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Abstract

Live imaging techniques, such as two-photon imaging, promise novel insights into cellular ac-
tivity patterns at a high spatial and temporal resolution. While current deep learning approaches
typically focus on specific supervised tasks in the analysis of such data, e.g., learning a segmenta-
tion mask as a basis for subsequent signal extraction steps, we investigate how unsupervised gen-
erative deep learning can be adapted to obtain interpretable models directly at the level of the video
frames. Specifically, we consider variational autoencoders for models that infer a compressed rep-
resentation of the data in a low-dimensional latent space, allowing for insight into what has been
learned. Based on this approach, we illustrate how structural knowledge can be incorporated into
the model architecture to improve model fitting and interpretability. Besides standard convolutional
neural network components, we propose an architecture for separately encoding the foreground and
background of live imaging data. We exemplify the proposed approach with two-photon imaging
data from hippocampal CA1 neurons in mice, where we can disentangle the neural activity of in-
terest from the neuropil background signal. Subsequently, we illustrate how to impose smoothness
constraints onto the latent space for leveraging knowledge about gradual temporal changes. As a
starting point for adaptation to similar live imaging applications, we provide a Jupyter notebook
with code for exploration. Taken together, our results illustrate how architecture choices for deep
generative models, such as for spatial structure, foreground vs. background, and gradual tempo-
ral changes, facilitate a modeling approach that combines the flexibility of deep learning with the
benefits of incorporating domain knowledge. Such a strategy is seen to enable interpretable, purely
image-based models of activity signals from live imaging, such as for two-photon data.

1 Introduction

In the last decade, deep learning-based approaches have been successfully adapted for the analysis
of image data, rivaling and surpassing human performance in identifying structure from data. This
encompasses both supervised tasks with ground truth information, such as image segmentation with
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the U-Net [1], and unsupervised tasks where structure can be uncovered without prior human labeling,
e.g., by generative models such as variational autoencoders (VAEs) [2]. Recently, in particular such
unsupervised approaches have been extended to incorporate structural knowledge on temporal patterns
in the form of explicit models [3, 4].

In line with such ideas of a gradual transition from black-box deep learning towards more explicit
models we want to illustrate approaches for incorporating structural knowledge into deep generative
modeling of live imaging data. Besides convolutional neural networks, which take into account spatial
structure, we propose an architecture for distinguishing between the image foreground, containing the
biological signal of interest, and a background, and also for incorporating knowledge about gradual
temporal changes in the processes observed by live cell imaging.

Specifically, we explore how a generative deep learning model based on VAEs can be adapted to
such live imaging data. Exemplarily, we consider data from an in-vivo two-photon imaging experiment
and show how gradually incorporating constraints and structural assumptions that reflect the properties
of the data can provide an interpretable general model of neural activity. Such a model then is not
specifically adapted to a particular prediction task but can be flexibly used for various downstream
analyses.

Two-photon calcium imaging, as an exemplary application to illustrate our approach, represents
an invasive technique in the context of ’neural decoding’ for recording activities of individual neurons
over time. Here, two-photon microscopy is used to capture images of a neuronal population that
expresses a fluorescent calcium indicator and allows to visualize the increase in intracellular Ca2+-
concentration accompanying neurons’ spiking activity [5]. More generally, ’neural decoding’ refers to
techniques that use brain signals to make predictions about behaviour, perception, or cognitive state and
are becoming increasingly important for neuroscientific research [6–9]. For example, calcium imaging
techniques enable optical measurement of large neural populations at a high spatio-temporal resolution
and thus facilitate insights into neural activity [5, 10, 11]. To realize their full potential, computational
methods are needed to derive a model of neural activity from the indirect optical measurement of the
Ca2+ indicator. Here, to analyze the resulting video data, the typical two-step analysis framework of
cell population imaging is employed, where cells are identified through segmentation in a first step,
and the signals of interest, e.g., temporal fluorescence traces or firing rates, are identified subsequently
[9, 12–14]. Current approaches to derive an explicit generative model typically rely on simplifying
assumptions of, e.g., a linear combination of additive signals, that allow to directly incorporate known
structure, but limit the flexibility and versatility of the obtained data model [15, 16]. On the other hand,
deep learning techniques provide a more flexible class of models and have recently been successfully
applied to infer spike activity from calcium imaging data (e.g., [17–19]). Yet, as more opaque black-
box approaches, they lack the interpretability of an explicit data model and have so far been mainly
used on two-photon imaging data for supervised prediction tasks, requiring large amounts of labeled
training data typically not available.

Additionally, these approaches often only provide one of several components in the entire data
analysis workflow [14], where prior steps, such as motion correction, can considerably affect perfor-
mance [20]. Yet, results showing that temporal information can improve segmentation [17] indicate
that it might be beneficial to consider both steps simultaneously and perform modeling directly based
on the temporal sequence of images without explicitly extracting traces [9]. Such an integrated model-
ing strategy can help to build a flexible and versatile model that is not limited to a specific task.

We hypothesize that unsupervised generative deep learning approaches, which provide a model
of the underlying data generating distribution, can be useful to build such integrated models. Specif-
ically, we consider VAEs for this task, as they can be trained in an unsupervised way and infer a
low-dimensional latent representation of the central factors of variation underlying the data, which fa-
cilitates interpretability and has been shown to be useful for capturing and extracting patterns in the
data in an explainable artificial intelligence (AI) approach [21]. While VAEs have been adapted to
two-photon imaging data for the specific task of inferring neural spike rates from fluorescence traces
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[19], we aim to exemplify how a deep learning approach based on a VAE architecture can be adapted
to provide a flexible and versatile model not restricted to a specific task, yet be tailored to the properties
of two-photon imaging data.

This paper is structured as follows. We first give an overview of the typical steps of image pro-
cessing, before introducing generative deep learning in general and VAEs in particular, as well as the
convolutional architecture integrated into our models. Next, we detail the proposed approaches for dis-
tinguishing between foreground and background, and for incorporating smoothness assumptions corre-
sponding to gradual temporal changes. We then present results of the models trained on a two-photon
imaging dataset and finally discuss our findings, pointing out limitations and directions for future
research. The implementation and an exemplary application of the approach is illustrated in an accom-
panying Jupyter notebook available at https://gitlab.imbi.uni-freiburg.de/maren/
incorporating-structural-knowledge-into-unsupervised-deep-learning-for-
two-photon-imaging-data.

2 Background

2.1 Typical steps during conventional bioimage analysis

The ultimate goal of bioimage analysis is to gain knowledge of biological processes by extracting rel-
evant information from microscopy images, including time-lapse sequences that record the dynamics
of the processes. In non-machine learning-based (‘conventional’) bioimage analysis, a sequence of
operations is employed to extract the information [22, 23]. Depending on the specific application,
this analysis workflow typically involves initial image processing (e.g., enhancement, noise reduction,
filtering), followed by a sequence of operations that may include image segmentation and object de-
tection (e.g., cell outline, nuclei), tracking of object movements, and intensity-based quantification
and classification of objects (e.g., brightness, distance, size, co-localization). Finally, downstream
data visualization and analytics as well as mathematical or statistical modeling are applied to allow a
meaningful interpretation of the biological results, especially by comparing different experimental con-
ditions. Depending on the complexity and size of the raw data set, it is necessary to design automated
custom workflows that subsequently apply these operations to the data.

Since the advent of bioimage analysis, a plethora of successful methods and tools has been de-
veloped to perform conventional computational bioimage analysis. The main advantage of such non-
deep-learning analysis approaches is that the underlying algorithms are transparent with observable
input-output data, so that the results are readily interpretable. However, due to recent technical ad-
vances in microscopy methods and increased experimental complexities (e.g., intra-vital time-lapse
imaging of the brain activity of behaving animals), the produced bioimage data has enormously in-
creased in size and complexity within the last decades. Clearly, the conventional bioimage analysis
tools are limited in processing these highly complex and large data sets, because meaningful results
can only be obtained after tedious optimization of the algorithms. In addition, subtle differences in
biological structures and dynamics are easily overseen or masked by suboptimal parameter settings
using the conventional approaches. For example, existing toolbox solutions [14] account for the high
complexity of the data with a large set of predefined parameters that require a deep knowledge of the
underlying software by the user.

Driven by these challenges, a major paradigm shift has occurred with the massive adoption of deep
learning technologies that are rapidly replacing conventional bioimage analysis approaches. Especially
the use of artificial neural networks, and more recently of VAEs, in bioimage analysis offers consid-
erable advantages, since these flexible algorithms can be successfully employed to efficiently analyze
large, complex data sets.
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2.2 Generative deep learning

Our proposed analysis strategy is based on variational autoencoders (VAEs), a generative deep learn-
ing approach first presented in [2]. Here, the term ’generative’ refers to the fact that during training, the
model learns a joint distribution over all input variables that should ideally approximate the true under-
lying data distribution. Before presenting the VAE model in more detail, we give a brief introduction
to neural networks and generative deep learning.

An artificial neural network (ANN) is a function composition f : Rk1 → Rkn+1 ,x 7→ (gn ◦ gn−1 ◦
· · · ◦ g2 ◦ g1)(x) for distinct continuous functions gi : Rki → Rki+1 called the layers of the network.
Each layer is of the form gi(x) = hi(Wix+bi), where hi : R→ R is a continuous non-linear function
called the activation function and is applied element-wise, and Wi ∈ Rki+1×ki and bi ∈ Rki+1 are
weights and biases, also called parameters, of the network. Intuitively, by combining many of these
layers of linear combinations followed by a non-linear activation into a deep network, ANNs can be
used to model potentially very complex, non-linear structures in the data.

The process of finding a parameter set, i.e., determining weights and biases such that an ANN
approximates a specific input-output mapping is called learning or training of the ANN. Thus, the
term deep learning refers to the process of approximating potentially complex mappings with deep
ANNs. More precisely, training is performed by defining a loss function as the training objective and
repeatedly applying the chain rule to obtain partial derivatives of the loss with respect to the network
parameters in order to minimize the loss function by stochastic gradient descent [24]. This training
strategy results in the propagation of gradients ’backwards’ through the network and is hence termed
backpropagation [25]. ANNs can be trained to approximate various types of mappings from input
data to outputs, e.g., mapping a dataset of images to binary classifications or segmentation masks,
and have enjoyed great successes in many of these supervised tasks. They can also be employed as
generative models that learn a joint distribution over all input variables in an unsupervised fashion to
approximate the true underlying data distribution. Such a generative deep learning model then allows
to draw synthetic samples from the learned distribution. Various approaches for such deep generative
models have been proposed, including deep Boltzmann machines (DBMs) [26], generative adversarial
networks (GANs) [27], and VAEs [2], which differ predominantly in the way the underlying data
distribution is represented by the model.

2.3 Variational autoencoder

VAEs learn explicit parametrizations of the underlying probability distributions by employing two
distinctly parametrized, but jointly optimized neural networks that are responsible for encoding and
decoding of the data into and from a latent space that is governed by a probability distribution: The
encoder maps the input data x to a lower-dimensional latent representation given by a random variable
z by approximating the conditional distribution of z given x, while the decoder performs the reverse
transformation from the latent space back to data space, parametrizing the conditional distribution of
x given z.

The VAE training objective is to recover the central factors of variation underlying the data in the
lower-dimensional latent space, thus obtaining a compressed representation based on which the input
data distribution can be approximated. Since an ANN is used to encode the data into the latent space,
the true posterior distribution p(x|z) becomes intractable. Hence, a variational approximation q(z|x)
is employed – typically a Gaussian distribution with diagonal covariance matrix. A loss function for
the model can then be derived based on variational inference [28]:

Minimizing the Kullback-Leibler divergence DKL(q(z|x)‖p(z|x)) = Eq(z|x)
[
log q(z|x)

p(z|x)

]
to the

exact posterior is equivalent to maximizing a lower bound on the true data likelihood, the evidence
lower bound (ELBO) given by Eq(z|x)[log p(x|z)] −DKL(q(z|x)‖p(z)). Denoting the parameters of
the encoder and decoder neural networks with φφφ and θθθ, respectively, we can define the VAE training
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objective as the negative ELBO:

LVAE(x,φφφ,θθθ) = −ELBO(x,φφφ,θθθ)

= Eqφφφ(z|x)[log pθθθ(x|z)]−DKL(qφφφ(z|x)‖pθθθ(z)).
(1)

Intuitively, the first term in (1) can be thought of as a reconstruction error that encourages densities
placing mass on configurations of latent variables that explain the observed data, while the second term
has a regularizing effect by enforcing consistency between the prior and posterior of z. By maximizing
the ELBO with respect to both θθθ andφφφ, we can derive both approximate maximum likelihood estimates
for θθθ and an optimal variational density qφ [28].

In practice, with a Gaussian prior and posterior of z, the Kullback-Leibler divergence in (1) can be
calculated analytically, while the expectation with respect to the variational posterior qφφφ(z|x) has to be
approximated by Monte Carlo sampling. Using S samples for this approximation and aK-dimensional
latent space the ELBO of a single data point x(i) ∈ {x(1), . . . ,x(N)} can be calculated as

ELBO(x(i),φφφ,θθθ) =
1

L

S∑
s=1

log pθθθ(x
(i)|z(i,s))

+
1

2

K∑
k=1

(1 + 2 · log(σσσ(i)k )− (µµµ
(i)
k )2 − (σσσ

(i)
k )2),

(2)

where µµµ ∈ RK and σσσ ∈ RK denote the parameters of the variational posterior (hence depending on its
parameterization by φφφ) and µµµk denotes the k-th component of the vector. The loss over all data points
x(1), . . . ,x(N) is then given by

LVAE(x
(1), . . . ,x(N),φφφ,θθθ) = −

N∑
i=1

ELBO(x(i),φφφ,θθθ).

In our implementation, we use S = 1 throughout and follow the common practice of adding an L2
regularization term λ · ‖

∑
β∈{φφφ,θθθ} β‖22 to prevent exploding model parameters. While obtaining an

estimate of the gradient with respect to θθθ is straightforward, we have to employ a change of variables
called the reparameterization trick [2] to estimate the gradient with respect to the variational parameters
φφφ. Intuitively, instead of sampling z ∼ qφφφ(z|x), we sample some εεε from a random variable independent
of x and express z as a deterministic transformation of φφφ and εεε. Thus, we obtain unbiased estimates of
the ELBO with respect to both θθθ and φφφ that are optimized with stochastic gradient descent [24].

2.4 Convolutional neural networks

For data in the form of two-dimensional arrays, such as images, typically convolutional neural net-
works (CNN) are employed, a type of ANN specifically adapted to the spatial structure of image data
[29]. CNNs comprise mainly two types of layers, namely convolutional layers and pooling layers.

A convolutional layer is defined by a number of filters, where each filter is represented by a weight
matrix. The filters are applied locally, i.e., the weight matrix is multiplied element-wise with local
patches of the input image and all values are summed up (mathematically, this corresponds to a dis-
crete convolution, hence the name), before a non-linear activation function is applied to the resulting
weighted sum . We can thus think of a filter as a window sliding over the image, convolving the filter
weight matrix with different patches of the image. Each filter is defined by the size of the filter matrix,
the stride, i.e., the step size with which it slides across the image, and its corresponding activation
function. The locally applied convolution operation accommodates central characteristics of array data
such as images, namely the fact that they often exhibit distinctive local motifs, representing highly
correlated local groups of values, and that such local motifs can appear in any part of the image, i.e.,
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Figure 1: Layers of structural information can be gradually combined with a fully connected vanilla
VAE model (1) to enable a step-wise transition from a black-box deep learning model towards a more
explicit modeling approach that takes into account problem structure by adding a convolutional archi-
tecture (2), separate foreground and background encodings (3), and latent kernel smoothing (4)

are invariant to their overall position [29]. This is reflected in the CNN architecture by the idea of using
the same weights at different locations, realized by the filter matrix applied across the image.

The convolutional layer outputs a feature map, which is subsequently aggregated in a pooling layer
to merge similar features, in order to form higher-level features and detect motifs by building more
coarse-grained representations [29]. Technically, this is achieved by aggregating a local patch of a
feature map to a single value, e.g., by computing the maximum or average of all values in the patch.
Thus, a pooling layer is defined by the corresponding pooling function and the size and stride of the
pooling filter. The parameters of the CNN are given by the set of all filter matrices of its layers and can
be estimated with backpropagation analogously to ANNs.

3 Materials and methods

In the following sections, we describe our proposal for adapting a VAE-based model to the properties of
the two-photon imaging data. To tackle the challenging modeling task of simultaneously capturing the
foreground signal with the distinct cell activity and the more coarse-grained, blurry background signal,
while accounting for the temporal correlation between neighboring frames, we gradually increase the
level of additional structural information integrated into the model and explore how different encoded
structural properties affect the activity patterns and the identified latent structure.

Figure 1 provides an overview of this framework, representing steps from a black-box model to-
wards a more explicit one that is tailored to the data: In a first step, we train a fully-connected vanilla
VAE on the dataset, as described in Section 2.3, where each image frame is treated as a separate
observational unit. In a second step, we employ a convolutional architecture for the VAE encoder
and decoder to account for the characteristics of the image data (see Section 2.4). Next, we tackle
the mixed-source activity by building separate encoders and decoders for the foreground and back-
ground, respectively, that share a joint latent space. In a final model extension, we consider latent
kernel smoothing to account for the temporal correlation across frames, thus incorporating a temporal
smoothness constraint in the latent space.
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3.1 Data and preprocessing

We use data obtained from in-vivo two-photon calcium imaging of hippocampal CA1 neurons in mice.
Mice were intra-hippocampally injected with adeno-associated viral constructs (AAV1.Syn.GCaMP6f.
WPRE.SV4, University of Pennsylvania Vector Core) that established a panneuronal expression of
the calcium-indicator GcaMP6f in CA1 neurons. Subsequently, a 3mm wide cranial window was
implanted above the hippocampal formation to provide optical access to the structure. For details
of the procedure, please see [11]. During the imaging mice were head fixed and placed on an air-
floating styrofoam ball that allowed them to navigated through a virtual reality which was projected to
four screens placed around them. Mice were trained to run along 4m long linear tracks to obtain goal-
oriented rewards. Imaging was performed using a resonant/galvo high-speed laser scanning two-photon
microscope (Neurolabware) with a frame rate of 30Hz for bidirectional scanning. The microscope was
equipped with an electrically tunable, fast z-focusing lens (optotune, Edmund optics) to switch between
z-planes within less than a millisecond. GCaMP6f was excited at 930nm with a femtosecond-pulsed
two-photon laser (Mai Tai DeepSee, Spectra-Physics). To maximize the number of recorded neurons
we scanned three imaging planes (≈ 25µm spacing between planes) in rapid alternation so that each
plane was sampled at 10Hz.

The recorded images are characterized by a clear distinction (at least for the human observer)
between foreground signal, showing the somatic calcium increase during firing of the neuron over time
that we aim to capture with our modeling approach, and background, consisting primarily of more
coarse-grained, noisy neuropil signal. As a preprocessing step, we performed motion correction with
the NoRMCorre algorithm [30] and subsequently normalized the data.

3.2 Separating foreground and background: the dual-target VAE

Formally, we can model the dataset x = {x(1), . . . ,x(N)} of images x(i) ∈ RL×M for some L,M ∈ N
as a combination of foreground signal x1 and background signal x2, such that x = f(x1,x2) for some
unspecified function f that describes the merging of fore- and background signal in the overall image.

Here, we consider an approximation of the background x2 by scaling down the data in order to
minimize the bias introduced by the foreground signal x1, that has a much higher resolution. We
choose g : RL×M → Rl×m with L = ls, M = ms for some l,m ∈ N to be a pooling function
with stride s, that samples patches of size s down to a single pixel, thus creating a smaller image that
averages out the fine-grained foreground signal, retaining mostly large-scale background activity.

The foreground signal x1 cannot be approximated as simply. Hence, as a pragmatic solution,
we can optimize the foreground likelihood for x instead of x1, ignoring the bias introduced by the
background signal. Alternatively, we approximate x1 by x>t = x · I{x>t}(x), i.e., we introduce a
threshold k that serves as a cut-off, such that only pixel values larger than k corresponding to pixels
with high activity are retained.

To model foreground and background separately, we introduce separate VAE models with latent
variables z1 and z2, that form compressed representations of x1 and x2 respectively. Accordingly, we
consider likelihoods pθθθ1(x) for the foreground and pθθθ2(x) for the background and define corresponding
variational encoders, qφφφ1(z2|x) and qφφφ2(z2|x) realized as CNNs.

In order to account for the different nature of sharp and local foreground signal and blurry, large-
spanning background signal, we choose a small receptive field with a size similar to the regions of
interest in the foreground for qφφφ(z1|x), while qφφφ2(z2|x) is parametrized by a CNN with larger receptive
field. To obtain a joint model of the entire image including both foreground and background, we
need to allow for interaction between the two models and thus add a fully connected ANN layer that
integrates z1 and z2 into a joint latent space, before passing the output into the separate decoders. More
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specifically, the encoding and generative process of the resulting dual-target VAE model is given by

µµµ1,σσσ1 = EncoderNeuralNetφφφ1(x)

µµµ2,σσσ2 = EncoderNeuralNetφφφ2(x)

z1 ∼ N (µµµ1,σσσ1) = qφφφ1(z1|x)
z2 ∼ N (µµµ2,σσσ2) = qφφφ2(z2|x)
z̃1, z̃2 = InteractionNeuralNet(z1, z2)

x̂ ∼ pθθθ1(x|z̃1)

ĝ(x) ∼ pθθθ2(g(x)|z̃2).

(3)

Consequently, we can derive an optimization criterion for the overall model by considering both EL-
BOs from the foreground and background part:

LDualVAE(x) = ELBO(x,φφφ1, θθθ1) + ELBO(x,φφφ2, θθθ2)

Estimators for the two ELBOs are calculated as in (2), such that the model can thus be trained by
stochastic gradient descent analogously to the vanilla VAE (see Section 2.3). To simplify the notation
for the practical discussion in the following, the functions representing the mapping of an input x to
the outputs of the foreground and background VAE will be referred to as VAE1(x) and VAE2(x)
respectively. Note that these are not deterministic functions, as each includes drawing a sample from
the latent variable z via a reparameterization (see Section 2.3). Also, because the latent spaces interact,
each function includes the computation of both encoders. The implementation of the approach and
the training procedure of the dual-target VAE loss are illustrated and described in more detail in the
accompanying Jupyter notebook.

3.3 Smoothing the latent representation with a kernel

Since the images correspond to frames in a video, subsequent frames exhibit similar cell activity pat-
terns, which implies a strong temporal correlation between a frame and its neighboring images. Hence,
we want to explicitly incorporate this structural property of the data into our model for constraining the
latent representation. This will allow to model smoother developments and thus more accurately reflect
underlying activity patterns in the data. We specifically propose kernel smoothing in the latent space.
Instead of training the model on randomly selected batches comprised of arbitrarily temporally distant
frames, we consider a neighborhood of adjacent frames for updating parameters via the gradient of the
loss functions, to make information about temporal proximity accessible to the model. We define a
neighborhood by its size n and position i ∈ N. For some m ∈ N, the neighborhood of size 2m + 1
of the i-th frame x(i) is then given by Nm(x

(i)) := (x(i−m) x(i−m+1) ... x(i) ... x(i+m)). Denoting
with L the sum of dimensions of the latent variables z1,2, a kernel function K : RL×(2m+1) → RL is
applied to the latent representation mean µ = (µ1, µ2) for the respective posterior distributions of the
two VAE models. As a kernel, we use the tricube function defined by K(x) = (1 − (|x|)3)3 and use
the distance in frames to compute the weights with the kernel.

We can now replace batch learning by neighborhood learning. Instead of randomly partitioning the
data set in disjoint batches BBB1, . . . ,BBBJ , where {x(1), . . . ,x(N)} = BBB1∪̇BBB2 · · · ∪̇BBBJ , and calculating
the loss of the entire batch as LDualVAE(BBBj) =

∑
x∈BBBj LDualVAE(x) before applying one gradient

update of the model parameters, we form a neighborhood NNNm(x) of size 2m + 1 around each x
as defined above. With this, we can derive one loss value for the neighborhood by using the latent
representation obtained as a weighted average of all frames in the batch with weights given by the
kernel, i.e.,

µµµ1,σσσ1 = K(EncoderNeuralNetφφφ1(NNNm(x)))

µµµ2,σσσ2 = K(EncoderNeuralNetφφφ2(NNNm(x))),
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and subsequently use µµµ1,σσσ1,µµµ2,σσσ2 as in (3) to obtain samples z1, z2 and reconstructions x̂, ĝ(x).
Thus, from each frame x and its respective neighborhood NNNm(x), we calculate a single value of
LDualVAE(NNNm(x)) before applying one gradient update. Note how in this case the complexity for
computing the gradients of each frame increases, as it has to flow through 2n additional computations
of the EncoderNeuralNet.

To further explore our approach to obtain a smoother latent representation, we compare kernel
smoothing in the latent space described above to smoothing performed at the level of the loss values
of all frames in a neighborhood. This means that we calculate the loss LDualVAE(x

(j)) for a frame
NNNm(x), for all x(j) ∈NNNm(x), and obtain a common loss as weighted average

LDualVAE(Nm(x
(i)))

= K(LDualVAE(x
(i−m), . . . ,LDualVAE(x

(i+m))).
(4)

4 Results

4.1 Implementation

The experiments have been implemented in the Julia programming language (version 1.4.1) and were
carried out on a Linux cluster utilizing 150GB of RAM, 16 CPU-cores, and one NVIDIA Tesla V100
GPU. Model training was realized using the Julia machine learning library Flux.jl (version 10.1.0) and
CUDA.jl (version 0.1.0) for GPU support.

We compare (1) a VAE with a CNN architecture, (2) a dual-target VAE, and (3) a dual-target VAE
with kernel smoothing. To ensure comparability, all three scenarios use the same architecture for their
encoders and decoders (e.g., the encoder of VAE1 in the dual-target VAE is the same as the encoder of
the convolutional baseline). In the following, we briefly describe the implementation of the different
models. Details on the model structure and parameters are given in the supplementary material.

First, we evaluate the performance of the baseline CNN approach against a standard VAE with
a fully-connected ANN encoder and decoder. The CNN encoder has 3 convolutional layers and one
pooling layer and the decoder has 4 transposed convolutional layers. The first layer of the encoder is
configured with a small filter, also called receptive field, of size 25 by 25. To keep the computational
cost of the ANN approach comparable to the CNN scenario, the encoder and decoder were both real-
ized as one-layer ANNs. Next, we add a background model to the baseline approach, which consists
of a two-layer convolutional encoder with a receptive field of size 100 by 100 and a fully-connected
ANN decoder. The training target of VAE2 is the scaled version of the original data as described above
in Section 3.2. Finally, we evaluate the performance of the dual-target VAE with kernel smoothing on
the latent representation as described in Section 3.3 and compare it against the dual-target VAE with-
out temporal smoothing. Additionally, we train a dual-target VAE that employs the same smoothing
procedure with a tricube kernel based on the loss values of the neighborhood of each frame.

The training data comprises 10000 contiguous, normalized frames of size 796 by 512 pixels. The
smaller target of size 8 by 5 for the background models is obtained by padding with zeroes and pooling
100× 100 patches into their sums of pixels and normalizing subsequently. For pretraining, we choose
t = 0.3 as threshold of the foreground approximation. We use the ADAM optimizer [31] for stochastic
gradient descent and train the models for 20 epochs on the cut-off data and another 20 epochs on the
original data with a batch size of 5. For the approaches with kernel smoothing, we use the parameters
of the dual-target VAE as initialization and train for another 20 epochs and a neighbourhood of size 5.

4.2 Convolutional VAE

With the fully-connected approach, we were not able to achieve dynamic reconstruction of the fore-
ground and thus omit the results. In contrast, Figure 2 exemplarily shows that the CNN approach
achieved good results on prominent foreground cells. This implies that the advantages of CNNs over
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Figure 2: Top row: Preprocessed sample frame from the data and its reconstructions of the convolu-
tional baseline VAE approach and of dual-target VAE respectively. Bottom row: Slice of the same
sample with corresponding reconstructions of only the foreground of dual-target VAE and dual-target
VAE with latent kernel smoothing.

a standard fully-connected neural network structure also apply to frames from two-photon imaging
videos, and that modeling of theses images hence benefits from taking into account local motives and
patterns as well as their spatial invariance across the entire image, the main characteristics motivating
the CNN architecture.

Yet, the signal of smaller cells that spike with lower magnitude and more rapidly is reconstructed
with lower intensity or not at all in a large proportion of these cell populations. This can be observed
over most other frames. The activity of the less dominant cells is reconstructed only with low accuracy
and results in a lot of false positives and false negatives. Also, when observed over the course of
contiguous frames, rapid alternations in cell activity, which are not present within the original data, are
visible in the output underlining the problems of the model with this kind of signal. The noise in the
original sample is not retained in the output, thus creating a slightly more blurred but denoised version
of the input, which might be useful, e.g., for visual presentation.

4.3 Dual-target VAE

Next, we investigated the separation of foreground and background activity within the latent space of
the convolutional baseline approach. To this end, we decoded one-hot configurations of all dimensions
of the latent space and observed the amount of foreground and background present in the output. In
Figure 3, we display the outputs of the configurations with the most and least foreground activity. Even
in dimensions with low foreground activity, at least some foreground cell activity is present and thus,
this approach does not allow to fully disentangle fore- and background signal.

On the other hand, the dual-target VAE showed no foreground activity within the two latent dimen-
sions of the VAE2 and thus achieved better separation. For any given image, we can thus set z1 = 0
and decode the given configuration to an image of only the background activity. Subsequently, this
background can be subtracted element-wise from the reconstructed image and we obtain an image of
the foreground activity. Figure 2 exemplarily shows the reconstructed foreground of the given frame.
The depicted frame is representative of the rest of the data, where static and dynamic parts of the
background are eliminated with high accuracy and dominant foreground cell activity is retained in the
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Figure 3: Exemplary exploration plots (sliced) of foreground and background model of the baseline
convolutional VAE model (left) and the dual-target VAE (right). The configuration of the latent space
that was used to create the plot is annotated on top. Dimensions of the baseline model are chosen
according to visual inspection for most and least foreground activity respectively.

output. Yet there is still a tendency of the model to weaken or omit the activity of smaller, less active
cells in the foreground.

4.4 Dual-target VAE with latent kernel smoothing

As a last step, we evaluate the impact of kernel smoothing on the model performance. Comparing the
foreground activity in Figure 2 (bottom row), especially low-activity cells are more prominent in the re-
construction of the approach with latent kernel smoothing. Effectively, calculating the kernel weighted
average of latent representations across a neighborhood of subsequent frames corresponds to imposing
a smoothness constraint on the latent space. To further investigate whether this smoothness constraint
can help to capture the temporal correlations between subsequent frames, we considered sequences of
frames with a distance of two, i.e., the first, second and third frame in the sequence correspond to the
first, third and fifth frame in the respective part of the video (see Figure 4). Specifically, we compared
the differences between two adjacent frames in the sequence (i.e., between every second frame in the
original video) when reconstructed with the dual-target VAE without kernel smoothing (Figure 4, b))
versus the dual-target VAE with latent kernel smoothing (Figure 4, c)). Here, we can observe that the
differences between frames reconstructed based on a kernel smoothed latent representation are less
pronounced than without the smoothing step.

We more generally observed a tendency towards higher intensity and precision of the reconstructed
foreground activity with fewer flickering artifacts, indicating that our approach can indeed provide a
smoother reconstruction of frames across time that reflects the underlying time-dependent biological
process.

Additionally, we compare the kernel smoothing in the latent space with a dual-target VAE trained
on neighborhoods with a smoothing step performed at the level of the loss values, as in 4, Section 3.3,
i.e., using for each frame its individual latent representation, but employing a kernel weighted average
across the loss values of all frames in a neighborhood as training objective. Here, the improvements
described above are observed to a lesser extent (results not shown), implying that constrains should be
imposed directly on the latent representation, which encodes the central structure underlying the data
and the reconstruction.

5 Discussion and conclusions

Deep learning has been shown to be a useful tool for analyzing biomedical imaging data across a wide
range of tasks. Specifically, such approaches have been developed for neural decoding [9] and are
increasingly becoming a part of analysis workflows for live cell imaging data, such as for two-photon
imaging [14, 17, 18]. Here, automatic extraction and modeling of neural activity from individual cells
over time and in large cell populations is a crucial step towards a better understanding of cellular
activity that can ultimately be linked to phenotype data to facilitate biological insight. While current
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Figure 4: Exemplary sequence of frames and the differences between the model reconstructions of
adjacent frames with and without latent kernel smoothing. a) Original exemplary sequence of samples
with a distance of two, i.e., adjacent frames in the plot correspond to every second frame in the original
video. b) Differences between the reconstructions of the frames shown in a) obtained from training a
dual-target VAE without kernel smoothing. c) Differences between the reconstructions of the frames
shown in a) obtained from training a dual-target VAE with kernel smoothing. The color coding de-
scribes the sign of the difference (blue: positive, red: negative), while the color intensity encodes the
absolute magnitude.

approaches are dominated by supervised models that require large amounts of labeled training data to
learn a specific classification of prediction task, generative models infer a model of the underlying data
distribution. Explicit data models that describe cellular activity as, e.g., linear combination of additive
signals, are less opaque than deep learning approaches, but limited in their flexibility due to simplifying
modeling assumptions. Ideally, a modeling approach should provide a combination of both, i.e., an
interpretable model that allows to encode known structural properties of the data while being as flexible
and versatile as possible. We have thus investigated how structural knowledge can be incorporated
into an unsupervised generative deep learning approach, specifically VAEs, directly applied to the
video data frames from two-photon imaging, for modeling neural activity in a latent representation.
Here, the focus was on exploring how gradually incorporating structural components, which reflect
key properties of two-photon imaging data, affect the latent representation, thus facilitating insight into
what the model has learned and exemplifying to what extent a generative deep learning approach can
be tailored to model signals activity in live cell imaging data.

Specifically, we have compared VAEs with different amounts of explicit structure incorporated
into the model. While a standard fully-connected VAE did not permit to accurately reconstruct the cell
images, employing convolutional layers, the de facto standard architecture for deep learning on im-
age data, in the encoder and decoder allowed to infer a latent representation based on which the input
images could be reconstructed. Next, we have taken into account the typical mixed-source activity of
two-photon imaging videos, where the fluorescent traces of active neurons in the background should
ideally be separated and deconvolved from the noisy neuropil background signal. To model this struc-
ture, we have proposed separate VAE encoders and decoders for the foreground and background of
each image, while still learning a joint latent representation of the image. With this, we have been able
to obtain a latent representation that can disentangle foreground and background signals, which was
only possible by explicitly encouraging it with the distinct encodings. Finally, we have illustrated a
straightforward approach for imposing a smoothness constraint on the latent space, to take into account
the temporal correlation and smooth structure of activity traces in subsequent frames. Specifically, we
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have formed neighborhoods of adjacent images around each frame and obtained the latent represen-
tation of each frame as a smoothed average of the activity signal over the entire neighborhood. This
approach allowed to retain weaker signals from smaller active cells in the foreground more frequently
and more clearly, thus capturing the overall activity more accurately by exploiting the similarity of
neighboring frames for modeling.

Still, it is difficult to assess the model performance objectively beyond visual inspection of re-
constructed videos and images, and more rigorous quantitative criteria are needed to evaluate further
model refinement. Another drawback of the model in its current form is the complexity, due to many
parameters in the convolutional layers, resulting in a computationally rather extensive training proce-
dure. Additionally, more sophisticated approaches for smoothness constraints could be considered to
facilitate dynamic modeling of the latent representation over time. For example, differential equations
could be incorporated in the latent space. A further extension would be to consider stochasticity, and
more explicitly model the spatial structure. Here, recent works suggest underlying low-dimensional
spatio-temporal dynamics in two-photon-imaging data [32], which could potentially be captured in the
latent space of a VAE model, while the spatio-temporal patterns could be modeled with an approach
as in [33]. Another interesting direction for future research are methods for linking the inferred low-
dimensional activity patterns, e.g., to phenotype data regarding the behavior of the animal. This could
also benefit from incorporating structural assumptions on the spatio-temporal dynamics, as in [34].

In the present work, our focus was on illustrating how such a deep learning-based approach can be
adapted to the specific properties of the data using two-photon imaging as an exemplary application,
rather than a detailed comparative study of existing deep learning approaches for cell imaging data. We
specifically highlighted how modeling can benefit from incorporating elements of more explicit data
models, and investigated how such structural assumptions affect the patterns learned by the model.

More generally, our approach illustrates how generative deep learning approaches can be combined
with various amounts of structural assumptions for greater interpretability, and how the respective
learned representation can be inspected to assess to what extent it is influenced by these assumptions.
It can be seen as an example of the currently ongoing shift from purely algorithmic black-box deep
learning models towards the more explicit data modeling of classical statistics, and, rather than view-
ing the modeling cultures as a dichotomy [35], represents a step towards uniting the two worlds and
combine their respective advantages [36].

Overall, our proposed strategy offers an integrated one-step modeling approach to extract activity
signals from two-photon imaging data, operating directly on the video frames, and exemplifies how
tailoring a model to the specific properties of the data can provide an interpretable representation of
the central patterns in the data, accounting for the distinct foreground and background activity as well
as temporal correlations. It thus suggests that combining generative deep learning with structural
information can also more generally be a promising approach for uncovering activity patterns in cell
imaging data.
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