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Abstract
Fine-grained information about dynamic structure of cortical networks is crucial in unpacking brain function. Here,
we introduced a novel analytical method to characterize the dynamic interaction between distant brain regions,
based on cyclicity analysis, and applied it to data from the Human Connectome Project. Resting-state fMRI
time series are aperiodic and, hence, lack a base frequency. Cyclicity analysis, which is time-reparametrization
invariant, is effective in recovering dynamic temporal ordering of such time series along a circular trajectory
without assuming any time scale. Our analysis detected the propagation of slow cortical waves across the
brain with consistent shifts in lead-lag relationships between specific brain regions. We also observed short
bursts of strong temporal ordering that dominated overall lead-lag relationships between pairs of regions in the
brain, which were modulated by tasks. Our results suggest the possible role played by slow waves of ordered
information between brain regions that underlie emergent cognitive function.
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1. Introduction
The brain spontaneously generates neural activity even in the
absence of any sensory inputs, motor outputs, or attention-
demanding cognitive tasks. Many studies have shown that
this ongoing activity is not just random noise, but that it car-
ries meaningful information, having a dynamic structure that
can interact with perception and behavior [1, 2, 3, 4, 5, 6].
Conventionally, this structure has been characterized as syn-
chronous patterns of neural activity in bilaterally symmetric,
distant brain regions, forming brain-wide functional neural
networks.

Over the past two decades, functional magnetic resonance
imaging (fMRI) has emerged as an important brain-imaging
tool to study such neural networks using a measure known as
resting-state functional connectivity (FC). Studying the syn-
chrony between spontaneous changes in fMRI blood oxygen
level-dependent (BOLD) signals as a proxy for ongoing neu-
ral fluctuations provides researchers with a noninvasive tool
to investigate functional organization of the brain at network
level. It is well established that resting-state FC patterns are
not stationary, but, rather, vary over the time course of an
fMRI resting-state session [7, 8].

The temporal dynamics of spontaneous neural activity is
not limited to synchronous activity. Neuroimaging studies
in both humans and animal models suggest the propagation
of cortical waves across the brain. For example, using EEG
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recording in human subjects, Massimini and colleagues [9]
showed that slow oscillations during sleep are cortical waves
usually originating at anterior cortical regions. Using wide-
field optical calcium imaging in mice, Matsui and colleagues
[10] observed that transient neuronal coactivations were em-
bedded within propagating waves of activity across the cortex,
which was posited to carry important information underlying
spatiotemporal neuronal dynamics of FC. Although cortical
waves of neural activity at both mesoscopic and macroscopic
scales are particularly well established at high frequencies
[11], much remains to be explored to better understand to
what extent these cortical waves would manifest at slower
frequencies measured by the BOLD signal.

In the last decade, the latency structure of resting-state
BOLD signals has been increasingly examined, and there is
accumulating evidence for signal flow even at the low frequen-
cies sampled by the BOLD signal. In one study, Majeed and
colleagues [12] found signals that moved laterally to medi-
ally, primarily in sensorimotor cortex. In a follow up study
including both rat and human data, the same group replicated
their first findings [13]. More recently, Ma and Zhang [14]
further explored the dynamic temporal characteristics of FC,
and found that transitions between resting state FC patterns
follow specific sequential ordering, which is conserved in rats.
Additionally, Hindricks and colleagues [15] were able to use
lag-based methods to observe cortical waves in the BOLD
signal in early visual cortex. Recently, fMRI studies by Mitra
and colleagues [16, 17, 18, 19] demonstrated the existence of
slow resting-state inter- and intra-network propagation pat-
terns, and the direction of such slow propagation was related
to the level of arousal [17, 20]. Using lagged correlation
analysis, they reported on patterns of propagated activity in
resting-state BOLD signal and suggested FC synchrony as an
emergent property of lag structure underlying such propaga-
tion [20]. An alternative perspective to the cortical wave was
recently proposed by Huntenburg and colleagues [21] where
they described how connectivity gradients predict hierarchical
information flow through the cortex, and how these gradi-
ents could predict network connectivity. Altogether, although
these studies have begun to expand our understanding of the
brain networks in terms of inter-regional brain interactions
beyond simultaneous brain activity, developing novel tools
and techniques for characterizing the mechanisms underlying
such interactions still remains imperative to advance this line
of research.

The goal of this paper is to introduce a new tool to study
such interactions, which provides fine-grained information
about the temporal dynamics of BOLD signals for detect-
ing and studying cortical waves propagating across cortical
networks using resting-state fMRI data. Previously, we ap-
plied cyclicity analysis [22] on resting-state fMRI data and
showed that spontaneous BOLD signals comprised temporal
sequences, the temporal ordering of which could be recov-
ered along a circular trajectory [23]. In the present study,
using data from the Human Connectome Project [24], we ex-

panded cyclicity analysis and introduced a new technique that
reveals more complex dynamics of spontaneous BOLD sig-
nals. Cyclicity analysis (CA) is a novel technique that derives
pairwise temporal relations between time series using iter-
ated path integrals (for applications in fMRI studies, see [25]).
While the findings resulting from both lagged correlations
and cyclicity analyses overlap and provide evidence in favor
of the propagation of slow brain activity, they have different
underlying mathematical apparatuses and assumptions, and
levels of granularity. The lagged correlation method infers lag
threads by deriving singular vectors of the time-delay matrix,
whereas the CA method recovers inherent ordering among
BOLD time series through eigenvectors of a lead matrix (a
representation of the strength of temporal ordering between
pairs of regions, see Section 2). Moreover, lagged correlation
relies on interpolation and windowing to capture the dynamics
of FC, which is vulnerable to time delay estimation methods,
autocorrelation [25], sampling variability [26], and parame-
ters such as window length and window shift [27]. In contrast,
cyclicity analysis offers a more robust approach with a higher
level of granularity to study lag structure where there is no
assumption regarding stationarity, latency estimation, state
duration, and state transition.

To better understand the spatiotemporal dynamics of func-
tional neural networks, it is essential to develop appropriate
methods to fully characterize the interaction between distant
brain regions. In the context of FC analysis, cyclicity anal-
ysis can provide complementary information by capturing
the order of neuronal events as neural fluctuations propagate
along cyclic trajectories. In the present study, our new method
demonstrated a transient leader-follower relationship among
brain areas. This provides further evidence in favor of the
speculation that time-dependent information flow underlies
resting-state FC besides neuronal synchrony and desynchrony.
Our technique propels the FC field beyond correlation analy-
sis, enabling researchers to gain more mechanistic understand-
ing of brain organization.

2. Cyclicity analysis
Mathematically, the idea of CA stems from the realization that
all tools based on harmonic analysis (such as Fourier trans-
form, autocorrelation functions, power spectra, etc.) would
suffer if time is reparameterized in some fashion [22]. In
physiology, one often encounters the processes where essen-
tially the same time series is playing out at different speeds
at different times (think, e.g. of the heart rhythm). One then
turns, naturally, to data processing tools which return the
same results if the time is reparameterized, or, more formally,
will produce the same results on the time series related by a
monotonic transformation t 7→ s(t), i.e. on

x(t) and x′(t) := x(s(t)). (1)

Hence, a principle data analysis tool that withstands repara-
metrization of the timeline should output values that remain
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invariant with respect to the change of parameters in (1). We
will refer to such outputs, in the aggregate, as the reparamteri-
zation invariants (RI) of the trajectory x(t). The problem of
finding RIs of trajectories

x(t) = (x1(t),x2(t), . . . ,xd(t))

in multidimensional space Rd was addressed by K.-T.Chen
in [28], where he established that essentially (up to detours),
the RIs are given by the iterated integrals. While iterated
integrals form a countable family, having a rich underlying
mathematical structure, we will focus on the first nontrivial
instance, the oriented areas: below we will show that in a
broad class of models, they allow recovery of subtle interac-
tions between the components of the time series. We note,
however, that the idea of using higher order iterated integrals
was advanced by T. Lyons and his school, see e.g. [29].

2.1 Oriented areas
The analysis of this research builds on the iterated integrals
of second order, better known as the oriented areas. It relies
on an intuitive interpretation of the the oriented area encom-
passed by a curve in the plane, parametrically represented by
a pair of trajectories, x and y. Consider a function of time
x(t) shaped as a pulse S (orange curve in the Figure 1(a))
and its time shifted copy, y(t) (blue curve). We interpret the
interrelationship between x and y as a leader-follower one: x
leads; y follows. Now, to make this relationship an RI, we
would like to render this relation using just the parametric plot
(taking into account the orientation of the resulting curve in
the x− y plane). The observation that when plotted against
each other, these two trajectories enclose a region Rxy of the
plane of positive area (as shown in Figure 1) is one of the key
intuitive premises of the cyclicity analysis.

Recall that a smooth curve partitions the plane into the
open domains, such that the winding number of the curve
around a point is constant within each of the domains (if
the curve winds around a point counterclockwise, the point’s
winding number is positive, if clockwise, negative). The sum
of the areas of those domains, weighted by their winding
numbers is called the algebraic area (encircled by the curve).
Alternatively, the algebraic area can be calculated using the
Green’s theorem, resulting in

areaxy =
1
2

∮
C

xdy− ydx, (2)

where C is the curve, serving as the contour of integration
(oriented by time). Note that this area is signed; in particular,
reversing the orientation of the curve results in an integral
with the opposite sign. The oriented area as expressed in (2)
is an iterated integral of order 2.

Note that the quantity in (2) behaves differently from the
more traditional measures of interactions between the time
series, like the correlation coefficients. While the correlation

(a) (b)

Figure 1. The oriented or algebraic area encompassed by a pair of
time series. The left pane show a pair of time series x and y that are
time-shifted copies of each other (abscissa is time). When plotted
against each other, the right panel shows that they form a closed
contour on the x− y plane.

of a signal is largest with itself, the oriented areas are intrin-
sically antisymmetric, so that the autocorrelation necessarily
vanishes. On the other hand, if two signals do not overlap in
time oriented area measure is also zero. This naturally follows
from the leader-follower relationship interpretation, because
in either case, one is impossible to assign.

2.2 Lead matrices
In isolation, the oriented areas, while informative of the pair-
wise relationships between the time series, do not fully capture
the collective phenomena the multidimensional trajectory rep-
resents. However, viewed together, those interactions reflect
upon the collective, network structure among the components
of the trajectory under some natural model assumptions.

For a trajectory in a multidimensional space, we arrange
the oriented areas into the square n×n matrix (here n is the
number of time series observed). This matrix, whose kl-th
entry is the oriented area spanned by the pair xk,xl of the time
series, is referred to as the lead matrix [22].We remark that
this matrix is skew symmetric, and in particular, its eigenvalues
form pairs of purely imaginary numbers, ±iλ ,λ ∈ R, and the
corresponding eigenvectors form complex-conjugated pairs
with necessarily complex-valued components.

2.3 Chain of Offsets Model
Consider now the situation where the coordinates x j, j =
1, . . . ,n of the trajectory correspond to the same periodic func-
tion (which we will interpret here as the function on the inter-
nal clock space, a circle) φ : S1→ R, just offset by a different
phase. In other words,

xk(t) = akφ(t−αk); α j ∈ S1,k = 1, . . . ,n. (3)

We will be referring to this model as the Chain-Of-Offsets-
Model (COOM). The lead matrix can be readily computed in
terms of the Fourier coefficients of φ : it is given by

Aφ

k,l = 2πakal ∑
m≥1

m|cm|2 sin(m(αk−αl)) (4)
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In particular, the lead matrix given by (4) decomposes into
the sum of rank two skew symmetric matrices with entries

A(m)
k,l = m|cm|2akal sin(m(αk−αk))

If one of the coefficients in the Fourier series for φ domi-
nates, the skew symmetric matrix Aφ is well approximated (in
Frobenius norm) by the rank 2 matrix A(m) with coefficients(

|cm|2akal sin(αk−αl)
)

kl = |cm|2 (vkul− vluk)kl , (5)

where uk = ak cos(αk),vk = ak sin(αk). In general, if a skew-
symmetric operator of rank 2 is represented as Q = u⊗ v′−
v⊗u′ (where u,v are linearly independent, and v′ denotes the
conjugate vector to v), then one can see that w =−e−iθ u/|u|+
v/|v| is an eigenvector of Q with the eigenvalue isinθ |u||v|
(here θ is the angle between u,v). This implies that the real
and imaginary components of the eigenvector wk = pk + iqk
are obtained from the real and imaginary components uk and
vk defining the matrix A(m) via the linear transformation of
the plane (

pk
qk

)
=

(
Luk +Mvk

Nuk

)
where L = −cosθ/|u|,M = 1/|v| and N = sinθ/|u|. There-
fore, if

pk + iqk

are the components of the eigenvector corresponding to the
rank 2 matrix are stemming from a purely harmonic COOM
with the offsets αk,k = 1, . . . ,n, they are just obtained from
the complex numbers ak exp iαk,k = 1, . . . ,n by a linear trans-
formation of the complex plane, and therefore the cyclic order
defined by the arguments of the of these components is the
same as the cyclic order of the collection of points on the unit
circle {cos(αk)+ isin(αk)}k=1,...,n.

Thus the spectral decomposition of the lead matrix can
lead to the recovery of the order in which the signals are
represented by the components of the time series x(t).

3. Model example: Signal propagation in
networks

To illustrate how the cyclicity analysis works, we introduce a
model example, where the signals are propagating through a
network by gossiping.

3.1 Networks and Signals
Consider a weighted undirected graph G with n vertices, and
interpret it as a model of a network, where internode commu-
nication delays are proportional to the edge lengths. If a node
broadcasts a signal, it passes it to its neighbors, which receive
it after the corresponding delay, and immediately rebroadcast
it. If the signal was already received by a node, it ignores it (so
that each signal reaches any given node along the shortest path

connecting it to the source, and then replicates it perfectly).

Such peer-to-peer propagation models are often referred
to as gossip, epidemic or first passage percolation algorithms
[30, 31], and are relevant in studies of social networks, peer-to-
peer broadcast algorithms, distributed resource location, etc.
[32, 33, 34] Assuming such a model, one can easily recover
the structure of the underlying network, if the shortest path
lengths between the pairs of the nodes are known. Suppose
a signal si(t) = f (t) propagates from a source node i. If the
underlying graph G is a connected one, then a node j 6= i of
the network will eventually receive the signal from i as the
delayed shapeform, so that

sk = f (t−d(i,k)) (6)

where d(i, j) is the shortest path distance between nodes i and
j. For connected graphs, this distance is well-defined and
finite even if there is no direct connection between nodes i
and j. Quite often one is only interested only in the ordinal
information about the edgelengths (e.g. the minimal spanning
trees depend only on the ordering of the edgelengths). Can
this ordinal information be reconstructed using only the ob-
servations of the (perhaps, noisy) signals at the nodes?

Conceptually, this model, of the waves propagating in a
network, from an unknown source to an undefined destination,
is clearly a caricature of the cortex waves. Before presenting
the results on the (tentative) recovery of those waves from the
fMRI readings, it is enlightening to see what the situation is
in the model example, where the ground truth is known.

3.2 Cyclicity analysis
We will apply the cyclicity computational pipe to recover
the network structure from the observations of the signals
sk,k = 1, . . . ,n, as it manifestly fits the COOM. For each of the(n

2

)
pairs of signals (6) observed at the nodes of the network,

we form the oriented area of the corresponding 2-dimensional
projection as in (2). As previously mentioned, the orientation
is indicated by attaching a sign to the computed area value,
with a positive sign corresponding to counter-clockwise inte-
gration; interpreted as j(t) following i(t) in time.

The spectral decomposition of square matrix A whose
entries are given by (2), i.e. the lead matrix, allows us to
determine the relative distances of the nodes of the network
to the seed, where the signal originates. Indeed, as we argued
above, the cyclic order of the arguments of the components
of the (complex) eigenvector corresponding to the leading (in
absolute value) eigenvalue of the lead matrix will reflect the
cyclic order of the propagating wave, if the rank two skew-
symmetric lead matrix corresponding to the purely harmonic
signal propagating through the network is a good enough
approximation of the sampled lead matrix A. In this case,
spectral analysis of the lead matrix recovers the lag-structure
between the source node and every other node.
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One measure of how well the assumptions and results hold
is to compute the eigenvalue ratio |λ1 (A) |/|λ3 (A) | of the
matrix, with larger ratios leading to better results. Repeating
this analysis for various source nodes would then enable one
to reconstruct the structure of the network.

3.2.1 Model example
In the Figure 2 we introduce a network on n = 12 nodes. The
graph of Figure 2(a) is constructed by starting with the C3
graph and adding nodes with k = 3 edges at a time. The edges
are attached to vertices at random following a distribution
proportional to the vertex degree [35]. The shown matrices
represent the internode distances, both as given by the edge
lengths in Figure 2(b), and by the shortest path distances
between pairs of nodes in Figure 2(c). (Note that the shortest
distance using relays can be shorter than the direct link.)
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Figure 2. Details of the model example. (a) The graph G with N =
12 and source node i = 6, in red. (b) Random edge lengths. Zeros
indicate the absence of the direct link between the nodes. (c) The
shortest-path length matrix. Note that the connectivity of the graph
results in all non-diagonal elements being nonzero. (d) The randomly
generated the signal emanating from the source node.

To generate signal of Figure 2(d) emitted by the seed
note (node 6 in this case), we use a convex combination of
randomly modulated Gaussian functions, randomly displaced,

f (t) =
s

∑
k=1

rkg(t,k), g(t,k) = exp
(
−(t− kπ + cRk)

2
)
.

Here the displacements Rk and amplitudes rk were drawn uni-
formly from the appropriate intervals (implementation of the
simulation is available on the Github repository). The signal
propagates through the network according to the equation (6),
to which we add a small noise, realized as the scaled Brownian
motion, independent at each node.

3.2.2 Recovering the network structure
The results of the cyclicity processing of the time series gen-
erated in the example on Figure 2 are presented in Figure 3.
Figure 3(a) shows the sampled lead matrix. The interpretation
of the entries is quite intuitive; thus one can see, for example,
the vanishing oriented area between 5th and 6th nodes; this
is consistent with the fact that the network distance from the
seed to either of them is approximately the same.
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Figure 3. Results of the cyclicity analysis of the model example. (a)
The skew-symmetric lead matrix. (b) (Absolute values of) the eigen-
values of the lead matrix. The rank 2 matrix corresponding to the first
two (complex-conjugated) eigenvectors approximates the lead ma-
trix well, as the first pair of eigenvalues dominates: |λ1|/ |λ3| ≈ 20.
(c)The “constellation” of the components of the leading eigenvec-
tor winds around the origin; the circular order of their arguments
(phases) indicates the propagation of the gossip wave through the net-
work. (d) More precisely, the scatter plot of these arguments against
the known distances from the source node shows a near perfect linear
dependence, implying that lag-structure is encoded with eigenvector.
Typically the distances between the nodes and the source will be un-
known, however repeated analysis with multiple sources and careful
consideration of obtained complex arguments from the eigenvectors
enables inference of the underlying pairwise relative distances.

The first pair of the conjugate eigenvalues dominates in the
spectrum of the lead matrix, indicative of the high resolution
of the analysis as shown in Figure 4(b). The eigenvector corre-
sponding to (one of) the leading eigenvectors has components
shown in Figure 3(c). The arguments of these components,
that is the angles formed by the rays pointing towards them
and the ray of positive real numbers are shown on the display
Figure 3(d) as the scatter plot, against the shortest distance to
the seed node.

The strong, essentially linear dependence between these
phases and the distances to the seed shows that cyclicity can
be used to detect the latter from the former.
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3.2.3 Areas dynamics
Besides recovering the (cyclic) order of the signals represented
by the time series, one can extract additional information from
the oriented areas, as they are accumulated in time. Namely,
one can consider the integrals (2) with the variable upper end,
resulting in the functions Ai j (t) , i, j ≤ n. These functions
give a richer characterization of the collective behavior of the
network. As a visualization tool, we will use the area gain
plots, as shown on the Figure 4. Since Ai j =−A ji these plots
are visualized in an upper triangular matrix, with a few of the
plots magnified to emphasize some details.

Some of the plots are flat-lines, which mean there was no
inferred leader-follower relationship between that particular
pair of signals. Some plots show a sustained steady climb
- implying a strongly inferred leader-follower relationship -
whereas many others climb up and then climb down - implying
a reversal of the leader-follower mid period. The maximum
gain (or drop) of the plots characterize the strength of the
inferred directed relationship. The insets in the image show
the time evolution of the pair of signals that generated them.
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Figure 4. A panel showing the dynamics of the pairwise area-
integrals computed as entries of the lead matrix. Since oriented
areas are skew symmetric, the lower half shows insets with pairs of
BOLD signals from ROIs that together generate the area dynamics.
Shown are three typical instances: (top) strong directed relation as
exhibited by increase, (bottom) strong directed relation as indicated
by decrease and (right) a weak directed relationship as indicated my
relatively flat line.

4. Analysis of the low frequency waves in
cortex

4.1 Dataset
From the Human Connectome Project 1200 Release[36, 24],
we considered 889 de-noised minimally preprocessed partici-
pants who completed all the structural, resting state, and task
fMRI sessions using a customized Siemens Skyra 3T scan-
ner. Of those, 27 were excluded from the analysis for the
segmentation issues noted in the HCP Quality Control pro-
cess or functional preprocessing errors reported in the HCP

Data Released Updates. After exclusion, 862 participants
remained for analysis who ranged in age from 22-45 years
and included 464 females.

ROI # ROI full name ROI # ROI full name
1 Banks of superior temporal S. 18 Pars orbitalis C.
2 Caudal anterior cingulate C. 19 Pars triangularis C.
3 Caudal middle frontal C. 20 Pericalcarine C.
4 Cuneus 21 Postcentral C.
5 Entorhinal C. 22 Posterior cingulate C.
6 Fusiform C. 23 Precentral C.
7 Inferior parietal C. 24 Precuneus
8 Inferior temporal C. 25 Rostral anterior cingulate C.
9 Isthmus cingulate C. 26 Rostral middle frontal C.

10 Lateral occipital C. 27 Superior frontal C.
11 Lateral orbitofrontal C. 28 Superior parietal C.
12 Lingual C. 29 Superior temporal C.
13 Medial orbitofrontal C. 30 Supramarginal C.
14 Middle temporal C. 31 Frontal P.
15 Parahippocampal C. 32 Temporal P.
16 Paracentral C. 33 Traverse temporal C.
17 Pars opercularis C. 34 Insula

Table 1. Table of 68 ROIs involved in the analysis, showing num-
bers for left-side regions; right-side regions run their indices as 35
through 68. Here C - cortex, S - sulcus and P - pole.

Analysis of the data started by downloading resting state
fMRI scans from the Human Connectome Dataset’s Young
Adult Dataset. Towards this we made use of the Open Access
to the data made available by the HCP Consortium via the
Amazon Web Services hosting servers. Connectome Work-
bench software was used to extract regions of interest (ROI)
time series information from the fMRI parcellations available
for download.

The ROIs extracted were 34 in number (bilateral, there-
fore total N = 68) and are listed in the table below. The
parcellated output files were further processed in Python/R
to create time-courses for the regions listed in Table 1 . At
a T R = 720 ms, this resulted in a set of arrays D, with ele-
ments of dimension 68 ×1200 that were fed into the cyclicity
analysis. Further details of the scan protocol are available here.
The left panel in Figure 5 shows representative BOLD signals
in D.

5. Results
5.1 Cyclicity analysis on dataset
For cyclicity analysis, lead matrices were generated from the
time courses and their eigenstructure analyzed. These matri-
ces have dimension 68×68 with each (i, j) entry denoting the
average leader follower relationship between ROI i and ROI j.
See the right panel in Figure 5 for a representative example of
a generic lead matrix. The |λ1|/|λ3| ratio , where λk are eigen-
values, and the ratio is a measure of the quality of analysis,-
was computed for all lead matrices. Note that λ1 = λ2 since
the lead matrix is real and skew-symmetric by construction. A
subset, S⊂D, of the data was identified by restricting the lead
matrices to have |λ1|/|λ3| ratios one standard deviation above
the group average µD (|λ1|/|λ3|). For a visualization of the
distribution of the four leading eigenvalues in D see the left
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image in Figure 6. The right image shows the distribution of
|λ1|/|λ3| ratio across D. We can see that S roughly amounts
to 1/6th of all scans analyzed. The leading eigenvectors for
this subset of the data was further examined. Recall that each
entry vi of the eigenvector v of a lead matrix corresponds to
one of the 68 ROIs whose time courses it was created from.
Since skew-symmetric matrices only admit zero or purely
imaginary eigenvalues λk and corresponding eigenvectors vk,
the elements of an eigenvector vkcan be visualized as a con-
stellation, vi

k =
(
xi

k + j · yi
k

)68
i=1, in the complex plane with

each of the 68 points in it standing in for an ROI.

Figure 5. Representative time course data from the HCP dataset
after processing using Connectome Workbench (left) and correspond-
ing lead matrix (right). The lead matrix is generated after an appro-
priate normalization of the BOLD signal (see [23, 25]).

Figure 6. Frequency of the absolute values of four largest non-
conjugate eigenvalues of the lead matrices in the data (left) along
with the cumulative histogram of observed λ1/λ3 values (right).
Higher λ1/λ3 values indicate more reliable outcomes from the
cyclicity analyiss pipeline.

5.2 Significant ROIs
In such a constellation, the points farthest from the origin
correspond to ROI time courses that dominate the multi-
dimensional time series. To identify such dominant ROIs
in a principled fashion, consider the single harmonic case in
[22] presented in the previous section where perfect recovery
of phases is possible. In this case, the constellations are el-
lipses in the complex plane. Adding noise and disturbances to
the signal distorts the ellipse. Since cyclicity assumes period-
icity in the internal clock of the underlying generative process,
for a general multi-dimensional signal, one can assume that

ellipses underlie the observed configuration of the constella-
tions. Therefore, one can fit ellipses (for example, via least
square regression) to the components of the eigenvector, to
distinguish points in the constellation corresponding to dom-
inant (outside the ellipse) vs. relatively immaterial (inside
the ellipse) ROIs - see Figure 7 for a representative example.
Such analysis resulted in the identification of a subset R, of 14
consistently dominant ROIs for/across the time courses in S.

Figure 7. This figure shows one step in the determination of domi-
nant ROIs in cyclicity analysis. The left figure shows components of
the leading eigenvector visualized on the complex plane. Each point
corresponds to an ROI and its BOLD signal; with greater absolute
values indicating greater dominance in the multidimensional time-
series. The right panel shows the constellation of points rotated to
provide a consistent ordering across samples.

5.3 Robustness of dominant ROIs
Since the 14 ROI subset R was generated by considering the
restriction of the data set to S it pertinent to ask whether this
dominance was a feature common to the entire dataset D.
To this end, random subsets S of the data of size N = 299
were run through the pipeline instead of S and the reported
dominant ROIs were tracked. Figure 8 below is a visualization
of this as a matrix - each row corresponds to a random subset
S and the values along the rows represent the dominant ROIs
reported from examination of S - with the color scheme set to
aide visual identification of change in values between rows.
The average Levenshtein distance between each pair of rows
in such a matrix (across multiple trials) was found to be less
than 2 illustrating that the set R is robust to the choice of S.

5.4 Average leader-follower relationship
As noted in [22, 23], cyclicity analysis is able to extract an
approximate cyclic ordering by pairwise comparison of the
leader-follower relationships between pairs of time series. It
is cyclic because the order of events has no fixed directionality
or starting point, rather, only their relative positions are of im-
port - consider successively visiting points along a circle when
it is inconsequential whether the traversal is performed clock-
wise or counter-clockwise. Therefore, to compare between
obtained orderings, one needs a consistent way of presenting
them. Towards this end, one can construct an axis joining the
origin to the center of mass for each constellation. Choosing
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Figure 8. Figure showing reportedly dominant ROIs in 12 random
(disjoint) partitions of the dataset. Each row of this matrix represents
the most dominant ROIs reported by restricting the analysis to a
random subset of the data (size N = 299). One can see that regardless
of the subset, the same ROIs are reported to be dominant.

this as the abscissa, the cycle is then assumed to be proceed-
ing counter clockwise from this axis. This was shown in
Figure 7 where the left figure shows a sample constellation of
the eigenvector components along with the above-mentioned
axis. The right figure shows the same constellation after the
standard rotation. Applying this procedure for the regions
in R to S resulted in estimated cyclic orderings for these
dominant ROIs.

These obtained cyclic orderings can be visualized in a
square permutation count matrix shown on Fig. 9. In this ma-
trix the rows represent fixed ROIs and the columns represent
positions in the cyclic ordering. Therefore the (i, j) entry of
this matrix represents a value showing how many times ROI i
showed up in position j in all the cyclic orderings obtained.
Using this matrix, it was possible to estimate the average
cyclic ordering for the ROIS in R as shown in Table 2. To do

ROI full name Ordering in cycle
bilateral order Right Left

Precentral cortex 1 2
Postcentral cortex 3 4

Lingual cortex 5 6
Superior parietal cortex 9 7

Cuneus 10 8
Pericalcarine 12 11

Lateral occipital cortex 14 13

Table 2. The fourteen dominant ROIs (including bilateral pairs) ob-
tained and their average cyclic ordering in the dataset. The ordering
shows that bilateral pairs frequently occur together in the cycle.

so, one first obtains a list of average positions by consider-
ing the values in each row of the matrix as samplings from a
distribution and estimating its mean. Then, the permutation

Figure 9. The permutation count matrix obtained from S by re-
stricting ROIs considered to R. Each row of this matrix represents
observed positions of the ROI in the cyclic ordering. Highlights
indicate that ROI corresponding to that row consistently showed
up in a particular position (along the columns) in obtained cyclic
orderings.

vector that sorts this list of mean values will correspond to the
average cyclic order across the subset S.

5.5 Pairwise time-series analysis
Having established that the 14 dominating ROIs are a feature
prevalent in the dataset, the time-series (i.e. the BOLD signal)
itself of the 14 ROIs were examined in depth. Recall that
cyclicity methods depends on pairwise analysis of time-series
signals via iterated integrals defined between them [22]. For
each of the 91 pairs of BOLD time series that can be formed
from R, one can examine the area integral between the pairs as
in (2). This is visualized in the Figure 10 below. The top-left
panel shows a pair of time-series corresponding to a pair of
ROIs from R. The top right panel shows the value of the above
mentioned area integral computed between the pair of time-
series signal. A definite increasing (or decreasing) trend over
the period of observation shows that there is an average leader
(or follower) relationship between the pair of time series -
i.e. activity in one region precedes (or lags) activity in the
other region. While the overall trend is indicative of of this
relationship, it was noted that in a large number of instances,
the increase in the value of the area integral happened in short
bursts as opposed to a continuous increase.

These short periods of time where there is a significant
contribution to the increase in the area integral can be termed
“events” or significant periods of “directed activity” between
the two pairs of brain signals. To methodically extract such in-
stances in time, for each frame fk of the time series, successive
intervals of lengths 3-30 (i.e. intervals:

[ fk, fk+3] , [ fk, fk+4] , . . . , [ fk, fk+30]

were obtained and their slope computed). These slopes ob-
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Figure 10. Procedure for identifying significant jumps in area
integral corresponding to leader-follower activity. For each pair of
timeseries as shown in the top-left panel, the area integral of Eq. (3)
is computed as in the top-right figure. The slopes for possible jumps
at each frame are identified and a threshold applied to designate
significant jumps that contribute to the greatest overt increase in the
value of the area integral.

tained at each frame, are visualized in the bottom left image
of Figure 10. Half of the maximum slope observed among
all such intervals over all frames was taken to be a nominal
threshold and significant jumps or contributions were deemed
to be those instances when the slope of the area integral was
higher than said threshold. Periods of jumps identified in the
manner are shown marked in red in the bottom right image of
Figure 10 and the behavior of the corresponding time series
during the marked intervals show in the panel of Figure 11.

The first inset Figure 11(A) corresponds to a period where
there is a strong directed leader-follower relationship between
the pair since the blue curve leads the activity of the orange
one. A similar observation holds for Figure 11(D). On the
other hand the relatively plateaued dynamics of the area in-
tegral shown in Figure 11(B) and 11(C) correspond to time
periods between when the pair either act in concert simultane-
ously or a leader follower relationship is difficult to assign.

One can visualize all the area integrals coming from pairs
constituted from the set R at once by representing them in a
matrix. Figure 12 below shows one such image where only
the upper half of the matrix is shown for clarity (lower half
is the mirror image). This allows us to eyeball collective
trends across pairs of time-series from R. For example in Fig-
ure 12, it is clear that the last two ROIs (along the columns)
generally exhibit the same qualitative relationship with all
other ROIs (area integral is always increasing). The insets
in Figure 12 show the corresponding BOLD signals that gen-
erated the area dynamics and are specifically chose to show
increasing, decreasing and plateaued dynamics. While Fig-

Figure 11. Panel showing instances of significant contribution to
area integral highlighted in bottom-right image of Figure 10. Insets
are titled (A) - (D) and referred to as Figure 11(A) - Figure 11(D) in
the text. The inset abscissa label shows frame length of sub-interval
considered from the major axis. Each pair of time-series here is the
normalized BOLD signal over the titled frame. Instances when a
region follows the BOLD signal in another region with a time lag
correspond to greatest increases in value of the signed area integral.

ure 12 was generated using BOLD signals recorded during
a motor-task activity, Figure 13 was generated using BOLD
signals recorded during the progression of a social/cognitive
task. The two task protocols are as follows - for the motor
task [37]:

Participants are presented with visual cues that
ask them to tap their left or right fingers, squeeze their
left or right toes, or move their tongue to map motor
areas. Each block of a movement type lasts 12 s (10
movements), and is preceded by a 3 s cue. In each
of the two runs, there are 13 blocks, with 2 of tongue
movements, 4 of hand movements (2 right and 2 left),
4 of foot movements (2 right and 2 left) and three 15 s
fixation blocks per run.

whereas for the social task[37]:

Participants are presented with short video clips
(20 s) of objects (squares, circles, triangles) either in-
teracting in some way, or moving randomly. These
videos were developed by either Castelli and colleagues
(Castelli et al., 2000) or Martin and colleagues (Wheat-
ley et al., 2007). After each video clip, participants
chose between 3 possibilities: whether the objects had
a social interaction (an interaction that appears as if the
shapes are taking into account each other’s feelings
and thoughts), Not Sure, or No interaction (i.e., there
is no obvious interaction between the shapes and the
movement appears random). Each of the two task runs
has 5 video blocks (2 Mental and 3 Random in one run,
3 Mental and 2 Random in the other run) and 5 fixation
blocks (15 s each).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.16.444387doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.16.444387
http://creativecommons.org/licenses/by-nc-nd/4.0/


Slow Cortical Waves via Cyclicity — 10/14

Figure 12. A way to visualize directed leader-follower activity
between pairs of dominant ROIs obtained in the data set. A defi-
nitely increasing or decreasing trend indicates a strongly constrained
directed-leader follower activity between two pairs while a variable
trend indicates activity that is less constrained. In the top inset image,
the blue signal leads the orange one whereas, in the bottom inset, the
relationship is reversed.

In Table 2 we see that precentral cortices lead the average
cycle whereas lateral occitpial cortices end it. To examine
the area-integral dynamics of the corresponding lead-lag pairs
across different kinds of fMRI paradigms in the Connectome
dataset, Figure 14 shows data computed from (a) motor task,
(b) a social cognition task and (c) resting state.

6. Discussion
Cyclicity analysis holds the potential to provide new insights
into dynamics of FC, building an improved understanding
of brain networks and the interplay among them. Based on
this technique, we introduced an effective method in revealing
the directionality of the propagation of spontaneous BOLD
signals across cortex. Our results provided supporting evi-
dence of cortical waves propagating along the cortex between
primary visual and transmodal areas of the brain. In addition,
we found that the lead-lag relationships between pairs of re-
gions reflected in the lead matrix were driven mostly by short
periods of constrained temporal ordering. Figure 9 shows that
certain brain regions appear at earlier or later times in a cycle,
suggesting a time dependent flow of information underlying
the dynamic aspect of resting states hemodynamic measures.

Although cortical waves have been noted at much higher
frequencies, observing them in functional MRI data at low
frequencies is still unexpected. At higher frequencies, cor-
tical waves of oscillatory activity are thought to contribute
to a spatiotemporal framework for neuronal communication
by coordinating a range of synchronizing patterns [38, 39, 40,
41, 42, 11]. However, the temporal duration of these more
typical cortical waves tends to be on the order of tens to hun-

Figure 13. Visualization of directed activity between ROIs ob-
served in the social cognition task. Compared to resting state or
motor task scans, intermittent bursts of directed activity are a more
prevalent feature in this analysis.

Figure 14. Some examples from analysis of data - (A) Shows the
jump in the area integral for a pair of time series obtained from a
motor task (183034 r1) and similarly, (B) shows jumps in a so-
cial task for the same pair in the same participant. Notice that the
social task exhibits switching, i.e. there are periods of increase fol-
lowed by a corresponding decrease. (C) shows resting state analysis
(970764 s2 r2) while, (D) shows the behavior in the same motor
task for the bilateral pair in the same scan.

dreds of milliseconds rather than the super-second durations
to which the BOLD signal should be sensitive. Nevertheless,
over the past decade, a growing body of studies has observed
BOLD signal flow across cortex [13, 14, 15, 16]. Taken to-
gether, these studies have yielded evidence that there is likely
a propagation of the BOLD signal throughout the brain that
dynamically carries or reflects longer periods of stable infor-
mation flow between brain regions. The cyclicity analysis
method that we have outlined here may be a useful tool for
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investigating these dynamics due to its time invariance to vari-
able lag-times between pairs of regions of the brain, which
may limit correlational methods.

One of the more striking patterns our analysis uncovered
was that the overall lead-lag relationships between pairs of
regions in the brain were facilitated by short bursts of strong
temporal ordering, rather than long consistent stretches of
moderate ordering. In a recent paper by Esfahlani and col-
leagues [43], the authors investigated the contributions of
moment-to-moment BOLD activity to the overall pattern of
functional connectivity. Similar to our observation, they saw
that only a small fraction of frames in the time-series ex-
plained a significant amount of the variance in the network
connectivity. These fluctuations corresponded with activity
patterns corresponding to fluctuations in the level of default
mode and attentional control network activity, which are often
viewed as in opposition to each other [44].

This opposition between the default mode and attention
networks has a strong overlap with the idea of a principle gra-
dient of macroscopic cortical organization in the brain [45].
According to this framework, a topography of connectivity
patterns is reflected in the spatial distances between so-called
“higher” areas of the brain, where more multi-modal, abstract,
predictive information is encoded, and “lower” areas, such as
the primary sensory/motor regions. This primary connectiv-
ity gradient predicts the positions of canonical resting-state
networks, which are viewed in this framework as reflecting
representational hierarchies rather than distinct modules. In
other words, resting state networks are reflective of the tempo-
ral phase of propagating patterns, rather than as independent
networks. The functions associated with various cortical net-
works are correlated to the level of the hierarchy of sensory
or motor processing.

Note that, given the hierarchical framework that we are
presenting, there are some unexpected results in the ordering
that we observe, which should be resolved or investigated in
future studies. The first is that the precentral and postcentral
gyri, which are usually considered functionally as the primary
motor and primary somatosensory cortices, sit at one end of
the temporal ordering in the dominant cycle in the brain. We
would expect that a cycle that reflected hierarchical process-
ing of the visual cortex would have it’s beginning or end in
some of the multi-modal processing regions of the parietal
lobe that overlapped with the default mode network, such as
the inferior parietal lobule or the precuneus. It is possible that
there is some anatomical overlap with the postcentral gyrus,
but it is more difficult to understand how the precentral gyrus
would be involved. It is possible that the timing of activity in
the postcentral and precentral gyri are captured in the cycle,
even though the activity is not part of the same cortical wave
as the hierarchical visual processing. This possibility is subtly
suggested in our data, where there seem to be distinct borders

between activity in visual processing areas and activity in
precentral and postcentral gyri.

A second unexpected result is that the major cycle seems
to end in the lateral occipital cortex rather than in the perical-
carine gyrus, where primary visual processing begins. The
rest of the cycle that we observe is largely consistent with the
expectations of hierarchical visual processing. The temporal
ordering puts the cuneus and lingual gyri near the perical-
carine gyri and lateral occipital cortex. The superior parietal
cortex activity comes near the cuneus and lingual gyri.

We showed examples of how of the time-course of lead-
lag relationships changes over a run depending on what task
is analyzed. In each case, we showed the lead-lag relationship
between the precentral gyrus, at the starting point of the cycle
we observe, and the lateral occipital cortex, which was at the
end of our cyclic ordering. In the context of the resting state
scan, we see strong ordering in the direction that moves in
the reverse hierarchy. The precentral gyrus activity always
leads and the lateral occipital cortex always follows. Rather
than observing the temporal ordering between these regions as
constant, it seems to move in distinct bursts, where for a few
frames, the ordering is very strongly constrained. Then for
some other number of frames, the ordering is relatively uncon-
strained. We also notice that the lead-lag relationship between
these two regions takes some time to begin. It is possible that
during resting state, brain activity is mostly internally gen-
erated as in mind-wandering. This state of mind-wandering
takes some time to start, but once initiated, since there is no
stimulus to attend to, activity mostly occurs in the top-down
direction reflecting top-down processing in the hierarchy.

In the context of the social task (see Figure 13), we ob-
served a strikingly different pattern. This task consisted of
a 5 video blocks where there was a period of watching a
video and then judging whether or not the objects in the video
appear to perceive the other object’s feelings and thoughts.
In this task, we still observe strong directional constraint,
but it seems to shift in which area is the leader and which
is the follower. This may be interpreted as periods of time
that switch between internally generated (top-down) activity
and externally generated (bottom-up) activity, that may cor-
respond with periods of watching the videos and periods of
making judgements of the objects’ intentions within the video.

We observe a less interpretable pattern of activity in the
context of a motor task. Here the participants are presented
with 3-second cues to do 12-second motor movements. There
are 13 motor blocks and three 15 second fixation blocks in
each run. Like the motor task, we observe switches between
the which region is the leader and follower during the run.
However, it is difficult to match the activity observed to events
in the task. This may be because the cuing events and mo-
tor movement events are too short to be adequately captured
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in the low frequency movement across the brain. We may
be observing some aliasing in the directionality of the lead-
lag signal. It is also possible that in the motor task, there is
more separability between activity belonging to hierarchical
visual processing and motor processing. Both of these hy-
potheses are somewhat supported by the observation that if
we observe purely visual regions, which are close together in
both anatomy and expected temporal hierarchy, such as the
pericalcarine gyrus and lateral occipital gyrus, we observe a
very different pattern of temporal ordering. There are still
alternations in the direction of temporal order, but they are
more frequent and weaker in magnitude. Perhaps areas that
are closer together are better able to capture the short time
periods between subsequent cues and motor events, or perhaps
it reflects less contamination from motor activity coming from
the precentral gyrus.

Our analysis identified a temporal ordering that propa-
gated from the primary occipital regions towards more trans-
modal regions. However, it should be noted that our analysis
focused on analyzing the first eigenvector of the lead matrix,
and we are specifically showing patterns of activity from sub-
jects selected based on having high λ1/λ3 ratios in the lead
matrices. This choice likely selects for subjects with strong
leader-follower activity along a single direction. It is possible
that analysis of the other eigenvectors would reveal a pattern
of temporal ordering moving in the other directions, reflecting
alternative gradients of direction from regions higher in the
cortical hierarchy to the primary sensory regions lower in
the cortical hierarchy or more local interactions, such as the
signalling across hemispheres.

7. Conclusion
In this paper, we exploited cyclicity analysis to detect tran-
sient states in the brain. This method provides a new tool
to complement the recent advancements in effective or direc-
tional connectivity research. This line of research has led to
the intriguing discovery of temporally asynchronous patterns
of BOLD activity, which may reflect information transfer in
the brain [17, 46, 47, 48]. In fact, areas with strongly cyclicly
constrained patterns overlap well with maps of timing differ-
ences in the duration of information transfer found recently
by Xu and colleagues [48]. The method outlined here is
advantageous because of its lack of assumptions regarding
temporal properties of the BOLD signal dynamics. It does not
assume stationarity of the time-series, or specific estimates
of latency, state duration or state transitions, which may limit
or bias correlational or lag-based approaches. Clearly, the
method presented here opens a wide range of questions for
future research. We have shown group data showing a primary
propagating wave of BOLD activity during resting state from
somatomotor cortex to early visual cortex. From examining
individual subjects, we observe that these propagating waves
appear to switch in direction in a task dependent manner. Our
observations have largely been presented as descriptive, and

future work is needed to derive useful group level statistics.
In addition, the cyclicity analysis that we have described is
not limited to looking at BOLD activity from fMRI data. Fu-
ture work should apply the cyclicity analytic techniques to
other measures of human brain activity that are more reflec-
tive of direct neural activity including electroencephalography
(EEG),electrocorticography (ECoG), the fast optical signal,
or magnetoencephalography (MEG). Applying cyclicity anal-
ysis to multiple techniques may help clarify the relationship
between patterns observed in the fast temporal domain of neu-
ronal activation and the longer duration patterns observed in
the BOLD signal, which may be more reflective of broader
stable states of whole brain function.
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