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ABSTRACT: 
 
Human genetic studies have identified a large number of disease-associated de novo variants in 
presumptive regulatory regions of the genome that pose a challenge for interpretation of their 
effects: the impact of regulatory variants is highly dependent on the cellular context, and thus for 
psychiatric diseases these would ideally be studied in neurons in a living brain. Furthermore, for 
both common and rare variants, it is expected that only a subset fraction will affect gene 
expression. Massively Parallel Reporter Assays (MPRAs) are molecular genetic tools that 
enable functional screening of hundreds of predefined sequences in a single experiment. These 
assays have been used for functional screening of several different types of regulatory 
sequences in vitro. However, they have not yet been adapted to query specific cell types in vivo 
in a complex tissue like the mouse brain. Here, using a test-case 3′UTR MPRA library with 
variants from ASD patients, we sought to develop a method to achieve reproducible 
measurements of variant effects in vivo in a cell type-specific manner. We implemented a Cre-
dependent design to control expression of our library and first validated our system in vitro. 
Next, we measured the effect of >500 3′UTR variants in excitatory neurons in the mouse brain. 
Finally, we report >40 variants with significant effects on transcript abundance in the context of 
the brain. This new technique should enable robust, functional annotation of genetic variants in 
the cellular contexts most relevant to psychiatric disease.  
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INTRODUCTION:  
 
In the current era of common and rare variant genome-wide approaches, thousands of 
candidate genetic variants with potential association to psychiatric and neurological diseases 
have been uncovered, the vast majority in noncoding, presumably regulatory, DNA regions. For 
common variants, large collaborative studies have identified dozens of genomic regions that are 
significantly associated with disease (Consortium et al., 2020; Grove et al., 2019; Matoba et al., 
2020), but each region contains hundreds to thousands of noncoding variants, of which only a 
subset are thought to have a functional consequence and potentially be causal. For rare 
variants, whole-genome sequencing has identified thousands of noncoding variants per 
individual, and efforts at associating these with disease would benefit from knowing which can 
indeed alter gene expression. However, in either case, defining specific functional variants has 
proven to be a major challenge given the large number that need to be screened. Furthermore, 
cell-type context plays an important role in gene-regulation studies (Mulvey et al., 2020). For 
example, neurons express a variety of neuron-specific transcription factors (e.g. (Hevner et al., 
2006)) and RNA-binding proteins (Pilaz and Silver, 2015) as they mature, and thus genomic 
variants that alter binding sites for these would only show effects in mature neurons. Therefore, 
there is a need for a high-throughput method that can be easily adapted to functionally screen 
these genetic variants in a parallel fashion, specifically in the cellular contexts relevant to 
diseases of the central nervous system (CNS). For most psychiatric diseases, this ideal cellular 
context would be specific classes of neurons, in vivo. 
 
One example of a set of variants that would be of great interest to test in vivo would be de novo 
mutations discovered in individuals with Autism Spectrum Disorder (ASD). In the past decade, 
numerous de novo mutations have been directly implicated in ASD (Satterstrom et al., 2020; 
Werling et al., 2018). Initial analyses focused on mutations in coding regions, which are more 
readily interpreted for functional effects than noncoding variants (Iossifov et al., 2012; Neale et 
al., 2012; O’Roak et al., 2012; Sanders et al., 2012a, 2015) . However, there is estimated to be 
substantial additional burden from noncoding mutations (An et al., 2018; Turner et al., 2017). 
This can include both transcriptional regulators, like promoters and enhancers, as well as 5′/3′ 
untranslated regions (UTRs). UTRs contain several classes of regulatory elements that control 
mRNA stability, subcellular localization, and rate of translation for their cognate transcript (Mayr, 
2017). The interpretation of noncoding variants presents several challenges.  Firstly, they lack a 
simple triplet code, and their effects are likely to be highly cell-type dependent. Furthermore, an 
overwhelming number of these mutations are being discovered. (Werling et al., 2018) reported a 
total of 71,132 de novo noncoding variants from whole genome sequencing of 519 ASD 
families; of these, 737 fall in UTRs. Finally, based on experience with de novo variants in 
protein-coding regions, we expect any ASD risk mediated by de novo variants in UTRs to be 
from a small subset of variants with large effect sizes.   
 
Massively Parallel Reporter Assays (MPRAs) are genetic tools that could address these 
challenges since they can be used to functionally assay several thousand predefined 
sequences at once (Mulvey et al., 2020). These assays have enabled functional annotation of 
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thousands of noncoding genomic elements, as well as the impact of variants in UTRs in 
particular, prioritizing potentially causal changes (Choi et al., 2020; Kircher et al., 2019; 
Litterman et al., 2019; Siegel et al., 2020). In addition, emerging MPRA studies have begun to 
dissect the role of 3′UTR variation (Griesemer et al., 2021) in function and regulatory activity in 
vitro. Unsurprisingly, there is only a modest overlap of functional elements across six diverse 
human cell lines, underscoring the density of elements with cell type-specific regulatory potential 
within UTRs. Furthermore, there are limits to the extent to which an in vitro system, even 
primary cells or iPSC derived neural systems, can recapitulate the normal gene expression and 
thus regulatory landscape seen during neuronal development in vivo. Thus, in the context of 
ASD and neuropsychiatric disease, elements would ideally be assayed in the brain and in 
relevant cell types in order to more accurately model the effect of these variants.  
 
However, few studies have been successful in implementing MPRAs to measure the effect of 
genomic elements in vivo and, to date, none have done so in a cell-type specific manner. 
Several examples exist of MPRAs being applied in vivo in non-CNS tissues, such as in 
zebrafish embryos (Rabani et al., 2017; Smith et al., 2013), the mouse liver (Patwardhan et al., 
2012), and mouse retina (Hughes et al., 2018; White et al., 2013). Yet, only three studies have 
implemented MPRAs in the brain. The first, (Shen et al., 2016) showed how packaging a 
complex library in AAV (the preferred method for transgene delivery to CNS), did not affect 
element representation. However, recovery of elements from the mouse brain after transduction 
proved to be very challenging — only a fraction of the total library of the 45,000 barcoded 
elements was recoverable and expression was highly variable between biological replicates. 
Other emerging studies (e.g., (Lambert et al., 2021)) have shown reproducible recovery of 
smaller AAV packaged libraries from the mouse cortex when screening for potential enhancers 
but did not assess the impact of genetic variants. Finally, another emerging study (Shen et al., 
2019) successfully used multiplex reporter barcoding to detect the effects of a single variant in 
mouse cortical explants. This demonstrated that, at least for one variant, variant effects could be 
detected by MPRAs with sufficient coverage, suggesting larger scale in vivo studies of variants 
might be possible. However, a caveat to all studies thus far is that the libraries are assessed in 
a mix of cell types that are transduced. This could partially mask the effect of variants regulated 
by effectors that are differentially expressed across brain cell types. Thus, there is an urgent 
need for a system to assay the effects of noncoding variants at scale in a cell type-specific 
manner.  
 
Here, we describe the development of a high-throughput cell-type specific MPRA approach for 
the mouse brain, with the sensitivity to measure the effects of individual variants. As a test-case 
we used a 3′UTR MPRA library to functionally assay several hundred de novo variants found in 
the genomes of ASD cases and sibling controls. We developed a Cre recombinase-dependent 
library design. We first piloted this in a mouse neuroblastoma cell line, assessing total RNA and 
RNA paired with a ribosome affinity purification to enable assessment of both transcriptional and 
translational effects. We then optimized the delivery of these same elements to cortical neurons 
in vivo. We were indeed able to assess the functional consequences of hundreds of variants in 
parallel. We found effects of variant alleles are highly cell type-specific, and report several 
mutations that substantially alter host transcript abundance in neurons in the developing brain, 
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and thus could possibly be functional in ASD. In all, the approach here should enable large-
scale assessment of the functional impact of variants from psychiatric genetics in specific cell 
types in the brain. 
 
MATERIALS AND METHODS: 
 
Animal models  
 
Veterinary care and housing is provided by the veterinarians and veterinary technicians of 
Washington University School of Medicine under Dougherty lab’s approved IACUC protocol. All 
protocols involving animals were completed with: Tg(RBP4-cre) KL100Gsat/Mmcd 
(RRID:MMRRC_037128-UCD; Beltramo et al., 2013), Slc32a1tm2(cre)Lowl/J (catalog #16962, 
The Jackson Laboratory; RRID:IMSR_JAX:016962; Vong et al., 2011), and Vglut1-IRES2-Cre-D 
strain (Jackson Stock No: 023527). All mice were genotyped following a standard protocol of 
taking clipped toes into lysis buffer (0.5M Tris-HCl pH 8.8, 0.25M EDTA, 0.5% Tween-20, 
4uL/mL of 600 U/mL Proteinase K enzyme) for 1 hour to overnight. This is followed by heat 
denaturation at 99 C for 10 minutes. 1 uL of the resulting lysate was used as a template for PCR 
with with 500 nM froward and reverse primers, using 1x Quickload Taq Mastermix (NEB) with 
the following cycling conditions: 94 1 min, (94 30 sec, 60 30 sec, 68 30 sec) x 30 cycles, 68 5 
min, 10 hold.  
 
MPRA plasmid library preparation  
 
For non-Cre-dependent reporter expression, we used a previously described pmrPTRE-AAV 
backbone which contained the following elements: CMV promoter, T7 promoter, mtdTomato 
CDS, hGH terminator, and flanking ITRs. The T7 promoter and mtdTomato CDS were amplified 
from pmrPTRE-AAV using PTRE_floxed_F/R and Phusion High-Fidelity PCR Master Mix (NEB). 
NotI and SalI sites added by the primers were used to subclone this amplicon into 
pRM1506_TMM432. The final pmrPTRE-floxed-AAV backbone consists of a floxed cassette 
containing the T7 promoter and tdTomato CDS in reverse orientation with respect to a CAG 
promoter, followed by a bGH terminator, all flanked by ITRs. 
 
The oligo sequences designed for this library are provided in [Supp Table 4]. The UTR contexts 
for each oligo were taken from GRh37/hg19 by centering a maximum 120 bp window around 
the variant position. Variant allele sequences were substituted at the reference position to 
generate the alternative allele UTR context. For indels, the UTR context was limited to the 
minimum context that would fit either allele, and padding sequences were added outside of 
cloning cut sites. Additional elements with known or suspected post-transcriptional regulatory 
roles were included as well: the alpha component of the WHP posttranscriptional regulatory 
element (WPRE) and synthetic elements consisting of four tandem sequences for either the 
Smaug response element (SRE), Pumilio response element (PRE), or Quaking response 
element (QRE). 
 
A constant 20 bp linker sequence separates the UTR context from a nine bp barcode sequence. 
Each UTR context was repeated in the design with six unique barcodes. Barcodes were 
selected to be Hamming distance of two apart and to exclude cut sites and homopolymers 
longer than three bases. Priming sites and cut sites were added to both ends to generate 210 
bp oligos which were synthesized by Agilent Technologies. 
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The synthesized oligos were amplified with 4 cycles of PCR using Phusion polymerase and 
primers Bactin_FWD/REV. Amplicons were PAGE purified and digested with NheI and KpnI 
(NEB). Library inserts were cloned into pmrPTRE-floxed-AAV with T4 ligase (Enzymatics) and 
transformed into chemically competent DH5α (NEB). Outgrowths were plated on LB agar plates 
with 100 µg/mL carbenicillin, and approximately 71,000 colonies were counted, allowing us to 
capture the entire design at 95% confidence, assuming a 50% synthesis error rate. Plates were 
scraped, and the collected pellets were cultured for an additional 12 hours in LB with 
carbenicillin before preparing glycerol stocks and maxi preps (Qiagen).  
 
Cell culture 
 
Mouse neuroblastoma N2a cells were maintained at 5% CO2 37°C, and 95% relative humidity 
in DMEM (Gibco) supplemented with 10% fetal bovine serum (FBS, Atlanta Biologicals). Human 
neuroblastoma SH-SY5Y cells were maintained similarly, except with DMEM/F12 (Gibco) 
substituted as the basal medium. Cells were also incubated with 1% penicillin-streptomycin 
(Gibco). For transient transfections, antibiotics were excluded from the transfection medium and 
re-introduced upon media change 12 hours post-transfection. Cells were passaged with 0.25% 
Trypsin-EDTA (Gibco) every 2-3 days or once they reached 80-90% confluency. 
 
Cell culture TRAP  
 
For each cell culture TRAP experiment, six replicate T75 flasks (TPP or Sarstedt) were seeded 
in advance with mouse N2a neuroblastoma cells to be 80-90% confident by the time of 
transfection. For the library cloned into the pmrPTRE-AAV backbone, 20 µg of total plasmid 
containing an equimolar ratio of reporter library and an Ef1a-EGFP-RPl10a construct was 
transfected. For the Cre-inducible library, 23 µg of total plasmid was transfected, consisting of 
equimolar ratios of the library, an DIO-EF1a-EGFP-RPl10a construct, and an Ef1a-Cre 
construct. Transient transfections were performed with Lipofectamine 2000 (Invitrogen), and 
DNA:lipid complexes were prepared by co-incubation in Opti-MEM I (Gibco) for 30 minutes prior 
to transfection. Transfection medium was replaced 12 hours following transfection, and cells 
were harvested for TRAP after an additional 24 to 36 hours. 
 
TRAP was performed as described (Heiman et al., 2014) with minimal modification. Briefly, cells 
were incubated in 100µg/mL cycloheximide (Sigma) for 15 minutes at 37°C prior to harvest. 
Cells were rinsed twice with 5 mL of DMEM 100 µg/mL cycloheximide before being lifted into 5 
mL of DMEM 100 µg/mL cycloheximide. Cells were pelleted by spinning at 500xg for 5 minutes 
at 4°C. The DMEM was replaced with 2 mL of ice-cold cell lysis buffer (10 mM pH 7.4 HEPES, 
1% NP-40, 150 mM KCl, 10 mM MgCl2, 0.5 mM dithiothreitol, 100 μg/ml CHX, protease 
inhibitors, and RNase inhibitors) and cells were lysed on ice. Lysates were clarified by 
centrifugation at 2000xg for 10 minutes at 4°C. DHPC (Avanti) was added to a final 
concentration of 30mM, and lysates were incubated on ice for 5 minutes. A tenth of the volume 
was taken as the Input, and the remaining volume was incubated with protein L-conjugated 
magnetic beads (Invitrogen) coupled with a mixture of two monoclonal anti-GFP antibodies 
(Doyle et al., 2008). The beads were incubated for 4h at 4°C prior to four washes with a high-
salt buffer (10 mM pH 7.4 HEPES, 1% NP-40, 350 mM KCl, 10 mM MgCl2, 0.5 mM 
dithiothreitol, 100 μg/ml CHX, protease inhibitors, and RNase inhibitors) before resuspension in 
cell-lysis buffer.  
 
Input and TRAP RNA was extracted using Trizol LS (Life Technologies). Extracted RNA 
samples were DNase treated (Ambion) and cleaned by column-based purification (Zymo 
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Research). Concentrations and RNA quality were determined using RNA ScreenTapes and a 
4200 Tapestation System (Agilent Technologies). All RINe measurements exceeded 9.  
 
Parallel Plasmid DNA for each replicate was recovered from each cell pellet following lysis using 
the Qiagen DNeasy Blood & Tissue Kit, and prepared for sequencing in parallel to RNA, as 
below. We found that having multiple replicate DNA libraries was critical for reducing variance in 
element activity measurements, at the transcript abundance level in particular. As such we 
recommend preparation of replicate DNA libraries, either from the plasmid input or from 
recovered plasmid from each experimental replicate of transfected cells. 
 
in vivo MPRA 
 
Two Vglut1-IRES2-Cre-D litters were subjected to intracranial injections for delivery of the 
library packaged in AAV9. P0-P2 pups were incubated on ice to anesthetize by inducing 
hypothermia for ~10 minutes. An aliquot of the MPRA library packaged in AAV9 (~109 vg/uL) 
was drawn up in 33G Hamilton syringe with a 1 mm needle. Pups were brought up to the needle 
and 1 uL of virus was injected at three positions per brain hemisphere hemisphere (6 total 
injections per pup). Pups were taken directly to the warming pad until pups fully recovered (~20 
minutes). After recovery, pups were placed back into the cage with the mother and monitored 
every 24 hours for one week. At P21 brains were harvested for extraction of RNA.  
 
We aimed to determine the source of this jackpotting and reasoned either the barcodes were all 
present in the starting template of total RNA and our library preparation was not efficient at a 
particular step, or the barcodes were simply too low abundance in the starting RNA pool. To this 
end, we conducted a series of technical replicates splitting a sample at each step of the library 
preparation protocol: cDNA synthesis, cDNA amplification, adapter ligation, and indexing PCR 
[Supp Fig 4A]. Taking a single RNA sample and doing two separate cDNA synthesis reactions 
for independent sequencing libraries resulted in jackpotting (PCC < 0.4) [Supp Fig 4B]. Taking 
cDNA from a single sample and amplifying it in two independent reactions for library preparation 
also led to jackpotted samples (PCC < 0.4) [Supp Fig 4C]. However, if the amplified cDNA from 
a single sample was taken into two independent reactions for adapter ligation, then the final 
sequencing libraries were highly correlated (PCC > 0.9) [Supp Fig 4D]. This was the case for 
reactions split at the final indexing PCR as well (PCC > 0.9) [Supp Fig 4E]. This result revealed 
to us that the source of jackpotting is at the cDNA synthesis or amplification steps. To 
investigate this further, we employed a variety of techniques that included reaction 
splitting/repooling to boost scale, unique molecular identifiers (UMIs), and emulsion PCR 
(ePCR). Reaction splitting/repooling and ePCR did not alleviate any of the jackpotting issues at 
any of the stages tested (data not shown). We then incorporated UMIs at the cDNA synthesis 
step in order to precisely quantify and eliminate PCR duplicates. After sequencing the  resulting 
libraries and computationally collapsing UMIs, we found that only a small fraction of elements 
was recoverable. Together, these results led us to conclude that this jackpotting was, in fact, a 
representation of the barcodes present in the RNA: for a given amount (100 ng) of RNA from 
the brain, relatively few barcode molecules were present. Consistent with this, increasing input 
RNA up to 1 ug reduced jackpotting effects, but still resulted in relatively low sample correlations 
(PCC < 0.4).  
 
MPRA sequencing library preparation  
Libraries were prepared by taking total RNA or TRAP RNA and performing cDNA synthesis 
using Superscript III Reverse Transcriptase standard protocol with 
pmrPTRE_floxed_AAV_antisense (GCATAAAAAACAGACTACATAATACTG) for library specific 
priming. Resulting cDNA or plasmid DNA, were then used for PCR to amplify libraries using 
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Phusion polymerase (Thermo) using library specific primers pmrPTRE_AAV_sense 
(GCATGGACGAGCTGTACAAG) and pmrPTRE_floxed_AAV_antisense. Reactions were 
purified using AMPure XP beads between each step. The purified PCR products were then 
digested with NheI and KpnI restriction enzymes for 1 hour at 37 deg C. The purified digested 
products were ligated to 4 equimolar staggered adapters (this is to provide sequence diversity 
for sequencing). Ligated products were purified and then used for a second PCR using Illumina 
primers for library indexing. The purified libraries were then QC’ed and subjected to quality 
control and then 2x150 next generation sequencing on an Illumina NovaSeq.  
 
BC counting and normalization 
 
Sequencing reads were trimmed using cutadapt v1.16 (Martin, 2011) and aligned to the library 
reference sequences using bowtie2 v2.3.5 (Langmead and Salzberg, 2012) using “very 
sensitive” settings. Barcodes were counted from aligned reads with mapping quality of 10 or 
greater using a custom Python script. Counts within each sample were normalized to each 
sequencing library size using edgeR (Robinson et al., 2010) as counts per million (CPM) prior to 
downstream analysis. 
 
The abundance of each element in RNA samples were normalized to their abundance either the 
transfected plasmid or transduced viral libraries by averaging CPM across barcodes within each 
sample. These averages were divided by the average for each element across barcodes in the 
respective DNA library. The log2 of these ratios was taken as the expression for each element. 
Similarly, for ribosomal occupancy and translation efficiency per element was calculated by 
normalizing TRAP RNA to DNA counts and TRAP RNA to Input RNA counts, respectively. 
  
Element filtering and differential expression analysis  
 
A paired Student’s t-test was performed to test for a difference between the mean element-wise 
expression of the alternative and reference alleles within each biological replicate, using the 
t.test function in R. Before testing, thresholds for element inclusion were determined by a grid 
search of count, barcode number, and replicate number thresholds that maximized the number 
of variants significant at a Benjamini-Hochberg FDR < 0.05. Briefly, at increasing count 
thresholds, variants within each replicate were retained if both alleles had more than a given 
threshold for barcodes above said count threshold, and variants with both alleles passing count 
and subsequently barcode thresholds in a minimum number of replicates were selected for 
analysis. For the in vitro MPRA, variants must be present with both alleles having three 
barcodes with at least 10 counts from both RNA and DNA in all six replicates. For the in vivo 
MPRA, variants must be present with both alleles having three barcodes with at least 200 
counts from both RNA and DNA in four replicates. 
 
T-test p-values for the variants passing the specified thresholds were corrected for multiple 
comparisons by using the p.adjust function in R to apply the Benjamini-Hochberg procedure for 
false discovery rate. The full set of results for these tests are provided in Supplemental Table 1 
and 2. 
 
Modelling allele by sex interations 
 
Sex-differential allelic effects were examined in the in vivo MPRA using a linear mixed model for 
the interaction of these two terms. The same set of variants that passed count, barcode, and 
replicate thresholds for the differential expression analysis were included in this analysis. For 
each variant, replicate-wise barcode-averaged transcript abundances were fit to an allele by sex 
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interaction with random intercepts for biological replicate using the lmer package in R for linear 
mixed models, using the formula Expression ~ Allele * Sex + (1 | Replicate). The significance of 
each model coefficient was determined by likelihood ratio test (LRT) against a reduced model 
for each term. LRT p-values for each term were corrected for multiple comparisons using the 
p.adjust function to apply the Benjamini-Hochberg FDR procedure. Variants found to have a 
significant main effect of sex or a significant allele by sex interaction were confirmed using an 
appropriate non-parametric test, either a Wilcoxon signed-rank test for main effect comparisons 
or a Kruskal-Wallis test for allele by sex interactions.  
 
Fluorescent immunohistochemistry and analysis 
 
Brains were harvested from postnatal day 21 mice, and one hemisphere was chosen for 
subsequent RNA extraction/TRAP.  The remaining hemisphere was fixed for 48 h in 4% 
paraformaldehyde followed by 24 h in 15% sucrose in 1× PBS and then 24 h in 30% sucrose in 
1× PBS. The hemisphere was then frozen in OCT compound (optimum cutting temperature 
compound; catalog #23-730-571, Thermo Fisher Scientific). A Leica CM1950 cryostat was used 
to create 40 μm sagittal sections of brain tissue. Sections were immediately placed in a 12-well 
plate containing 1X PBS and 0.1% w/v sodium azide. 
For immunostaining, sections were incubated in a blocking solution (1× PBS, 5% donkey serum, 
0.25% Triton-X 100) for 1 h in a 12 well plate at room temperature, then with rabbit anti-RFP 
primary antibody (1:500; Rockland catalog #600-401-379) in blocking solution overnight in a 
sealed 12 well plate at 4°C. Following three five-minute washes in PBS, sections were 
incubated in donkey anti-rabbit Alexa Fluor 568 secondary antibody (1:1000, Invitrogen catalog 
#A10042) and DAPI ( in blocking solution for 1 h. Sections were washed as before, and during 
the second wash, 1 μg/mL DAPI was added.  Sections were slide mounted with Prolong Gold 
and visualized for anti-RFP and DAPI staining on a Zeiss Axio Imager Z2 four-color inverted 
confocal microscope.  TdTomato-positive cells were quantified by hand using FIJI (Schindelin et 
al., 2012). 
 
Machine learning 
 
Gapped k-mer SVM models were fit using gkmSVM (Ghandi et al., 2014) with the parameters -l 
4 -k 4 -m 1 (4-mers) and -l 5 -k 5 -m 1 (5-mers). Stratified five-fold cross-validation and 
computing ROC and PR curves was performed using scikit-learn version 0.19.1 (Pedregosa et 
al., 2011). 
 
RESULTS: 
 
Cre-dependent MPRA reproducibly measures allelic effects in a mouse neuroblastoma 
cell line 
 
As a proof of principle for an allelic effect MPRA, we examined de novo variants identified within 
annotated 3′UTRs from the whole-genome sequencing of 519 families from the Simons Simplex 
Collection (Werling et al., 2018), totaling 342 mutations from probands and 299 from unaffected 
siblings within the same cohort. For each variant we synthesized an allelic pair of 3′UTR 
‘elements’ spanning 120 bp of sequence centered on the variant. To be able to compare 
biological to non-biological sequences, for 322 variants, we randomly shuffled the sequence to 
generate a set of GC-matched controls. We tagged all 1,624 elements with six unique barcodes 
to provide internal replicates and control for potential barcode effects. To enable eventual cell-
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type specific studies, we cloned the final library of 9,744 synthesized oligos into the 3′UTR of a 
membrane-localized tdTomato reporter embedded in a Double-floxed inverse Orientation (DiO) 
cassette (Schnütgen et al., 2003), such that the reporter library would only express following 
Cre-mediated recombination [Fig 1A-B].  
 
To first evaluate whether our assay could detect variant effects on reporter transcript abundance 
and translation, we co-transfected the library into mouse neuroblastoma N2a cells with two 
additional constructs–one expressing Cre recombinase, and another expressing eGFP-tagged 
large ribosomal subunit protein L10a (eGFP-RPL10a). The eGFP-RPL10a construct allows us 
to employ the Translating Ribosome Affinity Purification (TRAP) technique to measure the 
effects of UTR elements on ribosome occupancy (Heiman et al., 2008). We harvested RNA 
from six replicate transfections from both the whole-cell lysate (Input) and the polysome-bound 
TRAP fraction (Heiman et al., 2014) [Fig 1C]. Barcode sequencing libraries were prepared from 
both Input RNA and TRAP RNA, to identify elements that alter ribosome occupancy(TRAP) on 
top of effects on transcript abundance(Input). We also conducted DNAseq on the plasmid DNA 
re-extracted from the transfected cells to enable normalization of each RNA barcode to its 
starting abundance in the cells.  
 
We examined the coverage and reproducibility of the assay, and the range of the biological 
activity across elements. We sequenced to an average depth of 5,388 counts per barcode. In 
the DNA, 8,053 barcodes had non-zero counts, suggesting a <20% element dropout at the 
cloning stage. Cloning efficiency correlated with element GC-content, as elements with less 
than 40% GC content cloned less efficiently [Supp Fig 1A]. A corresponding 85% of elements 
were represented with at least three barcodes and carried forward for analysis [Supp Fig 1B]. 
In the RNA data, correlations of barcode abundance between replicate libraries from both Input 
and TRAP generally exceeded 0.99 (PCC) [Fig 2A], indicating high reproducibility. Correlations 
of either RNA measure with barcode abundance in recovered plasmid libraries averaged 0.96 
(PCC), indicating that variation in reporter abundance was largely driven by DNA copy number, 
as the range of differences in cloning efficiency exceeds the magnitude of expected biological 
effects of elements. Thus, we normalized input RNA counts to plasmid DNA counts for 
subsequent analyses. This revealed variation in steady state RNA abundance across elements, 
with 99% of elements spanning -1.33 to 0.95 log2-normalized expression (RNA/DNA) [Fig 2B], 
indicating that the sampled UTR elements exhibit a modest 5-fold range in transcript abundance 
as measured by our assay. 
 
Normalizing TRAP RNA abundance by DNA copy number revealed a similar dynamic in the 
ribosomal occupancy of reporter transcripts. However, these differences are driven primarily by 
the underlying difference in transcript abundance. Normalizing TRAP RNA abundance to the 
input RNA abundance a proxy for ‘Translation Efficiency’; TE, defined here as log2 TRAP/Input 
counts), showed a narrow dynamic range from -0.40 to 0.45, indicating 3′UTR effects on 
ribosome occupancy are more subtle than on reporter transcript abundance. Interestingly, 
pairwise comparison of genome-derived reference elements to GC-matched shuffled control 
sequences showed that random sequences had both lower transcript abundance (Wilcoxon 
signed-rank p = 4.28x10-6) and TE (p = 3.05x10-5) than their corresponding reference 
sequences [Fig 2B]. This suggests that genomic sequences generally promote higher steady-
state transcript abundance than random sequences. However, the elements containing de novo 
variants (alternative alleles; Alt) did not show a systematic difference from their paired reference 
allele (Ref) elements. This is not unexpected, as most are small or single base mutations, and 
only a small subset of human mutations, even from probands, might be presumed to be strongly 
functional a priori.  
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Biological effects should be driven by specific sequence elements in the UTRs, and thus activity 
should be somewhat predictable from primary sequence. To establish a biological signature of 
active elements, we trained k-mer support vector machines (SVMs) (Ghandi et al., 2014) to 
classify the 200 highest-expressing elements from the 200 lowest-expressing elements, pooling 
Ref and shuffled sequences (Shuf). In this framework, each sequence is represented by the 
frequency of all possible k-mers as input to the SVM. We trained 4- and 5-mer SVMs with 5-fold 
cross-validation. To ensure the SVM was not overfit, we also fit SVMs on the same sequences 
with random labels. The SVMs achieved an area under the receiver operating characteristic 
(AUROC) of 0.709-0.712 and an area under the precision recall curve (AUPRC) of 0.688-0.708 
[Fig 2C-D], while models fit on random labels could not classify the data (AUROC 0.512-0.518) 
[Supp Fig. 2], indicating there are sequence-specific elements underlying UTR activity. To 
understand which sequences mediated these effects, we next scored all possible 4-mers 
against the 4-mer SVM. 4-mers predicted to be highly active tended to be GC rich, while 4-mers 
predicted to be inactive tended to be AT rich. We also used DREME (Bailey, 2011) to identify de 
novo motifs enriched in the high expressing sequences relative to the low expressing 
sequences and obtained similar results. Taken together, these results indicate a substantial 
fraction of the activity of UTRs is driven by sequence features captured by small motifs, and 
identifies the motifs with activity in N2a cells.  
 
While more highly expressed elements tended to be GC rich, genomic elements were clearly 
different from random GC matched controls. Comparing each Ref element to its matched Shuf 
control revealed that 165 were significantly different (Benjamini-Hochberg FDR <0.05) with a 
median 1.2-fold change in expression [Fig 2E]. Thus, genomic sequences produce a specific 
level of activity upon which allelic effects are expected to act. Of the 257 tested comparisons, 63 
showed a significant difference at a set threshold (25%) for change in expression. Of the 
significant changes, 48 were downregulating. Assuming equal probability of up- and down-
regulation, this is more than expected by chance (hypergeometric p=0.00387, OR = 2.01), again 
reflecting the relative greater propensity for genomic derived UTR tiles to enhance steady-state 
reporter expression.  
 
Finally, we examined allelic effects on steady-state transcript abundance. Of the designed 
variants, 519 met thresholds for barcode representation for both the Ref and Alt sequence and 
were included in the analysis. Of these, nearly half 251 (48.3%) showed significant (FDR < 
0.05) Log2 Fold Change of RNA/DNA (LFC), though mostly with very small effects [Supp Table 
1]. This indicates that our assay has high sensitivity and suggests it is plausible nearly any 
mutation will have some effect, though for most the effect sizes are so small any biological 
impact would be very subtle. However, 31 (5.9%) of significant variants did show an absolute 
LFC corresponding to >25%, suggesting that a subset of UTR variants may have enough 
impact on transcript abundance [Fig 2E] to have measurable biological consequences. 
Contrasting effects on transcript abundance with ribosome occupancy again revealed that 
variant effects on TE tended to be much smaller, and no significant allelic effects survived 
multiple testing correction. Overall, our cell line assay confirmed reproducibility and robustness 
of our DiO 3′UTR MPRA design, motivating applying the approach to specific cell types in vivo.  
 
Cre-dependent MPRA reproducibly measures functional effects of several hundred 
variants in excitatory neurons in the mouse brain  
 
To assess the effect of these elements in vivo, the entire element library was packaged in 
adeno-associated virus serotype 9 (AAV9) for delivery into the mouse brain. We have previously 
shown (Cammack et al., 2020) that with AAV delivery we get widespread viral transduction in 
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the neocortex and mainly target neurons and astrocytes with serotype 9. We found that 
packaging of the library did not drastically change the range of distribution or barcode recovery 
rates and correlated well (PCC > 0.8) with the plasmid counts [Supp Fig 3]. Thus, packaging 
had no adverse effects on the composition of the library and moved forward with delivery in 
vivo.  
 
Bioinformatic analysis of the expression patterns of genes associated with ASD have revealed a 
correlation structure of two loose modules - a module enriched for chromatin regulators with 
peak expression in immature excitatory neurons, and a module of synaptic-related proteins, with 
peak expression during critical periods of postnatal synaptogenesis and pruning (De Rubeis et 
al., 2014; Parikshak et al., 2013; Satterstrom et al., 2020; Willsey et al., 2013). Therefore, we 
first attempted to deliver the library to two neuronal sub-types, layer V pyramidal neurons and 
GABAergic interneurons, during this pruning period by using Rbp4 and Vgat Cre drive lines, 
respectively. However, we discovered that only a small fraction of the delivered elements was 
recovered, and representation of barcodes was highly distorted and, in many cases, favoring a 
small, distinct subset in each biological replicate, resulting in low correlation between replicates 
(PCC < 0.2). We reasoned that since Rbp4-positive and Vgat-positive cells made up a small 
population of cells in the mouse brain, their low contribution to total cortical RNA may be a 
strong contributing factor to library jackpotting (See methods).  
 
Therefore, we delivered the AAV library to a well-characterized excitatory neuron specific Cre 
line (Vglut1-IRES2-Cre-D (Harris, et al. 2014); Vlgut1Cre) [Fig 3A], which makes up a larger 
population of cells, covering all pyramidal cells of the cortex. We first confirmed the expression 
of the library by immunofluorescence [Fig 3B]. We saw widespread expression of the tdTomato 
reporter in cells with the morphology of pyramidal neurons with the perinatal injection yielding 
transductions across cortex (~3% of cells in cortex successfully targeted. See Methods for 
calculation). Importantly, Cre negative littermates showed no expression of the library, 
confirming cell-type specificity [Fig 3C]. Next, an additional 12 animals’ cortices were collected 
for RNA. We sequenced, in all, 12 RNA replicates and 2 replicates of viral prep DNA to obtain 
RNA barcode and DNA barcode counts, respectively.  
 
Next, we performed a similar quality control analysis as for N2a data above. Correlations of 
barcode abundance between biological replicates on average exceeded 0.80 (PCC) [Fig 3D]. 
Notably, this observed correlation is lower than our in vitro test, but increased variability is 
commensurate with lower rates of element delivery and recovery from a subset of cells in 
complex tissue. This increased variance motivated our doubling of the number of replicates to 
preserve statistical power. Similar to what was done for the N2a data, we removed elements 
which were absent in the DNA counts and filtered for a minimum sequencing depth and barcode 
number, resulting in 402 analyzed elements. Pairwise comparison of genome-derived Ref 
elements to GC-matched Shuf control sequences again showed that Shuf sequences had lower 
transcript abundance (Wilcoxon signed-rank p = 4.28x10-6) than their corresponding Ref 
sequences, as observed in N2as [Fig 3G]. Of the 190 testable Ref-Shuf comparisons, 78 
showed a significant difference in expression. We also observed an overrepresentation of 
steady-state downregulation in shuffled elements (63) compared to their paired reference 
(hypergeometric p = 0.00073, OR = 2.034) [Fig 3H] FInally, we again used k-mer SVMs to 
determine if there were sequence features that predicted in vivo activity and achieved an 
AUROC of 0.676-0.680 and an AUPRC of 0.674-0.677 [Fig 3E-F], comparable to the SVMs 
trained on in vitro activity.  
 
We then assessed the impact of the 402 mutated alleles on transcript abundance for each 
element. Overall, we found that 41 (10.2%) showed significant (FDR < 0.05) changes [Supp 
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Table 2], and 35 (8.7%) were significant with a median absolute LFC corresponding to >25% 
change in expression [Fig 3H]. In both Ref vs. Shuf and Ref vs. Alt contrasts, compared to our 
N2a experiments, we found that there were larger effect sizes in the in vivo studies. We suspect 
that with additional replicates or higher transduced cell numbers we might also detect the 
numerous smaller fold changes as identified in N2a cells. Nonetheless, this demonstrated our 
ability to simultaneously assess the activity of hundreds of UTR elements and the functional 
impact of variants in a disease relevant cellular regulatory context in vivo.  
 
In addition to the functional demonstration of allelic effects that, because of neuron-specific 
factors, might only be present in vivo, live animal assays could also enable detection of allelic 
effects dependent on other biological phenomena. For example, males are 4 times more likely 
than females to be diagnosed with ASD (Werling and Geschwind, 2013), suggesting some 
genetic effects may be sex-specific, a phenomena which cannot be fully modeled in cell lines.To 
examine the possiblity of sex-differential effects of particular de novo variants, we fit linear 
mixed-effect models for the interaction of allele and sex. Two variants, both from ASD cases, 
found in HOXC11 and ABHD2 showed sex-differntial effects after multiple tests correction [Fig 
4A]. A post-hoc nonparametric test confirmed this interaction for the HOXC11 variant which 
appears to decrease expression in males but not females (Kruskal-Wallis p = 0.00373) [Fig 4B]. 
This highlights the power of this approach to study the impact of whole-organismal contexts like 
sex or environmental risk factors on gene regulation in a cell-type specific manner. 
 
Finally, we were interested in comparing data sets from our two distinct contexts in order to 
dissect similarities and differences. In total, we examined all 402 elements passing QC in both 
Vglut and N2a. Of the 256 (N2a) and 41 (Vglut) significant variants, 19 were present in both 
data sets. However, focusing on those showing a >25% change in gene expression threshold, 
there was no overlap. This finding is unsurprising given the low correlation of expression values 
across the two systems [Fig 5A]. Transcript abundance spanned a broader range in the in vivo 
assay (Brown-Forsythe p < 2.2x10-16), highlighting the possibility that a more complex regulatory 
environment may contribute to a greater dynamic range [Fig 5B]. Furthermore, the cross-
validated SVM scores of the N2a activity are uncorrelated to the observed activity in excitatory 
neurons [Fig 5C], suggesting there are cell type-specific factors regulating UTR activity through 
interaction with specific sequences. This highlights the need to assess the function of noncoding 
variants in multiple contexts, and especially focusing on contexts where noncoding variants for a 
specific disease are most likely to act.  
 
DiO 3'UTR MPRA reveals patient-derived mutations that alter transcript abundance 
De novo protein-coding mutations, mostly heterozygous loss-of-function (LOF), are thought to 
account for 5-10% of ASD (Iossifov et al., 2014; Sanders et al., 2012b). Thus, a priori we would 
expect only a small fraction of patients would have de novo noncoding mutations driving their 
disease as well. Further, even for those that may carry a causal noncoding mutation, of the ~70 
de novo noncoding variants per individual, only a very small subset are expected to mediate 
disease risk. Thus, our goal was to develop an approach to screen hundreds of variants in a 
complex context like the mouse brain and in a cell-type specific manner. As our proof-of-
principle, we focused on UTR variants because some studies had indicated increased rates in 
UTR mutations in ASD cases (Turner et al., 2017), and because UTRs can be more readily 
linked to individual genes than noncoding elements such as enhancers. Here, we have 
successfully identified UTR variants as functional across two contexts — in an neuroblastoma 
cell-line and in excitatory neurons in the mouse brain. Any potentially causal variants are likely 
among the very small subset with larger effect sizes. If the mutations identified in the coding 
sequence are a guide, for many genes a 50% reduction (heterozygous LOF mutation) can 
cause disease. We saw few alleles with this effect size (~2), but did find several dozen case 
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mutations with a more moderate effect size of >25% across the two systems [Fig. 6 A-B]. We 
validated a subset of these with Sanger sequencing from the patient samples, and confirmed 29 
were indeed bona fide de novo mutations, with a validation rate of 100% for any fragment that 
was amplified [Supp Table 3].  Since at this cutoff, rates of mutations were not higher in cases 
than in controls (N2a: 17/31 from probands, hypergeometric p = 0.4, odds ratio = 1.04, Neurons: 
21/35 from probands, hypergeometric p = 0.4, odds ratio = 1.13), we would expect only a very 
small subset of these, at most, would be causal. Nonetheless this screen has identified several 
high impact alleles of interest for further investigation.  
 
 
 
DISCUSSION: 
  
Here we describe the development of a cell-type specific in vivo MPRA. We demonstrate that 
the method is sensitive enough to identify allelic effects for hundreds of variants in parallel, and 
we provide a proof-of-concept analysis of several hundred 3′UTR mutations from ASD probands 
and their unaffected siblings.  This approach should be directly applicable to the thousands 
more UTR variants already discovered in psychiatric disease genetic studies, and readily 
adaptable to assaying noncoding variants found in other relevant positions such as promoters 
and enhancers. Additionally, it should also be usable for dissecting the sequence dependence 
of previously identified regulatory elements with activity in neurons, using MPRA libraries 
designed for saturation mutagenesis of potential binding motifs (Kircher et al., 2019) and other 
perturbations (Rieger et al., 2020). Thus, the approach should have both translational and basic 
science applications. 
 
This work and its challenges allowed us to deeply characterize the range of conditions, from 
environment to sequence context, that influence these regulatory assays. Our first attempts in 
delivering this library to rarer cell types using Rbp4 and Vgat Cre-lines were limited by low 
element recovery rates, making reproducible measurement of many variants in parallel 
intractable. Careful analysis of all stages of RNAseq library prep revealed jackpotting originated 
at cDNA synthesis, suggesting reporter mRNA was diluted beyond the point of efficient 
recovery. This is consistent with the relative sparseness of GABAergic cortical neurons 
compared to cortical excitatory neurons, indicating they will contribute less to the total RNA of 
the cortex.  Use of neither emulsion PCR, reaction splitting, nor UMI incorporation in second 
strand synthesis could resolve this fundamental limitation.  However, when we delivered to a 
more abundant cell type, increasing the barcode concentration in the final total RNA, the 
jackpotting was largely resolved.  We do note that variability in vivo with AAV was still higher 
than when delivering to N2as in culture (PCC of >0.8 vs >0.9) with transfection, where delivering 
to >70% of cells at high copy number is straightforward.  However, we were able to overcome 
this increased variability by increasing sample number. For in vivo assays, what other 
approaches might work to allow access to these rarer cell types and overcome the low barcode 
abundance in the starting RNA? Three general approaches come to mind: targeting AAV 
delivery to hit a larger portion of the Cre-positive cells (for example, adult injections into regions 
where GABAergic neurons are a larger fraction, such as the striatum), reducing the complexity 
of the library (using a smaller number of total barcodes, making each barcode more likely to be 
well represented), or enriching for the barcoded RNAs prior to cDNA synthesis, either by a 
targeted capture of reporter RNAs, or potentially purifying the Cre-positive cells by FACS or 
TRAP.  Any of these might further expand the current method to rarer Cre populations.  
Nonetheless, the current iteration of the technology already enables access to assessing 
variants in the regulatory context of mature neurons, an essential cell type for many CNS 
diseases.     
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In all, we also discovered dozens of variants that altered transcript abundance in these cells. 
Since 3′UTRs are frequently bound by regulators such as miRNAs and RBPs, we suspected 
that many of the variants assayed here would have their impact post-transcriptionally (e.g., on 
RNA decay or translation efficiency). Thus, future studies are needed to determine if the 
variants uncovered here are acting via altering transcriptional or post-transcriptional regulation.  
As some aspects of RNA surveillance depend on RBPs that are loaded onto transcripts during 
splicing (Lykke-Andersen and Jensen, 2015), it may also be of interest to determine how the 
impact of 3′UTR variants might be further unmasked in reporter libraries that contain introns.  
Likewise, upstream open reading frames (uORFs) in 5′UTRs can also regulate ribosome loading 
and translational efficiency, and thus it will also be of interest to test patient mutations in 
5′UTRs, as well as the interaction between reporter uORFs and 3′UTR mutations. 
 
We were also interested in the extent to which our in vivo MPRA might inform the genetic 
architecture of ASD, as some studies have revealed a trend for enrichment of mutations in 
UTRs in ASD cases when compared to their siblings (OR 1.1, nominal p-value p<.04)(Turner et 
al., 2017), providing statistical evidence that a subset are causal.  We therefore tested whether 
subsetting to those variants that had functional effects (>25% change and FDR<.05) in either 
N2as or neurons would show enrichment in cases over controls.  At these cut-offs, we saw no 
enrichment, but it is possible that focusing on the variants with even larger effect sizes, and/or 
potentially those occurring in the constrained genes that are often impacted in forms of ASD 
mediated by de novo coding mutations, might reveal an enrichment of case mutations over 
controls. Such enrichment might allow estimates of what fraction of ASD could be caused by 
functional UTR mutations overall, though we need to screen a much larger number of variants 
to perform a robust burden test. Nonetheless, several of the functional variants identified here 
are found in known (NRXN1 (Gauthier et al., 2011)) and plausible (RBFOX2 (Partridge and 
Carter, 2017), HMGB1 (Dipasquale et al., 2017)) ASD genes.  
 
One surprising discovery was that variants resulted in a roughly equal number of up- and down-
regulating events relative to the reference allele.  Most sequencing studies of de novo mutations 
in ASD have focused on heterozygous stop-gain mutations that are clearly loss-of-function and 
predicted to reduce protein expression by half. We would expect that mutations that have similar 
magnitude decreases in RNA via disrupting transcript abundance in the same genes might lead 
to ASD. However, the presence of mutations that increase RNA abundance highlight the fact 
that a different class of genes might be involved in causing ASD by increased level rather than 
decreased level. Such genes might overlap with ASD genes found in ASD-associated 
duplications such as 7q11.23 (Sanders et al., 2015), or protein gain-of-function mutations in 
channel genes such as those that cause some epileptic syndromes (Miceli et al., 2015). Scaling 
the approach to the thousands of variants uncovered in the most recent ASD whole genome 
sequencing should provide a statistical signal if such categories of UTR mutations contribute to 
disease. 
 
Finally, outside of UTRs and ASD, we envision the use of cell type-specific MPRAs in vivo for 
identification of functional variants across several different diseases and in other noncoding 
regions of the genome. Furthermore, these methods present unique opportunities to perform 
these regulatory assays in the most relevant and specific biological context for a given disease. 
Altogether, we anticipate these methods will aid in the study of noncoding disease risk and 
inspire new adaptations of MPRAs.  
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FIGURES: 
 
Fig 1. ASD 3′UTR library design and delivery.  
A) MPRA library constructs were designed with a CAG promoter (prom) driving the TdTomato 
reporter, followed by the 3′UTR oligo reference or alternative sequence (with or without variant, 
respectively) that is uniquely barcoded. B) All elements were uniquely barcoded 6 times. 
Cloning of this library was completed in the Double-floxed inverse Orientation (DiO) design for 
Cre-dependent expression. C) MPRA library, Cre recombinase and TRAP allele were delivered 
via plasmid transfection into N2a cells. Following incubation, total RNA and TRAP RNA were 
isolated to prepare sequencing libraries to then count BCs to calculate expression per element.  
 
 
Fig 2. Screen in mouse neuroblastoma cell line identifies variants that alter steady state 
transcript abundance. 
A) Scatter plots showing correlation between replicates of RNA vs RNA (left), RNA vs plasmid 
DNA (center), and RNA vs TRAP (right) RNA CPM counts (in order from left to right). B) 
Pairwise comparison of expression value distribution among Ref, Alt, and Shuf sequences in 
Transcript Abundance, Ribosomal Occupancy, and Translation Efficiency data sets. 
Significance is denoted by asterisk. C) ROC and D) PRC curves for k-mer SVMs to classify high 
and low expressing elements. Shaded area represents 1 standard deviation based on five-fold 
cross-validation E) Volcano plot for Ref vs Shuf elements (purple) in library showing significance 
(y-axis) vs log2 FC (x-axis) overlaid with volcano plot for Alt vs Ref elements (green). Horizontal 
dashed line corresponds to FDR 0.05 and vertical dashed lines correspond to log2 FC 
equivalent to 25% change in expression.  
 
Fig 3. Screen in excitatory neurons in the mouse brain identifies variants that alter steady 
state transcript abundance. 
A) MPRA library was packaged into AAV9 and delivered into perinatal mouse cortices via 
intracranial injection and later harvested at P21 for RNA extraction. B) Immunofluorescence of 
P21 brain showing localization of tdTomato expression (from MPRA library) in excitatory 
neurons with nuclei labeled with DAPI (blue). C) Immunofluorescence of Cre-negative littermate 
showing DAPI staining and no signal from the Cre-dependent MPRA library. D) Scatter plot 
showing correlation between RNA counts of biological replicates. E) ROC and F)PRC curves for 
k-mer SVMs to classify high and low expressing elements G) pairwise comparison of Alt, Ref, 
and Shuf sequence expression. H) Volcano plot for Ref vs Shuf elements (purple) in library 
showing significance (y-axis) vs log2 FC (x-axis) overlaid with volcano plot for Alt vs Ref 
elements (green). Horizontal dashed line corresponds to FDR 0.05 and vertical dashed lines 
correspond to log2 FC equivalent to 25% change in expression.  
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Figure 4. In vivo assay captures potential sex dependence of variants  
A) Volcano plot showing significance vs log2 FC of elements in library when considering sex 
effects and using a more complete linear model that includes allele only, sex only, or allele:sex 
effects (in order from left to right). Horizontal dashed line corresponds to FDR 0.05.  B) Allele 
expression differences, by sex, for ABDH2 and HOXC11. Significance denoted by asterisk.  
 
Figure 5. Low correlation and differences in range of expression between in vitro and in 
vivo suggest importance of regulatory context  
A) Scatter plot of in vitro vs in vivo expression values B) Comparison of in vitro and in vivo 
expression distributions, Brown-Forsythe leve-type test for difference in variance p < 2.2e-16 C) 
in vitro SVM predictions vs in vivo expression 
 
Figure 6. Reproducible measurements in mouse neuroblastoma cell line and excitatory 
neurons in the mouse brain 
Relative transcript abundance log2 (RNA/DNA) for reference and alternative alleles from A) N2a 
and B) Vglut experiments. 
 
Supplemental Figure 1. Library quality control  
A) Average element abundance vs element GC content B) Barcode recovery by sample  
 
Supplemental Figure 2. SVM data from random labels  
A) ROC and B)PRC for k-mer SVMs to classify high and low expressing shuffled elements 
 
Supplemental Figure 3. Viral packaging correlates with plasmid DNA barcode counts 
A) Scatter plot showing correlation between plasmid DNA and viral DNA barcode counts 
 
Supplementary Figure 4: Reaction splitting to determine source of jackpotting  
A) Various steps of MPRA library preparation pipeline. B) Library correlation of technical 
replicates when splitting at the cDNA synthesis stage. C) Library correlation of technical 
replicates when splitting at the cDNA amplification stage. D) Library correlation of technical 
replicates when splitting at the adapter ligation stage. E) Library correlation of technical 
replicates when splitting at the indexing PCR stage. 
 
Supplemental Table 1: All significant N2a elements with their corresponding LFC and 
significance value (p-val, FDR, Bonferroni). 
 
Supplemental Table 2: All significant Vglut elements with their corresponding LFC and 
significance value (p-val, FDR, Bonferroni). 
 
Supplemental Table 3: Variant validation from proband (p1) and de novo validation by absence 
in parents (fa/mo).  
 
Supplemental Table 4: Oligo pool sequences included in the MPRA library and their 
corresponding barcodes. 
 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


 
 

17 

 
 
 
 
 
 
 
 
 
 
 
REFERENCES: 
 

1. An, J.-Y., Lin, K., Zhu, L., Werling, D.M., Dong, S., Brand, H., Wang, H.Z., Zhao, X., 
Schwartz, G.B., Collins, R.L., et al. (2018). Genome-wide de novo risk score implicates 
promoter variation in autism spectrum disorder. Science 362. 

2. Bailey, T.L. (2011). DREME: motif discovery in transcription factor ChIP-seq data. 
Bioinformatics 27, 1653–1659. 

3. Cammack, A.J., Moudgil, A., Chen, J., Vasek, M.J., Shabsovich, M., McCullough, K., 
Yen, A., Lagunas, T., Maloney, S.E., He, J., et al. (2020). A viral toolkit for recording 
transcription factor–DNA interactions in live mouse tissues. Proc. Natl. Acad. Sci. 117, 
10003–10014. 

4. Choi, J., Zhang, T., Vu, A., Ablain, J., Makowski, M.M., Colli, L.M., Xu, M., Hennessey, 
R.C., Yin, J., Rothschild, H., et al. (2020). Massively parallel reporter assays of 
melanoma risk variants identify MX2 as a gene promoting melanoma. Nat. Commun. 11, 
2718. 

5. Consortium, T.S.W.G. of the P.G., Ripke, S., Walters, J.T., and O’Donovan, M.C. (2020). 
Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. 
MedRxiv 2020.09.12.20192922. 

6. De Rubeis, S., He, X., Goldberg, A.P., Poultney, C.S., Samocha, K., Ercument Cicek, A., 
Kou, Y., Liu, L., Fromer, M., Walker, S., et al. (2014). Synaptic, transcriptional and 
chromatin genes disrupted in autism. Nature 515, 209–215. 

7. Dipasquale, V., Cutrupi, M.C., Colavita, L., Manti, S., Cuppari, C., and Salpietro, C. 
(2017). Neuroinflammation in Autism Spectrum Disorders: the Role of High Mobility 
Group Box 1 Protein. Int. J. Mol. Cell. Med. IJMCM 6, 148–155. 

8. Gauthier, J., Siddiqui, T.J., Huashan, P., Yokomaku, D., Hamdan, F.F., Champagne, N., 
Lapointe, M., Spiegelman, D., Noreau, A., Lafrenière, R.G., et al. (2011). Truncating 
mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum. 
Genet. 130, 563–573. 

9. Ghandi, M., Lee, D., Mohammad-Noori, M., and Beer, M.A. (2014). Enhanced 
Regulatory Sequence Prediction Using Gapped k-mer Features. PLOS Comput. Biol. 10, 
e1003711. 

10. Griesemer, D., Xue, J.R., Reilly, S.K., Ulirsch, J.C., Kukreja, K., Davis, J., Kanai, M., 
Yang, D.K., Montgomery, S.B., Novina, C.D., et al. (2021). Genome-wide functional 
screen of 3’UTR variants uncovers causal variants for human disease and evolution. 
BioRxiv 2021.01.13.424697. 

11. Grove, J., Ripke, S., Als, T.D., Mattheisen, M., Walters, R.K., Won, H., Pallesen, J., 
Agerbo, E., Andreassen, O.A., Anney, R., et al. (2019). Identification of common genetic 
risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444. 

12. Heiman, M., Schaefer, A., Gong, S., Peterson, J.D., Day, M., Ramsey, K.E., Suárez-
Fariñas, M., Schwarz, C., Stephan, D.A., Surmeier, D.J., et al. (2008). A Translational 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


 
 

18 

Profiling Approach for the Molecular Characterization of CNS Cell Types. Cell 135, 738–
748. 

13. Heiman, M., Kulicke, R., Fenster, R.J., Greengard, P., and Heintz, N. (2014). Cell type–
specific mRNA purification by translating ribosome affinity purification (TRAP). Nat. 
Protoc. 9, 1282–1291. 

14. Hevner, R.F., Hodge, R.D., Daza, R.A.M., and Englund, C. (2006). Transcription factors 
in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult 
hippocampus. Neurosci. Res. 55, 223–233. 

15. Hughes, A.E.O., Myers, C.A., and Corbo, J.C. (2018). A massively parallel reporter 
assay reveals context-dependent activity of homeodomain binding sites in vivo. Genome 
Res. 28, 1520–1531. 

16. Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., Yamrom, B., 
Lee, Y., Narzisi, G., Leotta, A., et al. (2012). De Novo Gene Disruptions in Children on 
the Autistic Spectrum. Neuron 74, 285–299. 

17. Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, 
H.A., Witherspoon, K.T., Vives, L., Patterson, K.E., et al. (2014). The contribution of de 
novo coding mutations to autism spectrum disorder. Nature 515, 216–221. 

18. Kircher, M., Xiong, C., Martin, B., Schubach, M., Inoue, F., Bell, R.J.A., Costello, J.F., 
Shendure, J., and Ahituv, N. (2019). Saturation mutagenesis of twenty disease-
associated regulatory elements at single base-pair resolution. Nat. Commun. 10, 3583. 

19. Lambert, J.T., Su-Feher, L., Cichewicz, K., Warren, T.L., Zdilar, I., Wang, Y., Lim, K.J., 
Haigh, J., Morse, S.J., Canales, C.P., et al. (2021). Parallel functional testing identifies 
enhancers active in early postnatal mouse brain. BioRxiv 2021.01.15.426772. 

20. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. 
Nat. Methods 9, 357–359. 

21. Litterman, A.J., Kageyama, R., Tonqueze, O.L., Zhao, W., Gagnon, J.D., Goodarzi, H., 
Erle, D.J., and Ansel, K.M. (2019). A massively parallel 3′ UTR reporter assay reveals 
relationships between nucleotide content, sequence conservation, and mRNA 
destabilization. Genome Res. 

22. Lykke-Andersen, S., and Jensen, T.H. (2015). Nonsense-mediated mRNA decay: an 
intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 16, 665–677. 

23. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet.Journal 17, 10–12. 

24. Matoba, N., Liang, D., Sun, H., Aygün, N., McAfee, J.C., Davis, J.E., Raffield, L.M., 
Qian, H., Piven, J., Li, Y., et al. (2020). Common genetic risk variants identified in the 
SPARK cohort support DDHD2 as a candidate risk gene for autism. Transl. Psychiatry 
10, 1–14. 

25. Mayr, C. (2017). Regulation by 3′-Untranslated Regions. Annu. Rev. Genet. 51, 171–
194. 

26. Miceli, F., Soldovieri, M.V., Ambrosino, P., Maria, M.D., Migliore, M., Migliore, R., and 
Taglialatela, M. (2015). Early-Onset Epileptic Encephalopathy Caused by Gain-of-
Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel 
Subunits. J. Neurosci. 35, 3782–3793. 

27. Mulvey, B., Lagunas, T., and Dougherty, J.D. (2020). Massively Parallel Reporter 
Assays: Defining Functional Psychiatric Genetic Variants Across Biological Contexts. 
Biol. Psychiatry. 

28. Neale, B.M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K.E., Sabo, A., Lin, C.-F., Stevens, 
C., Wang, L.-S., Makarov, V., et al. (2012). Patterns and rates of exonic de novo 
mutations in autism spectrum disorders. Nature 485, 242–245. 

29. O’Roak, B.J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B.P., Levy, R., Ko, 
A., Lee, C., Smith, J.D., et al. (2012). Sporadic autism exomes reveal a highly 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


 
 

19 

interconnected protein network of de novo mutations. Nature 485, 246–250. 
30. Parikshak, N.N., Luo, R., Zhang, A., Won, H., Lowe, J.K., Chandran, V., Horvath, S., and 

Geschwind, D.H. (2013). Integrative Functional Genomic Analyses Implicate Specific 
Molecular Pathways and Circuits in Autism. Cell 155, 1008–1021. 

31. Partridge, L.M.M., and Carter, D.A. (2017). Novel Rbfox2 isoforms associated with 
alternative exon usage in rat cortex and suprachiasmatic nucleus. Sci. Rep. 7, 9929. 

32. Patwardhan, R.P., Hiatt, J.B., Witten, D.M., Kim, M.J., Smith, R.P., May, D., Lee, C., 
Andrie, J.M., Lee, S.-I., Cooper, G.M., et al. (2012). Massively parallel functional 
dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270. 

33. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, 
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine 
Learning in Python. J. Mach. Learn. Res. 12, 2825–2830. 

34. Pilaz, L.-J., and Silver, D.L. (2015). Post-transcriptional regulation in corticogenesis: how 
RNA-binding proteins help build the brain. Wiley Interdiscip. Rev. RNA 6, 501–515. 

35. Rabani, M., Pieper, L., Chew, G.-L., and Schier, A.F. (2017). A Massively Parallel 
Reporter Assay of 3′ UTR Sequences Identifies In Vivo Rules for mRNA Degradation. 
Mol. Cell 68, 1083-1094.e5. 

36. Rieger, M.A., King, D.M., Crosby, H., Liu, Y., Cohen, B.A., and Dougherty, J.D. (2020). 
CLIP and Massively Parallel Functional Analysis of CELF6 Reveal a Role in 
Destabilizing Synaptic Gene mRNAs through Interaction with 3′ UTR Elements. Cell 
Rep. 33, 108531. 

37. Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor 
package for differential expression analysis of digital gene expression data. 
Bioinformatics 26, 139–140. 

38. Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., Raubeson, M.J., Willsey, A.J., 
Ercan-Sencicek, A.G., DiLullo, N.M., Parikshak, N.N., Stein, J.L., et al. (2012a). De novo 
mutations revealed by whole-exome sequencing are strongly associated with autism. 
Nature 485, 237–241. 

39. Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., Raubeson, M.J., Willsey, A.J., 
Ercan-Sencicek, A.G., DiLullo, N.M., Parikshak, N.N., Stein, J.L., et al. (2012b). De novo 
mutations revealed by whole-exome sequencing are strongly associated with autism. 
Nature 485, 237–241. 

40. Sanders, S.J., He, X., Willsey, A.J., Ercan-Sencicek, A.G., Samocha, K.E., Cicek, A.E., 
Murtha, M.T., Bal, V.H., Bishop, S.L., Dong, S., et al. (2015). Insights into Autism 
Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 87, 
1215–1233. 

41. Satterstrom, F.K., Kosmicki, J.A., Wang, J., Breen, M.S., De Rubeis, S., An, J.-Y., Peng, 
M., Collins, R., Grove, J., Klei, L., et al. (2020). Large-Scale Exome Sequencing Study 
Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. 
Cell 180, 568-584.e23. 

42. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source 
platform for biological-image analysis. Nat. Methods 9, 676–682. 

43. Schnütgen, F., Doerflinger, N., Calléja, C., Wendling, O., Chambon, P., and Ghyselinck, 
N.B. (2003). A directional strategy for monitoring Cre-mediated recombination at the 
cellular level in the mouse. Nat. Biotechnol. 21, 562–565. 

44. Shen, S.Q., Myers, C.A., Hughes, A.E.O., Byrne, L.C., Flannery, J.G., and Corbo, J.C. 
(2016). Massively parallel cis-regulatory analysis in the mammalian central nervous 
system. Genome Res. 26, 238–255. 

45. Shen, S.Q., Kim-Han, J.S., Cheng, L., Xu, D., Gokcumen, O., Hughes, A.E.O., Myers, 
C.A., and Corbo, J.C. (2019). A candidate causal variant underlying both higher 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


 
 

20 

intelligence and increased risk of bipolar disorder. BioRxiv 580258. 
46. Siegel, D.A., Tonqueze, O.L., Biton, A., Zaitlen, N., and Erle, D.J. (2020). Massively 

Parallel Analysis of Human 3′ UTRs Reveals that AU-Rich Element Length and 
Registration Predict mRNA Destabilization. BioRxiv 2020.02.12.945063. 

47. Smith, R.P., Taher, L., Patwardhan, R.P., Kim, M.J., Inoue, F., Shendure, J., 
Ovcharenko, I., and Ahituv, N. (2013). Massively parallel decoding of mammalian 
regulatory sequences supports a flexible organizational model. Nat. Genet. 45, 1021–
1028. 

48. Turner, T.N., Coe, B.P., Dickel, D.E., Hoekzema, K., Nelson, B.J., Zody, M.C., 
Kronenberg, Z.N., Hormozdiari, F., Raja, A., Pennacchio, L.A., et al. (2017). Genomic 
Patterns of De Novo Mutation in Simplex Autism. Cell 171, 710-722.e12. 

49. Werling, D.M., and Geschwind, D.H. (2013). Sex differences in autism spectrum 
disorders. Curr. Opin. Neurol. 26, 146–153. 

50. Werling, D.M., Brand, H., An, J.-Y., Stone, M.R., Zhu, L., Glessner, J.T., Collins, R.L., 
Dong, S., Layer, R.M., Markenscoff-Papadimitriou, E., et al. (2018). An analytical 
framework for whole-genome sequence association studies and its implications for 
autism spectrum disorder. Nat. Genet. 50, 727–736. 

51. White, M.A., Myers, C.A., Corbo, J.C., and Cohen, B.A. (2013). Massively parallel in vivo 
enhancer assay reveals that highly local features determine the cis-regulatory function of 
ChIP-seq peaks. Proc. Natl. Acad. Sci. 110, 11952–11957. 

52. Willsey, A.J., Sanders, S.J., Li, M., Dong, S., Tebbenkamp, A.T., Muhle, R.A., Reilly, 
S.K., Lin, L., Fertuzinhos, S., Miller, J.A., et al. (2013). Coexpression Networks Implicate 
Human Midfetal Deep Cortical Projection Neurons in the Pathogenesis of Autism. Cell 
155

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


 
 

21 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


CMV Prom tdTomato 3’ UTR element BC

CMV Prom tdTomato
Reference 

3’ UTR element BC 

CMV Prom tdTomato
Alternative

3’ UTR element BC 

Mutation from ASD patient

{
Reference and Alternative 

sequence for 649 unique variants 
from 610 genes 

+
332 shuffled controls

+
4 predicted stabilizing or destabilizig 

CMV Prom

tdTomato3’ UTR elementBC

CMV Prom tdTomato 3’ UTR element BC

Cre recombinase

{1,634 total unique elements 
were uniquely barcoded x6

= 
9,744 element library 

DiO design for Cre dependence 

Mouse neuroblastoma (N2a) 

ASD 3’UTR library 

+ Cre (plasmid DNA)
+ TRAP (plasmid DNA) 

TRAP IP 

Input 

RNA BC counts from
ribosome bound mRNA
(translation efficiency) 

RNA BC counts from
total RNA

(transcript stability) 

A

B

C

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


C D

***

ns
***

−2

−1

0

1

2

ref alt shuf

lo
g2

(P
re

−I
P 

R
N

A 
/ P

la
sm

id
 D

N
A)

Transcript
Abundance

***

ns
***

−2

−1

0

1

2

ref alt shuf

lo
g2

(T
R

AP
 R

N
A 

/ P
la

sm
id

 D
N

A)

Ribosomal
Occupancy

*

ns
***

−2

−1

0

1

2

ref alt shuf

lo
g2

(T
R

AP
 R

N
A 

/ P
re

−I
P 

R
N

A)

Translation
Efficiency

ATP9A

GPR85

HMGB1

KCNMA1

NRXN1

PRKAR1A

RYR3

UBE2I

UNC79

USP15

0

1

2

3

4

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
LFC

−l
og

10 
FD

R
 

B E

R = 0.960

250

500

750

Pr
e−

IP
 R

N
A 

(C
PM

)

0 250 500 750
Plasmid (CPM)

R = 0.990

250

500

750

R
ep

lic
at

e 
2 

Pr
e−

IP
 R

N
A 

(C
PM

)

0 250 500 750

R = 0.990

250

500

750

Pr
e−

IP
 R

N
A 

(C
PM

)

0 250 500 750
TRAP RNA (CPM)Replicate 1 Pre−IP RNA (CPM)

A

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


R = 0.89
0

50
0

10
00

15
00

0 500 1000 1500
Replicate 1 (CPM)

R
ep

lic
at

e 
2 

(C
PM

)

D

100 μm 100 μm

B CIntracranial
Delivery

P0 P21

AAV9-Packaged
Library

Sequence BCs from 
AAV genomes

Sequence BCs from 
Reporter mRNA

Vglut1-Cre+/-

(Excitatory Neurons)

A

E F

*

ns
***

−4

−2

0

2

4

6

8

REF ALT SHUF

lo
g2

(P
re

−I
P 

R
N

A 
/ V

ira
l D

N
A)

Transcript Abundance

ANO8

CRTC1

NUDT3

PLEKHA5

PPP1R9A RABGAP1L

RBFOX2

RIMS3

SCAI

TRIM20

1

2

3

4

−3 −2 −1 0 1 2
LFC

−l
og

10 
FD

R

G H

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


0

1

2

3

−2 −1 0 1 2

−l
og

10 
FD

R

Allele

−2 −1 0 1 2
LFC

Sex

−2 −1 0 1 2

ABHD2
HOXC11

Allele by Sex

ns

ns

ns
ns

REF ALT

**

ns

ns
**

REF ALT

ABHD2 HOXC11

−0.5

0.0

0.5

1.0

1.5

Tr
an

sc
rip

t A
bu

nd
an

ce
lo

g2
(R

N
A/

D
N

A) Sex

F

M

A B

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


in
 v

itr
o 

4m
er

 S
VM

 S
co

re
 

in vivo Transcript Abundance

R = 0.27, p < 2.2e−16

−2.5

0.0

2.5

5.0

−6 −4 −2 0 2
in vitro  Transcript Abundance

in
 v

itr
o

 T
ra

ns
cr

ip
t A

bu
nd

an
ce

A

0.0

0.5

1.0

1.5

2.0

−3 −2 −1 0 1 2 3
Transcript Abundance

in vitro
in vivo

B C

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/


**** **** **** * **** ** ** ** *** ***
UBE2I RYR3 UNC79 GPR85 ATP9A USP15 KCNMA1 PRKAR1A NRXN1 HMGB1

−2

−1

0

1

R
el

at
iv

e 
Tr

an
sc

rip
t A

bu
nd

an
ce

lo
g2

(R
N

A 
/ D

N
A)

**** ** ** ** ** *** ** ** **

Allele

ref

alt

RBFOX2 PPP1R9A RIMS3 PLEKHA5 NUDT3 CRTC1 TRIM2 RABGAP1L ANO8

−2

−1

0

1

R
el

at
iv

e 
Tr

an
sc

rip
t A

bu
nd

an
ce

lo
g2

(R
N

A 
/ D

N
A)

A

B

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 18, 2021. ; https://doi.org/10.1101/2021.05.17.444514doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444514
http://creativecommons.org/licenses/by-nd/4.0/

