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Abstract 

Compelling evidence shows that cancer persister cells limit the efficacy of targeted therapies. 

However, it is unclear whether persister cells are induced by anticancer drugs, and if their mutation 

rate quantitatively increases during treatment. Here, combining experimental characterization and 

mathematical modeling, we show that, in colorectal cancer, persisters are induced by drug treatment 

and show a 7- to 50-fold increase of mutation rate when exposed to clinically approved targeted 

therapies. These findings reveal that treatment may influence persistence and mutability in cancer 

cells and pinpoints new strategies to restrict tumor recurrence.  

 

 

Main Text 

When cancer patients are treated with targeted agents such as EGFR or BRAF inhibitors, after an 

initial response, tumor relapse is often observed 1,2. A widely accepted view is that cells harboring 

drug resistant mutations are already present in the tumor mass before treatment initiation and 

subsequently repopulate the lesion in a matter of months 3,4. However, emergence of drug resistance 

after prolonged response and disease stabilization is also frequently reported 5,6. Since cells harboring 

pre-existing mutations can proliferate in the presence of the drug, it is unclear why they would require 

such a long time (sometimes years) to become clinically detectable. Indeed, when cancer cells are 

exposed to lethal doses of targeted therapies, the emergence of a sub-population of  drug-tolerant 

persister cells is often observed 7-11, limiting tumor eradication 12.  

 

Although persister cells have been described across multiple cancer types in response to different 

therapies 7,8,13-15, their phenotype has not been fully characterized. Persister cells are able to survive 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.17.444478doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444478


 

3 

lethal doses of therapeutic agents and represent a reservoir from which heterogenous mechanisms of 

drug resistance arise7,8,16. Differently from genetically resistant cells, persisters tolerate drug pressure 

through reversible, non-genetical, non-inheritable mechanisms of resistance7,12,17. However, it is 

unclear if persister cells enter a fully quiescent state or slowly progress through the cell cycle. It is 

also unknown if the persister phenotype is drug-induced, at least to some extent, or it entirely pre-

exists exposure to therapies (so that drugs would simply select a pre-existing sub-population). 

Additionally, the population dynamics governing persisters evolution to resistance have only been 

partially elucidated 10.  

We and others previously reported that cancer cells that survive to lethal doses of anti-cancer agents 

have the ability to resume growth and re-acquire drug sensitivity upon drug withdrawal, as expected 

from persisters, and to generate new sub-population of residual persister cells upon further exposure 

to the same treatment 7,12,18. However, to distinguish persistence from tolerance, in bacteria exposed 

to antibiotic treatment, the presence of persisters is quantitatively defined by a biphasic pattern of 

death curve 19. Such stringent definitions are often lacking in the context of cancer 12.  

 

Using colorectal cancer (CRC) as a model system, we previously reported that exposure of tumor 

cells to targeted therapies induces DNA damage and activation of a stress response characterized by 

impairment of DNA mismatch repair (MMR) and homologous recombination (HR) proficiency and 

a switch from high- to low-fidelity DNA replication mediated by error-prone DNA polymerases 18. 

This phenotype has been recently confirmed in multiple cancer types in response to different targeted 

therapies 20. Drug treatment leads to error-prone DNA replication in cancer cells, supporting the 

hypothesis that the mutation rate of persister cancer cells could increase during therapy-induced stress 

21. However, mutation rates of cancer cells during treatment with targeted agents have not been 

quantitatively assessed. 
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Measuring mutational processes by DNA sequencing is challenging, owing to tumor heterogeneity 

and to the difficulties of tracking lineages 20. A complementary strategy is represented by the so-

called “fluctuation test”, originally developed by Luria and Delbrück to characterize the onset of 

resistance in bacterial populations 22. This assay exploits multiple replicates of clonal populations to 

bypass lineage-tracking issues and provides an elegant strategy to estimate mutation rates. In brief, 

parallel cell cultures are first expanded in non-selective conditions for a fixed number of generations, 

then exposed to a selective agent (originally a bacterial virus) and the number of cultures harboring 

growing mutants is counted. The fraction of resistant variants is then used to estimate the mutation 

rate through mathematical modeling taking into account multiple parameters, including proliferation 

rates and the total number of cellular divisions. 

 

The fluctuation test has been previously modified to infer the acquisition of resistance to therapy in 

human tumors (e.g. by taking into account death rates) 23-26, and adapted to describe evolutionary 

dynamics underlying development of resistance in clinically relevant conditions 27. These versions of 

the fluctuation test are suitable to analyze the emergence and evolution of resistant cells already 

present in the tumor lesion before treatment initiation and to estimate the mutation rate of the cancer 

cell population in basal conditions. However, to the best of our knowledge, the available versions of 

the fluctuation test are not designed to quantify mutation rates in drug-tolerant persister cancer cells. 

 

Here, we present a quantitative approach involving longitudinal biological experiments and 

mathematical modelling to characterize the transition of cancer cells to persistence under drug 

pressure and to measure mutability before and during therapeutic treatment. Specifically, we 

introduce a two-step fluctuation test to quantify mutations rates of CRC cells under standard growth 

conditions and during exposure to targeted therapy. The assay discriminates pre-existing resistant 

clones from persister-derived ones, allowing quantification of both spontaneous and drug-induced 

mutation rates. 
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Results 

Growth dynamics of CRC cells in the absence of drug-treatment. 

With the final goal of calculating whether drug treatment affects the mutation rate of tumor cells, we 

first designed a set of biological experiments to infer growth dynamics parameters of CRC cell 

populations. These included: (i) growth rates in standard cell culture conditions (ii) population 

dynamics under treatment with targeted therapies and (iii) population dynamics of residual persister 

cells. To characterize the population of cancer persister cells that emerges in response to targeted 

therapies we studied two microsatellite-stable (MSS) CRC cell lines, for which we previously found 

evidence for the emergence of persisters18. DiFi cells carry amplification of the EGFR gene and are 

RAS/RAF-wildtype, which renders them highly sensitive to the anti-EGFR antibody cetuximab, 

paralleling the subset of CRC patients responsive to EGFR blockade 3,18. As a second model we used 

BRAF V600E mutated WiDr cells, which are sensitive to BRAF inhibition in combination with 

cetuximab 18, a therapeutic regimen recently introduced for the treatment of metastatic CRC patients 

with BRAF mutations 28,29. These cell models were established before the clinical development of 

anti-EGFR and BRAF targeted therapies in CRC, ruling out the possibility that drug exposure could 

have occurred in the patients from which the cells were derived 30.  

 

To reduce the possibility that pre-existing resistant cells were present in the populations at the 

beginning of the assay, we first isolated individual clones for each cell model (namely WiDr cl. B7 

and DiFi cl. B6), with growth and drug sensitivity profiles comparable to those of the parental 

population from which they originated (Extended Data Fig. 1a and b, respectively).  

 

We first measured birth and death rates of clones in standard cell culture conditions. We defined 

WiDr and DiFi population dynamics by a standard birth-death process with two parameters: the birth 

rate b, i.e., the rate at which new cells are generated through cell division, and the death rate d. For 
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each model (WiDr cl. B7 and DiFi cl. B6), we measured daily the total number of viable and dead 

cells (Extended Data Fig. 2a). The effective growth rate (b – d) was estimated with an exponential fit 

of the growth curve of each clone (Extended Data Fig. 2b and Extended Data Table 1); while the 

value d/b was estimated from the fraction of dead cells detected by flow cytometry (see Methods for 

mathematical details, Extended Data Fig. 2c and Extended Data Table 1). Finally, the values of the 

birth and death rate in the absence of treatment were obtained by combining the two estimates (values 

of b-d and d/b) (Extended Data Table 1). 

 

Growth dynamics of CRC cells under drug-treatment. 

The population dynamics of cancer cells during drug treatment involve both growth in presence of 

the drug and the transition of sensitive cells to a persister phenotype. The transition to persisters can 

be described as follows: each cell has the possibility to reversibly turn into persister at a certain rate, 

which could depend on the external conditions (e.g., drug concentration). Growth/division parameters 

of persister cells, as well as their death rate under drug treatment differ from those of the original 

sensitive population (see below for a mathematical formulation of these rules). To characterize the 

emergence of the persister subpopulation, and to quantify the intertwined processes of growth and 

transition to persister state upon drug treatment, we collected data from two sets of drug-response 

growth assays (Fig. 1a). In the first one (hereafter referred to as ‘doses-response assay’), we evaluated 

response of the two cell models to multiple doses of targeted therapies (Fig. 1a). Both DiFi and WiDr 

clones were exposed to increasing concentrations of the EGFR inhibitor cetuximab alone or in 

combination with the BRAF inhibitor dabrafenib, respectively. Cell viability of WiDr cells was 

assessed daily over a 5-day treatment period. Since we observed a slower decay in the DiFi cell 

number during cetuximab treatment, we extended measurements to 19 days in this model (Fig. 1a and 

1b). Data from doses-response assay were used to analyze growth curves defined as number of live 

cells vs time and concentration of drug treatment (Fig. 1c, see Methods).  
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We then assessed response to a constant drug concentration by analyzing the fraction of surviving 

cells over 3 weeks of treatment (referred to as ‘single-dose assay’) (Fig. 1a and d). The data highlight 

a biphasic two time-scale exponential decay (Fig. 1d), identified for bacteria as characteristic of the 

emergence of persister sub-populations 31. We took this as a proof of the existence of persisters, and 

defined persisters as the residual sub-populations showing a very-slow death rate upon continuous 

treatment. Both DiFi and WiDr showed a slow but measurable decay in cell number, compatible with 

an exponential decay, suggesting a tendency of persisters to slowly die over time (Fig. 1d and 

Extended Data Fig. 3).  

 

The persister phenotype is induced by treatment of CRC cells with targeted therapies.  

To quantify the cell population dynamics during drug treatment, we developed a mathematical model 

of the transition of CRC cells to the persister state which we term “transition to persisters” or TP 

model. This model incorporates birth-death parameters and phenotypic switching in the deterministic 

limit (i.e., neglecting fluctuations due to stochastic demographic effects, see Methods) 32,33.  Fig. 2a 

summarizes the TP model dynamics. We exploited the model to quantify the transition rate and assess 

whether a sub-population of persister cells predated drug administration (and was therefore only 

selected by treatment pressure) or if the persister phenotype emerged at a measurable rate upon drug 

treatment. To this aim, the TP model considers three possible fates for drug-treated cells: i) death; ii) 

replication; iii) switching to persister state at a rate 𝜆 in the presence of the drug; the model further 

considers the possible pre-existence of an arbitrary steady fraction f0 of persisters (Fig. 2a).  

 

The following equations define the dynamics of sensitive (X(t)) and persister cells (Z(t)) according 

to the TP model (under drug treatment): 

 

	"

𝑑
𝑑𝑡 	X

(t) = *𝐵 − 𝐷([𝑀])1	X(t) − 𝜆([𝑀])	𝑋(𝑡)

𝑑
𝑑𝑡
	𝑍(𝑡) = −𝐷!	𝑍(𝑡) + 𝜆([𝑀])	𝑋(𝑡)

		, 

 
(1) 
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where 𝐵 and 𝐷([𝑀]) are, respectively, the birth and drug-dependent death rates of sensitive cells, 

while [M] is the drug concentration. Persister cells emerge with a drug-dependent transition rate 

𝜆([𝑀]). Under drug treatment, persister cells die with rate Dp > 0. The model assumes that persister 

cells that attempt to divide before developing drug-resistance mutations die (therefore a possible 

back-switching from persister to sensitive in presence of the drug would effectively contribute to the 

death rate). Further mathematical details of the TP model are given in the Methods.   

 

The initial condition that specifies the solution to Eq. (1) is key for quantifying how much the 

transition to persister state is induced by the drug treatment. In particular, if the sensitive-to-persister 

transition is fully drug-induced, then untreated cells do not contain any persisters, i.e., f0 = !(#!)
%(#!)

 = 0.  

 

Conversely, if some persisters pre-exist drug treatment, then the initial fraction of persister cells has 

a finite positive value (f0 > 0). If f0 is very small, some persisters may pre-exist the treatment, but the 

transition is mainly drug-induced. If instead f0 is comparable to the fraction of residual persisters after 

weeks of treatment, then the transition to persistence is not drug-induced. 

 

To determine the most likely scenario, and to infer the TP model parameters, we used experimental 

data collected from drug-response growth curve assays (Fig. 1). Using results from the doses-

response assay (focused on the population dynamics of the drug treatment at earlier timepoints), we 

defined parameters governing the dynamics of the model over a short timeframe, such as the initial 

fraction of persister cells f0 and the effective growth rate of treated cells.  

Similarly, the single-dose assay, which follows the growth of CRC cells under treatment up to 30 

days, was used to quantify model parameters that affect long-term dynamics, such as the transition 

rate of sensitive to persister cells (λ) and the effective death rate of persister cells (Dp). By constraining 
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model parameters from experimental data, we established which scenario would best describe the 

cell-based results.  

 

Upon treatment, the number of cells started to decline within 1 to 3 days (t0), depending on the initial 

seeding density (Extended Data Fig. 4). The observed cell dynamics were coherent in experiments 

with different seeding densities once the growth curves were scaled (both in time and measured 

viability) to the maximum value reached at t = t0 (Extended Data Fig. 4). 

 

The parameters of the TP model were then inferred with a standard Bayesian inference framework 

for both cell lines (Extended Data Table 2 and Methods for prior distribution used for the inference 

of the model parameters). DiFi displayed slower ‘dying’ dynamics compared to WiDr.  In light of 

this, in WiDr we performed a joint fit of both the doses-response and single-dose datasets, while in 

DiFi we assessed growth curves in response to multiple doses of targeted therapies for up to 19 days, 

which allowed performing a model fit based on the doses-response dataset only (Methods).  

 

We identified the best-fit TP model parameters given the experimental data, taking into account 

different values of initial number of persister cells (f0). We found that the best fit between the inferred 

TP model and experimental data occurs when f0=0, while the concordance decreases when f0 

increases; we note that a f0 of 10% already significantly deviates from the data (Fig. 2b). Therefore, 

the TP model is consistent with the persister phenotype being predominantly drug-induced. In 

addition, the model properly describes the dynamics of the single-dose assay (Fig. 2c).  

 

To further confirm the validity of the TP model, we next focused on the Bayesian statistics of the two 

model parameters describing the dynamics of persister cells: the transition rate λ and initial fraction 

of persisters f0. The joint posterior distribution of the Bayesian inference of these two parameters is 

shown in a heatmap that associates the likelihood of the TP model inference to the specific values of 
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the two parameters (Fig. 2d and Extended Data Fig. 5). Importantly, we found that the transition rate 

to persistence λ estimated by the model fit does not vary when considering different values of the 

initial fraction of persisters f0 (Fig. 2d). The marginalized posterior probability of f0 is peaked at zero 

(Fig. 2d, bottom panel), and its upper bound is much smaller than the ratio between the persister 

population size (after all persister cells have emerged) and the total population size at the beginning 

of treatment. This implies that the inferred value of transition rate λ is independent from f0, and that 

the best concordance of the TP model to the experimental data is obtained for f0=0.  

 

Finally, to compare the scenarios f0=0 and f0>0, we used the Bayesian Information Criterion (BIC) 

and the Akaike Information Criterion (AIC), which are two standard Bayesian criteria used for model 

selection. According to both criteria, the TP model with f0=0 is preferred over f0 > 0 (Extended Data 

Fig. 6 and Extended Data Table 3, see Methods).  We summarize the best-fit TP model parameters in 

Extended Data Table 4. These results support the concept that even if few persisters exist in the 

population before drug treatment, the majority of them must have transitioned to the persister 

phenotype after drug exposure.   

 

Cell abundance across wells is consistent with a drug-induced scenario for persister cells. 

We then performed an orthogonal experimental validation of the drug-induced scenario of persister 

state in both CRC cell models. Specifically, we measured how the number of persister cells varied 

across multiple wells, since the distribution of this parameter is expected to be different between a 

drug-induced and a pre-existent scenario 34. To this aim, we seeded each cell model in multiple 96-

well plates and quantified the distribution of persister cells (residual cell viability) among >400 

independent wells after 3 weeks of drug treatment (Extended Data Fig. 7a). The observed abundance 

distribution across wells was consistent with a Poisson distribution (Extended Data Fig. 7b), 

supporting a drug-induced scenario in both CRC cell models, as confirmed by computer simulations 

(see 34, where a similar method was used for mutational processes, and Extended Data Fig. 7c).  
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CRC persister cells slowly replicate during drug treatment  

Persisters are capable of surviving the lethal effect of the drug by entering a non-replicating or slowly 

replicating state 10. We and others have recently reported that drug-treated cancer cells, alike bacteria 

exposed to antibiotics, initiate adaptive mutability stress response 18,20, a process likely involving cell 

division and DNA replication. We therefore set out to establish whether persister cells divide under 

drug pressure. We treated both CRC cell models with the corresponding targeted therapies for two 

weeks, until cells reached the persister state, and then stained the residual persisters cells with 

Carboxy fluorescein succinimidyl ester (CFSE), a cell-permeable fluorescent dye allowing 

flowcytometric monitoring of cell divisions. Upon passive diffusion through the cell membrane of 

viable cells, CFSE is cleaved by intracellular esterases and retained within their cytoplasm. When a 

cell divides, CFSE is uniformly segregated between daughter cells; therefore, the reduction of CFSE 

intensity is proportional to cell divisions 35.  

 

CFSE-labelled DiFi and WiDr cells were analyzed by flow cytometry at different time points. To 

discriminate between persisters and pre-existing resistant cells, we seeded and treated each cell 

models in multiple 24-multiwell plates and excluded from the analysis wells containing clones that 

grew in two weeks in the presence of the drug. The analysis unveiled that in both CRC models, 

persister cells slowly replicate during treatment (Extended Data Fig. 8). These findings are in line 

with recent data showing a fraction of cycling persister cells emerging during treatment of lung cancer 

cells with an EGFR inhibitor 36.  

 

Development of a fluctuation assay to quantify mutation rates during drug treatment. 

The measurement of mutation rates in the absence and in the presence of anticancer drugs required 

the development of a second mathematical model, which we refer to as “Mammalian Cells–Luria-
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Delbrück” or “MC-LD”. MC-LD is a fully stochastic birth-death branching process, describing the 

growth of resistant cells before and during drug treatment (Fig. 3a). We designate with μ the effective 

rate at which one individual (cell) becomes a mutant (therefore, resistant to treatment) and μs and μp 

indicate mutation rates of sensitive (untreated) and persister cells, respectively (Fig. 3b, see Methods). 

 

The MC-LD fluctuation assay is based on the experimental setting illustrated in Fig. 3c, d. WiDr and 

DiFi were seeded in twenty 96-multiwell plates and allowed to grow for a fixed number of cell 

divisions in standard culture conditions in the absence of drug (Fig. 3c); afterwards, a constant drug 

concentration was applied (Fig. 3d). The number of wells, the initial population size in each well and 

the time of cell replication in the absence of drug treatment were set by theoretical considerations 

using the MC-LD model, incorporating the population dynamics parameters we previously measured 

(Extended Data Tables 1 and 4).  

 

In accordance with our previous work 8, a small number of early-emerging resistant colonies were 

detected after 3-4 weeks of treatment (Fig. 3d, e; see Methods). In the vast majority of the wells, 

sensitive cells died, while drug-tolerant persister cells survived, as detected by measurement of 

residual cell viability (Extended Data Fig. 7a) 8. Constant treatment of the residual persister cells was 

then continued to perform the second step of the fluctuation assay (Fig. 3d); after several weeks of 

treatment, late-emerging resistant colonies appeared in a subset of the wells in which persister had 

previously been detected (Fig. 3d, e).  

 

We ran multiple MC-LD model simulations, with input parameters inferred with the TP model, and 

found that resistant clones emerging at late time points (>4 weeks of treatment), are extremely 

unlikely to originate from pre-existing resistant cells (Fig. 4a and Extended Data Fig. 9). In 

accordance with previous work 8 we considered the resistant colonies that became microscopically 

visible within the first 4 weeks of drug treatment (early-emerging resistant) as those representing the 
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pre-existing resistant cells, that is the mutant cells that emerged during the expansion phase by 

spontaneous mutation. We reasoned that resistant colonies that slowly emerged after ≥10 weeks of 

drug treatment (late-emerging resistant) in persisters-containing wells could have developed drug 

resistance mutations during the adaptive mutability process which we and other have shown to occur 

in persister cells 18,20 (Fig. 4a and Extended Data Fig. 9). 

 

As in a standard fluctuation test, the mutation rate can be inferred from the observed fraction of wells 

containing resistant cells. In the model, this fraction corresponds to the expected probability of 

observing a resistant clone in a well in a given time interval [0,T]. To compute this probability in the 

MC-LD model, we assumed that resistant cells divide with rate b and die with rate d, just like 

untreated cells. Because of reproductive fluctuations (genetic drift), cells carrying drug-resistance 

mutations can still go extinct, and only a fraction of the mutants, which we refer to as “established 

mutants”, survive stochastic drift. The probability of surviving stochastic drift in a time interval ∆t, 

denoted here as 	𝜓(Δ𝑡), is a well-known result of the birth-death process 37,38 (see Methods).   

 

We derived analytically an approximate solution of the model, by considering that the number of 

mutant cells established in the time interval [0,T] follows a Poisson distribution with expected value 

ℳ(𝑇). Consequently, the probability of having at least one mutant is given by 

 𝑃(𝑇) = 1 − 𝑒"ℳ(%)	. (2) 

 

In order to quantify the spontaneous mutation rate of cancer cells (i.e., before drug administration), 

we focused on the resistant cells established by the time Ttreat  before treatment administration. The 

expected number of resistant cells that emerged from sensitive cells in this time interval reads:  

 																							ℳ'()'*+*,((𝑇+-(.+) = 𝜇' ∫ 𝑋(𝑡)%!"#$!
/ 𝜓(𝑇+-(.+ − 𝑡)𝑑𝑡	, (3) 

   
 

where μs is the the mutation rates of sensitive cells.   
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To quantify the mutation rate of persister cells μp, we consider resistant cells that emerged by the time 

𝑇 since the beginning of the drug treatment. The expected number of resistant cells emerged from 

persister cells reads: 

 
	ℳ!(-'*'+(-'(𝑇) = 𝜇!@ 𝑍(𝑡)

%

/
𝜓(𝑇 − 𝑡)𝑑𝑡	.	

(4) 

   
 

We emphasize that Eq. (2-4) are connected to the solution of the TP model, Eq. (1). Hence, the 

solution of the MC-LD model is defined in terms of the same parameters that were estimated above 

with the TP model (see the Methods for further details). 

 

We then used this solution of the MC-LD model to derive estimators of mutation rates of sensitive 

cells μs (encompassing the fraction of wells with early-emerging resistant cells) and of persisters cells 

μp (corresponding to the fraction of wells with late-emerging resistant clones). 

 

Persister CRC cells show increased mutation rate under drug treatment.  

Data collected with the two-steps MC-LD fluctuation test allowed inferring mutation rates of sensitive 

(μs) and persisters (μp). Since accurate quantification of slow cell division in persister cells was 

unfeasible, we evaluated the mutational processes as chronological (measured in mutations per day) 

rather than replicative (mutations per generation). This choice is conservative, as untreated cells 

divide in any case much faster than persisters, hence the ratio between replicative mutation rates of 

cells displaying the two phenotypes must be in any instance higher than for chronological rates.  

 

Notably, we found that mutation rates were increased by a factor of 7- to 50-fold in cells that survived 

and tolerated for several weeks doses of targeted therapies that were instead lethal for the majority of 

the parental population (Fig. 4b and Extended Data Table 5). This result was consistent across 
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multiple biological replicates, both in DiFi and WiDr cells and in response to either EGFR blockade 

or EGFR/BRAF concomitant inhibition, respectively (Fig. 4b and Extended Data Table 5).  To further 

validate the consistency of the mutation rate inference based on the MC-LD model, we ran multiple 

simulated replicates of the experiment, using a set of sensitive (μs) and persister (μp) mutation rates, 

and we then used the MC-LD estimators on the synthetic data. Fig. 4c compares boxplots of the 

estimated mutation rates across replicates of simulated experiments with the actual values of mutation 

rates used as inputs to the simulations. The agreement between these values validates our estimates.  

 

We further reasoned that the value of the initial fraction of pre-existing persister cells f0 could play a 

role in the estimate of the mutation rate. We therefore assessed whether and to what extent the inferred 

value of the mutation rate is affected by the presence of different amounts of pre-existing persister 

cells using our estimators within a Bayesian framework (Fig. 2d). This approach returns the mutation 

rate, considering a range of realistic values of f0, and their probability. As a result of this analysis, we 

obtained the fold increase of the mutation rate of persister cells as a function of f0, in the entire range 

of values that are compatible with the dynamics observed in the growth curve assays experimentally 

assessed in Figs. 1 and 2.  Based on this, Fig. 4d summarizes the results of this inference in a joint 

heatmap of f0 and the fold increase of persisters mutation rate compared to that of sensitive cells. We 

found that considering all representative values of f0 that are compatible with our experimental data 

the increase of mutation rate in persister cells remains strongly supported. 

 
To summarize these findings, we propose a quantitative model for the evolutionary dynamics of CRC 

cells exposed to clinically relevant concentrations of targeted therapies (Fig. 5).  In non-stressful 

conditions, cancer cells replicate and spontaneously acquire mutations which can confer resistance to 

targeted therapies (pre-existing resistant mutations) at a replicative mutation rate μs. However, when 

cancer cells are exposed to the hostile environment generated by targeted therapies, the majority of 

sensitive cells quickly die while a subset of parental cells switch to a long-lasting surviving persister 
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state at a rate λ and in a drug-induced manner. Previous and current findings indicate that persister 

cells, under constant exposure to lethal doses of drugs, initiate a stress response which affects DNA 

replication fidelity 18,20, thus leading to a measurable increase of their mutation rate (μp), therefore 

rising the probability that alterations conferring drug resistance could occur.  

 

 

Discussion 

A prevalent view is that acquired resistance to inhibitors of oncogenic signaling is driven by mutant 

(drug resistant) cells that are already present in the tumor mass before treatment initiation 3,4. This 

concept has significant impact on clinical treatment of cancer patients, as it implies that resistance is 

a ‘fait accompli’; the time to recurrence is therefore simply the interval required for pre-existing drug 

resistant cells to repopulate the lesion. To limit the impact of drug resistant cells, novel drugs (such 

as the EGFR inhibitor osimertinib in NSCLC) were introduced and combinatorial regimens are being 

considered over monotherapy approaches with the goal of eradicating pre-existing resistant cells or 

reducing the probability that they will lead to treatment failure 27,39,40.   

 

Interestingly, in a considerable subset of patients targeted therapies lead to long lasting reduction of 

tumor burden, and relapse only occurs after prolonged disease stabilization. Such a situation 

challenges the current view, and several pieces of evidence support a role of persister cells in 

treatment relapse 12. For example, we and others have recently shown that adaptive mutability fosters 

acquisition of mutations driving resistance by increasing genomic instability 18,20. However, the lack 

of models to quantitatively characterize the behavior of persisters under treatment has so far hampered 

progress in the field, including the possibility to actually measure mutation rates of tumor cells during 

treatment. Our approach integrates experimental data and mathematical modelling to investigate 

population dynamics of tumor cells exposed to targeted therapies. We developed a two-step 
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fluctuation assay, which allows quantitative comparisons of spontaneous (basal) and drug-induced 

mutation rates in cancer cells. 

 

In agreement with previous observations, we found that when a population of cancer cells is 

constantly exposed to targeted therapies, a subset of drug-tolerant persister cells emerges 7,8,13,15. 

While previous observations of cancer persister cells were mostly qualitative, we describe a 

quantitative definition of cancer persisters based on the characterization of long-term response of 

CRC cells to targeted therapies 19,31. Persisters were firstly and extensively described in bacteria in 

response to antibiotic treatment, where the hallmark of antibiotic persistence is the occurrence of 

biphasic killing curves 31. Indeed, our analysis of CRC cells dynamics during long-term drug exposure 

points to a biphasic killing curve, characterized by a rapid decline of sensitive cells and a slow 

transition to persistence (Fig. 1d). Such a biphasic killing curve, building on the previous evidence 18 

that these cells generate, upon drug withdrawal, a population that is again sensitive to the same 

targeted therapy (and develop new persisters after a second exposure), can be taken as the proof of 

the emergence of a persister sub-population in CRC cells upon EGFR and BRAF inhibition.  

 

Mathematical modeling of population dynamics under drug exposure indicates that the persister 

phenotype is largely drug-induced in CRC cells. Although we cannot exclude that in a tumor lesion 

a few persisters might already exist, the TP model, together with computational and experimental 

validations, strongly supports the notion that drug-induced sensitive-to-persister transition is a 

prevalent path to the development of this phenotype. This conclusion is in line with recent evidence 

of a chemotherapy-induced persister state described in CRC 15. Whether all cancer cells have equal 

capacity to transition to persister or if a fraction of them is predetermined/predisposed to that, as 

suggested by a recent unpublished report 36, remains to be established.   
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Importantly, we show that even if we consider the presence of a small subset of pre-existing persister 

cells, this possibility does not affect our conclusion that mutation rates increase under treatment. In 

essence, our mathematical models and the experimental evidence indicate that persisters slowly 

replicate during drug exposure and significantly increase their mutation rate, independently from the 

initial fraction of persister cells.  

Based on our experimental data and models (Fig.4a and Extended Data Fig. 9), we assumed that late-

emerging resistant clones derive mostly from persister cells. If all treated cells increased their 

mutation rate under drug treatment, the contribution of sensitive cells to resistance would be 

exhausted after few weeks of treatment, as we show that they go extinct within a few days (Fig. 1d). 

Instead, new resistant clones keep emerging after several (10-20) weeks of continuous drug treatment 

(Fig. 3). 

 

The evidence of active cell cycle progression alongside to increase of mutagenic rate in persister cells 

further supports our previous findings of ongoing adaptive mutagenesis under drug-induced stress 

fostering acquisition of resistance 18. The Mammalian Cells–Luria-Delbrück (MC-LD) approach used 

here to quantify the effect of targeted therapies on the mutation rate of cancer cells could in principle 

be applied to measure whether and how a wide range of environmental conditions affect persister 

phenotype and mutation rates in mammalian cells.  

For example, it would be interesting to deploy the same strategy to systematically identify chemical 

or physical agents affecting mutations rates in human cells. Note that the treatments used here do not 

induce DNA damage directly, though they could indirectly, as we previously showed 18. Importantly, 

our analysis is not only limited to mutation rates, but also allows assessing whether drugs or 

environmental conditions restrict or reverse the transition to the persister state, rendering cells 

sensitive again to treatment.  
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The combined experimental and modeling framework presented here may have broad and far-

reaching clinical implications. The emergence of persister cancer cells and the increase of mutation 

rate during adaptive mutability stress-response 18 could be particularly relevant when targeted 

therapies lead to an initial extensive reduction of tumors mass, followed by long disease stabilization 

and eventually to relapse 5,6. Furthermore, it would be of interest to assess whether what we observed 

in CRC cells also occurs in other tumor types in which agents targeting EGFR and BRAF are 

commonly used such as melanoma and lung cancer 41. Equally important will be assessing whether 

exposure of cancer cells to agents directed against other oncogenic targets, such as HER2, NTRK or 

ALK, leads to similar phenotypic and mutational routes.   

 

In conclusion, our data suggest that commonly used anticancer therapies trigger persistence and 

increase mutation rates in tumor cells and that innovative therapeutic strategies could be exploited to 

impair the emergence of persistence and resistant mutations, potentially extending the efficacy of 

clinical treatments.  

 

 

METHODS  

 

Experimental setup and data collection 

Cell cultures. Cells were routinely supplemented with FBS 10% 2mM L-glutamine, antibiotics 

(100U/mL penicillin and 100 mg/mL streptomycin) and grown in a 37°C and 5% CO2 air incubator. 

Cells were routinely screened for absence of Mycoplasma contamination using the Venor® GeM 

Classic kit (Minerva biolabs).  The identity of each cell line was checked no more than three months 

before performing the experiments using the PowerPlex® 16 HS System (Promega), through Short 

Tandem Repeats (STR) tests at 16 different loci (D5S818, D13S317, D7S820, D16S539, D21S11, 

vWA, TH01, TPOX, CSF1PO, D18S51, D3S1358, D8S1179, FGA, Penta D, Penta E, and 
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amelogenin). Amplicons from multiplex PCRs were separated by capillary electrophoresis (3730 

DNA Analyzer, Applied Biosystems) and analyzed using GeneMapper v.3.7 software (Life 

Technologies). 

 

Isolation of CRC-derived clones. CRC clones were obtained by seeding WiDr and DiFi CRC 

populations at limiting dilution of 1 cell/well in 96-multiwell plates in complete medium. Clones 

were then selected for having growth kinetics and drug sensitivity comparable to the parental 

counterparts. For growth testing, WiDr and DiFi populations and derived clones were seeded in 96-

multiwell plates (2x103 cells/well and 3x103 for WiDr and DiFi respectively) in complete medium. 

Plates were incubated at 37°C in 5% CO2. Cell viability, assessed every day for 4 days by measuring 

ATP content through Cell Titer-Glo® Luminescent Cell Viability assay (Promega), was compared to 

cell viability assayed at day 1. For drug sensitivity testing, cells were seeded at different densities 

(2x103 cells/well and 3x103 for WiDr and DiFi respectively) in medium containing 10% FBS in 96-

multiwell plates at day 0. The following day, serial dilutions in of the indicated drugs were added to 

the cells in serum-free medium (ratio 1:1) in technical triplicates, while DMSO-only treated cells 

were included as controls. Plates were incubated at 37°C in 5% CO2 for the indicated time. Cell 

viability was assessed by measuring ATP content through Cell Titer-Glo® Luminescent Cell 

Viability assay (Promega). Dabrafenib was obtained from Selleckchem. Cetuximab was kindly 

provided by MERCK. 

 

Growth rates of CRC cell clones before drug treatment. Clonal spontaneous growth is defined by 

the following parameters: the rate at which cells are born (birth rate, b), the rate at which cells die 

(death rate, d) and the net growth rate b−d. To estimate the b−d rate, CRC cell clones were seeded at 

3.5-4x104 cells/well in 6-multiwell plates. Plates were incubated at 37°C in 5% CO2. Starting from 

the following day, the number of viable cells was assessed by manual count in trypan blue 0.4% 

(GibcoTM) by two operators independently at the indicated time points, in order to obtain the clones' 
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net growth rate. To estimate d/b, cells were seeded at different densities (3.5-4x105 cells/well) in 

multiple 6-multiwell plates. Plates were incubated at 37°C in 5% CO2. At each time point, cells were 

collected and stained with Propidium Iodide (Sigma Aldrich) following manufacturer’s instructions. 

Cells were then analyzed by flow cytometry. The cells in sub-G1 phase were considered dead and 

used to estimate d/b. The values of birth (b) and death rate (d) were then obtained by combining b−d 

and d/b estimates (see below). 

 

Doses-response growth curve assay. CRC cell clones were seeded at different densities (2x103 

cells/well and 3x103 for WiDr and DiFi respectively) in medium containing 10% FBS in multiple 96-

multiwell plates at day 0. The following day, serial dilutions of the drugs were added to the cells in 

serum-free medium (ratio 1:1) in technical triplicates, while DMSO-only treated cells were included 

as controls. Cell viability of WiDr and DiFi clones was assessed at indicated time points over 5 and 

18 days of constant treatment, respectively, by measuring ATP content through Cell Titer-Glo® 

Luminescent Cell Viability assay (Promega). 

 

Single-dose growth curve assay. DiFi and WiDr CRC cell clones were seeded in multiple 96-

multiwell plates at 1000 or 500 cells/well, respectively. Cells were allowed to expand for a fixed 

number of generations until a population size of 10000-20000 cells/well was reached. At that point, 

treatment was added (100 µg/ml cetuximab for DiFi and 1µM dabrafenib + 50µg/ml cetuximab for 

WiDr). Plates were then incubated at 37°C in 5% CO2 and cell viability was assessed at the indicated 

time points by measuring ATP content through Cell Titer-Glo® Luminescent Cell Viability assay 

(Promega) over 22 and 32 days of constant treatment (for WiDr and DiFi respectively).  Medium and 

treatment were renewed once a week. To test the effect of different seeding densities on the residual 

viability assayed, each clone was seeded at different densities (3-20x103 cells/well) in complete 

medium. The following day, treatment was added (100 µg/ml cetuximab for DiFi and 1µM dabrafenib 
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+ 50µg/ml cetuximab for WiDr) and viability was assessed at the indicated time points by measuring 

ATP content. 

 

Staining with Carboxy fluorescein succinimidyl ester (CFSE). CRC clones were seeded at 2.5x105 

(WiDr) and 6.5x105 (DiFi) cells in multiple 10cm dishes. The following day, untreated cells were 

stained with CellTrace™ CFSE Cell Proliferation Kit (Invitrogen™) according to manufacturer’s 

instructions. At the indicated timepoints, starting from the day after staining (T0), cells were collected 

and resuspended in 1mL PBS with Zombie Violet™ 1000x (BioLegend®) to exclude dead cells. 

Cells were then analyzed by flow cytometry. For persisters proliferation analysis, CRC clones were 

seeded at 2x104 cells/well in several 24-multiwell plates. The following day, cells were treated with 

100 µg/ml cetuximab (for DiFi) or 1µM dabrafenib + 50µg/ml cetuximab (for WiDr) and incubated 

at 37°C in 5% CO2 for 14 days (renewing treatment after 1 week) until a population of persister cells 

emerged in each well. Then, cells were stained with CellTrace™ CFSE Cell Proliferation Kit 

(Invitrogen™) according to manufacturer instructions. At the indicated timepoints, starting from the 

day after staining (T0) plates were checked to exclude from the analysis wells containing resistant 

clones. Cells from the remaining wells were collected and resuspended in 1mL PBS with Zombie 

Violet™ 1000x (BioLegend®) to exclude dead cells and analyzed by flow cytometry. Medium and 

treatment were renewed once a week during all the time of experiment. Flow cytometry was 

performed using the FACS Dako instrument and analyzed with a Python script based on standard 

libraries (FlowCal, FlowKit). The following gating strategy was used.  First, cells were selected with 

a light scattering gate (FSLin vs SS), excluding cell doublets with a single cell gate (FSArea vs 

SSArea). The following cutoffs were used: (i) FS Lin: lower 5000 and upper 60000; (ii) SS Lin: lower 

3000 and upper 63000; (iii) FS Area: lower 3000 and upper 60000; SS Area: lower 2000 and upper 

63000.  We then evaluated the bi-dimensional distribution of the remaining data points in the space 

of the coordinates FS Area and SS Area, and retained all the data-points that were included in the 
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99nth percentile of the distribution. Viable cells were selected by excluding Zombie VioletTM-positive 

cells and CFSE signal was detected by measuring Fitc signal. 

 

Characterization of distribution of persister cells. DiFi and WiDr cell clones were seeded in multiple 

96-multiwell plates at 1000 or 500 cells/well, respectively. Subsequently, cells were allowed to 

expand until they reached 10000-20000 cells/well. Cell viability was then assessed by measuring 

ATP content to normalize for cell number prior to treatment initiation. The remaining plates were 

treated with targeted therapies (100 µg/ml cetuximab for DiFi and 1µM dabrafenib + 50 µg/ml 

cetuximab for WiDr). Medium and treatment were renewed once a week. After 3 weeks of constant 

drug treatment, residual viability was assessed by measuring ATP content through Cell Titer-Glo® 

Luminescent Cell Viability assay (Promega). 

 

Two-steps fluctuation assay. DiFi and WiDr clones were seeded at 1000 or 500 cells/well, 

respectively, in twenty 96-multiwell plates each, for a total of 1920 independent replicates. Cells were 

allowed to expand for a fixed number of generations until they reached 10000-20000 cells/well. Next, 

treatment was administered (100 µg/ml cetuximab for DiFi and 1µM dabrafenib + 50 µg/ml 

cetuximab for WiDr). Plates were incubated at 37°C in 5% CO2 for the indicated time. Media and 

drug treatment were renewed once a week. After 3-4 weeks of treatment, pre-existing resistant 

colonies were clearly distinguishable at the microscope and counted by two independent observers. 

The number of pre-existing resistant clones was used to estimate the spontaneous mutation rate of 

CRC clones (see methods section Estimator of mutation rate for sensitive cells below). After 10-11 

weeks, resistant colonies started to emerge in wells where only persisters were previously present. 

The number of persister-derived resistant clones was used to estimate the mutation rate of persister 

cells under constant treatment (see methods section Estimator of mutation rate for persister cells 

below). Pictures of the resistant colonies were acquired using a ZEISS Axio Vert. A1 microscope 

equipped with a True Chrome HD II camera. 
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Theoretical Modeling 

Deterministic and stochastic model.  In this study we have developed and used two distinct 

mathematical models to investigate the dynamics of cell populations. The first model describes the 

transition to persister state (“TP model”), and is a birth-death model with phenotypic switching, which 

we explored in the deterministic limit, i.e., neglecting statistical fluctuations and only considering 

expected values of the model output. We made use of this model for two purposes: (i) to infer the 

parameters of persisters dynamics, and (ii) for the Bayesian model-selection inference procedure that 

was used to infer whether the transition to persisters is drug-induced or not. This deterministic model 

is described in the sections Dynamics of sensitive (untreated) cells  and Dynamics of cell population 

under drug treatment below.  

The second model, which we named Mammalian Cells-Luria Delbrück or “MC-LD” model, is a fully 

stochastic birth-death branching process that includes the mutational processes of sensitive 

(untreated) and persister cells (under treatment). In order to measure the mutation rate, stochastic 

fluctuations cannot be neglected. Therefore, we considered this extension of the TP model including 

(i) stochastic fluctuations around the expected values of the deterministic limit and (ii) the mutational 

processes of both sensitive and persister cells. Relatedly, we did not include the latter process in the 

TP model, since during first days of  drug treatment death of sensitive cells or transition to persisters 

are predominant, while acquisition of mutations driving resistance becomes significant only after 

weeks of treatment. 

We have derived an approximate solution for the fraction of resistant wells in the MC-LD model, to 

derive estimators of mutation rate, as described in the methods section Inference of the mutation rate 

from a two step fluctuation assay below, and we have run the model by direct simulation in order to 

design the biological experiments and validate the estimators that we obtained (Fig. 4a, c). 

Simulations of this model were also used to investigate the distribution of the number of persisters 
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cells after 3 weeks of treatment (Extended Data Fig. 7), by setting to zero the value of the mutation 

rates. 

 

Dynamics of sensitive (untreated) cells. The drug sensitive clonal cell populations were modelled 

with a standard birth-death process. Their dynamics is therefore described by two parameters: (i) the 

birth rate (b) (i.e., the rate at which new cells are generated by replication) and (ii) the death rate (d). 

This model describes an exponential growth for the number Ns(t) of viable cells at time t: 

 𝑁'	(𝑡) = 𝑁'(0)	𝑒(0"1)+ (1) 

where 𝑁&(0) is the number of viable cells present at t = 0. Another dynamical variable which can be 

measured from the flow cytometry analysis (Extended Data Fig. 2c) is the fraction of dead cells δ 

which, at equilibrium, takes the value 

 
𝛿 = 	

𝑑
𝑏

 
(2) 

Hence, an indirect estimate of b and d can be obtained in two steps: (i) an exponential fit of the 

observed growth curves (Eq. 1) gives the value b − d; (ii) an estimate of the asymptotic fraction of 

dead cells (Eq. 2) gives the value d/b. We do not model explicitly the possibility of reversible 

switching to persister state in absence of treatment, as this process is not observable in our 

experimental data. However, the model accounts for this process via the parameter f0, the fraction of 

persister cells at the time of treatment (see below). 

 

Dynamics of cell population under drug treatment. We focus on the dynamics of a population of 

N(t) = X(t)+Z(t) total viable cells, consisting of a combination of X(t) sensitive cells and Z(t) persister 

cells. The population is assumed to grow in presence of a drug with constant drug concentration [M]. 

Treated sensitive cells can (i) reproduce with a birth rate B, (ii) die with a drug-dependent death rate 

D([M]), (iii) switch to the persister state with a drug-dependent transition rate λ([M]).  
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Persisters cells display a moderate division rate under drug treatment (b≃0.3 days-1 , Extended Data 

Fig. 8), and their observed dynamics under long-term treatment indicates a slow decline in cells 

number (Fig. 1d), compatible with a negative, but small, effective growth rate. These two 

observations can be described by a scenario where persister cells that attempt to divide before 

developing drug-resistance mutations die out (i.e., for which the net growth rate is ≃ 0), while non-

dividing persister cells slowly die during the treatment. In this scanario back-switching from persister 

to sensitive in presence of the drug effectively enters the model as a contribution to death rate, and 

this combined dynamics are described by the effective death rate Dp > 0.   

 

Drug effect is assumed to be delayed by a time t0 after the administration of the drug to the cancer 

cell population. During this time interval, the model assumes that the cell popoulation grows with a 

net growth rate S0: 

 
 𝑁(𝑡) = 𝑁/	𝑒2%+													𝑡 ≤ 𝑡/ (3) 
   

Where N0 is the initial number of cells. The quantity 𝑓' =
!(#!)
%(#!)

 is the fraction of persister cells present 

at the time t0, i.e., at the time of the effective initiation of the drug effect. This parameter effectively 

incorporates the possibility of pre-existence of persisters due to reversible switching in absence of 

the drug. Under these assumptions, the dynamics of the fraction of sensitive cells during treatment is 

described by 

 
𝑥(𝑡) =

𝑋(𝑡)
𝑁/

= (1 − 𝑓/)	𝑒2%+%32([5])(+"+%)	 
(4) 

   
and we have defined 𝑆([𝑀]) = 𝐵 − 𝐷([𝑀]) − 𝜆([𝑀]) as the net growth rate of sensitive cells under 

drug treatment. Similarly, the fraction of persister cells during the treatment is described by 

 

 𝑧(𝑡) = 7(+)
8%

= 𝑓/	𝑒2%+%":&(+"+%) + (1 − 𝑓/)	𝑒2%+%
;([5])

2([:])3:!
*𝑒2([5])(+"+%) − 𝑒":&(+"+%)1. (5) 

 

The quantity 
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𝑛(𝑡) =

𝑁(𝑡)
𝑁/

= J 𝑒2%+ 𝑡 ≤ 𝑡/
𝑥(𝑡) + 𝑧(𝑡) 𝑡 > 𝑡/

 
(6) 

 

 was used to “learn” the model and its parameters from the experimental data (see below). 

  

Death rate of treated cells. The death rate of sensitive cells during drug treatment is assumed to 

increase from its basal level (D[0] ≡ D0) due to the effect of the drugs. In particular, based on previous 

evidence 32 , we model this dependence as 

 𝐷([𝑀]) = 𝐷/ + 𝑘/(1 − 𝑒".	[5])	 (7) 

Where 𝑘'	is the maximum increase of death rate due to the drug effect. The parameter 𝑎() sets a 

characteristic drug concentration: for [𝑀] 	≪ 𝑎() cells die with their unperturbed (basal) death rate 

D0, while for concentrations [𝑀] 	≫ 𝑎() the death rate reaches the maximal value 𝐷' + 𝑘'. The 

empirical form Eq. (7) describes an exponential interpolation between these two extreme cases. 

 

Transition rate to persistence. We considered four possible model variants for λ([M]): (i) a null 

model with no persistence state, corresponding to the case λ = 0 for any value of the drug 

concentration; (ii) a model with a drug independent transition rate λ = λ0; two models where the 

transition rate is linearly dependent on drug concentration, (iii) λ([M]) = k[M] and (iv) λ([M]) = k[M] 

+ λ0. This latter functional dependence should be considered as the first term expansion of a non-

linear model with a rate saturating at high [M] values. The four model variants are associated to 

clearly distinguishable patterns as summarised in Extended Data Fig. 6. 

 

Computer Simulations for the stochastic modeling. We simulated individual trajectories of the 

Markov process underlying the evolution of the MC-LD model. A well-known exact algorithm to 

simulate individual trajectories of a Markov process was provided by Gillespie 42. However, this 

algorithm was too slow for the models and population sizes considered in this study. Therefore, we 

used a coarse-grained version of the algorithm, which groups together all stochastic events happening 
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in discrete time intervals of fixed duration ∆t. This approximation is equivalent to assuming that 

events are independent within the time scale of ∆t. We adjusted the parameter ∆t so as to minimize 

the errors, while still keeping the simulations numerically feasible. 

 

 

Inference of parameters describing the cell population dynamics 

 

Birth and death rates of sensitive cells. For the inference of the birth-death rates b and d, we used 

the data set described in the methods section Growth rates of CRC clones before drug-treatment 

(above), together with the model described in the methods section Dynamics of sensitive (untreated) 

cells (above). Our inference scheme is summarized in Extended Data Fig. 2a). The net growth rate 

b−d was estimated with an exponential fit against the observed growth curve of the two clones (WiDr 

and DiFi) in a time span of 4 days starting from 40x104 cells/well in a 6-multiwell plate (Extended 

Data Fig. 2b). The value d/b was estimated from the observed asymptotic fraction of dead cells 

detected by flow cytometry analysis (Extended Data Fig. 2c). Finally, the values of the birth and 

death rate of sensitive cells were obtained by combining the two estimates (value of b − d and d/b). 

Estimated values are reported in Extended Data Table 1. 

 

Calculation of growth curves from drug response assays. Growth curves of CRC clones under 

treatment, reported as fold-change of viable cells vs time of drug exposure, were calculated from the 

doses-response assay (Figs 1c and 2b) and from the single-dose assay (Figs 1d and 2c). We used the 

following strategy. Both data-sets consisted in measurements of cell viability (luminescence signal) 

with constant drug concentraction ([𝑀]), evaluated at several time points (𝑡 = 1,2, . . , 𝑡*+,	 days) and 

for a set of biological replicates (𝑖 = 0,1, . . , 𝑛). We denote with 𝑌#-([𝑀]) the value of cell viability of 

the 𝑖#. biological replicate, of a drug-response growth assay performed with drug concentration [𝑀], 

and evaluated at time 𝑡.  
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These ATP measurements present a day-to-day variability, which is reflected in a variability across 

replicates, but also present regularity in their behavior, which we aimed to extract. Specifically, the 

curves of different replicates look similar, but are affected by offsets that vary from day to day. Hence, 

we first normalized data corresponding to different biological replicates of the same clone in the 

following way. The values  𝑌#-([𝑀]) were multiplied by a normalization factor 𝑐-, the same for all 

the data collected in the same biological replicate, but different across replicates. These normalization 

factors were obtained by minimizing the total relative error across replicates 𝐸𝑅 = 	∑ ∑ /%([1],#)
4%([1],#)#[1] , 

where 𝜇([𝑀], 𝑡) = )
5
∑ 𝑐-𝑌#-([𝑀])5
-6)  and 𝜎7([𝑀], 𝑡) = )

5
∑ K𝑐-𝑌#-([𝑀]) − 𝜇([𝑀], 𝑡)	L

75
-6)  are the 

average and standard deviation of the viability normalized with weights 𝑐5 across replicates, 

evaluated at time 𝑡 and for drug concrentration [𝑀]. 

 Averages values and standard deviation computed with the optimal values of the normalization 

factors obtained by minimizing 𝐸𝑅 were then divided by the average viability measured at day 0 

(𝜇([𝑀], 𝑡 = 0)) to obtain growth cuvers: y([M],t) =𝜇([𝑀], 𝑡)/𝜇([𝑀], 𝑡 = 0) with associated standard 

deviation 𝜎8([M], t) 	= 𝜎([𝑀], 𝑡)/𝜇([𝑀], 𝑡 = 0)	. 

 

TP model variants. Growth curves of WiDr and DiFi clones were used to infer model parameters of 

8 (4 X 2) distinct model variants, i.e., configurations of the TP model with different assumptions of 

the two key model parameters: (i) the rate at which sensitive cells switch to persisters during the 

treament (𝜆) and (ii) the initial fraction of persister cells (f0).  More in detail, we considered 4 model 

variants associated to the choice of the transition rate λ([M]) = {0, 𝜆', 𝑘[𝑀], 𝑘[𝑀] 	+	𝜆'}	 which we 

combined with 2 variants using different ranges of the numerical values of the intial fraction of 

persisters (f0 = 0 and 0 < f0 < 1). 
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Inference of the TP model parameters. The parameters of the TP model (Eq. 6), with all the 4 model 

variants for the transition rate λ([M]) = {0, 𝜆', 𝑘[𝑀], 𝑘[𝑀] 	+	𝜆'} and the two variants for the initial 

fraction of persisters (f0 = 0 and 0 < f0 < 1), have been inferred using a Bayesian framework. For the 

inference of TP model parameters in WiDr we used growth curves assessed from both the doses-

response assay  and  the single-dose assay, while for DiFi we used only growth curves assessed from 

the doses-response assay. Posterior distributions of the model parameters were sampled using a 

Hamiltonian Monte Carlo (HMC) algorithm (Python 3, package pymc3, NUTS sampler) 43. The 

likelihood function was set to the product of standard Gaussian likelihood functions over the observed 

data points, with parameters equal to the mean value and standard deviation of the data points. We 

assumed flat prior distributions of the model parameters; the corresponding supports, i.e. maximum 

and minimum values allowed, are reported in the Extended Data Table 2.  For WiDr, model fit was 

performed including all the growth curves evaluated with dabrafenib concenteration [𝑀] ≥

0.041	𝜇𝑀, while for DiFi we included all growth curves evalutaed with cetuximab drug 

concenteration [𝑀] ≥ 2.1	𝑛𝑀. Value of the model parameters describing the drug delay in the single-

dose assay for DiFi (𝑡'(𝑠𝑖𝑛𝑔𝑙𝑒), 𝑆'(𝑠𝑖𝑛𝑔𝑙𝑒)) were inferred with an indipendent model fit, while 

keepeing all the other parameters fixed (the remaining parameters were inferred from the growth 

curves derived from the doses-response assay). Values for these two parameters are reported in the 

Extended Data Table 2. 

 

Comparison between TP model variants. The logic flow of the comparison between model variants 

within our inference scheme is summarized in Extended Data Fig. 6. The eight TP model variants (2 

choices of f0 for each of the 4 λ models) were compared by means of the standard Bayesian 

Information Criterion (BIC) and the Akaike Information Criterion (AIC) (Extended Data Table 3). 

These quantities measure model performance keeping into account the number of parameters used 

(penalizing model variants with more parameters).  We found that the best 𝜆 model the for WiDr is 

the one where the transition rate to persistence is linearly proportional to the drug concentration 
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λ([M]) = k[M], while for the DiFi the data is best described by a TP model variant with a constant 

transition rate λ([M]) = λ0 (Extended Data Table 3 and Extended Data Fig. 6). Additionally, we found 

that both the AIC and BIC indicate that the drug-induced scenario (f0 = 0) is the preferred variant for 

all the cell lines (Extended Data Table 3 and Supporting Fig. 6). 

 

Choice of the TP model variant for the inference of the mutation rate. The parameters used to 

calculate the mutation rates were inferred using the following TP model variants: (i) transition rate to 

persistence linearly proportional to the drug concentration λ([M]) = k[M] and 0 < f0 < 1 for WiDr cells 

and (ii) constant transition rate λ([M]) = λ0 and 0 < f0 < 1 for DiFi cells.  For both clones, the choice 

of the best 𝜆 model was informed by the BIC and AIC indices (Extended Data Table 3), while in both 

cases we made use of the variant with 0 < f0 < 1 even though f0 = 0 was preferred by the BIC and AIC 

indices (Extended Data Table 3). This was done in order to have a realistic estimate of the maximum 

value of f0 which is still compatible with the experimental growth curves data. In this way we were 

able to infer the value of the mutation rate taking into account the effect of a fraction of persisters that 

could have been present in the population before drug administration. The fit of these models to the 

experimental data is shown in Fig. 2 and Extended Data Fig. 4, while the statistics of the 

corresponding model parameters are reported in Extended Data Table 4. Corresponding posterior 

distributions are shown in Extended Data Fig. 5. Plots of the posterior distributions were obtained 

with the software GetDist 44. Note that the approach used in Figs 2d and 4d and discussed in the main 

text does not focus only on the optimal model variant (i.e., f0 = 0), but explores all the possible values 

of f0. 

 

Distribution of persister cell abundance. The TP model presented in the previous section was 

extended to include stochastic effects to investigate the distribution across wells of the number of 

persister cells at a given time point (well-to-well number variability). To this aim, we made use of 

computer simulations (see methods section Computer Simulations for the stochastic modeling). We 
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found that in the drug-induced scenario, i.e., in the absence of persister cells before drug treatment 

(f0 = 0), and for time of drug treatment ≫ 1	𝑑𝑎𝑦, the number of cells is distributed according to a 

Poisson distribution (see Extended Data Fig. 7).  Extended Data Fig. 7b exploits this relation to verify 

that the drug-induced scenario is compatible with the observed dynamics of both CRC cell clones, 

using the experimentally measured well-to-well distribution of cell numbers measured after 3 weeks 

of treatment. The cumulative distribution of the cell viability measurements across well of drug-

tolerant persisters cells is indeed compatible with a Poisson cumulative distribution (Extended Data 

Fig. 7b).  Since the ATP assay measures the number of cells through an unknown constant of 

proportionality between the ATP content ad the actual number of viable cells, in order to fit the 

observed distribution of ATP assay readouts to a Poisson distribution we proceeded as follows. We 

computed the value 𝛼 = 	𝜎9:;7 /𝜇9:;, i.e., the ratio of the variance (𝜎9:;7 ) over the mean (𝜇9:;) of the 

ATP measurements across the wells. The best fit to the distribution of the ATP measurements was 

the function 𝐶 [4&'(
<
, 𝑎𝑥], where 𝐶(𝜇, 𝑥) is the cumulative distribution function of a variable (x) 

distributed according to a Poisson distribution with mean 𝜇.   

 

Inference of the mutation rate from a two step fluctuation assay 

Probability for the emergence of at least one mutant. This section derives from the MC-LD model 

an approximate expression for the probability of the emergence of one mutant in an expanding 

population of cells in a given time interval [0,T]. In the MC-LD model, we denote with N(t) the 

number of viable cells present in the population at time t, and with µ the effective rate at which one 

individual becomes a mutant. We assumed that mutant individuals in the population have the same 

dynamical rates as untreated cells, i.e., they divide with rate b and die with rate d. Because of 

reproductive fluctuations (genetic drift), cells carrying drug-resistance mutations can still go extinct, 

and only a fraction of the mutants will “establish” in the population, and survive. We refer to these 

cells in the following as “established mutants”, using the standard terminology of population genetics.  
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The probability of surviving stochastic drift in a time interval ∆t is a well-known result of the birth-

death process 37,38, which reads 

 
𝜓(Δ𝑡) =

(𝑏 − 𝑑)𝑒(0"1)<+

𝑏	𝑒(0"1)<+ − 𝑑
	 

(8) 

With these assumptions and up to the first order in µ (i.e., assuming a sufficiently small mutation 

rate) the expected number of emerging mutants establishing in [0,T] is given by 

 
ℳ(𝑇) = 𝜇@ 𝑁(𝑡)|=>/

%

/
𝜓(𝑇 − 𝑡)𝑑𝑡 + 𝒪(𝜇?) ≡ 	𝜇𝒩(𝑇), 

(9) 

where we have defined 𝒩(𝑇) = 	∫ 𝑁(𝑡)|46'
:
' 𝜓(𝑇 − 𝑡)𝑑𝑡. The number of established mutant 

cells is Poisson distributed with expected value ℳ(𝑇) and consequently the probability of having at 

least one mutant is given by 

 𝑃(𝑇) = 1 − 𝑒"ℳ(%)	. (10) 

In the context of the fluctuation test, this probability is estimated by 𝑃b, i.e., the fraction of wells that 

have developed resistant mutants by the time T after treatment. The generalized estimator of the 

mutation rate then takes the form 

 
µS = −

log*1 − PX1
𝒩(T)

	. 
(11) 

This general form of the estimator is valid for both pre-existing and persisters-derived resistant cells, 

and has been tested with synthetic data (see Fig. 4c). More specific expressions that can be used with 

data are found below. 

 

Estimator of mutation rate for sensitive cells. As in a standard fluctuation test, to estimate the 

spontaneous mutation rate of sensitive (untreated) cells 𝜇&, we measure the fraction 𝑃b of wells that 

developed resistance before treatment initiation (i.e., during the expansion phase in absence of drug). 

Since the latters grow unperturbed when treatment is applied, the early-emerging resistant clones, 

arising within the first 3-4 weeks of drug exposure in our experimental setting represent the cells that 

developed resistance before treatment (see Extended Data Fig. 9) The first part of the MC-LD model 
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uses an estimator for the mutation rate of sensitive (untreated) cells from the number of pre-existing 

mutants that were generated before the exposure to the drug. Following the approximations found in 

Eq (11) , for this case we have 

 
µ@Z = −

log*1 − PX1
1
dX(0)e

(A"B)C'()*' log ]e
"(A"B)C'()*' − b/d

1 − b/d `
, 

 

 (12) 

where X(0) is the number of sensitive cells present in the population at the beginning of the fluctuation 

test. As described in the main text, during our fluctuation test sensitive cells were allowed to expand 

for a time Ttreat before starting the treatment. The standard deviation of the estimated value of µ=d was 

obtained by error propagation of the standard deviation of the fraction of observed wells harboring 

resistant clones  𝑃b, and is defined by the following expression 45  

 
σDE = b PX*1 − PX1

# total wells
	. 

 (13) 

 

The mutation rate Eq. (12) is a chronological rate, i.e. it quantifies the number of resistant cells 

emerging in the population per unit of time and per individual. As in this case new sensitive cells are 

generated by cell division, this rate can be converted into units of generation 𝜇>d → 𝜇>d𝑡?@5, where 

𝑡?@5 = 1/𝑏 is the duration of one generation. The values of the observed number of wells with pre-

existing colonies of resistant cells are show in Fig. 3e, while the values of the inferred mutation rate 

are reported in Extended Data Table 5. 

 

Estimator of mutation rate for persister cells. To estimate the mutation rate of persister cells 𝜇Ain 

the second part of the MC-LD assay, we extended the experimental procedure described for sensitive 

cells, prolonging the treatment of persisters-containing wells and therefore performing a fluctuation 

assay which evaluates the fraction of the remaining wells developing resistant clones. As described 
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above (Eq. 10), the expected fraction of resistant cells derived from persisters cells and evaluation at 

time 𝑇 is given by 

 𝑃(𝑇) = 1 − 𝑒"ℳ&(%)	, (14) 

where 

 ℳ!(𝑇) = 𝜇!I 𝑍(𝑡)
"

#
𝜓(𝑇 − 𝑡)𝑑𝑡

= 𝜇!	𝑋(0)e(%&'))!"#$! R1 −
d
b
V	W(1 − 𝑓#)	

𝜆([𝑀])𝑒*%+%
𝑆([𝑀]) + 𝐷𝑝

		`
𝑒*([-])("&+%) − 1

𝑆([𝑀])
+
𝑒&/& − 1
𝐷!

a −
𝑓#𝑒*%+%
𝐷!

	b𝑒&/&("&+%) − 1cd .
 

(15) 

   

where 𝑍(𝑡) = 𝑋(0)𝑒(B(C):#)*+#𝑧(𝑡), is the number of persister cells expected at time 𝑡  (product of 

the expected fraction of persister cells 𝑧(𝑡)	from Eq.(5) and the total number of cells present in the 

wells at the beginning of treatment 𝑋(0)𝑒(B(C):#)*+#), and we have used the approximation  ψ(Δt) ≃

[1 − D
E
]. The estimator for the mutation rate of persister cells can be obtained by matching the 

expected probability Eq (14) to the observed fraction of wells with growing colonies observed 𝑃b(𝑇)	: 

 
µ!g = −

logb1 − PE(𝑇)c

𝑋(0)e(%&'))!"#$! l1 − dbm	`(1 − 𝑓#) 	
𝜆([𝑀])𝑒*%+%
𝑆([𝑀]) + 𝐷𝑝		R

𝑒*([-])("&+%) − 1
𝑆([𝑀]) + 𝑒

&/& − 1
𝐷!

V − 𝑓#𝑒
*%+%

𝐷!
	 b𝑒&/&("&+%) − 1ca

, 

 

 (16) 

   

Our analitcal derivation (Eq.s 14, 15 and 16) was validated with simulations of the MC-LD model, 

by testing the estimator (Eq. 16) with synthetic data (see Fig. 4c).   

 

Bayesian inference of the mutation rate of persister cells. The mutation rate of persister cells was 

inferred with a Bayesian framework, in order to account for the uncertainty of the value of the initial 

fraction of persister cells, 𝑓'. The bayesian inference of 𝜇A was obtained by fitting the MC-LD model 

expectation (Eq.s 14 and 15) to the observed fraction of wells with late-emerging resistant clones 

(evaluated at T=11 weeks for WiDr and at T=15 weeks for DiFi). The likelihood function was set to 

a standard Gaussian likelihood with mean equal to 𝑃b(𝑇)	 and standard devation kFGH)(FGI
W 

, where 𝑊 is 
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the number of wells that did not harbour early emerging resistant clones. The model expectation was 

computed using the model parameters inferred for the TP model (Extended Data Table 4) . For the 

inference of the mutation rate of  DiFi B6, we used a value 𝑡' = 0, consistently with the data-set of 

Extended Data Fig. 4.  We inferred two parameters: (i) the initial fraction of persister cells 𝑓' and (ii) 

the fold increase of the mutation rate of peristers cells vs sensitive cells 𝑟 = 4,
4-

, i.e., the mutation rate 

was inferred a the product of this parameter and the inferred value of the mutation rate of sensitive 

cells,  𝜇&	(see above). For the first parameter, 𝑓',  we used an exponential prior distribution with the 

same mean as the one reported in Extended Data Table 4, i.e., we imposed a prior on this parameter 

which is equal to the posterior distribution obtained when fitting the TP model to the growth curve 

data (Fig. 2d). For the second parameter, 𝑟 = 4,
4-

  we used a flat distribution with minimum value 1	 

and maximum value 500.  The posterior distributions for 𝑓' and for the fold increase of the mutation 

rate  (shown in Fig. 3d) were sampled using a Hamiltonian Monte Carlo (HMC) algorithm (Python 

3, package pymc3, NUTS sampler)43 . Values of the estimated mutation rate and its standard 

deviation, reported in Extended Data Table 5, were computed as  𝜇A = <	𝑟 > 	𝜇&	, and 𝜎4, = 𝜎J 	𝜇& , 

where <𝑟 >  and 𝜎J are the mean and the standard deviation of the posterior distribution of the 

parameter 𝑟. 

 
 
 
 

Materials availability 

The CRC cell clones generated in this study are available through Alberto Bardelli (Department of 

Oncology, University of Torino) under a Material Transfer Agreement. 

 

Data and code availability 

Data and codes used for the analysis will be available as a repository on Mendeley Data 

(doi:10.17632/mvfm7hs9kw.1). 
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Main Figures 

 

Figure 1. Population dynamics of CRC clones in response to targeted therapies. a, Schematic 

representation of the drug screening growth curve assays performed on CRC clones. b, In the doses-

response assay, WiDr cells were treated with increasing concentrations of dabrafenib (Dab) + 

50μg/ml cetuximab (CTX), while DiFi received increasing concentrations of cetuximab. Cell viability 

was measured by the ATP assay at the indicated time points. Results represent the average ± SD (n=3 

for WiDr; n=5 for DiFi).  c, Growth curves of the indicated cells under treatment, reported as fold-

change of viable cells (log scale) vs time of drug exposure, were calculated from doses-response 

assay data, by normalizing cell viability at the indicated time points by the viability measured at day 
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0. Growth curves for three different drug concentrations for each clone are shown as average ± SD 

(n=3 for WiDr; n=5 for DiFi). d, Fold-change of viable cells (log scale, assessed by ATP assay) vs 

time of drug exposure for indicated cells in the single-dose assay. The total number of viable cells is 

compatible with an exponential decay with two-time scales, supporting the outgrowth of persisters 

(the dashed line indicates the initial slope). Symbols and error bars indicate means and standard 

deviations (n=2).  

 

Figure 2. Targeted therapies induce the persister phenotype in CRC cells. a, Schematic 

representation of cell population dynamics under constant drug treatment. When cancer cells are 
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exposed to targeted therapies, the number of viable cells starts to decline. A homogeneous population 

of sensitive cells (grey cells) would shrink exponentially to extinction (grey dashed line). Some cells 

survive drug treatment due to the transition to a persister phenotype (green cells, green lines) at a rate 

λ, and residual cells (solid black line) show a bi-phasic decay. A finite fraction of persister cells (f0) 

might be present in the population prior to drug treatment (f0>0, dashed green line) or not (f0=0, solid 

green line). Persisters cells show a reduced death rate during treatment, which results in a slow 

exponential decline of the cell population (green dashed line). b, Growth curves of CRC clones under 

treatment, calculated from the doses-response assay. Black symbols and bars represent averages ± 

SD of the doses-response dataset (n=3 for WiDr, n=5 for DiFi). Continuous lines indicate the TP 

model fit to the experimental data for different values of the initial fraction of persisters cells (f0, color 

coded). c, Fold-change of viable cells vs time of drug exposure for the indicated cells assessed based 

on the single-dose dataset. Black symbols and bars represent averages ± SD of the experimental data 

(n=2). The black dashed line indicates the fit of the TP model to the data, while the expected fraction 

of persisters cell is shown with the green solid line. d, Joint posterior distribution (contour plot, color 

coded with the normalized likelihood function) and marginalized posterior distributions (left and 

bottom panel, grey area indicates the Probability Density Function) of TP parameters describing the 

dynamics of persister cells: (i) the initial fraction of persisters cells (f0, bottom panel) and (ii) transition 

rate of sensitive to persister cells (λ) induced by the drug treatment. The likelihood function measures 

the agreement of the model to the experimental data as a function of the parameters considered.  
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Figure 3. A modified Luria-Delbrück fluctuation test to measure mutation rates in mammalian 

cells. a, The modified fluctuation test, based on the inferred population dynamics and the MC-LD 

model, allows estimation of spontaneous (μs) and persisters (μp) mutation rates. b, Schematic 

representation of cell population dynamics of CRC cells during the fluctuation test. During the initial 

expansion in the absence of drug treatment CRC cells mutate with the spontaneous mutation rate (μs). 

When cells are exposed to targeted therapies, pre-existing resistant cells are selected by the drug and 

give rise to early emerging resistant colonies (red dashed line), while sensitive cells start to decline in 
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number (black solid line) and switch to the persister state (green solid line). Resistant cells derive 

from persister with a mutation rate μp and give rise to late-emerging resistant colonies (blue dashed 

line). c, Schematic representation of the experimental assay underlying the fluctuation assay. WiDr 

and DiFi cells were seeded in twenty 96-multiwell plates, for a total of 1920 wells, and allowed to 

expand in the absence of drug for about 8 generations (reaching ~20000 cells/well). After the 

expansion, all the wells were treated with targeted therapy (100 μg/ml cetuximab for DiFi and 1μM 

dabrafenib + 50 μg/ml cetuximab for WiDr). d, Two sets of resistant clones were identified during 

the MC-LD experimental assay: the early-emerging resistant clones grown after 3-4 weeks (Stage 1), 

and the late-emerging resistant clones arising after >10 weeks (Stage 2) of constant drug treatment. 

e, Each bar graph lists the number of resistant clones counted at the indicated timepoints during MC-

LD experiment for each CRC clone. Red bars indicate early-emerging resistant clones (appearing in 

the first 4 weeks of drug treatment); blue bars indicate late-emerging resistant clones (appearing after 

≥10 weeks of drug treatment). Results of two independent biological replicates for each clone are 

shown.  
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Figure 4. Quantification of mutation rates in persister cells. a, Simulated data for the assay 

described in Fig. 3. The experimentally measured MC-LD model parameters and the model-derived 

estimators of mutation rate, for sensitive and persister cells, were used to simulate the time of 

appearance of pre-existing and persisters-derived resistant cells. b, Quantification of mutation rates 

for sensitive (red) and persister (blue) cells in the MC-LD experiment. The indicated cell models were 

seeded and treated as described in Fig. 3. Mutation rates were calculated from the experimental data 

based on population parameters and the number of pre-existing (early-emerging) and persisters-

derived (late-emerging) resistant clones as described in Fig. 3. Results represent inferred mutation 

rates (for sensitive and persisters cells for each clone) with bar plots showing mean and the 99% C.I. 

of the posterior distributions of the mutation rates (n=2). c, Validation of mutation rates estimator 

with model simulations. The box plots represent the distribution of the estimated mutation rates for 

100 runs of the entire experiment using the parameters reported in Extended Data Table 1 and 4. The 
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dashed lines represent the input value of the mutation rate used in the simulation. d, Joint posterior 

distribution (contour plot, color coded with the normalized likelihood function) and marginalized 

posterior distributions (left and bottom panel, grey area shows the Probability Density Function) of 

(i) the initial fraction of persisters cells (f0, bottom panel) and (ii) fold increase of the mutation rate of 

persister cells compared to mutation rate of sensitive cells (μp/μs). The likelihood function measures 

the agreement of the model to the experimental data as a function of the value of the parameters 

considered.  

 

 

Figure 5. Schematic representation of CRC cells mutational dynamics during drug treatment. 

Untreated cells spontaneously acquire resistant mutations at a replicative spontaneous mutation rate 

μs. When cancer cells exposed to targeted agents, a surviving persister phenotype is induced in a drug-

dependent manner. Persister cells under constant drug exposure reduce DNA replication fidelity and 

increase their mutation rate at rate μp. This in turn boosts genetic diversity and favors the emergence 

of resistant clones driving tumor recurrence and treatment failure.  
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Extended Data Figures 

 

Extended Data Fig. 1. Growth kinetics of CRC cell populations and individual clones. a, The 

growth kinetics of WiDr and DiFi clones were compared with that of parental population at the 

indicated timepoints. Cell viability was assayed by the ATP assay. b, The indicated cells were treated 

with increasing concentrations of dabrafenib (Dab) + 50μg/mL cetuximab (CTX) (WiDr) and 

increasing concentrations of cetuximab (DiFi). Cell viability was measured with the ATP assay after 

5 (WiDr) or 6 days (DiFi). Results represent the average ± SD (n=3). 
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Extended Data Fig. 2. Birth and death rates of CRC cell clones. a, Schematic representation of 

the experimental setting used to evaluate birth and death rates of CRC cells. b, To establish the growth 

rate (b-d), the indicated cell models were seeded in multiple 6-multiwell plates (MW6) at ∼ 4x105 

cells/well, and the number of viable cells was measured by manual count using trypan blue staining 

at the indicated time points. Grey dots represent individual biological replicates, each reported as 

mean of two technical replicates. Black squares represent average of biological replicates reported as 

mean ± SD (n=5 for WIDr, n=3 for DiFi). The black dashed line shows the best exponential fit (here 

represented as a linear fit on the log number of relative cell count). c, Cell cycle distribution of CRC 
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clones measured by propidium iodide staining and flow cytometry analysis at the indicated time 

points. The fraction of cells in sub-G1 phase was used to estimate the death rate (d/b). Bars represent 

mean ± SD (n=3). Red dashed line shows the best fit for the value d/b, which is the expected 

asymptotic value of the fraction of dead cells δ.  

 

 

Extended Data Fig. 3. Transition to persisters (TP) model of CRC cells. Fitted experimental data 

of the doses-response (n=3 for WiDr, n=5 for DiFi, left side) and single-dose (n=2, right side) datasets 

are indicated with black dots and error bars; red lines and shadowed areas represents the model fit 

(Credible Interval [2.5, 97.5]%). The drug concentration is specified above each plot.   
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Extended Data Fig. 4. Impact of seeding density on cell growth dynamics. a, Cells seeded at 

indicated densities, were treated with 1µM dabrafenib + 50µg/ml cetuximab (WiDr) or 100 µg/ml 

cetuximab (DiFi). Cell viability was measured with the ATP assay at indicated time points. b, Cell 

growth assays performed with different initial number of cells display the same dynamics after an 

initial delayed effect of the treatment. All the values were normalized to the maximum value of cell 

viability measured. Time values from (a) were scaled to t0 (time of delayed drug effect) indicating 

the time when the maximum cell viability was reached.  
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Extended Data Fig. 5. Posterior distributions of the inferred parameters for the transition to 

persister (TP) model. For each model we show posterior distributions of the inferred parameters. In 

the diagonal we show distributions marginalized to one parameter, off-diagonal plots show contour 

plots at one and two sigmas (dark and light orange, respectively) of distributions marginalized to two 

parameters. See Methods for description of Bayesian inference. The model parameters are the 

following: a: inverse of the characteristic drug concentration. For a drug concentration [M]<<a-1 

cells die with their unperturbed death rate D0, while for concentrations [M]>>a-1 the death rate κ 

reaches the maximal value (D0 + k0). k0: maximum death rate due to the drug. k coefficient of 

proportionality between drug concentration and rate of transition of sensitive cells to persister cells 

(λ=k0[M]). t0: time of the delay of the drug effect after administration. B-D0: growth rate in absence 

of drug (birthrate (B) minus death rate D0). S0: growth rate observed in the temporal window between 

drug administration and drug effect. λ0: rate of transition of sensitive cells to persister state. Dp: death 

rate of persister cells. t0 (single): delay in time of drug effect after treatment administration in the single-

dose assay. S0(single): observed growth rate in the time window between treatment administration and 

drug effect (t< t0(single)) in the single-dose assay.   
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Extended Data Fig. 6. Bayesian inference of experimental data defines a model for the transition 

to persistence. a, Schematic representation of the expected pattern of the doses-response curves for 

the three different model configurations: (i) null model with no transition to persistence (λ = 0, top), 

(ii) model with constant transition rate (mid), (iii) model with transition rate proportional to the drug 

concentration (bottom). Square plots indicate the dependence of λ vs [M]. b, Experimentally 

measured dose-responses growth curves and best model fit. The doses-response datasets were 

normalized to the growth of the untreated cells using the best model parameters (Extended Data Table 

4). c, In the top panel, we show the Bayesian weights to compare the 4 λ models. Bayes weights are 

defined as )
K
exp(−BIC(λ = 0)/2) for the model as )

K
exp(−BIC(λ, f' = 0)/2) + exp(−BIC(λ, f' >

0)/2) for the other models. The partition function Z ensures the global normalization Z =

∑ exp(−BIC(λ, f')/2)L,M! . Similarly, in the bottom panel we show the two Bayes factors to compare 

model configuration with f' = 0 → )
K
∑ exp(−BIC(λ, f' = 0)/2)LN'  (drug induced scenario) and for 

f' > 0 → )
K
∑ exp(−BIC(λ, f' > 0)/2)LN' . Values of the BIC values are reported in Extended Data 

Table 3.  
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Extended Data Fig. 7. Distribution of persisters abundance across wells is compatible with the 

TP model expectation of f0=0. a, CRC clones were seeded in multiple 96-multiwell plates and 

allowed to expand for about 8 cell divisions in the absence of drug, and then treated with 1μM 

dabrafenib + 50μg/ml cetuximab (WiDr) or 100 μg/ml cetuximab (DiFi) for 3 weeks. Cell viability 

was determined by ATP assay. Wells containing rapidly proliferating pre-existing resistant colonies 

are marked in red, while the remaining wells contained a small number of viable cells, which we 

identified as drug-tolerant persisters (indicated in light-blue). Each bar represents one well. One 

representative experiment of two independent replicates is reported. b, Cumulative distribution of 
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persisters cell viability across wells (light-blue bars) is compatible with a Poisson cumulative 

distribution (magenta solid line, see methods for details on the fitting procedure). One representative 

experiment of two independent replicates is reported.  c, The simulation of a stochastic model for the 

transition to persistence shows that in the case of 𝑓' = 0 (i.e., in the drug-induced scenario) the 

number of persister cells per well is expected to have a Poisson distribution. Simulations were 

performed using the TP model fit values as input parameters, and setting the initial population size to 

15000 cells/well. Simulations were stopped at 21days; the distribution was evaluated using 1000 

independent simulations.  

 

 

Extended Data Fig. 8. A fraction of persisters cells slowly replicate during drug treatment. 

Distribution of the CFSE signal (Fitc) measured by flow cytometry is reported for the indicated 

timepoints. WiDr and DiFi cells were grown in standard conditions (untreated) or treated with 1μM 
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dabrafenib + 50μg/ml cetuximab or 100μg/ml cetuximab, respectively, for 2 weeks until the 

emergence of surviving persister cells. Both untreated and persister cells were stained with CFSE to 

quantify cell division and fluorescent signal (Fitc) was analyzed by flow cytometry at indicated time 

points. One representative experiment (n=2 untreated cells; n=3 persisters) is reported.  

 

 

Extended Data Fig. 9. Pre-existing and persister-derived resistant cells emerge at different time 

points according to the MC-LD model. For each clone we simulated the MC-LD fluctuation test 

using experimentally determined cellular parameters. The violin plot showing the time of emergence 

distribution is reported for pre-existing resistant cells (indicated in red) and persisters-derived 

resistant cells (depicted in blue). Median and mean of the distribution are represented as a white dot 

and a nuanced horizontal line, respectively. The black vertical line indicates the interval 

corresponding to the first and third quartile of the distribution. As previously reported, after about 3-

4 weeks the vast majority of early-emerging resistant clones originate from pre-existing resistant cells, 

while persisters-derived resistant cells slowly accumulate subsequently over time. We run 50 

simulations using the best model fit as input parameters. In each simulation, we simulated 1920 in 

silico independent wells. A well was considered to harbor a resistant clone when the number of 

resistant cells was above 20,000 units.   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.17.444478doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444478


 

56 

Extended Data Tables 

 

Extended Data Table 1. Growth parameters of CRC cells in the absence of drug treatment. The 

table lists experimentally assessed birth and death rates for the indicated CRC cell clones. Mean 

values and standard errors are reported. 

 

Extended Data Table 2. Prior distributions for persister-transition model fit parameters. We 

assumed flat prior distributions for each of the TP-model parameters. The tables list the min and max 

allowed values as support of the indicated distributions. 

WiDr cl. B7 DiFi cl. B6
Value S.E. Value S.E.

Birth rate (b) (days�1
) 1.02 0.08 0.7 0.02

Death rate (d) (days�1
) 0.34 0.09 0.26 0.02

WiDr cl. B7.
Parameter (units) Min value Max value

a (M�1
) 10

5
10

9

k0 (days�1
) 0 6

k (M�1days�1
) 1 10

6

B �D0 (days�1
) 0 1

f0 0 1

Dp (days�1
) 0 0.2

S0 (days�1
) 0 1

t0 (days�1
) 2 3

t0(Single) (days�1
) 0 3

S0(Single) (days�1
) 0 1

DiFi cl. B6.
Parameter (units) Min value Max value

a (M�1
) 10

7
10

9

k0 (days�1
) 0 3

�0 (days�1
) 0 1

B �D0 (days�1
) 0 1

f0 0 1

Dp (days�1
) 0 0.2

S0 (days�1
) 0 1

t0 (days�1
) 1 2

t0(Single) (days�1
) 0 2

S0(Single) (days�1
) 0 5
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Extended Data Table 3. Model selection for the transition to persister (TP) model variants. The 

table lists the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC) of all 

the transition to perister (TP) model variants. Lower AIC and BIC values correspond to better model 

performance, accounting for the different number of parameters. 4X2 models were inferred (2 choices 

of f0 for each of the 4 λ models) for the indicated clones. For each transition rate (λ), the model f0 

(indicating the fraction of persister cells before treatment initiation) with the relative minimum value 

of both AIC and BIC index is highlighted in cyan; while the model with the global minimal value of 

the indices, i.e., the best TP model fit, is indicated in red. The λ models are recapitulated in Extended 

Data Fig. 6. 

WiDr cl. B7
Model BIC index AIC index

� = 0 411 398

� = �0
f0 = 0 185 166

f0 > 0 197 176

� = k[D]
f0 = 0 -6 -25

f0 > 0 9 -11

� = �0 + k[D]
f0 = 0 9 -11

f0 > 0 25 2

DiFi cl. B6
Model BIC index AIC index

� = 0 672 659

� = �0
f0 = 0 -138 -156

f0 > 0 -127 -147

� = k[D]
f0 = 0 1990 1973

f0 > 0 14 -5

� = �0 + k[D]
f0 = 0 -111 -131

f0 > 0 -100 -123
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Extended Data Table 4. TP-model fit parameters. Tables list the values of the parameters of the TP 

model variant chosen (see methods). For each CRC clone, the posteriors distribution of the best model fit 

is reported including Mean value, Standard Deviation, Highest Density Interval (HDI) at 2.5%, Highest 

Density Interval (HDI) at 97.5% and the Gelman and Rubin’s convergence diagnostic statistics (Rˆ). 

Values of Rˆ close to one indicate convergence to the underlying distribution. The model parameters are 

the following: a: inverse of the characteristic drug concentration. For a drug concentration [M]<<a-

1 cells die with their unperturbed death rate D0, while for concentrations [M]>>a-1 the death rate κ 

reaches the maximal value (D0 + k0). k0: maximum death rate due to the drug. k coefficient of 

proportionality between drug concentration and rate of transition of sensitive cells to persister cells 

(λ=k0[M]). t0: time of the delay of the drug effect after administration. B-D0: growth rate in absence 

of drug (birthrate (B) minus death rate D0). S0: growth rate observed in the temporal window between 

drug administration and drug effect. λ0: rate of transition of sensitive cells to persister state. Dp: death 

WiDr cl. B7

Parameter (units) Posterior mean Posterior St.dev HDI 3% HDI 97% R̂
a (M�1

) 2.91495⇥ 10
6

592717. 1.88462⇥ 10
6
4.04047⇥ 10

6
1. .

k0 (days�1
) 1.095 0.111 0.892 1.305 1.

k (M�1days�1
) 136935. 23660.9 94811.4 182239. 1.

B �D0 (days�1
) 0.048 0.032 0. 0.104 1.

f0 0.008 0.007 0. 0.021 1.

Dp 0.073 0.011 0.053 0.094 1.

S0 (days�1
) 0.363 0.008 0.348 0.377 1.

t0 (days) 2.541 0.051 2.445 2.636 1.

S0(Single) (days�1
) 0.039 0.044 0. 0.114 1.

t0(Single) (days) 1.036 0.118 0.815 1.253 1.

DiFi cl. B6

Parameter (units) Posterior mean Posterior St.dev HDI 3% HDI 97% R̂
a (M�1

) 4.0515⇥ 10
8

5.24835⇥ 10
7

3.00896⇥ 10
8
5.00617⇥ 10

8
1.

k0 (days�1
) 0.637 0.113 0.447 0.853 1.

�0 (days�1
) 0.234 0.039 0.16 0.305 1.

B �D0 (days�1
) 0.026 0.03 0. 0.078 1.

f0 0.067 0.05 0. 0.158 1.

Dp 0.040 0.004 0.034 0.047 1.

S0 (days�1
) 0.03 0.029 0. 0.084 1.

t0 (days) 1.669 0.133 1.416 1.904 1.

S0(Single) (days�1
) 4.137 0.630 2.994 5.000 1.

t0(Single) (days) 0.148 0.026 0.117 0.197 1.
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rate of persister cells. t0 (single): delay in time of drug effect after treatment administration in the single-

dose assay. S0(single): observed growth rate in the time window between treatment administration and 

drug effect (t< t0(single)) in the single-dose assay.  

 

 

Extended Data Table 5.  Mutation rates of sensitive and persister cells according to 

experimental data using the MC-LD estimators. The table lists chronological mutation rates 

experimentally measured using the MC-LD fluctuation test. In the corresponding Fig. 4b we show 

the mean and SD of the values reported here for sensitive and persisters cells, for each cell line. 

WiDr cl. B7 DiFi cl. B6
µ̂ �̂. µ̂ �̂

Untreated Sensitive (⇥10
�7 days�1

) 1.4 0.4 4.7 0.7

Persisters (⇥10
�6 days�1

) 7.0 0.4 3.0 0.3
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