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Abstract 

Background: The aim of this study was to detect differential methylation in umbilical cord blood 

that is associated with maternal and pregnancy-related variables, such as maternal age and 

gestational weight gain. These have been studied earlier with 450K microarrays but not with 

bisulfite sequencing. 

Methods: Reduced representation bisulfite sequencing (RRBS) analysis was performed on 200 

umbilical cord blood samples. Altogether 24 clinical and technical covariates were included in a 

binomial mixed effects model, which was fit separately for each high-coverage CpG site, 
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followed by spatial and multiple testing adjustment of P values. Inflation of spatially adjusted P 

values was discovered in a permutation analysis, which was then applied for empirical type 1 

error control. 

Results: Empirical type 1 error control decreased the number of findings associated with each 

covariate to zero or a small fraction of the number that would have been discovered with 

standard cutoffs. In this collection of samples, some differential methylation was associated with 

sex, the usage of epidural anesthetic during delivery, 1 minute Apgar points, maternal age and 

height, gestational weight gain, maternal smoking, and maternal insulin-treated diabetes, but not 

with the birth weight of the newborn infant, maternal pre-pregnancy BMI, the number of earlier 

miscarriages, the mode of delivery, labor induction, or the cosine transformed month of birth. 

Conclusions: The autocorrelation-adjusted Z-test is a convenient tool for detecting differentially 

methylated regions, but the significance should either be determined empirically or before the 

spatial adjustment. With appropriate significance thresholds, the detected differentially 

methylated regions were reproducible across studies, technologies, and statistical models. Our 

RRBS data analysis workflow is available in https://github.com/EssiLaajala/RRBS_workflow. 

Keywords: DNA methylation, bisulfite sequencing, RRBS, umbilical cord blood, pregnancy, sex, 

spatial correlation, type 1 error, differential methylation, analysis workflow 

Background 

Mitotically inheritable DNA methylation patterns are established in early embryogenesis and can 

be influenced by environmental and lifestyle-related factors (1). The in-utero environment might 

be the most important explanatory factor for the between-individual variation in genome-wide 

average DNA methylation (2). Several human and animal studies have identified DNA 

methylation to mediate the impacts of in-utero conditions on later health (3,4). Correlations 

between maternal and pregnancy-related factors and perinatal DNA methylation have been 

actively studied during the past decade. Associations of umbilical cord blood DNA methylation 

marks with maternal smoking, maternal BMI, birth weight, gestational age, and maternal 

gestational diabetes have been mapped in large meta-analyses of methylation microarray data 

sets from multiple study cohorts (5–9). All these factors were associated with some differential 

CpG methylation. Maternal smoking during pregnancy was associated with thousands of 

differentially methylated cytosines, all of which showed some evidence of differential 

methylation in older children as well, indicating that DNA methylation patterns are relatively 

stable with respect to age (5). Most earlier studies on umbilical cord blood DNA methylation 

have been limited to a set of approximately 450 000 CpG sites covered by the methylation 

microarrays. 

We applied reduced representation bisulfite sequencing (RRBS) on 200 umbilical cord blood 

samples to accomplish a genome-wide survey on associations between perinatal DNA 

methylation and various clinical covariates. These included e.g. maternal age, gestational 

weight gain, mode of delivery, and the birth weight of the newborn infant (full list in Table 1, 

details in Supplementary Table 1). Initially, applying a standard analysis workflow, hundreds of 

differentially methylated CpG sites were associated with each of these clinical variables. As a 
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plausibility test, the analysis was repeated for a permuted variable, which did not correlate with 

any clinical or technical variable and should ideally not be associated with any differential 

methylation. A strong inflation of spatially adjusted P values was observed for the permuted 

variable. Importantly, targeted validation by pyrosequencing  confirmed the lack of significant 

differential methylation in candidate regions that were selected based on standard criteria 

(Benjamini-Hochberg corrected spatially adjusted P value < 0.05) before the P value inflation 

was discovered (10). Here, we further explore this phenomenon with different study designs and 

analysis workflows, and present practical recommendations, including implementations as R 

code, for future bisulfite sequencing studies. We report appropriately FDR (false discovery rate) 

controlled results on associations between perinatal DNA methylation and the above-listed 

variables within and beyond the genomic locations covered by earlier studies. 

Accounting for spatial correlation between CpG sites is important in all DNA methylation studies 

and especially in the analysis of bisulfite sequencing data, where methylation is quantified on 

single-nucleotide resolution. One of the simplest approaches is to first compute P values for 

differential methylation at each CpG site separately and then to combine them with an 

autocorrelation-adjusted Z-test, also known as the Stouffer-Lipták-Kechris correction, 

implemented in the Python package comb-p (11). A Stouffer-Lipták meta-P-value is a (anti-

probit-transformed) weighted sum of probit-transformed P values, developed for meta-analyses 

of results from multiple independent studies (12,13). Kechris et al. suggested the application of 

a similar approach to combine adjacent P values in spatially correlated genomic data, more 

specifically in tiling array data (14). Since such P values do not meet the independence 

assumption of the Stouffer-Lipták method, Kechris et al. suggested adjustment for 

autocorrelation. Comb-p is a generalization of the Stouffer-Lipták-Kechris method to non-evenly 

spaced spatially correlated P values (11). It has become a popular tool especially for the 

detection of differentially methylated regions (DMRs) in DNA methylation microarray studies. It 

is also part of the bisulfite sequencing data analysis pipeline MethPipe (15), as implemented by 

the developers of the beta-binomial regression model RADMeth (16). 

Comb-p (11) estimates the autocorrelation between P values up to a chosen genomic distance 

(for example 500 bp), performs a sliding window Stouffer-Lipták-Kechris correction for each P 

value, utilizes a peak detection method to detect potential DMRs, and assigns P values to these 

variable-sized regions. The region-wise P values are calculated by repeating the Stouffer-

Lipták-Kechris correction for each candidate region, after which they are corrected for multiple 

testing with a Sidák-correction, based on the number of times the largest candidate region 

would fit in the total number of features (such as CpG sites). The spatial adjustment method 

within RADMeth (16) includes the same autocorrelation estimation step and the Stouffer-Lipták-

Kechris correction with a sliding window, recommended to be of size 200 bp. RADMeth 

performs a Benjamini-Hochberg-correction for the spatially adjusted P values and detects 

regions by finding consecutive CpG sites with FDR < 0.01. The specificity of this DMR detection 

method has been earlier evaluated in simulated data but not in real bisulfite sequencing data 

with a permutation analysis, as presented here. 
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Methods 

The methods are summarized in Figure 1 and have been partially described in a preprint by 

Laajala et al. (10). Most of the data analysis and visualization were done with R versions 3.6.1 

and 4.0.4. (17). The R code and a documentation of the usage of command-line tools are 

available in GitHub (18). R packages Hmisc (19) and gplots (20) were used to generate Figure 

2, ggplot2 (21) was used to generate Figure 3, and stringr (22) was used for some basic string 

processing. 

Umbilical cord blood DNA collection and reduced representation bisulfite sequencing 

(RRBS) 

The genome-wide umbilical cord blood DNA methylation measurements are from a study by 

Laajala et al. (10), which includes a detailed description of the study design, sample collection, 

and reduced representation bisulfite sequencing (RRBS). Briefly, these data were collected from 

participants of the Finnish Diabetes Prediction and Prevention (DIPP) follow-up study, who were 

born in Turku University Hospital between 1995 and 2006. The umbilical cord blood samples 

were collected immediately after birth in 3 ml K3-EDTA tubes, transferred to the DIPP clinic, and 

stored at -20°C. DNA was extracted by the salting out procedure (23) and purified with Genomic 

DNA Clean & Concentrator kit (Zymo Research, cat. nos D4010 and D4066) according to the 

manufacturer’s protocol. RRBS library preparation steps were adapted from (24). Aliquots of 

bisulfite converted DNA were amplified by 18 cycles of PCR and sequenced with Illumina HiSeq 

2500 instrument using paired-end sequencing with read length 2 x 100 bp. The technical quality 

of the HiSeq 2500 run was good and the cluster amount was as expected. The yields were 18 - 

37 million raw paired-end reads per sample. Out of 200 umbilical cord blood DNA samples, five 

were rejected due to inadequate amount or quality of DNA, 20 were later rejected due to low (< 

97 %) bisulfite conversion efficiency, and two were excluded due to missing clinical data. 

Clinical data collection and curation 

All available data on pregnancy and birth were retrieved from Turku University Hospital. This 

included variables related to the mother (such as age and number of earlier pregnancies), the 

pregnancy (such as glucose tolerance test result and gestational weight gain), the delivery 

(such as perinatal asphyxia and usage of epidural anesthetic), and the child (such as birth 

weight and neonatal intensive care). All technical covariates were included in the differential 

methylation analysis (described below), and clinical covariates were selected such that within 

each group of mutually correlating covariates, the most reliably measured covariate was 

included. For example, birth weight was selected to represent the size of the newborn infant, 

while birth length and head circumference were excluded. Pearson correlations greater than 0.3 

(in absolute value) with P value < 0.05 or alternatively Fisher’s exact test P value < 0.05 (for 

pairs of binary covariates) were considered relevant. Further details are in Supplementary Table 

1 and Figure 2. 

The clinical data required some manual curation. A cosine transformation cos(2𝜋m/12) was 

used to account for the cyclic nature of the month of birth (m = month). Apgar points were 

simplified to normal/low such that values 8 - 10 were considered normal. Mode of delivery was 

originally a multi-level categorical variable with different values for normal, forceps, suction cup, 
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elective Caesarean section (C-section), urgent C-section, and emergency C-section but was 

simplified to C-section/vaginal. Since the data only included two women who smoked only 

during the first trimester and 12 women who smoked throughout the pregnancy, this variable 

was simplified to smoking/no smoking. For similar reasons, the number of earlier miscarriages 

and the number of fetuses were simplified to binary variables (twins and triplets were all marked 

as multiple pregnancies). Usage of epidural anesthetic during delivery phase 1 was corrected to 

0 for two individuals with an elective C-section.  

For the regression modeling, missing covariate values were median-imputed, which was 

necessary only for smoking during pregnancy (four missing values), gestational weight gain 

(three missing values), maternal pre-pregnancy BMI (two missing values), and Apgar points 

(one missing value). Variable selection and the visualization in Figure 2 were carried out before 

any imputation of missing values but after the above-mentioned simplifications and corrections. 

Continuous covariates were Z-transformed (divided by the standard deviation after subtracting 

the mean) for the regression model. 

Read trimming and sequence alignment 

The sequencing reads were trimmed using TrimGalore version 0.4.3 (25) in paired-end RRBS 

mode, which removes end repair biases by default. Quality control was done by examining 

fastQC reports generated before and after running TrimGalore. According to these reports, 

TrimGalore had correctly removed end repair biases, adapters (adapter sequence minimum 

overlap 1), and bases with base call error rate above 1%. Sequence duplication levels were 

elevated, as expected in the context of RRBS, but adapters were not among the 

overrepresented sequences after running TrimGalore. By default, TrimGalore discards reads 

shorter than 20 bp after trimming. This step removed 2 - 8 % of the raw reads from all samples 

except one sample, from which 24 % of raw reads were discarded. 

The reads were aligned on the human GRCh37 (hg19) genome assembly (26,27) and the 

lambda phage genome simultaneously with Bowtie2 version 2.3.1 within Bismark version 0.17.0 

(28) after preparing the genome using function Bismark_Genome_Preparation, which creates 

bisulfite converted versions of the genome (both C - > T and G - > A converted versions of each 

genomic area). These steps were run using the default parameters of Bismark in paired-end 

mode. The documentation of this project in GitHub (18) includes the precise commands and 

parameters. 

Methylation call extraction, conversion efficiency calculation, and removal of M-biases 

To extract the number of methylated and unmethylated reads at each CpG site in each sample, 

Bismark methylation extractor version 0.22.3 (28) was run with parameters paired-end, 

bedGraph, and counts. To avoid redundant methylation calls within pairs of reads, this function 

(by default) excludes read 2 bases that overlap with read 1. The extracted counts within the 

lambda phage genome were used to determine the conversion efficiency of each sample (the 

sum of observed unmethylated CpG counts divided by the total sum of methylated and 

unmethylated CpG counts within this completely unmethylated genome). The conversion 

efficiencies were above 97 % (median 99.4 %) for all except 20 samples, which were therefore 

excluded from the analyses. 
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Bismark methylation extractor outputs M-bias-files, which contain context-specific (CpG, CHG, 

and CHH) average methylation proportions in each read position. To remove technical 

methylation call artefacts in the ends of sequencing reads, we used the middle positions to 

determine the normal variation of CpG-specific methylation and removed anything that was 

beyond that, as suggested by the authors of BSeQC (29). Specifically, positions at read ends 

were removed if their CpG methylation proportions were more than 3 standard deviations below 

or above the mean methylation proportion at positions 10 – 91 (middle 80 %). However, the 5’ 

ends of read 1 were not trimmed, since they start with a CpG site and typically have higher 

average methylation levels than other positions. This is explained by the fact that a CpG site is 

always present at the beginning of an RRBS read even if the read comes from a CpG-poor 

area, whereas CpG sites at middle positions are more likely to come from CpG-rich areas, 

which typically have lower methylation levels. In these data, three bases were trimmed from the 

5’ end of read 2 and one base from the 3’ end of read 2 due to CpG-specific M-biases in every 

sample. This was done by re-running the Bismark methylation extractor as above with additional 

parameters ignore_r2 3 and ignore_3prime_r2 1. Finally, the information from both strands was 

merged for each CpG site by running Bismark function coverage2cytosine with parameter 

merge_CpG for each cov-file produced by the Bismark methylation extractor. 

Ideally CHH- and CHG-specific M-bias profiles should be flat lines close to zero. The only 

samples with CHH- or CHG-specific methylation above 1 % (at any position) had already been 

excluded when the lambda phage genome was used to determine the bisulfite conversion 

efficiency. Therefore, no further exclusions were done at this step. 

Count matrix construction and SNP removal 

The numbers of methylated and unmethylated reads were extracted from 

merged_CpG_evidence.cov files produced by Bismark function coverage2cytosine (28) and 

organized into count matrices with total and methylated numbers of reads for each CpG site and 

each sample. To complete this step within a reasonable time and memory reservation, only 

CpG sites with minimum coverage of 10 in at least ten samples were included. However, the 

actual coverage filtering was done after SNP removal and is described below. The dimensions 

of the pre-filtered count matrices created at this stage were 3 928 420 CpG sites x 173 samples. 

SNP detection was done by applying bsSNPer (30) with its default parameters on bam-files 

sorted by genomic coordinates after excluding the lambda phage genome. The detected SNPs 

(flagged “PASS” in the bsSNPer output VCF file) were removed from the data, specific to each 

individual (read counts set to NA).  

Coverage filtering 

In the context of next-generation sequencing in general, a common practice is to remove PCR 

duplicates by excluding reads that align at exactly the same genomic coordinates. However, this 

is not possible for RRBS data, where identical fragments are more likely to originate from 

different molecules, which were cut at exactly the same positions by MspI. To remove most 

PCR duplication biases, CpG sites with coverage above the 99.9 th percentile were removed 

from each sample, as suggested by the authors of MethylKit (31).  
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CpG sites were completely excluded if they had a low-coverage value (total number of reads < 

10) or a missing value (a potential SNP or the coverage above the 99.9th percentile of the 

sample) in at least two thirds of the samples. The below-described differential methylation 

analysis was run for all 2 752 981 CpG sites passing these criteria. However, in case of binary 

covariates, further covariate-specific filtering was done before spatially adjusting and FDR-

correcting the P values. Minimum coverage of 10 in at least one third of the samples in each 

group was required and further, a minimum coverage of 10 was required in at least five samples 

per group (the second criterion is relevant only for binary covariates with less than 15 samples 

in one group). 

Principal components analysis (PCA) 

To be able to perform principal components analysis (PCA) on methylation proportions 

(methylated/total reads), missing values at each CpG site were imputed by the median over 

samples with non-missing values. After removing CpG sites in chromosomes X and Y, we 

applied a readily available implementation of PCA (R-package calibrate version 1.7.5, (32)) with 

its default parameters on the coverage-filtered imputed methylation proportion matrix. Principal 

coordinates 1 and 2, i.e. projections of the sample-specific methylation proportion vectors on the 

first two orthonormal principal components were included as covariates in the differential 

methylation analysis to correct for technical variation between the samples. 

Detection of differentially methylated CpG sites (DMCs) associated with different 

covariates 

The differential methylation analysis was carried out by applying a generalized linear mixed 

effects model (GLMM) implemented in R package PQLseq (33) separately for each CpG site. 

PQLseq models the technical sampling variation in bisulfite sequencing data with a binomial 

distribution, effects of biological and technical covariates with the linear model, and the random 

effects with a correlated multivariate normal distribution. To model these data, the main 

improvement compared to simpler beta-binomial models is that it can include continuous 

covariates. 

PQLseq version 1.1. was applied with R version 3.6.1 on the coverage filtered count matrices 

(numbers of methylated and total reads of each sample in each CpG site), including only 

chromosomes 1 - 22. This was done after adding + 1 to the numbers of methylated reads and 

+2 to the total numbers of reads to avoid modeling methylation proportions that are exactly 0 or 

1, as recommended by the authors of PQLseq (33). This pseudo-count transformation was only 

applied to non-missing values (coverage > 0). The clinical covariates listed in Table 1, the 

case/control-status from (10) (positivity for islet autoantibodies before age 15), library 

preparation batch, and principal components 1 and 2 were included in the model as fixed effects 

(detailed descriptions and inclusion criteria of the covariates are presented in Supplementary 

Table 1). At each CpG site, binary covariates were included only if at least 3 samples with 

enough coverage (pseudo-count transformed coverage ≥ 12) were available for each category. 

Including covariates with no data would have unnecessarily caused convergence failures. Since 

we were interested in differential methylation associated with each covariate (not only a single 

covariate as assumed in PQLseq implementation), the source code of PQLseq was modified to 

output the coefficients, standard errors and Wald test P values for all covariates included in the 

model (the modified version is included in GitHub (18)). 
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Since PQLseq was originally designed to model differential methylation in the presence of 

population structures, we included the relatedness of the individuals as a random effect. To our 

knowledge, these 173 individuals are unrelated, but we estimated their genetic similarity by 

utilizing the SNPs detected as described above. The relatedness matrix is a correlation matrix of 

the samples’ SNP profiles, which include all detected (flagged “PASS”) SNPs with minor allele 

frequency > 5%, encoded as the number of reference alleles (0,1,2). This is calculated as 

XXT/NSNPs, where X is a Nsamples x NSNPs matrix (173 x 187569) containing numbers of reference 

alleles, standardized to Z-scores within each sample. The number of reference alleles was 

assumed to be 2, unless a SNP was detected. 

Spatial adjustment and FDR-correction of raw P values 

The Wald test P values computed within PQLseq were spatially adjusted by utilizing the adjust-

function implemented by the developers of RADMeth (16) within Methpipe version 3.4.3. (15) 

after sorting the CpG sites by chromosome and location. The recommended window size 200 

was used with step size 1. This function performs a Stouffer-Lipták-Kechris adjustment 

(autocorrelation-adjusted Z-test) of the P values, followed by a Benjamini-Hochberg-correction, 

but we found this procedure to be insufficient for FDR control. Therefore, the differential 

methylation analysis (PQLseq) and the spatial adjustment of P values were repeated for 

permuted input covariates to estimate the null distributions of spatially adjusted P values 

associated with different types of covariates. For this purpose, 45 (3 x the number of covariates 

of interest) different input design matrices were created, each with one covariate permuted such 

that it did not correlate with any actual clinical or technical covariate. Low correlations (absolute 

Pearson correlation coefficient < 0.3) with continuous clinical covariates were allowed, other 

than that any significant correlation (P value < 0.05) was considered too strong (permutations 

were repeated until none was observed). Each distribution of spatially adjusted P values 

associated with a permuted covariate was compared to that of the corresponding original 

covariate. A threshold for the spatially adjusted P value was set such that the number of 

discoveries in permuted data (false discoveries) would be less than 5 % of the number of CpG 

sites associated with the original covariate using that threshold. The median threshold value 

over three repeats was used. 

CpG sites with the spatially adjusted FDR < 0.05 (using the above-described empirical FDR 

control) or FDR < 0.05 (Benjamini-Hochberg-corrected PQLseq P value before any spatial 

adjustment) were included in the DMR analysis described below. CpG sites of the latter type 

(FDR < 0.05) were reported as differentially methylated cytosines (DMCs) even if they were not 

part of any DMR. 

Detection of differentially methylated genomic regions (DMRs) 

A differentially methylated region (DMR) was defined as a genomic region with two or more 

CpG sites with evidence of differential methylation (empirically FDR-corrected spatially adjusted 

P value < 0.05 or Benjamini-Hochberg-corrected PQLseq P value < 0.05) that were within a 

window of 2 kb and had the same direction of methylation difference in at least 90% of the CpG 

sites. Table 1 and Supplementary Tables 2 and 3 only include DMRs that had absolute 

coverage-corrected mean methylation difference > 5 % in at least one CpG site. Coverage-

corrected mean methylation difference for a single CpG is calculated as sum(number of 
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methylated reads in cases)/sum(number of total reads in cases) – sum(number of methylated 

reads in controls)/sum(number of total reads in controls). 

Alternative differential methylation analysis workflows: RADMeth beta-binomial 

regression and DMR detection with RADMeth and comb-p 

For comparison purposes, Type 1 error rate was evaluated with alternative analysis workflows 

in addition to the one described above. The GLMM for differential methylation at each CpG site 

(PQLseq) was replaced with a beta-binomial regression model RADMeth (16), implemented as 

function “radmeth regression” within MethPipe version 3.4.3. Since RADMeth is unable to 

include continuous covariates, each continuous covariate was represented as two binary 

covariates: “high” corresponding to the highest quantile and “low” corresponding to the lowest 

quantile (values in the middle two quantiles were included in the intercept). The count matrices 

(methylated and total) were pseudo-count transformed, similarly as for PQLseq, and combined 

to the input format for RADMeth. RADMeth and PQLseq runs were repeated without the 

pseudo-count transformation and with alternative (simpler) study designs: sex + PC1 + PC2 or 

epidural + sex + PC1 + PC2. Epidural (the usage of epidural anesthetic during delivery phase I) 

is an example of a binary covariate with 50 % of the samples in each category that is not 

expected to be associated with differential methylation (but if differences were present, sample 

numbers 86 vs. 87 would probably be enough to detect them). CpG sites for which RADMeth 

did not converge (P value “–1”) were removed from the output. With the pseudo-count 

transformation, however, the convergence was 100 %. The output was sorted by chromosome 

and location before the spatial adjustment. 

As alternative DMR detection methods, we also used “radmeth merge” (within MethPipe 3.4.3.) 

with parameter -p 0.01 (to combine adjacent CpG sites with Benjamini-Hochberg-corrected 

spatially adjusted P values < 0.01 into regions) and the comb-p pipeline (11). The Python 

package for comb-p was cloned from GitHub (34) (version 0.50.4. accessed on March 25th, 

2021) and used with Python version 3.7.3. Window size 200 and step size 1 were used for both 

implementations of the Stouffer-Lipták-Kechris adjustment (also window size 500 was tried with 

step size 10 but the results were almost identical to those obtained with window size 200). The 

DMR detection steps of comb-p were performed with seed 0.1 (P value threshold to start a 

candidate region), and Sidák-corrected region-wise P value < 0.05 (computed by comb-p) was 

used as a criterion to define a DMR. 

Annotation and gene ontology enrichment analysis of differentially methylated genomic 

regions 

Differentially methylated CpG sites were annotated to genomic parts (promoter, intron, exon, 

intergenic) and nearest UCSC known genes through R package genomation version 1.16.0 (35) 

using Genome Reference Consortium Human Build 37 (GRCh37, hg19 (26)). A Gene Ontology 

enrichment analysis was performed on the list of all nearest genes annotated to DMRs and 

DMCs associated with sex using the 2020-10-09 Gene Ontology release through PANTHER 

(36). Significantly enriched biological process gene ontologies (Fisher’s exact test FDR < 0.05) 

are listed in Supplementary Table 4.  

Pyrosequencing validation of a selected target 
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Targeted pyrosequencing was performed for technical validation of a DMR on the promoter of 

zona pellucida binding protein 2 (ZPBP2), which is associated with sex. For this analysis, 25 

female and 34 male individuals were chosen with the following criteria: full-term (gestational age 

≥ 37 weeks), normal birth weight (2.5 – 4.5 kg), no multiple pregnancies, normal Apgar points (8 

– 10), no perinatal asphyxia, vaginal birth and no maternal smoking. The sequencing was done 

on five batches such that a roughly even number of males and females were allocated on each 

batch. PyroMark assay design 2.0 software (Qiagen) was used to design an assay for the 

region of interest (chr17:38024237 - chr17:38024291 on hg19 coordinates, including six 

differentially methylated CpG sites). Sample preparations were started with 200 ng of DNA from 

the selected samples. Samples were sodium bisulfite treated with EZ DNA Methylation-GoldTM 

Kit (Zymo Research cat no D5006), and the target sequence was amplified by PyroMark PCR 

Kit (Qiagen cat no 978703) (initial denaturation at 95 °C for 15 min, 45 cycles at 94 °C for 30 s, 

annealing at 56 °C for 30 s, extension at 72 °C for 30 s and a final extension at 72 °C for 10 

min). Pyrosequencing was was carried out on PyroMark Q24 system (Qiagen) using PyroMark 

Q24® Advanced CpG Reagents (Qiagen cat no 970922), and methylation percentages were 

extracted from the light intensity values at each CpG site using PyroMark Q24 Advanced 

software 3.0.1. 

Pyrosequencing data analysis 

A standard linear model was applied after transforming each methylation proportion with: 

arcsin(2×proportion–1). In addition to the sequencing batch, covariates specified in 

Supplementary Table 1 were included in the model, excluding those that were not applicable to 

the set of pyrosequenced samples (such as maternal smoking, which was 0 for all these 

samples). The model was fit with and without sex, and the models were compared with a 

likelihood-ratio test to assess the significance of sex at each CpG site. These steps were done 

using functions lm and anova, R version 4.0.4. (17) 

Results 

Observed correlations between clinical and technical covariates 

Since fitting a regression model for mutually correlating covariates would be problematic, we 

selected only one covariate from each group of strongly correlated clinical covariates (Figure 2). 

The reasons for including and excluding covariates are detailed in Supplementary Table 1. The 

study was originally not designed for associations between DNA methylation and these clinical 

variables (instead, the samples were allocated to library preparation batches for optimal 

comparison between the study groups described in the study by Laajala et al. (10)). However, 

none of the studied clinical covariates (listed in Table 1) correlated with the library preparation 

batches or other technical covariates. Technical covariates only correlated with other technical 

covariates, including the sample collection year. 

Stouffer-Lipták-Kechris-corrected P values were inflated 

As a plausibility test, we repeated the differential methylation analysis several times using 

permuted covariates that did not correlate with any real clinical or technical covariate. The 

distributions of raw Wald test P values from the binomial mixed effects model PQLseq (33) were 
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as expected: when a permuted input covariate was used, the number of findings (Benjamini-

Hochberg-corrected P values below 0.05) was zero. This was not the case for the spatially 

adjusted P values, which were obtained by applying the adjust-function within RADMeth (16). 

The number of CpG sites that were considered differentially methylated in each shuffled 

analysis (false discoveries) was between 200 and 2500 (Figure 3), often close to the number 

that would have been associated with the corresponding original covariate, if a standard cutoff 

(Benjamini-Hochberg-corrected spatially adjusted P value < 0.05) had been applied. The 

distributions of spatially adjusted P values obtained by running each differential methylation 

analysis with permuted input covariates were utilized to find suitable P value thresholds (see 

Methods for details). This empirical type 1 error control decreased the number of findings 

associated with each covariate to zero or a small fraction of the number that would have been 

discovered with the default FDR control of RADMeth (Table 1 compared to Figure 3). 

Since the spatial adjustment that we used was originally proposed to be used together with 

beta-binomial regression, we repeated a subset of the permutation analysis with the RADMeth 

workflow. Table 2 contains the numbers of false discoveries, that were observed when the 

spatial adjustment and DMR detection of RADMeth were applied to P values from the beta-

binomial regression model of RADMeth, as compared to P values from PQLseq. These 

numbers suggest that the RADMeth workflow has an even greater type 1 error than the above-

described combination of PQLseq and RADMeth’s spatial adjustment. For example, 3115 – 

10555 CpG sites were associated with permuted sex, when the RADMeth workflow was applied 

(as compared to 482 – 1414, when the spatial adjustment of RADMeth was applied on P values 

from PQLseq, as shown in Figure 3 and repeated in Table 2). In fact, the beta-binomial 

regression P values were already inflated before the spatial adjustment. We observed 80 – 813 

CpG sites that were associated with permuted sex at Benjamini-Hochberg-corrected P value < 

0.05. This was largely explained by inappropriate handling of missing values (coverage = 0) by 

RADMeth. When coverage was zero at all samples with a given level of a (binary) covariate, 

RADMeth reported an extremely small P value, when it should have either ignored the 

covariate, reported a convergence failure, or thrown an error/warning (it does report a failure if 

this is the case for the covariate of interest but apparently does not check it for the other 

covariates). In contrast, PQLseq ignores samples with coverage 0 at each CpG site and reports 

a convergence failure, in case no data remain for some category (we avoided these events 

altogether by using a CpG-specific design matrix, as described in the Methods). For a fair 

comparison between RADMeth and PQLseq, we repeated the permutation analysis for simple 

study designs: permuted sex + PC1 + PC2 and permuted epidural + sex + PC1 + PC2. This 

almost completely removed the inflation of beta-binomial regression P values and decreased 

the differences between PQLseq and RADMeth (Table 2 and Table 3). To summarize these 

results, the observed inflation of spatially adjusted P values was due to the spatial adjustment 

and had nothing to do with PQLseq. 

Type 1 error rates were similar with different implementations of spatial adjustment and 

DMR detection 

By default, RADMeth defines a DMR as a set of two or more consecutive CpG sites with 

Benjamini-Hochberg-corrected spatially adjusted P values < 0.01. With this definition, 7 – 84 

DMRs were associated with each permuted covariate, when RADMeth’s spatial adjustment and 

DMR detection were applied to P values obtained by fitting PQLseq for the full study design (45 
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runs of PQLseq, each with one permuted covariate). When PQLseq was replaced by beta-

binomial regression (RADMeth), these numbers were between 21 and 535 (observed for 

models specified in Table 2). We also tried an alternative DMR detection method, implemented 

as part of comb-p (11). The numbers of DMRs, that were associated with permuted usage of 

epidural anesthetic (random binary vectors with 50 % of the samples in each category) were 

between 18 and 66 (Sidák-corrected region-wise P value < 0.05), when P values from PQLseq 

were used as an input for comb-p, which performs spatial adjustment and DMR detection. 

These numbers are approximately in the same range as the corresponding numbers detected 

using RADMeth’s definition of a DMR (8 – 84, Table 2). All the above-mentioned spatial 

adjustments were done using window and step sizes recommended by RADMeth (window 200 

bp, autocorrelation step size 1). Changing window size to 500 and step size to 10 had little or no 

effect on the results (data not shown). Thus, we conclude that different implementations of the 

spatial adjustment result in similar P value inflation.  

Differential methylation was reproducible between statistical models 

The differential methylation models used here (the GLMM called PQLseq and the beta-binomial 

regression model called RADMeth) differ with respect to the noise model, optimization 

algorithm, and the design matrix. PQLseq includes a random effect component for the 

relatedness between individuals, which is not present in RADMeth. Furthermore, the design 

matrix needed to be modified for RADMeth such that continuous covariates were transformed to 

categorical (as described in Methods). Despite these differences, the results were highly 

concordant, as summarized in Table 3 for two example covariates: sex (which was associated 

with differential methylation at thousands of CpG sites) and usage of epidural anesthetic (an 

example of a covariate associated with very little differential methylation). For example, 85.2 % 

of the sex-associated DMCs that were detected by PQLseq, were confirmed by RADMeth. 

Since RADMeth was found to have trouble with the full study design, as described above, a 

simple model (sex + PC1 + PC2) was included in this comparison. Also, a similar comparison 

between results obtained using simple and full models is presented in Supplementary Table 5. 

The results from PQLseq were highly robust to model complexity, and results from RADMeth 

were robust to model complexity for the part that was empirically FDR-controlled.  

Differential methylation analysis can be improved by simple tricks that decrease missing 

and extreme values 

The common practice to exclude values below some coverage threshold (such as 5 or 10 

reads) can increase some of the above-described problems, as well as the effects of some 

technical biases (37). Both RADMeth and PQLseq deal with limited coverage by modeling the 

technical variation with a binomial distribution and therefore do not benefit from such coverage 

filtering. However, the quickest way to construct the input count matrices (methylated and total 

reads for each CpG site in each sample) from individual methylation call files of each sample, 

would be to first filter each methylation call file. We recommend retaining values at coverages 1 

– 9, even if minimum coverage of 10 is required in a minimum number of the samples (as done 

here). The documentation of this workflow (18) includes descriptions of two simple ways to 

construct such a count matrix (from the output files of the Bismark methylation extractor) within 

a reasonable time and memory reservation, even if the number of samples is > 100. By 

retaining values at coverages 1 – 9, the median number of samples with missing (coverage=0) 
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values was one (out of 173), and only 3.4 % of the CpG sites had more than 10 % missing 

values. 

In addition to missing values, extreme values are a challenge in bisulfite data analysis. The 

most common methylation proportion values are 0 and 1, which are problematic in the context 

of generalized linear models with the logit link function (infinite in the logit-transformed space). 

We used a common pseudo-count transformation to avoid both extremes, as recommended for 

example by the developers of PQLseq (33). We tested RADMeth beta-binomial regression and 

PQLseq with and without the transformation. The above-described inflation of beta-binomial 

regression P values increased heavily in the absence of the pseudo-count transformation. For 

PQLseq, the pseudo-count transformation markedly improved convergence (without it the model 

converged at 68 – 69 % and with it at > 99 % of the 2.7 million high-coverage CpG sites), and 

slightly decreased the estimated type 1 error rate. The overlap of the top 1000 sex-associated 

CpG sites ranked by P value (between PQLseq results computed with and without the pseudo-

count transformation) was 94 %.   

Sex-associated differential methylation was reproducible across studies and 

technologies 

Differentially methylated CpG sites and regions that were obtained with the proposed 

permutation-based method to control FDR are summarized in Table 1 and listed in 

Supplementary Tables 2 and 3. A small number of differentially methylated regions/cytosines (1 

– 2 DMRs and/or 1 – 10 DMCs outside the DMRs) was associated with the usage of epidural 

anesthetic during delivery, 1 minute Apgar points, maternal age and height, gestational weight 

gain, maternal smoking, and maternal insulin-treated diabetes, but not with the birth weight of 

the newborn infant, maternal pre-pregnancy BMI, number of earlier miscarriages, the mode of 

delivery, labor induction or the cosine transformed month of birth.  

Altogether 1426 DMCs and 297 DMRs were associated with sex. The nearest genes were 

enriched in gene ontologies such as embryonic pattern specification and anatomical structure 

morphogenesis. The DMR with the smallest P value (nominal P value 9.6 × 10-24) was on the 

promoter of the PTPRF interacting protein alpha 3 (PPFIA3), which interacts with the LAR family 

of proteins, important in mammary gland development (38). This DMR was hypomethylated in 

females compared to males, hence the gene is expected to be upregulated in females. Other 

top five differentially methylated promoter regions (ranked by P value) included the promoters of 

zona-pellucida binding protein 2 (ZPBP2) and developmental pluripotency associated 5 

(DPPA5), which are expressed in the testis tissue and have very little or no expression in any 

other tissue type, according to the Genotype-Tissue Expression (GTEx) Portal on 30/11/20 (39). 

These regions were hypermethylated in females compared to males, hence the genes are likely 

to be less expressed in females. A DMR on the promoter of ZPBP2 was selected for technical 

validation with targeted pyrosequencing. The hypermethylation in females of all six CpG sites 

was confirmed with P values in the order of 10-6 – 10-9 (Table 4). The pyrosequencing results 

have also been described in (10), where the sex-associated region was selected as a positive 

control to confirm that concordant results could be obtained with two different technologies 

(RRBS and targeted pyrosequencing). 

We compared our results to two earlier studies on sex-associated DNA methylation in umbilical 

cord blood (40,41). Out of 390 CpG sites that were differentially methylated in our data as part 
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of DMRs or as individual DMCs and are targeted by 450K arrays (hence could have been 

detected in the earlier studies), 221 CpG sites in 110 unique regions were differentially 

methylated according to one or both earlier studies. The overlap was highly significant (Fisher’s 

exact test P value < 2.2 × 10-16). The direction of methylation difference could not be reliably 

inferred from the results reported in (41) but for 192 DMCs that were common between our 

study and (40), the concordance of methylation difference was perfect: 154 sites were 

hypermethylated in females in both studies, and 36 hypermethylated in males in both studies. 

The high proportion of hypermethylation in females among the differentially methylated sites 

was highlighted by both earlier studies and further confirmed by the current study. Out of 6426 

CpG sites that were either part of a DMR or differentially methylated as individual cytosines with 

respect to sex in our data, 73 % (or 66.2 % if each DMR is counted only once) were 

hypermethylated in females. Out of 221 sex-associated CpG sites that were common between 

our study and one or both earlier studies, six were differentially methylated as individual 

cytosines (Benjamini-Hochberg-corrected PQLseq P value < 0.05), 162 were differentially 

methylated based on the empirical FDR control of spatially adjusted P values, and 53 were 

differentially methylated with both criteria. CpG sites that were differentially methylated with both 

criteria were enriched among these confirmed findings (Fisher’s exact test P value 0.015). 

Discussion  

The relatively large number of independent samples (N=173) enabled us to simultaneously 

model the effects of several clinical covariates and to evaluate the false discovery rate with a 

permutation analysis. This study might be the first one to discover the elevated type 1 error rate 

caused by spatial adjustment of P values with the autocorrelation-adjusted Z-test (also known 

as the Stouffer-Lipták-Kechris correction or comb-p (11)), implemented for bisulfite sequencing 

data within RADMeth (16) as part of the analysis pipeline MethPipe (15). RADMeth is a widely-

used method and has performed well in simulated bisulfite sequencing data according to 

several independent studies (42–44). However, simulations have typically modeled only one 

covariate effect, which is a drastic over-simplification compared to real biomedical study 

settings. Furthermore, the characteristics of bisulfite sequencing data, such as large numbers of 

missing values and the bi-modal distribution of methylation proportions (i.e. high peaks at 0 and 

1), are often not present in simulations. In earlier studies (11,16,43), real bisulfite sequencing 

data have been utilized to evaluate the ability of the spatial adjustment method to detect 

biologically meaningful differential methylation but not to evaluate its specificity. Checking the 

number of discoveries with permuted inputs in these data was an important sanity check that 

revealed the P value inflation and radically changed our conclusions on differential methylation. 

The strengths of comb-p include efficiency and generalizability. It is applicable to any set of 

spatially correlated P values, such as those from DNA methylation microarray or bisulfite 

sequencing data analysis. It adjusts each P value based on neighboring P values (up to a user-

defined genomic distance) and their autocorrelation, which is estimated beforehand from the 

whole set of P values and their genomic coordinates. Note that the original data or summary 

statistics, such as regression coefficients or mean methylation differences, are not used. Hence, 

CpG sites within DMRs (as detected by comb-p or RADMeth) are not guaranteed to have a 

methylation difference in the same direction. However, this can be easily checked afterwards; 

and for example, the DMRs reported here were filtered based on the consistency of the 
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direction of difference. The stationarity assumption is a more important limitation. The method 

assumes the correlation between CpG sites at a given distance from each other to be the same 

across the genome. This assumption might be more realistic in DNA methylation microarray 

data, where most probes target promoters, than bisulfite sequencing data, which covers 

different types of genomic regions. Indeed, the developers of comb-p recommend a permutation 

analysis for type 1 error control to be performed for each unique data set that their method is 

applied to (11). In practice, however, it seems that this recommended sanity check is ignored in 

studies that apply comb-p or RADMeth for the detection of DMRs. 

Besides the autocorrelation-adjusted Z-test discussed here, spatial correlation between CpG 

sites can be accounted for by alternative strategies; that for example, combine CpG sites to 

candidate regions based on the direction of difference between two groups before the actual 

differential methylation analysis (45) or directly model the autocorrelation structure between 

CpG-sites as a random effect within each input region (44). The reason why we chose a GLMM 

(PQLseq) that was fit separately for each CpG site (33), followed by a simple Stouffer-Lipták-

Kechris correction for the spatial adjustment, was computational efficiency compared to other 

approaches and the ability to include both binary and continuous covariate effects. 

Appropriate multiple testing correction is vital in bisulfite sequencing based DNA methylation 

studies, which typically include millions of CpG sites. Methods such as RADMeth beta-binomial 

regression and PQLseq fit a model separately for each CpG site. Performing a FWER correction 

(such as Bonferroni) or an FDR correction (Benjamini-Hochberg) on the P values of individual 

CpG sites would be overly conservative and ignore the spatial correlation, which is often high, 

up to a distance of approximately 1000 base pairs (46). Furthermore, DMRs are biologically 

more interpretable than individual DMCs. The spatial adjustment of individual P values is 

therefore useful, but the type 1 error control needs careful consideration. The empirical 

approach taken in this study is an efficient guard against any type of P value inflation. We 

recommend a similar permutation analysis for future studies, whenever the number of samples 

is large enough. Another option is to determine the significance based on P values that have not 

been spatially adjusted; applying for example, the epigenome-wide significance threshold (47) 

or the Benjamini-Hochberg correction to detect individual DMCs. If Benjamini-Hochberg (or 

some equivalent approach) is chosen, the significance threshold might be slightly relaxed to 

compensate for the fact that the true number of independent tests is much smaller than the total 

number of CpG sites (which is typically 2 – 3 million in RRBS data). Efficient implementations 

for DMR detection, such as comb-p or RADMeth, can then be used to define regions around the 

DMCs. 

The empirical FDR control strategy has some obvious limitations. A proper permutation test 

would require repeating the time-consuming and memory-intensive differential methylation 

analysis and spatial adjustment for 2.7 million CpG sites at least 1000 times for each covariate 

of interest. Since this is not feasible, we do not report false discovery rates for each CpG site. 

Instead, a cutoff is chosen such that the false discovery rate is estimated not to exceed 0.05. 

Here the estimates are based on three permutations of each covariate. Keeping this limitation in 

mind, each permuted vector was created such that it did not correlate with any actual clinical or 

technical variable. This way the permuted study designs mimicked the design matrix used in our 

analysis (which did not include strongly correlated covariates) and the results were likely to 

represent relevant null distributions. Results must be interpreted cautiously, especially if less 
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than 20 CpG sites are below the empirically determined threshold, in which case the empirically 

estimated FDR would be zero – a definite sign of a too low number of permutations (48). 

Conclusions 

Here, we have developed a bisulfite sequencing data analysis workflow, which is available (18) 

and completely based on free open source tools. We have shown that Stouffer-Lipták-Kechris 

corrected P values are inflated, and both implementations of DMR detection (comb-p and 

RADMeth) find false positives in bisulfite sequencing data, if default significance thresholds are 

applied. Based on empirically estimated thresholds, very little differential methylation was 

associated with any of the included variables, other than sex. The results on sex-associated 

DNA methylation were highly reproducible across different analysis workflow strategies, as well 

as independent studies. A large proportion of perinatal sex-associated epigenetic differences 

reported in earlier studies (40,41) were confirmed by this study. With the RRBS method, we 

were also able to report thousands of novel sex-associated differentially methylated cytosines 

that could not have been detected in the earlier studies, which were limited to cytosines 

included in the Illumina 450K DNA methylation microarrays. Technical validation of a novel sex-

associated promoter region by targeted pyrosequencing further supported the validity of these 

results. 

List of abbreviations 

CpG: A genomic site where cytosine (C) is followed by guanine (G). The p stands for phosphate 
which connects two adjacent bases in the genome. 
DMC: Differentially methylated cytosine 
DMR: Differentially methylated region 
FDR: False discovery rate 
GLMM: Generalized linear mixed effects model 
RRBS: Reduced representation bisulfite sequencing 
PC1 and PC2: Projections of the sample-specific methylation proportion vectors on the first two 
orthonormal principal components of the methylation proportion matrix 
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PC1, PC2, other 
technical and clinical 
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3. Coverage filtering

5. Differential methylation analysis, binomial mixed effects model
PQLseq + spatial adjustment of P values by applying the adjust function of RADMeth
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values (more conservative than the default FDR correction)
Identification of DMCs and DMRs associated with each covariate
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7. Technical validation of selected 
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Count matrices, size 2.7 
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removed)
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kinship 
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4. Principal components 
analysis (PCA)

Input for the differential 
methylation analysis:

Umbilical cord blood from 
173 newborn infants

Figure 1: Outline of the study design and methods, created with BioRender.com

Clinical data: Birth weight, sex, mode of delivery, Apgar 
points, maternal age, gestational weight gain, maternal 
smoking, pregnancy duration etc.
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Figure 2: Observed correlations between clinical covariates in these data. Blue and red color indicate 
significant (P value < 0.05, absolute Pearson’s r > 0.3) positive and negative correlation, respectively. For 
each pair of binary covariates, significance was determined using Fisher’s exact test (P value < 0.05). 
Binary/categorical variables with 5 or fewer examples of a category are excluded from this figure. 
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Figure 3: The numbers of differentially methylated CpG sites associated with each original and permuted 
covariate would have been these, if the default significance threshold (Benjamini-Hochberg corrected 
spatially adjusted P value < 0.05) had been applied. These numbers were obtained by performing a 
differential methylation analysis (fitting a GLMM to obtain a Wald test P value for each CpG site, followed 
by the spatial adjustment and multiple testing correction implemented within RADMeth) for the original 
input data, as well as for 45 permuted design matrices (3 permutations of each of the 15 covariates of 
interest). This permutation analysis showed that the spatially adjusted P values were inflated. 

Table 1: Numbers of differentially methylated cytosines and regions associated with each covariate. 
Column 1 contains the experimentally determined threshold values for spatially adjusted P values and 
column 2 contains the corresponding numbers of CpG sites within differentially methylated regions 
(DMRs). The threshold is set such that the number of findings associated with a permuted version of the 
covariate would be less than 5 % of the number of findings associated with the original covariate (column 
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2). The DMRs in column 3 are defined as described in Methods, filtering for the concordance of the 
direction of difference. Column 5 contains the numbers of differentially methylated cytosines (DMCs) 
detected without spatial adjustment (Benjamini-Hochberg-corrected PQLseq P value < 0.05), some of 
which belong to differentially methylated regions, and column 4 contains a subset of the DMCs in column 
5. 

 
Adjusted P 
value 
threshold 
(median of 3 
permutations) 

Number of 
CpG sites 
within DMRs 
(spatial 
adjustment + 
empirical FDR 
control)  

Number 
of 
DMRs 

Number of 
DMCs 
outside 
DMRs (FDR 
< 0.05 before 
spatial 
adjustment) 

Total number 
of DMCs 
(FDR < 0.05 
before spatial 
adjustment) 

Year of birth (= sample 
collection year) 

0 0 0 6 6 

Smoking during 
pregnancy, mother, N=14 

0 0 0 1 1 

Sex, N=68 (females) 4.67E-07 6165 297 261 1426 

Month of birth (cosine 
transformed) 

0 0 0 0 0 

Insulin-treated diabetes, 
mother, N=8 

1.13E-10 29 2 10 10 

Induced labor, N=28 0 0 0 0 0 

Height, mother 6.55E-11 47 2 3 3 

Gestational weight gain 9.53E-13 16 1 0 0 

Epidural anesthetic, 
delivery phase 1, N=86 

1.22E-15 3 1 0 0 

Earlier miscarriage(s), 
N=31 

0 0 0 0 0 

Caesarean section, N=21 0 0 0 0 0 

BMI, mother (pre-
pregnancy) 

0 0 0 0 0 

Birth weight 0 0 0 0 0 

Apgar points low, 1 
minute, N=24 

3.99E-12 19 2 2 2 

Age, mother 9.59E-12 29 2 0 0 

 

Table 2: Numbers of DMCs and DMRs associated with permuted covariates (false discoveries), when 
RADMeth’s spatial adjustment and default DMC/DMR detection criteria were applied on P values from a 
beta-binomial regression model for each CpG site (the RADMeth model, column 1) or P values from 
PQLseq (column 2). DMCs are defined as CpG sites with Benjamini-Hochberg corrected spatially 
adjusted P value < 0.05, and DMRs are genomic regions with two or more consecutive Benjamini-
Hochberg corrected spatially adjusted P values < 0.01 (default criteria in the current implementation of 
RADMeth within MethPipe version 3.4.3). Full model is the model used in the actual differential 
methylation analyses, including clinical and technical covariates specified in the Supplementary Table 1. 
The simple models were permuted sex + PC1 + PC2 and permuted epidural + sex + PC1 + PC2. These 
analyses were run for three permutations of each covariate. 

 
RADMeth+RADMeth PQLseq+RADMeth 

DMCs, permuted sex, full model 4031, 10555, 3115 1414, 482, 1168 

DMCs, permuted sex, simple model 1352, 5747, 3870 1139, 598, 2390 
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DMCs, permuted epidural, full model 1916, 9215, 2887 279, 2521, 1054 

DMCs, permuted epidural, simple model 559, 2910, 2466 Not run 

DMRs, permuted sex, full model 189, 535, 135 59, 16, 50 

DMRs, permuted sex, simple model 59, 297, 228 48, 26, 132 

DMRs, permuted epidural, full model 88, 368, 139 8, 84, 37 

DMRs, permuted epidural, simple model 21, 108, 105 Not run 

 

Table 3: Comparison between results obtained using PQLseq (a GLMM) and RADMeth beta-binomial 
regression. Here, DMCs are defined as CpG sites with Benjamini-Hochberg corrected P value < 0.05 
(before spatial adjustment) and CpGs within candidate DMRs are all CpG sites with empirically FDR-
controlled spatially adjusted P value < 0.05. DMR detection has not been done for this comparison. The 
full models include all technical and clinical covariates specified in the Supplementary Table 1, and the 
simple model is sex + PC1 + PC2. The percentages are percentages of the detections of PQLseq. 

 Usage of epidural 
anesthetic, full model  

Sex, full model Sex, simple model 

Detections, total PQLseq detected 0 
DMCs and 3 CpGs 
within a candidate 
DMR. RADMeth 
detected 106 DMCs 
and 3 CpGs within a 
candidate DMR. 

PQLseq detected 1426 
DMCs and 6330 CpGs 
within candidate DMRs. 
RADMeth detected 
4624 DMCs and 4583 
CpGs within candidate 
DMRs. 

PQLseq detected 1798 
DMCs and 5975 CpGs 
within candidate DMRs. 
RADMeth detected 
1913 DMCs and 5700 
CpGs within candidate 
DMRs. 

Overlap, DMCs 0 1412 (99.0 %) 1638 (91.1 %) 

Overlap, CpG sites 
within candidate DMRs 

0 (However, all 3 CpGs 
detected by PQLseq by 
adjusted pvalue were 
among top 100 
detected by RADMeth 
and vice versa) 

4452 (70.3 %) 5400 (90.4 %) 

Overlap of top 1000 
CpG sites sorted by P 
value 

335 837 907 

Overlap of top 1000 
CpG sites sorted by 
spatially adjusted P 
value 

469 779 841 

Pearson correlation 
between log10 P values 

0.81 0.91 0.96 

Pearson correlation 
between log10 spatially 
adjusted P values 

0.77 0.95 0.98 

 

Table 4: A summary of RRBS and Pyrosequencing results on the association between sex (0 = male, 
1=female) and six CpG sites located on the promoter of Zona Pellucida Binding Protein 2 (ZPBP2). The 
RRBS data was modeled with a GLMM (PQLseq), and the pyrosequencing data was modeled with 
ordinary linear regression, as described in Methods. 

 
P value, RRBS Regression 

coefficient, RRBS 
P value, 
pyrosequencing 

Regression coefficient, 
pyrosequencing 

chr17:38024237 0.0001165 0.5415 9.720E-08 0.4147 
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chr17:38024242 3.859E-10 0.6689 4.297E-07 0.2382 

chr17:38024244 1.968E-08 0.5862 4.919E-06 0.2750 

chr17:38024250 5.775E-08 0.6387 2.211E-09 0.3195 

chr17:38024285 2.674E-08 0.5469 2.030E-08 0.4240 

chr17:38024290 8.964E-07 0.4494 3.201E-06 0.3169 
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