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 2 

ABSTRACT  1 
 2 
Mapping individual differences in behavior is fundamental to personalized neuroscience. Here, 3 
we establish that statistical patterns of smartphone-based mobility features represent unique 4 
“footprints” that allow individual identification. Critically, mobility footprints exhibit varying 5 
levels of person-specific distinctiveness and are associated with individual differences in 6 
affective instability, circadian irregularity, and brain functional connectivity. Together, this work 7 
suggests that real-world mobility patterns may provide an individual-specific signature linking 8 
brain, behavior, and mood. 9 
 10 
KEYWORDS: smartphone, GPS, mobile phenotyping, fMRI, mood, affective instability 11 
 12 
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 3 

MAIN 1 
 2 

Linking individual differences in behavior to brain function is a central task of behavioral 3 
neuroscience1. However, quantifying complex human behavior in real world settings remains a 4 
challenge. One alternative to standard behavioral assessment is digital phenotyping, which uses 5 
mobility data from personal smartphones to quantify moment-by-moment human behavior2. 6 
Prior work has associated geolocation features to important clinical outcomes in psychiatric 7 
disorders such as bipolar disorder and schizophrenia3, and has linked accelerometer metrics to 8 
post-surgical recovery4,5. Furthermore, researchers have recently begun to capitalize on the 9 
substantial variability of behavior assessed with digital phenotyping to link individual 10 
differences in brain and behavior. For example, lower prefrontal activity during processing 11 
negative emotions has been associated with individual exposure to urban green space6, while 12 
greater functional coupling of the hippocampus and striatum has been linked to location 13 
variability7.  14 
 15 

While these studies suggest that digital phenotyping can be a powerful tool for studying 16 
individual differences, it remains unknown whether mobility patterns are in fact person-specific. 17 
Recent high-impact work has established that individual humans have unique patterns of 18 
functional brain connectivity8,9. The uniqueness of such brain-based “fingerprints” (also called 19 
“connectotypes”10) have been associated with development, cognition, and psychiatric 20 
conditions11. Establishing analogous person-specific mobility patterns – or mobility “footprints” 21 
– would constitute an important advance in behavioral neuroscience, and provide the foundation 22 
for targeted, individual-specific interventions.  Accordingly, here we test the hypothesis that 23 
mobility patterns derived from personal smartphones can be used to create person-specific 24 
behavioral footprints.  Furthermore, we evaluate whether the distinctiveness of these footprints 25 
was related to individual differences in mood, sleep, and brain functional connectivity. 26 
 27 

As part of a study of trans-diagnostic affective instability in youth, we tracked 3,317 28 
person-days of geolocation and 2,972 person-days of accelerometer data from 41 adolescents and 29 
young adults (28 females; mean [s.d.] age = 23.4 [3.5] years, range 17–30 years) – approximately 30 
3 months per individual (Fig. 1a, Supplementary Fig. 1). In this sample, 93% of participants 31 
reported clinically significant affective instability in the context of psychiatric disorders 32 
(especially borderline personality disorder; see Supplementary Table 1). After applying hot-33 
deck imputation to missing GPS data as implemented in the Smartphone Sensor Pipeline13, we 34 
constructed the daily mobility trajectory for each participant (Fig. 1b & c; see Online Methods). 35 
Instead of using raw coordinates that would allow trivial individual identification (and raise 36 
privacy concerns) given a participant’s exact location, we extracted high-level summary statistics 37 
of mobility features. These features (15 geolocation-based and 7 accelerometer-based) included 38 
time spent at home, number of locations visited, and many others (Fig. 1d, Supplementary 39 
Table 2). 40 
 41 
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 1 
Figure 1 | Constructing personal mobility “footprints”. a) We collected 3,317 person-days of mobility 2 
sensing data via personal smartphones from 41 adolescents and young adults. Geolocation data were 3 
recorded in cycles of 2min on and 18min off. Raw geolocation coordinates were de-identified via sphere-4 
to-2D standard space projection and were further imputed for missing data. b) For each individual, we 5 
constructed daily personal mobility trajectories, which consist of flights (movement) and pauses 6 
(stationary segments). Length of linear lines represents the duration of flights and size of circles 7 
represents the duration of pauses. Warm and cold colors indicate daytime and nighttime, respectively. c) 8 
A representative week of trajectories is shown, which demonstrates rich characteristics of personal 9 
mobility patterns formed over time. d) We extracted timeseries of mobility statistics (e.g. daily time spent 10 
at home) from geolocation and accelerometer data that parameterize movement characteristics over weeks 11 
to months. The example represented all 110 days of participants’ geolocation metrics recorded.  e) For 12 
each individual, we constructed a covariance matrix from the mobility metric timeseries. Each cell of the 13 
matrix was populated by the Pearson correlation between a given pair of mobility metrics. Warm and cold 14 
colors indicate positive and negative correlations, respectively. f) We randomly divided data into two 15 
equally sized parts, called the reference and target set. Subj X from the target set was matched to the 16 
subject in the reference that had the highest correlations between their footprints (argmax(r1, r2, ..rN)). The 17 
identification was considered correct when underlying data came from the same subject; otherwise, the 18 
identification was considered incorrect. We quantified individual identification accuracy as the proportion 19 
of correct identifications across the entire sample; this procedure was repeated 1,000 times across 20 
different random partitions of the data. 21 
 22 

When tracked over weeks to months, these timeseries of mobility statistics captured rich 23 
characteristics of individual mobility patterns. One illustrative example of the sensitivity of the 24 
timeseries to track mobility patterns is when COVID-19 pandemic hit the Philadelphia area 25 
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 5 

towards the end of the study period. Participants who were still engaged in active data collection 1 
(n=3) exhibited dramatic shifts in mobility features (Supplementary Fig. 2). Of note, as the data 2 
points during COVID-19 represented merely 1.1% of all data, the findings reported below did 3 
not change significantly when these data were removed. 4 
 5 

Drawing on prior work of brain connectome “fingerprinting,”8,10 we created a covariance 6 
matrix of each participant’s fifteen geolocation-based and seven accelerometer-based mobility 7 
features timeseries to identify individuals (Fig. 1e), akin to a person-specific mobility 8 
“footprint.” Data from each individual is was partitioned into two groups: the target partition and 9 
the reference partition. For each individual, the data in the target partition was separately 10 
correlated with every individual’s data in the reference partition; this procedure yielded 41 11 
correlation values. A correct identification was declared only when the maximum correlation 12 
was from the data belonging to the same individual across the target and reference partitions 13 
(Fig. 1f). In order to ensure that the random partitioning of the data did not impact results, this 14 
matching procedure was then repeated for each individual 1000 times (Online Methods). 15 
 16 

Initial inspection across random partitions of the data revealed that it was visually 17 
apparent that there was substantially greater correlation between mobility footprints within 18 
participants rather than between participants (Fig. 2a). Permutation testing on the entire sample 19 
revealed that individuals could be successfully identified using their mobility footprints (p 20 
<0.001; Fig. 2b). Across 1,000 random data partitions, the mean individual identification 21 
accuracy was 63%. Critically, this accuracy was far better than chance performance determined 22 
by a permuted null distribution (mean: 3% accuracy; see Fig 2b inset).  23 
 24 

Moving beyond aggregate measures of accuracy across the group, we next investigated 25 
whether certain individuals could be consistently identified more accurately than others. Similar 26 
to prior studies of brain connectome fingerprinting8,10,11, we refer to this measure as an 27 
individual’s “footprint distinctiveness”. Notably, individuals exhibited a wide distribution of 28 
footprint distinctiveness, ranging from 4% to 99% (Fig. 2c). In other words, certain participants 29 
had such distinct mobility patterns that it enabled correct identification nearly every single time; 30 
other participants were difficult to identify. Nonetheless, permutation testing showed that all 31 
participants had significant footprint distinctiveness compared to the null distribution.  32 
 33 

As the group and individual level accuracy results reported thus far were based on the 34 
combination of geolocation and accelerometer features, we next examined each feature set 35 
separately. Individual footprint distinctiveness derived by geolocation was not correlated with 36 
that of accelerometer (r = 0.18; p = 0.26). Interestingly, while accelerometer data alone yielded 37 
lower identification accuracy (28%) than geolocation data (55%), combining these features 38 
resulted in higher identification accuracy, suggesting that they encode complementary 39 
information (Fig. 2d). Importantly, individual identification accuracy was stable across different 40 
inclusion thresholds for data missingness and was robust to removal of individual mobility 41 
features (Supplementary Fig. 3).  42 
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 1 
Figure 2 | Identifying individuals using personal footprints. a) As an initial step, we visualized the 2 
similarity of mobility features across multiple random reference and target partitions (R & T in inset). It 3 
was readily apparent that mobility features were more highly correlated within participants (on diagonal) 4 
across data partitions than between participants (off diagonal). Note that this visualization was not used in 5 
statistical analysis or individual identification. b) Across 1,000 random partitions, mobility footprinting 6 
enabled successful individual identification (mean: 63%, S.D.: 6%). In contrast, the mean chance 7 
accuracy from 1,000 permutation was 3% (inset, p <0.001). c) For each individual, we calculated the 8 
footprint distinctiveness, or the percentage of correct identification across the 1,000 random partitions of 9 
the data. Ranked in ascending order, participants’ footprint distinctiveness exhibited a wide range, from 10 
4% to 99%. However, even the participant with the lowest identification distinctiveness was significantly 11 
higher than the null distribution. d) Individual identification based on geolocation alone had higher 12 
accuracy than accelerometer alone. However, they appeared to encode complementary features, as 13 
performance was maximal when both measures were used in footprinting. 14 
 15 
 16 

We next investigated participant factors that influenced footprint distinctiveness. We 17 
found that data quantity (i.e. number of days recorded) was associated with footprint 18 
distinctiveness (Supplementary Fig. 4). In contrast, the amount of missing data within a given 19 
day was unrelated to footprint distinctiveness. Based on this result, all subsequent analyses of 20 
individual differences related of footprint distinctiveness controlled for number of days of data 21 
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 7 

available. As a next step, we evaluated whether footprint distinctiveness was related to age or sex 1 
in our sample of adolescents and young adults. We found that geolocation-based footprints 2 
became more distinct with age across the transition from adolescence to adulthood (partial r = 3 
0.33, p <0.05, Supplementary Fig. 5). Furthermore, female sex was associated with higher 4 
accelerometer-based footprint distinctiveness (Cohen’s d = 1.27, p < 0.001, Supplementary Fig. 5 
5).  6 
 7 

We next evaluated how footprint distinctiveness was related to a key domain of 8 
psychopathology: affective instability. Affective instability is a major feature of many 9 
psychiatric disorders14, including borderline personality disorder. Affective instability is 10 
particularly prominent in youth15, and is an important predictor of suicide16. However, affective 11 
instability is often challenging to quantify using standard tools as it is fundamentally a dynamic 12 
measure17. We capitalized on participant ratings of multiple mood features collected three times 13 
a day for two weeks using ecological momentary assessment in order to quantify affective 14 
instability. We hypothesized that individuals who had less predictable patterns of mobility (i.e., 15 
reduced footprint distinctiveness) would have higher levels of affective instability. While 16 
controlling for data quantity, age, sex, and the mean of mood ratings, we found that affective 17 
instability (measured by root mean square of successive differences18) was associated with 18 
reduced footprint distinctiveness (partial r = -0.37, p < 0.05, Fig. 3a). Furthermore, given well-19 
established links between sleep disturbance and mood disorders19, we also evaluated whether 20 
variability in sleep duration was also associated with footprint distinctiveness. While controlling 21 
for covariates as above, we found that variability in sleep duration was similarly associated with 22 
reduced footprint distinctiveness (partial r = -0.36, p < 0.05, Fig. 3b).  23 

 24 
 25 

 26 
 27 
Figure 3 | Individual footprint distinctiveness is associated with affective instability, sleep 28 
irregularity, and patterns of brain functional connectivity. a) Greater affective instability, measured 29 
by root mean square of successive differences in mood measures from ecological momentary assessment 30 
items acquired three times a day, was associated with reduced footprint distinctiveness (r = -0.37, p < 31 
0.05), after controlling for data quantity, age, sex, and mean level of mood ratings. b) Similarly, we found 32 
that increased variability in sleep duration was associated with reduced footprint distinctiveness (r = -33 
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 8 

0.36, p < 0.05), after controlling for covariates. c) Across functional brain networks, only greater 1 
connectivity within the somatomotor network had a significant association with footprint distinctiveness 2 
(r = 0.46, p < 0.05, corrected for multiple comparisons with the false discovery rate). d) Patterns of brain 3 
functional connectivity significantly predicted individual footprint distinctiveness using leave-one-out 4 
cross-validation (r = 0.29, inset: permutation-based p = 0.025). e) Six network edges consistently 5 
contributed to the sparse regression model. These edges included greater connectivity within 6 
somatomotor network, reduced connectivity between left and right frontal eye fields (FEF), increased 7 
connectivity between the somatomotor network and the left orbital frontal cortex (OFC) in the limbic 8 
network, as well as increased connectivity between the vlPFC (ventrolateral prefrontal cortex in the 9 
frontoparietal network) and the dmPFC (dorsolateral prefrontal cortex in the default mode network). Cord 10 
thickness reflects the weights in the model, reflecting each edge’s contribution to the prediction; cord 11 
color indicates the sign of the weights.  12 
 13 
 14 

As a final step, we investigated whether footprint distinctiveness was related to patterns 15 
of functional connectivity. Initially, we examined associations with a simple summary measure 16 
of high-dimensional functional connectivity data: the mean connectivity within each of seven 17 
canonical large-scale functional networks20. While controlling for covariates as above (as well as 18 
in-scanner motion) and correcting for multiple comparisons with the false discovery rate, we 19 
found that footprint distinctiveness was associated with greater connectivity within the 20 
somatomotor network (r = 0.46, pfdr = 0.03, Fig. 3c). Previous work has demonstrated that 21 
somatomotor network connectivity develops over the lifespan (years)21 and is altered acutely 22 
(days) during limb disuse22; our results further suggest that mobility patterns over weeks-months 23 
can be predicted by somatomotor network connectivity. 24 
 25 

Lastly, we moved beyond the simple summary measure of mean network connectivity 26 
and investigated whether complex multivariate patterns of functional connectivity could predict 27 
footprint distinctiveness in unseen data. Given that there were far larger number of features than 28 
participants, we used regularized regression with leave-one-out cross-validation and nested 29 
parameter tuning, followed by permutation testing to determine significance (Online Methods). 30 
We found that multivariate patterns of functional connectivity could predict footprint 31 
distinctiveness in unseen data (r = 0.29, p = 0.025; Fig. 3d). The predictive model yielded results 32 
that aligned with the mass-univariate analyses (Fig. 3c), suggesting that the multivariate model 33 
was driven in part by features linked to somatomotor network (67% of edges selected by the 34 
model). Moreover, this model also revealed important features beyond the motor system, 35 
including increased connectivity between the frontoparietal and default mode system (Fig. 3e).  36 
 37 

Taken together, these results establish that mobility patterns collected from smartphones 38 
can be used to create a person-specific footprint. Notably, the distinctiveness of this footprint 39 
increased with age, was reduced in association with both affective instability and circadian 40 
irregularity, and was related to patterns of functional brain connectivity. These results align with 41 
impactful prior work on “connectome fingerprinting”8 (or “connectotyping”10), which have 42 
shown that individuals can be identified based on their pattern of functional connectivity. 43 
Interestingly, result from these prior studies have shown that – like the footprint distinctiveness 44 
examined here – connectome distinctiveness increases with age and is reduced in association 45 
with psychiatric symptoms11. 46 
 47 
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 9 

Our finding that footprint distinctiveness is related to data quantity recalls recent work 1 
demonstrating that the ability to delineate person-specific functional brain networks is dependent 2 
in large part on the quantity of data available23,24. However, while accruing large amounts of 3 
functional imaging data is often difficult and expensive, passive collection of long timeseries of 4 
mobility data is both tolerable for participants and inexpensive. The high degree of scalability 5 
enabled by ubiquitous usage of personal smartphones will allow future studies to test the 6 
generalizability of these findings across different age groups and clinical samples. Moving 7 
forward, mobility-based digital biomarkers that combine objective measurement and individual-8 
specific analysis of behavior may accelerate the advances in personalized diagnostics for diverse 9 
psychiatric illnesses.   10 
 11 
 12 
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11 

Mobile Footprinting: Linking Individual Distinctiveness in Mobility Patterns to Mood, 1 
Sleep and Brain Functional Connectivity 2 
 3 

ONLINE METHODS  4 
 5 

Participants 6 
 7 
A sample of 41 adolescents and young adults (28 females; mean (s.d.) age = 23.4 (3.5) years, 8 
range 17–30 years) were enrolled as part of a study of affective instability in youth.  Participants 9 
were recruited via the Penn/CHOP Lifespan Brain Institute or through the Outpatient Psychiatry 10 
Clinic at the University of Pennsylvania. Of these 41 participants, 38 participants met criteria for 11 
Axis I psychiatric diagnosis based on a semi-structured clinical interview1; 33 met criteria for 12 
more than one disorder (Supplementary Table 1). Additionally, 16 of the 41 participants met 13 
criteria for a personality disorder (mainly borderline personality disorder) based on assessment 14 
with the SCID-II1. All participants provided informed consent to all study procedures; for 15 
minors, the parent or guardians provided informed consent and the minor assented as well. This 16 
study was approved by the University of Pennsylvania Institutional Review Board. 17 

 18 
 19 

Mobility data acquisition 20 
 21 
Global Positioning System (GPS) geolocation data were acquired via the Beiwe platform2. 22 
Participants were asked to download the Beiwe application on their personal smartphone. The 23 
application recorded the location of the participant’s phone in latitude, longitude, and altitude, as 24 
well as the precision of that measure. To conserve battery and minimize degradation of the phone 25 
performance, Beiwe was designed to track participant’s geolocation in a periodic fashion. 26 
Specifically, Beiwe tracked GPS for 2 minutes every 20 minutes, resulting in 144 minutes of 27 
data recording and 1296 minutes of dormancy in a 24-hour cycle. Due to user and device related 28 
factors in the naturalistic setting, such as phone powered off, no cell signal, or airplane mode, 29 
longer periods of recording dormancy were possible. Mobility data were automatically uploaded 30 
via WiFi to a cloud-based data management system daily. 31 

 32 
In total, 3,317 days of GPS tracking across all participants were obtained (mean (s.d.) = 77 (26) 33 
days, range 14–132 days, see Supplementary Figure 1). After removing the first and last days 34 
of each participant’s study period when only partial data were recorded and days containing no 35 
data, the remaining data available for analysis had 3,156 days. 36 

 37 
Accelerometer data were also acquired via the Beiwe platform. The application recorded the 38 
participants’ acceleration in three cardinal axes (x, y, and z) in m/s2. In total, 2,972 days of 39 
accelerometer data were obtained across all participants (mean (s.d.) = 74 (32) days, range 15-40 
134 days). After removing the first and last days of each participant’s study period when only 41 
partial data were recorded, the remaining data available for analysis had 2972 days. 42 

 43 

Mobility data processing 44 
 45 
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GPS data preprocessing 1 
 2 
Raw GPS data were processed using the Smartphone Sensor Pipeline3, a validated pipeline 3 
specifically designed to handle GPS data while accounting for data missingness. First, each 4 
subject’s GPS longitude and latitude coordinates on the spherical Earth’s surface were 5 
transformed to a standardized two-dimensional Cartesian plane, thus deidentifying subject’s real-6 
world locations. Second, the data were converted to a sequence of flights and pauses, where 7 
flights were defined as segments of linear movements and pauses were defined as periods of no 8 
movement. Finally, missing flights and pauses were then imputed by the hot-deck method4, 9 
which resamples from observed events over each missing interval.  10 
 11 

Mobility metrics calculation 12 
 13 
Using the constructed subject mobility traces and the Smartphone Sensor Pipeline, 15 GPS-based 14 
mobility metrics were calculated for each day of recording, defined as midnight to midnight. See 15 
Barnett et al. for details3. An additional seven accelerometer-based mobility metrics were 16 
calculated for each day of recording. These were implemented according to methods described in 17 
the RAPIDS pipeline5. See Supplementary Table 2 for definitions of each metric. 18 
 19 

Mobility footprint construction 20 
 21 
Inspired by person-specific connectome fingerprints6,7, we constructed a mobility footprint for 22 
each participant using the covariance matrix of mobility metrics. First, we extracted the mobility 23 
metric time series by concatenating the daily mobile metric output from the Smartphone Sensor 24 
Pipeline. Then we computed the pairwise Pearson correlation for all the mobility metrics to 25 
construct a covariance matrix. The nodes of the network were the mobility metrics, and the edges 26 
of the network were the Pearson correlation coefficients between metrics. We refer to the 27 
resulting covariance matrix as the “Mobility Footprint.” This procedure was carried out 28 
separately for GPS- and accelerometer-based mobility data. For the main analysis, the upper 29 
triangle of the resulting covariance matrices from GPS and accelerometer metrics were 30 
concatenated and were used as input features for the individual identification procedure. We also 31 
repeated the identification procedure using GPS or accelerometer features alone. 32 
 33 
As a sensitivity analysis to test performance of alternative features for individual identification, 34 
we also computed the mean and the stability of each measure and used these features to identify 35 
participants. Stability was defined as the root mean square of the successive differences 36 
(RMSSD)8 of each measure (Supplementary Figure 6). 37 

 38 

Individual identification procedure (“footprinting”) 39 
 40 
We randomly partitioned each subject’s data into two equally sized parts, named the “reference” 41 
and the “target”, respectively6. The objective of the individual identification procedure was to 42 
match the subject from the target group to the same one in the reference group. For a given 43 
subject, S, we computed the Pearson correlation (r) between that subject’s features in the target 44 
group, ST, and everyone’s features in the reference group, SR 1, SR 2, SR N, where N is the total 45 
number of participants.  46 
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 1 
Individual identification was operationalized as the maximum of the resulting 𝑟1, 𝑟2, ⋯ 𝑟𝑁. In 2 
other words, when the subject in the reference group having the mobility features that maximally 3 
correlated with that of the target subject, these two participants were declared correctly matched: 4 
 5 

𝑆𝑀 = argmax(𝑟1, 𝑟2, ⋯ 𝑟𝑁). 6 
 7 
The individual identification accuracy was the number of correct identifications divided by the 8 
total number of random data partitions P: 9 
 10 

individual identification accuracy =  
∑ {

1, if 𝑆𝑇𝑖=𝑆𝑀𝑖
0, if 𝑆𝑇𝑖≠𝑆𝑀𝑖

𝑁
𝑖=1

𝑁
. 11 

 12 
The above individual identification procedure was repeated 1,000 times, each time with a new 13 
random data partition (P). We calculated the average individual identification accuracy across 14 
the 1,000 runs, which yielded a distribution of sample-wise identification accuracy. Furthermore, 15 
we also calculated the accuracy for each participant, defined as the number of correct 16 
identifications for that specific participant divided by the number of data partitions (B). We refer 17 
to this participant-specific identification accuracy as the individual footprint distinctiveness: 18 
 19 

individual footprint distinctiveness =  
∑ {

1, if 𝑃𝑇𝑖=𝑃𝑀𝑖
0, if 𝑃𝑇𝑖≠𝑃𝑀𝑖 

𝐵
𝑖=1

𝐵
, 20 

 21 
where 𝑃𝑇𝑖 is target in a partition for subject i, and 𝑃𝑀𝑖 is matched subject.  We conducted the 22 
individual identification procedure using the covariance matrix of the GPS data, accelerometer 23 
data, as well as the combined feature set.  Sensitivity analyses examined the mean and variance 24 
of each feature. 25 

 26 

Similarity matrix construction 27 
 28 
To visualize the individual footprint distinctiveness, we constructed similarity matrices between 29 
participants’ mobility covariance features9. First, we concatenated the daily mobility metrics for 30 
a participant from multiple random data partitions. Next, a similarity matrix was constructed by 31 
computing the Pearson correlation coefficients between every pair of participants. The resulting 32 
matrix was a symmetric matrix, where the nodes were each participant and the edges were the 33 
correlation coefficients between any two participant’s mobility metrics. This grouping procedure 34 
was performed solely for visualization, highlighting the within-individual, across-partition block 35 
structures on the diagonal of the matrix. This grouping was not used in any statistical analysis. 36 
 37 

Permutation testing 38 
 39 
To assess the statistical significance of individual identification accuracy, we used a permutation 40 
testing procedure to create a null distribution of accuracy. Specifically, we randomly scrambled 41 
the identity of the daily mobility metrics, thus disrupting the linkage between the mobility data 42 
and the corresponding participant. We repeated the individual identification procedure for each 43 
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random permutation. The empirical p-value was then calculated as the proportion of times when 1 
the permuted data yielded higher accuracy than the original data: 2 
 3 

𝑃𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =  
∑ {

1, if A𝑖 ≥ A𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  

0, if  A𝑖 < A𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑀
𝑖=1

M
, 4 

 5 
where A is the individual identification accuracy, and M is the total permutations.  6 
 7 
 8 

Sensitivity analysis of data missingness  9 
 10 

To understand the effect of data missingness on our ability to identify participants’ mobility 11 
footprint, we conducted sensitivity analyses that used four sets of data constructed using different 12 
thresholds for data missingness3,10.  Specifically, we applied four thresholds with diminishing 13 
tolerance for the number of missing samples (i.e., minutes recorded) in a day’s worth of data to 14 
be included in analysis (Supplementary Figure 1). At the 100th percentile level, which 15 
corresponded to retaining all available days except for those with all data missing (or 1,440 16 
minutes), 79 recording days were removed, which resulted 3,156 days remaining for analysis. At 17 
the 90th percentile, a further 216 days were removed, yielding 2,940 days for analysis. At 80th 18 
percentile, a further 356 days were removed, resulting in 2,584 days for analysis. Finally, at 75th 19 
percentile, a further 171 days were removed, resulting in 2,413 days remaining for analysis. 20 
Using these four sub-samples constructed with different inclusion criteria, we then repeated the 21 
individual identification procedure and permutation testing as described above. 22 

 23 

Feature lesion analysis 24 
 25 
To further investigate the influence of any single feature’s influence on the individual 26 
identification accuracy, we conducted a feature lesion analysis. We sequentially removed one 27 
metric (out of the total 15 geolocation mobility metrics available) and constructed a new 28 
covariance matrix which had one node (and 14 edges) less than the original feature covariance 29 
matrix. Using this reduced feature set, we repeated the individual identification and permutation 30 
testing procedures as described above (Supplementary Figure 3). 31 
 32 
Ecological momentary assessment 33 

 34 
Using the Beiwe platform application on personal smartphones, participants completed daily 35 
questionnaires specifically designed to assess mood variability at three timepoints throughout the 36 
day11. In each survey, participants rated on a scale from 1 (“not at all”) to 7 (“extremely”) of 37 
their endorsement of seven statements assessing mood variability, aggression, impulsivity, and 38 
self-esteem since the last time they had answered the survey to capture their mood 39 
(Supplementary Table 3). All seven items were concatenated to create an overall mood scale. 40 
Additionally, every morning, participants were also asked about their sleep patterns and quality 41 
from the night before. To quantify the variability of answers to the mood survey, we calculated 42 
the root mean square of successive differences (RMSSD) between concatenated answers. 43 
Similarly, we also calculated the RMSSD of sleep duration as a measurement of its stability. 44 
 45 
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We built a generalized additive model (GAM) to investigate the association between mood and 1 
sleep duration stability while accounting for covariate effects including data quantity, sex, age, 2 
and mean levels of the measure. Age was modeled using penalized splines within GAM using 3 
restricted maximum likelihood (REML) to estimate linear and nonlinear developmental effects 4 
without over-fitting the data12,13. 5 
 6 
Functional Connectivity Analysis 7 

 8 
Imaging Acquisition 9 
 10 
As previously described14, structural and functional MRI scans were acquired using in a single 11 
session on a clinically-approved 3 Tesla Siemens Prisma (Erlangen, Germany) quadrature body-12 
coil scanner and a Siemens receive-only 64-channel head coil at the Hospital of the University of 13 
Pennsylvania. Prior to functional MRI acquisitions, a 5-min magnetization-prepared, rapid 14 
acquisition gradient-echo T1-weighted (MPRAGE) image (TR = 1810 ms; TE = 3.45 ms; TI = 15 
1100 ms, FOV = 180 × 240 mm2, matrix = 192 × 256, 160 slices, effective voxel resolution = 16 
0.9375 × 0.9375 × 1 mm3) was acquired. We used one resting-state (1200 volumes) scan as part 17 
of this study. All fMRI images were acquired with the same multi-band, interleaved multi-slice, 18 
gradient-echo, echo planar imaging (GE-EPI) sequence sensitive to BOLD contrast with the 19 
following parameters: TR = 500 ms; TE = 25 ms; multiband acceleration factor = 6, flip angle = 20 
30°; FOV = 192 × 192 mm2; matrix = 64 × 64; 48 slices; slice thickness/gap = 3/0 mm, effective 21 
voxel resolution = 3.0 × 3.0 × 3.0 mm3. 22 

Image Processing 23 
 24 

All preprocessing was performed using fMRIPrep 20.0.715, which is based on Nipype 1.4.216, 25 
and XCP Engine17,18 (PennBBL/xcpEngine: atlas in MNI2009 Version 1.2.3; Zenodo: 26 
http://doi.org/10.5281/zenodo.4010846). The T1-weighted (T1w) image was corrected for 27 
intensity non-uniformity (INU) with N4BiasFieldCorrection19, distributed with ANTs 2.2.020, 28 
and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped 29 
with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 30 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 31 
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 32 
FAST in FSL 5.0.921. Volume-based spatial normalization to MNI2009c standard space was 33 
performed through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-34 
extracted versions of both the T1w reference and the T1w template. 35 

BOLD runs were first slice-time corrected using 3dTshift from AFNI 2016020722 and then 36 
motion corrected using mcflirt (FSL 5.0.9)21. A fieldmap was estimated based on a phase-37 
difference map calculated with a dual-echo GRE sequence, processed with a custom workflow of 38 
SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP Pipelines23. 39 
The fieldmap was then co-registered to the target EPI reference run and converted to a 40 
displacement field map with FSL’s fugue and other SDCflows tools. Based on the estimated 41 
susceptibility distortion, a corrected BOLD reference was calculated for a more accurate co-42 
registration with the anatomical reference. The BOLD reference was then co-registered to the 43 
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T1w reference using bbregister (FreeSurfer) which implements boundary-based registration24. 1 
Co-registration was configured with nine degrees of freedom to account for distortions remaining 2 
in the BOLD reference. Six head-motion parameters (corresponding rotation and translation 3 
parameters) were estimated before any spatiotemporal filtering using mcflirt. Finally, the motion 4 
correcting transformations, field distortion correcting warp, BOLD-to-T1w transformation and 5 
T1w-to-template (MNI) warp were concatenated and applied to the BOLD timeseries in a single 6 
step using antsApplyTransforms (ANTs) with Lanczos interpolation. 7 
 8 
After pre-processing with fMRIPRep, confound regression was carried out in XCP Engine. 9 
Preprocessed timeseries were despiked and then de-noised using a 36-parameter confound 10 
regression model that has been shown to minimize the impact of motion artifact25. Specifically, 11 
the confound regression model included the six framewise estimates of motion, the mean signal 12 
extracted from eroded white matter and cerebrospinal fluid compartments, the global signal, the 13 
derivatives of each of these nine parameters, and quadratic terms of each of the nine parameters 14 
as well as their derivatives. Both the BOLD-weighted time series and the confound regressor 15 
timeseries were temporally filtered simultaneously using a fist-order Butterworth filter with a 16 
passband between 0.01 and 0.08 Hz to avoid mismatch in the temporal domain26. Confound 17 
regression was performed using AFNI’s 3dTproject. Note that in-scanner head motion was also 18 
included as a covariate in all regression models (see below). 19 
 20 
Functional network and community connectivity 21 

 22 
Functional connectivity between each pair of brain regions was quantified as the Fisher‐23 
transformed Pearson correlation coefficient between the mean regional BOLD time series. For 24 
each participant, a 200 × 200 weighted adjacency matrix encoding the connectome was 25 
constructed27. Each node was assigned to one of seven canonical functional brain modules or 26 

communities defined by Yeo et al28. 27 
 28 
The within‐community connectivity is defined as 29 

∑ 𝐴
𝑗𝑗′
𝑖

𝑗,𝑗′∈𝐶𝑘

|𝐶𝑘|×(|𝐶𝑘|−1)
   , 30 

 31 

where 𝐴𝑗𝑗′
𝑖  is the weighted edge strength between the node 𝑗 and node 𝑗′, both of which belong to 32 

the same community 𝐶𝑘, for the 𝑖‐th subject. The cardinality of the community assignment 33 

vector, 𝐶𝑘, represents the number of nodes in the 𝑘‐th community29. 34 

 35 
Mass-univariate analysis 36 

 37 
For each of the seven canonical networks, we fit generalized additive model (GAM) to 38 
investigate the relationship between within-network connectivity and footprint distinctiveness, 39 
while controlling for in-scanner motion, mobility data quantity, sex, and age. Specifically, we 40 
used penalized splines using restricted maximum likelihood (REML) within GAM to estimate 41 
linear and nonlinear age-related changes12,13. We controlled for multiple comparisons using the 42 
False Discovery Rate (Q<0.05). 43 
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 1 
Predicting footprint distinctiveness using functional connectivity 2 

 3 
We fit a penalized regression model to predict footprint distinctiveness using brain functional 4 
connectivity6. In each iteration of leave-one-out cross-validation, one subject was left out as the 5 
testing set and the rest the training set. Using the training set, we computed residualized footprint 6 
distinctiveness from a GAM model with covariates as above (linear terms for in-scanner motion, 7 
data quantity, sex; age was modeled with as a penalized spline). Then we fit a lasso regression 8 
model to predict the residualized footprint distinctiveness using a sparse collection of functional 9 
connectivity edges. L1 lasso hyperparameter was tuned in a nested leave-one-out fashion. Next, 10 
we calculated the predicted footprint distinctiveness for the unseen subject in the testing set. 11 
After all iterations, we obtained predicted footprint distinctiveness for all participants and then 12 
calculated the Pearson correlation between the actual footprint distinctiveness and predicted 13 
values. 14 

 15 

Code availability and data access 16 
 17 
The code for GPS data preprocessing, mobility metric extraction, individual identification, 18 
additional analysis, and data visualization is available in R on github: 19 
https://github.com/PennLINC/footprinting 20 
 21 
Code notebook is available at: https://pennlinc.github.io/footprinting/ 22 
 23 
Data is available upon request. 24 
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