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Abstract 
The global population is growing older. As age is a primary risk factor of (multi)morbidity, 
there is a need for novel indicators to predict, track, treat and prevent the development of 
disease. Lifestyle interventions have shown promising results in improving the health of 
participants and reducing the risk for disease, but in the elderly population, such interventions 
often show less reliable or subtle effects on health outcomes. This is further complicated by a 
poor understanding of the homeodynamics and the molecular effects of lifestyle 
interventions, by which their effects of a lifestyle intervention remain obscured. 
In the Growing Old Together (GOTO) study, we examined the responses of 164 healthy, 
elderly men and women to a 13-week combined physical and dietary lifestyle intervention. In 
addition to collecting blood samples at a fasted state, we sampled blood also 30 minutes 
following a standardized meal. This allows us to investigate an intervention response not only 
in the traditional fasted state, but also in the blood metabolic and cellular responses to a 
nutrient challenge. We investigated the transcriptomic and metabolomic responses to this 
nutrient challenge, how these responses relate to each other, and how this response is affected 
by the lifestyle intervention. 
We find that the intervention has very little effect on the fasted blood transcriptome, but that 
the nutrient challenge induces a large translational inhibition, and an innate immune 
activation, which together comprise a cellular stress response that is stimulated by the 
intervention. A sex-specific analysis reveals that although the same set of genes respond in 
the same direction in both males and females, the magnitude of these effects differ, and are 
modulated differently by the intervention. On the other hand, the metabolomic response to 
the nutrient challenge is largely unaffected by the intervention, and the correlation between 
the metabolomic nutrient response and transcriptomic modules indicates that the change in 
transcriptomic response to the nutrient challenge is independent from a change in cellular 
metabolomic environment. 
This work constitutes a glance at the acute transcriptomic stress response to nutrient intake in 
blood, and how a lifestyle intervention affects this response in healthy elderly, and may lead 
to the development of novel biomarkers to capture the phenotypic flexibility of health. 
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Introduction 
The global population is growing older (WHO, 2015) and as age is a primary risk factor for 
many diseases (Niccoli and Partridge, 2012) society is obligated to adjust to this demographic 
shift. This adjustment may take the form of psychosocial or medical interventions, structural 
social changes that together remove the barriers that cause or exacerbate physical and mental 
disability, and the prevention or delay of morbidity and/or progression to multi-morbidity 
(WHO, 2015). Although ageing is a very personal process driven by extrinsic and intrinsic 
changes that differ from one individual to the next, it has become clear that healthy ageing 
can generally be stimulated by healthy lifestyles. Lifestyle interventions are known to reduce 
the risk of multiple conditions such as cardiovascular disease, diabetes, cancer, obesity and 
hypertension, and it is assumed that they will contribute to life- and healthspan (Fontana et 
al., 2010; Longo et al., 2015). 
Lifestyle interventions that stimulate health include quitting smoking, reducing the 
consumption of alcohol and processed food, reduced nutrient intake or supplementation 
(Backx et al., 2016; Kraus et al., 2019; Layman et al., 2005), adopting physical and mental  
exercise (Pittas et al., 2006; Tieland et al., 2012), or combinations thereof  (Josse et al., 2011; 
Layman et al., 2005; van de Rest et al., 2016; Schutte et al., 2016). While interventions have 
shown positive health effects, these are typically examined in men, the sick, the young, or 
those at very high risk, and often only in small studies. In contrast, for the elderly who are at 
most risk of age-related diseases, such interventions have less reliable or very subtle effects 
on health outcomes(Backx et al., 2016; Tieland et al., 2012, 2017).  Additionally, the 
molecular basis of the individual response to interventions is still poorly understood. For 
instance, dietary or physical exercise interventions have shown changes in the metabolome 
(van Dijk et al., 2012; Pellis et al., 2012; Zeevi et al., 2015) but are frequently unable to 
identify changes in the transcriptome (Van Bussel et al., 2017; Fazelzadeh et al., 2018; ten 
Haaf et al., 2018). Also, the time-scale needed to investigate responses to interventions 
remains largely unknown. For instance, the effect of lifestyle interventions is increasingly 
investigated using dietary stress tests monitoring the response to overload lipid, protein or 
glucose administration. These metabolic and caloric challenge tests are regarded upon as 
novel potential biomarkers of health (van Ommen et al., 2014; Stroeve et al., 2015) recording 
the phenotypic flexibility of individuals within minutes to hours of the test triggering acute 
and complex stress responses (energy fluxes, oxidative and inflammatory stress, apoptosis 
etc.). Hence, there is a need to monitor the response not only by traditional health markers but 
also at the molecular level (Van Bussel et al., 2017; Catoire et al., 2012). 
In the Growing Old Together (GOTO) study, we previously examined the response of 164 
healthy, elderly men and women to a 13-week combined physical activity and dietary intake 
reduction lifestyle intervention (van de Rest et al., 2016; Schutte et al., 2016) and found that 
several indicators of health, including BMI, waist circumference and systolic blood pressure 
improved as a result. In addition we demonstrated a beneficial effect on the fasted serum 
metabolome exemplified by a decrease in glucose, lipids, branched chain and aromatic amino 
acids, inflammatory markers such as α-acid glycoprotein, largely independent of the weight 
change (van de Rest et al., 2016). Here, we complement these studies by investigating to 
what extent the blood transcriptome and serum metabolome response to a standardized 
nutrient intake (containing 35% fat, 49% carbohydrates, 16% protein) after an overnight fast 
may provide information on the phenotypic flexibility in older people. We examined to what 
extent a lifestyle intervention changed this response and how this response can be considered 
the substantiation of health effects due to the intervention. We find that the intervention has 
little effect on the unchallenged (fasted) transcriptome. In contrast, the transcriptomic 
response to the nutrient challenge provides a glimpse at an acute stress response in blood, that 
the intervention modulates the degree of this response, and does so in a sex-dependent 
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manner. Moreover, we demonstrate that the metabolomic response to the nutrient challenge is 
largely not affected by the intervention, and that the transcriptomic effect of the intervention 
on the nutrient challenge constitutes a different cellular response to the same metabolomic 
environment. 

Results  
A 13-week combined lifestyle intervention improves the health of its participants 
For 85 of the 164 GOTO (Materials and methods) participants, RNA sequencing data was 
collected from whole blood sampled before and after the 13-week combined dietary and 
physical lifestyle intervention (Materials and Methods). Sampling was conducted after an 
overnight fast (Figure 1A, timepoints 1 and 3) and again 30 minutes following administration 
of a standardized liquid meal (timepoints 2 and 4). 
In previous studies, we demonstrated that health indicators such as parameters of body 
composition, physiological function, diagnostic serum parameters and disease related 
metabolites were positively affected by the combined lifestyle intervention. The intervention 
effects in these 85 individuals were comparable to those found in the complete study (van de 
Rest et al., 2016), finding that many of the most relevant health indicators for both men and 
women, including BMI, systolic blood pressure, cholesterol, HDL cholesterol and fT3 
improved throughout the intervention (Figure 1B, SI Table 1). Only insulin showed a non-
significant effect, though it was also the weakest detected effect when investigated in the 
whole study. 
 
Nutrient challenge raises a strong transcriptomic response and is enhanced by the 
intervention 
To examine the effects of the intervention on the blood transcriptome, we performed a 
differential expression test, contrasting the fasted samples before and after the intervention. 
on both the fasted and postprandial samples (Materials and Methods, SI Table 2, SI Figure 1). 
This revealed that there were very few differentially expressed genes in the fasted or 
postprandial samples when baseline was compared to the intervention. In total, 87 genes were 
differentially expressed in the fasted samples (timepoints 3 vs 1), but no functional terms 
were enriched in this gene set. 
While the intervention appeared to have a relatively small effect on the blood transcriptome, 
we observed large effects for each of the nutrient challenges. The nutrient challenge affected 
the postprandial expression of a large number of genes (Figure 1C), with 1209 differentially 
expressed at baseline (timepoints 2 vs. 1, Figure 1C), and 2045 following the intervention 
(timepoints 4 vs. 3, Figure 1C). We mark two observations: First, the set of postprandially 
downregulated genes after the intervention is larger than that at baseline (326 at baseline, 988 
after, SI Table 2) and second, the set of genes postprandially upregulated after the 
intervention is largely the same as at baseline (883 before, 1057 after, overlapping with 617 
genes,). 
 
Nutrient challenge affects a common set of genes in both sexes, with different 
magnitudes 
As our study consisted of both men and women (44 and 41, respectively), we could 
investigate the male and female responses to the nutrient challenge separately. These analyses 
are rarely performed in challenge or intervention studies. In the sex-stratified analysis of the 
intervention effect in the fasted samples, the effects were still rather small in both males and 
females (72 and 50 genes, respectively). 
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In the sex-stratified nutrient challenge response, we observed remarkably different numbers 
in males and females both at baseline and after the intervention (Figure 1C, SI Table 2, SI 
Figure 1). Females exhibited more differentially expressed genes at baseline (1255, with 970 
up-, and 285 down-regulated) than after the intervention (656 total, with 489 up-, and 167 
down-regulated), males had fewer differentially expressed genes at baseline (825 total, with 
664 up- and 161 down-regulated), and more differentially expressed after the intervention 
(2783 total, with 1325 up- and 1458 down-regulated after the intervention). 
Generally speaking, the same gene is affected in the same direction by the nutrient challenge 
in both males and females, merely the magnitude is different (Figures 2A-B, SI Figure 2). 
Our observation indicates that the intervention affects the nutrient challenge response 
differently in males and females; in males the effect becomes more pronounced, whereas in 
females it becomes smaller. We conclude that we can define a set of genes that are 
downregulated or upregulated in response to a nutrient challenge in both males and females, 
both before and after the intervention. This set of genes consisted of 1904 upregulated, and 
1721 downregulated genes. 
 
Nutrient challenge induces an inhibition of translational and transcriptional machinery 
To understand the functional effects of the nutrient challenge, we performed a functional 
enrichment firstly on the set of downregulated genes defined above. We find that the set is 
enriched for translation-related genes (Figure 2C, SI Table 3). The most highly enriched 
terms in the Reactome annotation are related to translation, including ribosomal proteins, 
mitochondrial ribosomal proteins, translation initiation factors, and elongation factors. When 
examining the levels of all differentially expressed translation genes (annotated in 
Reactome), we see that on the whole, translation is downregulated as a result of nutrient 
intake, both at baseline and after the intervention (Figure 3A, SI Figure 3). Transcription, 
including mRNA splicing functionality is also enriched, together with transcription factors 
(Materials and Methods, p < 0.05, chi2 approximation to fisher exact test). Additionally, we 
find functionality related to the degradation and metabolism of RNA enriched in the set of 
downregulated genes. 
 
Nutrient challenge induces an immune activation and a stress response 
The nutrient challenge, both at baseline and after the intervention, provokes a strong 
upregulation of genes enriched for innate immune functionality (Figure 2D, SI Table 3). The 
set is particularly enriched for the sub-annotation of Neutrophil degranulation. Many key 
immune genes, such as CD14, TLR4, NLRP3 and IL6R, are upregulated in response to the 
nutrient challenge (Figure 3B, SI Figure 3) e.g. Toll-like-Receptors, interleukin receptors, 
and Tumor Necrosis Factor Receptors are upregulated. Signal transduction is also enriched in 
the set of upregulated genes including STAT3. These observations, together with the 
observation that the blood cell type counts did not change (mixed effect model p > 0.05, SI 
Table 4), indicate an immune response and not a change in cell type composition. 
Specifically, an innate immune system response. 
In addition to the immune response, we also found that the cellular response to stress (Figure 
2E, Reactome: R-HSA-2262752) was enriched. Among these, we see that FOXO3, HIF1A, 
TNF and SOD2 (Figure 3C, SI Figure 3) are significantly upregulated in response to the 
nutrient challenge, together with several heat shock protein transcripts. 
 
Intervention acts on the postprandial response 
Previous results indicate an interaction between the nutrient challenge and the intervention, 
and we set out to investigate this effect. We visualize the interaction by plotting the 
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trajectories of people in their nutrient response (Figure 4, SI Figure 4). We notice that the 
average trajectory is different between the baseline and post-intervention responses. The 
average fasted state is approximately the same at baseline and after the intervention 
(timepoints 1 and 3), both in males (Figure 4A) and females (Figure 4B), but the postprandial 
state (timepoints 2 and 4) is different, more so for males than females. This indicates that the 
intervention has modified the postprandial response. 
Upon formally testing this effect with an interaction model of differential expression, we 
found very few differentially expressed genes (44 in females, 129 in men, Methods, SI Table 
2, SI Figure 1), despite the clear shift of trajectories in Figure 4, and the response in Figure 
2A/B. No functional terms were enriched in these sets of genes. We hypothesized that the 
interaction effect between the nutrient challenge and the intervention was not much stronger 
than the nutrient challenge effect at baseline, that perhaps the heterogeneity between 
individuals was making the effect less clear. 
Therefore, we determined the genes that contributed to the shift in trajectory in figures 4A 
and 4B (right panels, Materials and methods), finding 1413 genes in males, and 1304 in 
females, overlapping with 1175 genes. These genes were enriched for translational and 
transcriptional functions both in males and females (p < 0.05, fisher’s exact test, SI Table 3). 
This indicates that, although the intervention is acting differently on the magnitude of 
transcriptional response in males and females, it is acting on the same set of genes. 
 
Intervention tightens correlation network in response to the nutrient challenge across 
participants 
To investigate the intervention induced effect further, we studied the gene-response 
correlation networks of the nutrient challenge response at baseline and after the intervention 
(Materials and methods). We investigated the correlation between gene responses for males 
and females separately. In both males and females at baseline, we find a high positive 
correlation between downregulated genes, and a high positive correlation (though not as 
high) between upregulated genes (for males: Figure 5A, first panel, for females: SI Figure 5). 
Between the up- and down-regulated genes we also see a high negative correlation, indicating 
that a number of people in our study have both the up- and down-regulation response, 
meaning that the magnitude of the response to the challenge is a characteristic of the 
individual. After the intervention (comparing timepoint 3 to 4), the correlations are more 
pronounced (for males: Figure 5A, second panel, for females: SI Figure 5). This indicates that 
the intervention reinforces the correlation between up- and down-regulated genes, that the 
intervention is modulating the postprandial response. 
 
Intervention induced changes in nutrient challenge based gene correlations differ 
between sexes 
To better understand the change in correlation structure as a result of the intervention, we 
examined the correlation network of changes in the postprandial (i.e. how much stronger was 
the response at timepoint 3 to timepoint 4, versus timepoint 1 to timepoint 2) gene responses 
due to the intervention, separately for each sex (Materials and Methods). The correlation 
structures in the network are different for males and females (Figure 5B), indicating that the 
groups of genes that are modified by the intervention are different between the sexes. To 
understand the functional units of change in these networks, we detected modules in these 
networks. We identified 9 and 10 modules of highly correlated genes in males and females, 
respectively (Figure 5B, Materials and Methods). The clusters are composed of either up- or 
down-regulated genes. In males and females, clusters 1 to 3 are upregulated, and the 
remaining clusters (clusters 4 to 9 and 4 to 10 in males and females respectively) are 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.18.444591doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444591
http://creativecommons.org/licenses/by-nc-nd/4.0/


downregulated. The down-regulated clusters are invariably related to translation and 
transcription and metabolism, and the up-regulated clusters are related to immune 
functionality (SI Table 3). 
To examine the consequence of expression of these clusters with respect to health, we 
calculated the association between the detected modules and health indicators (separately in 
men and women). We did not find any significant association between the transcriptional 
levels of the gene modules in fasted blood and major physiological health parameters that 
changed as a result of the intervention such as BMI, systolic blood pressure, and fasted 
glucose levels. It is clear that the intervention is having an effect on the postprandial response 
(Figure 2), and since these do not associate with the physiological markers that changed with 
the intervention, it is likely that the changes are related to an intermediate effect that these 
general physiological markers do not capture. 
 
The metabolomic response to the challenge is largely unaffected by the intervention 
Given that many studies have explored the response to challenge tests successfully by 
metabolomics analyses rather than transcriptome analyses, we recorded the response to the 
challenge by measuring 1H-NMR based blood metabolites at all four timepoints (timepoints 
2 vs 1, and 4 vs 3, Figure 1). We calculated the sex-stratified effects of the nutrient challenge 
on the metabolites both before and after the intervention for individuals for whom we also 
have RNA-Sequencing data (Materials and Methods). As previously reported (Schutte et al., 
2016), we find that the abundances of almost all metabolites are affected by the nutrient 
challenge (SI Figure 6). Additionally, we observe that the response to the nutrient challenge 
is consistent across the intervention; The directionality of the response is the same at baseline 
and after the intervention for the majority of the metabolites (SI Figure 2). Unlike the 
transcriptome, the intervention has little effect on the metabolomic response to the nutrient 
challenge. However, albumin and the percentage of Saturated Fatty Acids have different 
responses at baseline and after the intervention. Note that these effects are not the same for 
males and females, (Figure 6, SI Figure 6). Although these sex-differences are not significant 
(p>0.05, Materials and Methods), we observe that, both before and after the intervention, 
males have higher levels of glucose following the meal, and females have higher levels of 
leucine and isoleucine following the meal.  
 
Metabolite levels are associated with gene modules during nutrient challenge 
To understand the relationship between the metabolomic and transcriptomic responses to the 
nutrient challenge, and how these change as a result of the intervention, we investigated the 
association between the gene module eigengenes (representing a weighted average 
expression of genes in a specific module) and the metabolite levels, for males and females 
separately, at baseline, and after the intervention (Figure 6). We find that while the 
directionality of these associations are the same in males and females (for similar 
functionally-related modules), the strength of the associations differ, and are significant in 
different cases. The primary metabolite groups that associate with transcriptomic responses 
are glycolytic metabolites such as glucose, amino acids such as leucine and free fatty acids. 
At baseline, we find that the associations, both positive and negative between metabolites and 
the immune-related gene modules are stronger in females than in males. After the 
intervention, the opposite is true. This is consistent with our observations of the 
transcriptomic effects. Notable exceptions are glucose, which exhibits a stronger association 
with immune related gene modules at baseline than after the intervention in males, and none 
at all in females. For the translational modules (modules 5 and 6), we observe associations 
primarily in males after the intervention. Finally, the metabolomic results reveal the potential 
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role of free fatty acids in the transcriptomic response, i.e. Albumin, Acetoacetate, Acetate, 
and Free Fatty acids are associated to the transcriptomic responses. 

Discussion 
In the GOTO study, we subjected a population of healthy elderly Dutch individuals to a 
combined lifestyle intervention. Here we investigated to what extent a standardized nutrient 
challenge would reveal an individual molecular response to the intervention, that may go 
unnoticed in the traditionally sampled fasted blood. We observed that the intervention 
appeared to affect neither the fasted nor the postprandial (following an overnight fast) states 
of the blood transcriptome nor the postprandial state of the metabolome. The nutrient 
challenge itself elicited overall a strong consistent transcriptomic and metabolomic response. 
The transcriptomic response to the nutrient challenge at baseline and after the intervention 
was consistent for both sexes in terms of the responding genes and their directionality of 
change. This response was composed primarily of 1) an inhibition of ribosomal protein 
transcription, and 2) the activation of an innate immune response. The intervention affected 
this response, specifically on the ribosomal inhibition. Interestingly, whereas in males the 
response became stronger after the intervention, women had a stronger response at baseline. 
Further, the intervention increased the nutrient challenge based correlation between genes 
across participants, particularly in submodules related to the primary nutrient challenge 
response genes. Both the response to the challenge and modulation of the postprandial 
response by the intervention seemed a characteristic of the individual. After relating the gene 
modules of the transcriptomic response to metabolomic changes during the nutrient 
challenge, we found  among sex differences, specific metabolites (glucose, specific amino 
acids, such as leucine, and free fatty acids) that correlate with the gene modules. 
 
Nutrient challenge stimulates a cellular stress response likely due to mitochondrial 
ROS 
Following the nutrient challenge, glucose levels rise in the blood, both in males and females 
(Figure 6). Glucose stimulates the production of mitochondrial ROS in leukocytes (Mohanty 
et al., 2000), and we observe several downstream transcriptional responses that are indicative 
of this, including SOD2 (Hagenbuchner and Ausserlechner, 2013), HIF1A (Wellen and 
Thompson, 2010) and FOXO3 (Bakker et al., 2007; Kops et al., 2002). This constitutes a 
cellular stress response, and we hypothesize that the two major transcriptional effects we 
observe, the translational downregulation, and the innate immune activation, are components 
of this response. An impression of this is shown in Figure 7. As one of the most energy 
demanding tasks of a cell, translation is often the first to be modulated in a stress situation 
(Liu and Qian, 2014; Shenton et al., 2006; Spriggs et al., 2010). Similarly, the relationship 
between ROS and the innate immune system are well documented (Blaser et al., 2016; Chen 
et al., 2018; Park et al., 2015; Próchnicki and Latz, 2017; West et al., 2011), and immune 
responses to nutrient intake have previously been observed in blood (Baig et al., 2019; 
Leonardson et al., 2009). Our observations are consistent with an increased mitochondrial 
ROS production. Given that this response is occurring in 30 minutes following the meal, and 
that the participants are healthy, we expect that this is a normal, non-apoptotic, acute 
response to a change in homeostasis. We further stress that the overnight fast preceding the 
meal (‘refeeding’), may play a part in the biological responses we observed; The standardized 
challenge we have applied in effect is a liquid meal after an overnight fast. The composition  
of the standardized meal (SI Table 5) resembles a regular meal intake, however the 14 hours 
of fasting preceding the meal may be less regular.  
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The lifestyle intervention sensitizes the system response to nutrient intake 
The response to nutrient intake is consistent across the intervention, however, the 
intervention clearly affects the gene responses to nutrient intake. We observe not only that 
genes which affect the change in the postprandial response are primarily translational and 
immune genes, but also that the response correlation networks become tighter, and that 
specifically, the correlation within and between clusters relating to transcription, translation 
and immune function are being stimulated and strengthened. Together, this indicates that the 
translational and immune responses of the blood transcriptomic response to the nutrient 
challenge is being affected by the intervention. 
To investigate the cause of the change in response to the nutrient challenge due to the 
intervention, we looked at the metabolomic response to the nutrient challenge. With the 
exception of albumin, there are no substantial changes in the metabolomic response at 
baseline vs after the intervention that would explain a different transcriptional response. 
Thus, the changes in the metabolomic environment of leukocytes due to the nutrient 
challenge has not substantially changed as a result of the intervention. Therefore, it must be 
the transcriptomic response to the metabolomic environment that changes. This is supported 
by the changes in the strengths of the association between metabolite and gene modules at 
baseline vs after the intervention, both in males and females. However, exactly how this is 
modulated is unclear. Although it is known that hypoalbuminemia is associated with 
increased levels of inflammation and TNFA (Gatta et al., 2012), it is not clear whether this 
relationship extends to the acute response we studied. 
 
The intervention modulates the postprandial response in a sex-dependent manner 
When looking only at the sets of genes that we consider differentially expressed, it appears as 
though males and females have quite different transcriptional responses to the nutrient 
challenge. We have shown that this is not the case, and that the fundamental responses, a 
translational inhibition and an immune stimulation, are present in both sexes, merely at 
different magnitudes. Nevertheless, we did observe substantial differences between males 
and females in terms of the differential expression response to the nutrient challenge. 
Especially the translational element of the response, which was so pronounced following the 
intervention among bulk analysis is not found significant in females, although the 
directionality of the effect is consistent. Examining the gene responses to the intervention, we 
observe the same gene correlation structure in both sexes. Additionally, the network structure 
changes similarly in the two sexes as a result of the intervention. Thus, although the 
intervention affects the same nutrient challenge response in males and females, the direction 
of the effect is different in males and females. When looking at the serum metabolomics, we 
found that glucose behaves differently in males and females in response to the nutrient 
challenge, which may explain a difference in transcriptomic responses. On the other hand, for 
the most part, the metabolomic response to the challenge remains unchanged due to the 
intervention, but the association between metabolites and the gene modules do change 
considerably, and differently between the sexes. This indicates that, rather than changing the 
metabolomic response to the nutrient challenge, both sexes modulate their blood 
transcriptomic responses, but in different ways. It has been shown that men will consume 
more food if a meal is preceded by a fast, whereas a fast will induce women to consume less 
(Zandian et al., 2011). Whether this behavior is induced by social construction or hormonal 
signals in response to food is unclear, but it is possible that such biological effects play a role 
in our experiment also.  
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Implications for health 
We assume that the intervention has made people healthier. We have shown that the 
intervention has improved, among other things, the systolic blood pressure, body fat 
percentage, BMI and cholesterol levels of the subjects (van de Rest et al., 2016, SI Table 1). 
To what extent do these systemic indicators of health reflect metabolic or cellular health? We 
investigated the association between the gene response submodules and physiological/health 
parameters, but did not find such associations for the gene modules of the translational 
response. The established physiological parameters are perhaps not able to capture these 
dynamics in the transcriptomic response to the nutrient challenge, or its alteration by the 
intervention. Hence, novel markers are needed to capture these cellular effects. This is 
complicated by the sex-specific results we observe. In females, the intervention results in a 
less pronounced, whereas in males it results in a more pronounced response to the nutrient 
challenge. It is possible that one sex is having a negative health response to the intervention, 
or alternatively that health may imply different cellular behavior in each sex? 
We find that the transcriptome is more sensitive to these intervention effects than the 
metabolome, and may capture the phenotypic flexibility of the host’s stress response. 
Furthermore, the challenge we administered was not a diet stress test, such as high protein or 
lipid intake, but rather a standardized meal. Nevertheless, we observe a stress response, 
indicating that strong, stressful challenges may not be necessary to stimulate a measure of 
phenotypic flexibility. Our temporal resolution is limited to two samples within a 30 minute 
timeframe. With a higher resolution response over a longer period of time, we could better 
capture the dynamics of the intensity of the response, and duration until normalization. 
However, already with these two timepoints we have identified the stress response, and a 
have unveiled the interventions effect upon it. Further research on the dynamics of this 
response may lead to a better understanding of the suitability of this response in the search 
for a biomarker of phenotypic flexibility and health. 
 
Summary 
In this work, we report on an acute, cellular response to fasting and refeeding that is sex- and 
individual-dependent, and which can be modulated by a combined physical exercise and 
nutritional intervention within 13 weeks. We note that the nutrient challenge was an essential 
component in understanding the cellular response to the intervention more so than the 
response of the metabolome. Without the challenge, we would not observe a transcriptomic 
change as a result of the intervention. The current practice is to investigate only fasted 
samples, but this may be limiting. Important homeodynamic effects from interventions may 
have gone unnoticed merely as a result of looking at an uninformative physiological state. 
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Materials and Methods 
Data Availability 
RNA-Seq counts and the nightingale metabolomics data will be made available upon request 
via the European Genome-Phenome Archive (EGA). 
 
Study design 
In the Growing Old Together (GOTO) study, 164 (83 males, 81 females) healthy (mean BMI: 
26.9 ± 2.5, no diagnosed inherited or metabolic diseases), elderly (mean age 62.9 ± 5.7) 
participants underwent a 13-week lifestyle intervention, as previously described (van de Rest 
et al., 2016; Schutte et al., 2016). The intervention consisted of a 25% change in energy 
balance, divided equally over an increased exercise regimen, and a decreased nutrient intake. 
Both at baseline (before) and after the intervention, we subjected participants to a nutrient 
challenge. This challenge is composed of an overnight fast and a subsequent refeeding with a 
standardized meal replacement shake. The nutridrink is a liquid oral nutritional supplement 
(Nutricia Advanced Medical Nutrition, Zoetermeer, The Netherlands; 1.5 kcal/mL (6.25 
kJ/mL), 35% fat, 49% carbohydrates, 16% protein, SI Table 5). In a fasted and postprandial 
state (30 minutes after nutridrink administration), both at baseline and after the intervention, 
blood was sampled. Cell type counts were measured by Differential. Clinical chemistry 
parameters were measured in fasted serum collected by venipuncture. Of the 164 individuals 
in the GOTO study, we sequenced RNA of whole blood from 85 individuals (mean BMI: 
26.8 ± 2.4, mean age: 63.2 ± 5.7, 44 males, 41 females) at all 4 time points. It is in these 
individuals in which we investigate our effects. 
 
Investigation of Intervention effects on health parameters 
To test the effect of the intervention on measured health parameters (SI Table 1), we 
performed a mixed model test with a fixed effect of the intervention, and a random effect of 
the individual, both for a combined test including men and women, and a stratified test: 
~	𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 + (1|𝑝𝑒𝑟𝑠𝑜𝑛). P-values were adjusted for multiple testing with the 
Benjamini-Hochberg procedure to control for the False Discovery Rate. 
 
RNA isolation and sequencing 
Libraries were prepared from whole blood RNA with Illumina TruSeq version 2 library 
preparation kits. With the Illumina HiSeq 2000 platform, paired-end sequencing reads (2 × 
50-basepairs) were generated, with ten pooled samples per lane. Data processing was 
performed using the in-house BIOPET Gentrap pipeline, as previously described 
(Zhernakova et al., 2017). In short, low quality trimming was performed using sickle version 
1.200 ('se' '-t' 'sanger'). Adapter clipping was performed using cutadapt version 1.1 ('-m' '25'). 
Reads were aligned to GRCh37, while masking common SNVs in the Dutch population 
(GoNL (Francioli et al., 2014) MAF>0.01), using STAR version 2.3.0e ('--
outSAMstrandField' 'intronMotif' '-- outSAMunmapped' 'Within' '--outFilterMultimapNmax' 
'5' '--outFilterMismatchNmax' '8'). Sam to bam conversion and sorting was performed using 
Picard version 2.4.1. Read quantification was performed using htseq-count version 0.6.1p1 ('-
-format' 'bam' '--order' 'pos' '--stranded' 'no') using Ensembl gene annotations version 71 for 
gene definitions. The sequencing resulted in an average of 37.1 million reads per sample, and 
97.0 % (± 0.5 %) were mapped. 
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Differential Gene Expression 
There were 85 individuals for whom we have RNA-Seq data at all 4 timepoints. We 
identified confounding effects by testing the association between covariates and the principal 
components of the TMM-CPM normalized gene expression. We adjusted for technical effects 
(RNA isolation group, total µg yield, flowcell, mean insert size, and median 5’ bias), blood 
cell type percentages (eosinophils, monocytes, lymphocytes, basophil, red blood) and 
personal details (age, gender and individual, where individual was a random effect). In the 
interaction model, we added an interaction term between the intervention and fasted status. 
We removed genes that did not have at least 2 counts per sample on average. Differential 
expression was tested using limma with TMM and VOOM normalization (Law et al., 2014). 
We adjusted for multiple testing by correcting P-values with Bonferroni to control the 
Family-wise error rate. To select differentially expressed genes, a log2 fold change of 0.25 
was applied. For the sex-stratified analysis, the same model was used, except without 
adjusting for sex. Due to the additional number of tests, we used the Benjamini-Hochberg 
procedure to correct for multiple testing across these conditions. 
 
Correlation network and module analysis 
To adjust for the same effects as in the differential expression test, we fit a mixed model 
(with the same parameters as in the differential gene expression analysis) for each gene, and 
took the residual as the adjusted gene expression of the TMM-CPM expression values per 
person. For all genes that were differentially expressed between any of the conditions we 
tested, we calculated pearson correlation coefficients of the differences between the gene 
responses. Gene responses were calculated as the difference (fraction in log space) of the 
adjusted gene expression level before meal, and after the meal (after meal – before meal). 
These correlation networks were calculated both before and after the intervention. In this 
network, high correlations thus represent genes that change their food response due to the 
intervention in similar manners. 
We determine these correlation networks of all genes that were differentially expressed in the 
nutrient challenge in either men or women. We calculated distances from the correlation 
matrix with D = 1-p, where p is the pearson correlation coefficient matrix. We performed 
hierarchical clustering on this distance matrix with complete linkage. Cutting the tree at a 
specific height was not appropriate, as the density of the nodes was different in different 
branches. Therefore, we calculated the modularity of clusters at each node in the tree using 
the modularity metric defined in (Ayroles et al., 2009), with an additional weighting factor of 
the height of the dendrogram at that node in the tree. We exclude clusters in which there are 
negative correlations between nodes (i.e. a height in the dendrogram above 1). We cut the 
tree based on the 95th percentile modularity score, choosing a parent over its children only if 
both child nodes contained less than 100 genes. The dendrograms, and the clusters identified 
within the tree can be seen in SI Figure 7. 
For each module, eigengenes were calculated, and multiplied by the sign of the correlation to 
the gene in the module which showed the highest absolute correlation with the eigengene; 
The eigengene set to be positively associated with the gene. 
 
Functional Enrichment 
Functional enrichment was done with Fisher’s exact/chi2 approximation test on the Reactome 
(Fabregat et al., 2018) database, using the set of genes tested in the differential expression as 
a background. Tests were corrected using Benjamini Hochberg correction. For transcription 
factors, we used the list of transcription factors from Lambert et. al.’s review paper (Lambert 
et al., 2018). For the tests performed in the context of the PC trajectory analysis, and the 
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context of the network modules, we used the background of genes used in that analysis. 
Figures 2D and 2E were generated by calculating a distance matrix between reactome terms 
with the following distance function, related to the inverse of the overlap between the genes 
annotated with two terms 𝑠! and 𝑠": 𝑑2𝑠! , 𝑠"4 =

#
$%&#'()*!∩*"),#-,#

 . Terms were embedded in a 

2-dimensional space using multidimensional scaling. Terms with a distance less than 0.35 are 
connected by a line. Clustering was performed using complete hierarchical clustering on the 
distance matrix.  
 
Principal Component Trajectory Analysis 
We adjusted for unwanted effects in the same way as for the correlation network analysis. 
Using again only the significant genes, we performed a PCA embedding of all samples. For 
each condition (before/after meal x before/after intervention), we calculated the centroid of 
all samples in the condition. We selected principal components which have a significant 
association (p<0.05) to the nutrient intake effect (linear model: principal component ~ effect). 
Using these components, we projected the centroids back into the original gene space. We 
calculated the difference between the back-projected centroids across the intervention 
condition, to find the difference gene expression between the fasted and activated samples. 
As we observed a bimodal distribution of differences (one near zero, and one with negative 
differences), we fitted a mixture model of two gaussians to the differences, and calculated the 
probability of each gene under the two distributions. We selected all genes which have a 
higher probability of not originating from the near zero distribution as the genes which have 
affected the food intake trajectory following the intervention. 
 
Nightingale metabolomics data 
Using the serum of fasted and postprandial samples, both at baseline, and after the 
intervention, we quantified metabolomics using the nightingale 1-NMR metabolomics 
platform, as described in (Soininen et al., 2015). The effects of the intervention and nutrient 
challenge on the metabolome have previously been reported (van de Rest et al., 2016; Schutte 
et al., 2016). Of all individuals for whom we have metabolomics available at all four time 
points, 82 were overlapping with those for whom we have RNA-Seq data at all four time 
points. Of the 233 measures provided by the nightingale platform, several are derived 
measures, and we analysed the set of 63 non-derived metabolites (SI Table 6). 
 
Metabolomic analysis 
Very little of the measured data (0.6%) were missing and were imputed using a recursive 3-
nearest-neighbour system, in which missing values are taken as the average of the three 
nearest neighbors, determined by a euclidean distance to all other samples based on the non-
missing metabolites for that sample. When all metabolites are imputed, distances can be 
recalculated and metabolites can be updated. This proceeds until the imputation has 
stabilized. Imputed values were all near zero (reflecting that missing values are near the 
detection limit). Metabolomic measures were log-transformed, (adding a pseudocount equal 
to the smallest non-zero metabolite measure), z-transformed and Rank Inverse Normal 
transformed. The effects of the nutrient challenge were investigated in a linear mixed model 
containing fixed effects for nutrient intake status, age, partner/offspring status, and blood cell 
type counts, and random effects for the individual, and household. Sex differences between 
the male and female responses the challenge were investigated at baseline and after the 
intervention with a linear mixed model with an interaction term between sex and nutrient 
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intake status, with fixed effects for age, partner/offspring status, and blood cell type counts, 
and random effects for the individual, and household. 
 
Associating metabolites and gene modules 
We investigated the association of a metabolite and the eigengene as they change across the 
nutrient challenge. Transformed metabolite levels and module eigengenes were investigated 
in a linear mixed model as 𝑚	~	𝑒 + 1|𝑝𝑒𝑟𝑠𝑜𝑛, where 𝑚 is a metabolite and 𝑒 is a cluster 
eigengene. Associations were tested across the nutrient challenge within the baseline or post-
intervention states. 
 
Data availability 
Transcriptomic, metabolomic and associated metadata will be made available on the 
European Genome-Phenome Archive (EGA). 
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Figure legends 
Figure 1: 

A) Outline of the GOTO study timepoints. Participants have blood sampled at four 
timepoints. Preceding the intervention in a fasted state (1), and 30 minutes following a 
standardized meal (2), and after the 13 week intervention in a fasted state (3), and 30 
minutes following a standardized meal. 

B) Health markers significantly improved as a result of the intervention in both males 
and females. The error bar indicates the 95% confidence interval. aIndividuals on 
antihypertensive medication were excluded from this analysis. bIndividuals on lipid-
lowering medication were excluded from this analysis. 

C) Boxplot of differential expression counts. Left: downregulated, Right: Upregulated. 
Top: Intervention effect in fasted tissues, for all samples (gray bars), and males 
(green) and females (purple) separately. Middle: Nutrient challenge effect at baseline 
Bottom. Nutrient challenge effect after the intervention 

 
Figure 2: 

A) A paired-volcano-plot with results for males only. Each pair of points, connected by a 
line, represent the same gene at two conditions, the postprandial response, in purple at 
baseline, and in green following the intervention. Only genes which were significant in 
either of the two conditions are shown. 

B) A paired volcano plot, as in 2A, but showing results for females only. 
C) Functional enrichments in the consistently downregulated genes of the postprandial 

response. Each point refers to a Reactome annotation, and the distance between 
annotations is determined as the inverse of their gene overlap. Clusters are identified 
with a hierarchical clustering. The color of the point represents the -log10 FDR 
adjusted p-value of the enrichment, and the size represents the number of differentially 
expressed genes in that term.  

D) Functional enrichment graph in the upregulated genes of the postprandial response. 
 
Figure 3: 
Per-individual gene responses to the nutrient challenge among specific gene groups. Each 
pair of points represents an individual’s response to the nutrient challenge, on the left at 
baseline, and on the right following the intervention. Each pair is connected with an orange 
line if the expression is increased, and with a blue line if the expression is decreased. In SI 
Figure 3, we provide these figures separately for males and females. 

A) For translation genes. From left-to-right: For the eigengene of all differentially 
expressed genes with the Reactome annotation of ‘Translation’, for RPL31, RPS20, 
MRPL50 and MRPS22. 

B) For innate immune system genes. From left-to-right: For the eigengene of all 
differentially expressed genes with the Reactome annotation of ‘Innate immune 
system”, for CD14, TLR4, and IL6R. 

C) For genes related to the regulation of cellular stress responses. From left-to-right: For 
HIF1A, SOD2, FOXO3, and all genes annotated in Reactome for ‘Cellular response to 
stress’. 

 
Figure 4: 

A) Trajectory analysis in PC space of males only. 
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1. Panel 1:  Each point refers to a timepoint in the study (fasted in red, 
postprandial in blue), connected by a black line to indicate the nutrient 
challenge response trajectory. The baseline and post-intervention trajectories 
are superimposed to reveal that the intervention has rotated the postprandial 
response. 

2. Panel 2: Projecting the postprandial trajectories back into gene space, we 
identify many genes whose postprandial response is lower expressed following 
the intervention. 

B) As figure 4A, but for females only. 
 
Figure 5:  

Modulation of the correlation network as a result of the intervention 
A) Modulation of the correlation network as a result of the intervention in males 

1. Panel 1: The distribution of pairwise postprandial gene-response correlations 
at baseline. The green peak represents all correlations between up-regulated 
genes, the blue peak between all down-regulated genes, and the brown peak 
between up- and down-regulated genes. 

2. Panel 2: The distribution of pairwise postprandial gene-response correlations 
following the intervention. 

B) The correlation network between intervention-postprandial gene-responses. Green 
indicates a higher positive correlation, and red a higher negative correlation. The 
identified submodules are indicated, and arrows indicate the top functional 
enrichments for those clusters. The left network was generated using male gene 
responses only, and the right network using female responses only. 

 
Figure 6: 
Metabolite changes as a result of the nutrient challenge. For each metabolite, on the left is 
shown a forest plot of the effect sizes of the nutrient challenge in males (in red, upper) 
females (in blue, lower) at baseline (square) and after the intervention (diamond). Error bars 
denote the 95% confidence interval. On the right, in the heatmap, the corresponding 
metabolite levels are associated with the gene module eigengenes under each condition, for 
males and females separately. From left to right: Men baseline, men after intervention, 
female baseline, female after intervention. An asterisk inside the heatmap corresponds to a 
significant association (p < 0.05). VLDL, very low density lipoprotein; LDL, low density 
lipoprotein; HDL, high density lipoprotein; FA, fatty acids; S, small; M, medium; L, large; 
XL; very large; XXL, extremely large. 
 
Figure 7: 
Impression of postprandial response. 

A) In the fasted state, the cells are in homeostasis. Nutrients are present, but slowly 
released into the bloodstream by the system. Following a meal, nutrients such as 
glucose and amino acids are now highly abundant, and are taken up by cells in the 
blood. 

B) This abundance of glucose results in the activation of glycolysis and ROS production 
by mitochondria, which initiates a cascade resulting in the activation of innate immune 
system machinery. The amino acids which are taken up by the cells do not appear to 
stimulate mTORC1, and it may be possible that ROS, or other stress factors inhibit the 
activation of mTORC, and degradation of ribosomal protein transcript RNA, resulting 
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in the downregulation of ribosome biosynthesis. These two effects are mediated by the 
intervention, and are sex specific. 
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