data showed a strong correlation 

between KRAB-ZFPs and DNA demethylation resistance, direct evidence remains elusive due to the 

limited availability of human fetal gonads. The PGC-like cells (PGCLCs) in vitro derivation systems 

are thought to be a promising model for investigating the biology of PGCs. Although the successful 

establishment of human PGCLCs has been reported previously (Sasaki et al. 2015), sufficient DNA 

demethylation was not observed in human PGCLCs (von Meyenn et al. 2016). Thus, the current 

human PGCLCs are not a suitable model for investigating the mechanisms of DNA demethylation 

resistance; further optimizating derivation conditions for human PGCLCs will aid our understanding 

of retroelement silencing in PGCs. 

In this study, we also showed that the mode of DNA methylation acquisition during spermatogenesis 

was vastly different among retroelement types. The majority of L1 copies acquired DNA 

methylation during spermatogenesis, while LTR12 tended to maintain DNA methylation status in 

PGCs during spermatogenesis (Fig. 7). L1HS, in which both ZNF93 and ZNF649 could not bind, 

also acquired DNA methylation during spermatogenesis (Fig. 4B). Other factors may be involved in 

the DNA methylation of L1 during spermatogenesis. The PIWI-piRNA pathway is responsible for 

DNA methylation of L1 transposons in mouse male germ cells (Aravin et al. 2007; Carmell et al. 

2007; Shoji et al. 2009; Manakov et al. 2015; Kojima-Kita et al. 2016). The PIWI-piRNA pathway 
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might also be functional in humans because mutations in genes involved in the PIWI-piRNA 

pathway are linked to human male infertility (Gu et al. 2010; Arafat et al. 2017), and the majority of 

putative piRNAs mapped to transposons at gestational week 20 are derived from L1 (Reznik et al. 

2019). Thus, the PIWI-piRNA pathway is a candidate for L1 silencing in human male germ cells. 

Interestingly, our data demonstrated that the acquisition of DNA methylation of SVAs during 

spermatogenesis is regulated by their inserted regions, not by their sequences. SVAs inserted in 

transcriptionally active regions in the antisense direction were targeted by de novo DNA methylation 

during spermatogenesis. It was reported that MIWI2 binds piRNAs and is recruited to nascent 

transcribed regions that are complementary to piRNAs in mice (Watanabe et al. 2018), then MIWI2 

interacting protein SPOCD1 recruits chromatin remodeling complex DNMT3A and DNMT3L to 

MIWI2 bound genomic regions to induce DNA methylation (Zoch et al. 2020). Thus, nascent 

transcripts with antisense SVAs could be targeted by the MIWI2/SVA-derived piRNA complex. 

There are other transcription-directed repetitive element silencing mechanisms, such as the HUSH 

complex that represses L1s and SVAs (Fukuda et al. 2018; Liu et al. 2018; Robbez-Masson et al. 

2018). The HUSH complex targets young, full-length L1s placed within introns of actively 

transcribed genes (Liu et al. 2018; Fukuda and Shinkai 2020). In addition to the HUSH complex, 

efficient pericentromeric heterochromatin formation requires transcription of pericentromeric 

satellite repeats, which stabilizes the SUV39H pericentromeric localization (Johnson et al. 2017; 
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Shirai et al. 2017; Velazquez Camacho et al. 2017). As SUV39H is also involved in retroelement 

silencing (Bulut-Karslioglu et al. 2014), both the HUSH complex and SUV39H are also candidate 

factors involved in the transcription-directed DNA methylation of SVAs in human male germ cells. 

Our data indicated that, in sperm, the degree of DNA methylation of SVAs located in genomic 

regions with low transcriptionally activity varied among individuals. This result suggests that the 

effectiveness of transcription-directed de novo DNA methylation in human male germ cells varies 

among individuals. Previous studies have reported that hypermethylation of the promoter regions of 

PIWIL2 and TDRD1, which are involved in the PIWI-piRNA pathway, is associated with abnormal 

DNA methylation and male infertility in humans (Heyn et al. 2012). Thus, the functionality of the 

PIWI-piRNA pathway could be different among individuals, which might also contribute to the 

epigenetic variation of SVAs in male germ cells. SVAs function as enhancers (Gianfrancesco et al. 

2017), and SVA insertions alter the chromatin state around the insertion site (Fukuda et al. 2017). 

SVA insertions are associated with Fukuyama-type congenital muscular dystrophy and Lynch 

syndrome (Ostertag et al. 2003; Payer and Burns 2019). Thus, the difference in SVA regulation 

among individuals may induce changes in gene regulation in male germ cells, the risk of genome 

instability, and the incidence of diseases among individuals. 
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METHODS 

Semen collection.  

Ejaculates were provided by the patients who visited the Reproduction Center in the Ichikawa 

General Hospital, Tokyo Dental College. All study participants were briefed about the aims of the 

study and the parameters to be measured, and consent was obtained. The study was approved by the 

ethics committees of RIKEN, Tokyo University and Ichikawa General Hospital. Sperm 

concentration and motility were measured with a computer-assisted image analyzer (C-Men, 

Compix, Cranberry Township, PA, USA). Human semen was diluted twice with saline, and was 

layered on 5.0 mL of 20 mM HEPES buffered 90% isotonic Percoll (Cytiba, Uppsala, Sweden) and 

centrifuged at 400× g for 22 min. The sperm in the sediment was recovered to yield 0.2 mL, and then 

introduced to the bottom of 2.0 mL of Hanks’ solution to facilitate swim-up. The motile sperm in the 

upper layer was then recovered. 

 

Preparation of SVA amplicon-seq. 

Genomic DNA was subjected to bisulphite-meidated C to U conversion using MethylCode Bisulfite 

Convrsion Kit (ThermoFisher Scientific), and then used as a template for PCR for 35 cycles with 

EpiTaq (TAKARA) using the following primer: SVA_1_Fw 

TTATTGTAATTTTTTTGTTTGATTTTTTTGTTTTAG. SVA_1_Rv  
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AAAAAAACTCCTCACATCCCAAAC. SVA_2_Fw TTAATGTTGTTTAGGTTGGAGTGTAGTG. 

SVA_2_Rv CAAAAAAACTCCTCACTTCCCAATA. SVA_3_Fw 

TTTGGGAGGTGTATTTAATAGTTTATTGAGAA. SVA_3_Rv 

TAAACAAAAATCTCTAATTTTCCTAAACAAAAAACC). The PCR products from 3 set of 

perimers were combined, were purified by MinElute PCR Purification Kit (QIAGEN), and were 

fragmented by Picoruptor (Diagenode) for 10 cycles of 30 seconds on, 30 seconds off. Then, 

amplicon-seq library was constracted by KAPA LTP Library Preparation Kits (KAPA 

BIOSYSTEMS) and SeqCap Adapter Kit A (Roche). The amplicon-seq libraries were sequenced on 

a HiSeq X platform (Illumina).   

 

WGBS and amplicon-seq analysis. 

・Quality control, read mapping and calculation of DNA methylation  

Low quality bases and adaptor sequences were trimmed by Trim Galore version 0.3.7 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Then trimmed reads were aligned 

to the hg19 genome by Bismark v0.14.1 (Krueger and Andrews 2011). The methylation level of each 

CpG site was calculated as follows: (number of methylated reads/number of total reads). Only CpG 

sites with at least five reads were used for all analysis. Only nearly-full length retroelements, which 

contain at least 90% portion of consensuse sequence, were used for DNA methylation analysis of 
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retroelements. The information of retroelements was obtained from UCSC genome browser 

(http://genome.ucsc.edu/). For DNA methylation analysis of retroelements, we used retroelements 

containing at least 10 CpG sites of which read depth is at least five reads. The methylation level of 

each retroelement copy was calculated by averaging the methylation levels of the CpG sites within 

the copy.  

・Classification of retroelement copy according to DNA methylation level 

Retroelement copies were classfied by according to their DNA methylation levels as follows: Low < 

20%, 20% <= Medium < 60%, High >= 60%. 

・Association of KRAB-ZFP peaks, binding motifs and retroelement 

We obtained peak regions of each KRAB-ZFP, which were previously reported (Imbeault et al. 

2017), from gene expression omunibus GSE78099. Overlap of KRAB-ZFP peak and retroelement 

copy was investigated by bedtools v2.15.0 (Quinlan and Hall 2010). The binding motif of each 

KRAB-ZFP was predicted by the findMotifsGenome.pl program in Homer v4.8.3 (Heinz et al. 

2010). The KRAB-ZFPs binding motifs along retroelement copies were searched by FIMO (Grant et 

al. 2011). We used predicted motif sites with a q-value of 0.00005 or less for ZNF257 and ZNF28 

and with a q-value of 0.05 or less for ZNF93 and ZNF649 in this study. 

・DMR identification 

DMR candidates were identified using the ‘Commet’ command in BisulFighter (Saito et al. 2014). 
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To enhance the confidence of DMR call, we calculated the average methylation levels of the 

candidates using CpG sites with >=5 reads in both sperm donors, and among the candidates, those 

containing >=10 successive analyzable CpG sites and showing a >=40% methylation difference 

were determined as DMRs. 

 

Phylogenetic analysis of retroelement copies 

The evolutionary history was inferred by using the Maximu Liklihood method based on the Tamura-

Nei model (Tamura and Nei 1993). Initial tree(s) for the heuristic search were obtained by applying 

the Neighbor-Joining method to a matrix of pairwise distances estimated using the Maximum 

Composite Likelihood (MCL) approach. The tree is drawn to scale, with branch lengths measured in 

the number of substitutions per site. There were a total of 10153 positions in the final dataset. 

Evolutionary analyses were conducted in MEGA6 (Tamura et al. 2013). 

 

RNA-seq analysis 

We reanalyzed previously reported single-cell RNA-seq data in testis (Sohni et al. 2019). Read 

counts data of genes and cell type annotation of each cell were obtained from Gene Expression 

Omnibus under accession number GSE124263. Reads per million mapped reads (RPM) for genes 

were calculated in each cell. We used the average RPM of spermatogonial stem cells 2 in Fig. 5C. 
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We also reanalyzed previously reporeted RNA-seq data from undifferentiated spermatogonia (Tan et 

al. 2020), which is deposited in Gene Expression Omunibus under accession number GSE144085. 

Low quality bases and adaptor sequences were trimmed by Trim Galore version 0.3.7. Then, 

trimmed reads were aligned to the hg19 genome by Bowtie v0.12.7 with ?m 1. Enrichment of RNA-

seq reads around SVAs were visualized by ngsplot. RNA expression levels of ZNF93 and ZNF649 in 

hPGCs (Fig. 3F) were obtained from GSE63392 (Gkountela et al. 2015). 

 

Visualization of NGS data 

The Integrative Genomics Viewer (IGV) (Robinson et al. 2011)was used to visualize NGS data. 

Enrichment of RNA-seq reads and KRAB-ZFPs was visualized by ngsplot (Shen et al. 2014). Scatter 

plot and violin plot analysis were performed by ggplot2 package in R.  
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